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Correspondence analysis can be described as a technique which decomposes the departure
from independence in a two-way contingency table. In this paper a form of correspondence
analysis is proposed which decomposes the departure from the quasi-independence model. This
form seems to be a good alternative to ordinary correspondence analysis in cases where the use of
the latter is either impossible or not recommended, for example, in case of missing data or
structural zeros. It is shown that Nora’s reconstitution of order zero, a procedure well-known in
the French literature, is formally identical to our correspondence analysis of incomplete tables.
Therefore, reconstitution of order zero can also be interpreted as providing a decomposition of
the residuals from the quasi-independence model. Furthermore, correspondence analysis of in-
complete tables can be performed using existing programs for ordinary correspondence analysis.
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1. Introduction

In this paper we introduce a modification of correspondence analysis (CA) which can
be used in combination with the quasi-independence models familiar from loglinear
analysis. The technique we propose decomposes the residuals that are left after fitting a
quasi-independence model. The decomposed residuals are represented geometrically. Thus

our paper interprets CA as a technique which can be used complementary to loglinear
analysis. A similar approach has been adopted by Daudir~ and Trrcourt (19.80), Isra~ls

and Sikkel (1982), Lauro and Decarli (1982), and Caussinus and de Falguerolles (1986). 
was also suggested by Aitkin (discussion of Deville & Malinvaud, 1983). CA can also 

introduced as a model in its own right, or as an approximation to existing models. This is
the approach taken by Goodman (1985, 1986), for example.

The French approach to CA, originated by Benzrcri (1973, 1980), and described 
considerable detail by Greenacre (1984), interprets CA as a multidimensional scaling

technique which makes pictures of data matrices. In this presentation no statistical model
is involved. Although we think that this geometrical interpretation of CA is in many cases
the most natural one, we also think that combination and comparison with current
statistical modeling approaches for frequency tables is quite useful. This is illustrated in
van der Heijden and de Leeuw (1985) and van der Heijden and Worsley (1988). In 
complementary interpretation of CA we study it as a technique to represent residuals of a
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loglinear analysis in a picture. Both the geometrical and the statistica ! aspects are present
in this approach, but clearly the statistics are predominant. We only apply CA to the
variation that is left after the model is fitted. A model with a good fit leaves very little
va~’iation, and thus CA will be quite useless in such cases. This is more or less true by
definition: A model fits well if there is no systematic variation in the residuals. As a
consequence CA is most useful in combination with models that do not fit well. Thus we
must combine the use of CA with the use of fairly restrictive models. This agrees closely
with recommendations made by Aitkin: "CA would be particularly useful when consider-
able structure remains, as indicated by a large deviance, but no useful explanatory vari-
ables are available. The component plots may help identify the nature of the structure and
other variables which should have been measured" (discussion of Deville & Malinvaud,
1983, p. 357). Ordinary CA is, in our interpretation, complementary to the complete
independence model, which is of course highly restrictive.

We shall make use of a generalization of CA to decompose residuals from the
quasi-independence model. It is supposed in this paper that the reader is familiar with the
theory and applications of quasi-independence models for two-way tables. We merely
indicate our notation. The model states that the theoretical probabilities ~ij in a bivariate
contingency table satisfy ~ij = ~ flj for a subset S of all index pairs (i,j). There are various
reasons why we may not want to require ~j -- cq fl~ for all pairs. The first one is that some
elements of the table are missing. A second one is that some elements may be zero .by
definition, the so-called structural zeros. Thirdly we may know from a previous analysis
that some cells fit the independence model badly. And finally we may have the idea that
for some parts of the table the independence model may be true, while for other parts (for
instance the diagonal) independence is not plausible at all. For a thorough discussion we
refer to Caussinus (1965), Mosteller (1968), Goodman (1968), Bishop, Fienberg and 
land (1975, pp. 177-210), and Haberman (1979, pp. 444-486).

2. Correspondence Analysis

CA will be discussed briefly here. For a longer discussion from a comparable per-
spective we refer to van der Heijden and de Leeuw (1985). In order to discuss correspon-
dence analysis (CA) of incomplete tables later, we first define ordinary CA in terms of the
Fisher-Lancaster decomposition of an observed table. This is sometimes called the canoni-
cal analysis of a contingency table (for instance in Kendall & Stuart, 1967, chap. 33), while

the French call it the reconstitutionformula. Suppose P is the observed, table, with positive
entries that add up to one. The diagonal matrix D, contains row marginals, Dc contains
the column margins, t is a vector with all elements equal to one. Then we can find R and
C such that t’D, R = O, t’Dc C = O, R’Dr R = I, C’Dc C = I, and

P = D,(tt’+ RAC’)D¢, (1)

with A diagonal. The sum of squares of the elements of A is equal to Pearson’s index of
mean square contingency. If P is based on a sample of size n, then .n times this index is
equal to the chi-square statistic for testing independence. Thus we can say that CA, if
interpreted as computing the Fisher-Lancaster decomposition (1), studies the deviations
from the independence model.

In the introduction we said that CA gives a geometrical representation of the re-
siduals, in this case of the residuals from independence. This can be explained most easily
by introducing the chi-square distances between the rows of D,- ~P. Rows of D;- tp add up
to 1, and are usually referred to as profiles (Benz6cri, 1973, 1980; Greenacre, 1984). The
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distances between these profiles are defined in (1) and (6) of van der Heijden and 
Leeuw (1985).

In the French literature R and C are called factor matrices, and/~ = RA and d = CA
are called principal components matrices. The chi-square distances between the profiles of
rows i and i’ of P is equal to the ordinary Euclidean distance between rows i and i’ of/~.
Thus we can represent the row profiles of P using the rows of/~ as coordinates, and we
can approximate the chi-square distance by dropping the last column(s) of g. It is clear
that dually we can also define distances between column profiles of P, and approximate
them by ordinary Euclidean distances between rows of d = CA.

In van der Heijden and de Leeuw (1985, p. 431) three ways are discussed for making
simultaneous representations of row and column points, namely by using (R, ~), (/~, C) 
(RA~/2, CA~/Z). In the French CA literature it is quite customary to make joint plots of the
pair (/~, ~) ( Baccini, 1984). This has some rather serious disadvantages, because distances
between row- and column-points cannot be interpreted in terms of the transition formulas
(Equation (5) in van der Heijden & de Leeuw, 1985). Moreover the inner products of 
and column-vectors do not reproduce residuals any more. However, both the distances
between different row-points and the distances between different column-points approxi-
mate the chi-square distances while the distance of any point to the origin, weighted with
its margin, approximates its contribution to the total chi square (also called inertia). 
reason for not using the joint plots (/~, C) and (R, gT), is that these plots are impractical 
small eigenvalues, because, for example, the dispersion of the rows plotted with/~ = RA is
much smaller than the dispersion of the columns plotted with C.

3. Correspondence Analysis of Incomplete Tables

Now suppose P and Q are two contingency tables. We suppose P and Q have the
same margins. The interpretation we have in mind is to take P as the observed data
matrix and Q as the maximum likelihood estimates under quasi-independence. The tech-
nique we discuss is more general, however, because Q could also consist of maximum
likelihood estimates under models such as the quasi-symmetry model (see van der Heij-
den, 1987). The idea of using a model to generalize correspondence analysis has been
discussed in Escofier (1984) and van der Heijden and de Leeuw (1985).

If we start with the singular value decomposition

S~- lj2(p _ Q)S~ 1/2 = UAV’, (2)

we find, analogous to (1), that

P = Q + sr RAC’Sc, (3)

with/~ = S,-1/2UA. In the French literature (2) and (3) are typically interpreted in terms 
a duality diaoram. (See Tenenhaus & Young, 1985, for a useful discussion of this ap-
proach.) We prefer the more algebraic presentation in terms of the singular value de-
composition.

A proper choice must still be made for the diagonal elements of S, and S~. Such a
choice is to take for S, the values 02~ and for Sc the values flj, the maximum likelihood
estimates of the quasi-independence parameters. In this way the sum of squares of the
singular values becomes

~{(Pq--qO’z[(i,j)~S), (4)¯ " qij

which is, of course, the chi-square statistic for testing quasi-independence divided by n. In
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this way (3) provides us with a decomposition of the residuals which corresponds to the
appropriate chi-square statistic, similar to ordinary CA.

In van der Heijden and de Leeuw (1985, Equation (20)) it is shown that the interpre-
tation in terms of chi-square distances can still be maintained. The centroid principle
occurs in a somewhat different way, but is still easy to understand geometrically (see their
Equation (18)). This equation shows that RA =/~ is equal to the difference of the 
centroids S~-IPC and S~-IQC. And reciprocally, (~ is the difference of the two centroids
S~-IPR and S~-IQX. This means that it is interesting to plot these centroids, and their
difference, as vectors in one joint plot. If P - Q is small, then/~ and ~ will also be small.
Thus, for the same reasons as above, we may decide to look at joint plots which are scaled
differently.

It is clear from our resu!ts so far that if the quasi-independence model fits well, then
P - Q is small. Thus the singular values are small, and/~ and ~ will be small. This brings
us back to the point mentioned in the introduction: if the fit of the model is too good,
then there will be no interesting variation left for CA. Because structural zeros or nonre-
stricted cells do not contribute to P - Q, this means that we will need a fair number of
restricted cells in the analysis.

4. Reconstitution of Order Zero

In the French literature a technique for CA of incomplete tables has been proposed
by Nora (1975). It is also discussed in Benz6cri et al. (1980, Vol. 2, chap. III, No. 8), and 
Greenacre (1984, pp. 236-244). The technique is specifically intended for tables with
missing data, because for such tables ordinary CA is not feasible. The idea is very similar
to the way communalities are treated in least squares factor analysis: they are estimated,
then a principal component analysis is performed on the reduced correlation matrix, then
the results are used to improve the communality estimates, and so on. When we translate
this to the context of CA, we find the following algorithm. First choose the dimensionality
h and an initial estimate X~°~ which satisfies..,jx (.O.) "~ PU for (i,j) in S, and is arbitrary for (i,j)
not in S. Then reconstitution of order h is the iterative process

h

ij = ~i* "~,j
X(,m.)

. (5)

which is applied for all (i, j) not in S. For (i, j) in S we simply set ’) = Ptj fo r al l m.The
solution will, in general, depend on the choice of the dimensionality h. Benz6cri himself
seems to favor iterative reconstitution of order zero, that is, for all (i,j) not in S we set

~(m)~.(ra)
,,~,~ + t~ = -~, "’,j (6)

It can be shown that (6) converges, say to X. Let Y be the matrix with expected values
estimated under the hypothesis of independence corresponding with observed values in X.
Now (X -- Y) = (P -- Q), where (X - Y) contains the residuals of R when the indepen-
dence matrix Y is subtracted, and (P- Q) contains the residuals from quasi-
independence. This is because the cells in S, q~j = Yu = ~ flJ, and therefore for the cells not
in S we find xi~ = yi~ = ~/~ for these cells S.

Two things can be concluded from this. First of all, the procedure which is known in
the French literature as reconstitution of order zero can actually be interpreted as provid-
ing a decomposition of the residuals from quasi-independence. So, as for ordinary CA, it
is possible to replace the model-free interpretation of Nora’s CA of incomplete tables by a
model-based interpretation as given above. Secondly, we can use this finding for practical
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purposes, since now it is clear that by using X we can actually do CA of incomplete tables
with ordinary CA programs.

6. Examples

We discuss two examples here. The first example is a square matrix of order 15 × 15,
and we are interested in the 152 -- 15 = 210 off-diagonal cells. The second example is a
three-way matrix, of order 2 x 4 x 16, which has 128 cells of which 12 are structurally
zero. In the latter example we will show how CA of a two-way coding of this incomplete
matrix corresponds to the analysis of residuals from a specific loglinear model for the
three-way table.

Example 1: A Square Table

Ordinary CA is not appropriate for square tables where the diagonal cells are not
defined or not of interest, for example transition matrices, import-export tables, confusion
matrices, and migration tables. In the French literature CA of square tables has been
given considerable attention. Burtchy (1984) and Foucart (1985) review the various 
proaches that have been used in combination with CA. They either replace the diagonal
with values chosen on theoretical grounds, or they complete the diagonal by iterative
reconstitution. Subsequently an ordinary CA is performed.

Here we show the analysis of a home-work traffic table published in Foucart (1985).
The matrix is shown in Table 1. In a cell of this matrix a frequency gives the number of
persons which live in one south-eastern suburb of Paris and work in another. Since
home-work traffic can cause traffic problems especially in those eases that people do not
live and work in the same suburb, we want to restrict attention to the off-diagonal cells.
We can do this by studying the decomposition of the departure from a quasi-
independence model, in which we take for the diagonal cells ~rij -- Pi~, and for the off-
diagonal cells ~ri~ = eq fl~. We then apply CA of incomplete tables to study the residuals
from the quasi-independence model. Fitting this quasi-independence model yields a Pear-
son chi-square of 65535 (d.f. is 196). This departure is very large. CA of this incomplete
table is useful to try to find the main structure in this departure.

The first four singular values with their percentage of the chi-square are .610 (34.5%),
.439 (17.8%), .359 (12.0%), and .335 (10.4%). 52% of the chi-square is decomposed 
first two dimensions. A plot of these dimensions is shown in Figure 1. We used the
’French’ normalization (/~, t~) (compare section 2). A small label indicates "living in", 
large one denotes "working in". A horseshoe-like curve can be seen, with JOinville,
BONneuil, CHArenton, ALFort, SUCy, and VALenton--suburbs lying most east--on
the left, via THIais, CHOisy, ORLy and IVRy--suburbs lying in the middle to KREm-
lin, GENtilly, RUNgis, and FREsnes--suburbs lying most western--on the right. Briefly,
we can conclude from this figure that, those people who are not working and living in the
same suburb are in general living more often than average in a suburb that is nearby the
suburb in which they work. But a closer look at Figure 1 shows that corresponding row
and column points are rather far apart sometimes. This is especially the case for RUNgis
and SUCy. People living in RUNgis (small label) work relatively more often in KREmlin,
GENtilly and FREsnes than the other way around (concerning people working in
RUNgis). People living in SUCy work relatively more in CHArenton, ALFort, BONneuil
and JOinville and relatively less in VALenton than the other way around. It is clear that
such more precise interpretations are somewhat dangerous, since we are looking at only
52 % of the chi-square. Therefore it is advisable to check such findings in the data.



Table 1: Migration in the suburbs of Paris; rows are destinations, columns are origins.

margins

CBA IVR KRE GEN VIT ALF CHO BON VAL ORL RUN FRE THI JOl SUC without

diagonal
Charenton 6238 269 45 14 204 824 57 250

Ivry 270 11268 1113 1113 257 2483 530 708

Kremlin 34 585 11353 1001 1493 32 143 62

Gentilly 0 106 1389 10695 425 I00 99 220

Vitry 186 667 894 281 11263 1009 1577 148

Alfort 713 258 134 75

Choisy 0 181 78 41

Bonneuil 51 81 68 0

Valenton 31 34 34 28

Orly 14 108 492 177

Rungis 0 21 160 83

Fresnes 0 53 310 260

Thiais 0 66 21 0

Joinville 327 43 0 63

Sucy 0 0 0 26

632 16420 595 1675 563

763 148 5590 24 396

133 1094 109 9235 107

34 316 271 148 6161

353 104 528 209

81 33 23 20

156 0 0 0

151 40 421 24

206 801 42 1362

26 20 28 159

70 76 16 36 0 403 189 2453

166 878 166 205 281 457 174 8801

133 207 327 549 226 133 0 4925

27 111 215 1037 26 152 117 4024

123 1021 154 265 860 314 90 7589

250 29 0 118 507 297 5846

964 104 38 745 25 87 3594

92 0 28 39 1831 491 4124

628 0 0 59 83 228 1894

568 6461 315 408 551 191 130 4148

64 248 1455 110 106 21 0 970

0 82 481 3889 131 0 0 1473

43 248 26 0 1498 25 0 1067

0 40 54 90 35 17045 774 3837

591 102 0 0 0 403 5624 1355

Without
diagonal

1626 2472 4738 3164 4914 7004 4423 5009 2851 4947 1887 2766 3177 4545 2577
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FIGURE l
CA of migration table without diagonal cells

Example 2: Current A#e x A#e at First Marria#e: Structural Zeros

The second example we will discuss is taken from Haberman (1979, pp. 455-471).
There are three variables: age at first marriage (A), current age (C), and sex (S), and 
three-way table is given in Table 2. There are structural zeros since the age at first
marriage cannot exceed the current age. Following van der Heijden and de Leeuw (1985)

we analyze three-way tables with frequenciesfu k by coding two of the variables into a new
variable, thus obtaining a two-way table. Van der Heijden and de Leeuw speak of "multi-

ple tables". They show that ordinary CA of a multiple table with frequencies f~uk)--here 
and k are coded interactively~-decomposes residuals from the loglinear model Eli [JK].
These residuals contain information on two first-order interactions and the second-order
interaction. One consideration to choose for one of the three possible multiple tables is
that one is less interested in the first-order interaction between the two variables coded
interactively.

Since Haberman (1979) reports that in the three-way matrix of Table 2 the first-order

interaction between current age (C) and sex (S) is not very large, the three-way table 
be treated as a two-way table of order 4 x 16. It is easy to see that fitting a quasi-
independence model to this two-way table is equivalent to fitting the loglinear model
[A][CS] (including structural zeros) to the three-way table. The chi-square equals 245 (d.f.
is 33). We must conclude that age at first marriage is no/independent of current age and
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Table 2:

Age at first marriage x current age x sex

Age at first marriage

£20 21-25 26-30 >31

Female

~20 9 - - -

21-25 43 20 - -

26-30 51 40 3 -

31-40 103 53 4 1

41-50 68 45 5 3

51-60 65 43 7 9

61-70 39 24 12 4

~71 22 26 7 4

Male

g20 2 - -

21-25 24 23 -

26-30 21 34 3

31-40 30 61 I0 4

41-50 22 49 20 I0

51-60 19 50 27 15

61-70 16 38 23 17

~71 11 19 19 11
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sex jointly. We use CA of incomplete tables to decompose the departure from model
[A][~CS’I. Note that residuals from this model do not contain first-order interaction
between current age and sex, which was small according to Haberman. Thus we use CA
of incomplete tables to make a plot of the main (larger) interactions in the data.

Figure 2 shows the original category numbers of current age set out against the

ORIGINRL CRTEGORT NUMBERS

/

#

FIGURE 2
CA of table Age at first marriage x Current age x Sex original category numbers vs. first quantifications.

Current age-line is horizontal, age at first marriage-categories are dotted lines.
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category quantifications for the first dimension (21 = .385). This dimension displays 81%
of the chi-square, and therefore we restrict attention to one dimension only. Column
points for age younger than 20 are given quantification 0, since for these columns the
residuals are zero for all cells. The plot shows us that the age-at-first-marriage categories
are quantified roughly linearly from < 20 (1), via 21-25 (2) to 26 and older (3,4). For 
current age men have their first marriage at an older age than women: the male-line lies
above the female-line for all ages. This corresponds to first-order interaction between sex
and age at first marriage. Furthermore, for both men and women we see a tendency that,
from 31-40 and older, their age-at-first marriage tends to become higher as the re-
spondents have an older current age. This corresponds to first-order interaction between
current age and age at first marriage. Second-order interaction seems to be revealed by
the fact that for a current age of 21 to 40, men and women seem to differ: for men the age
at first marriage remains stable, while for women it goes down as their age increases. We
can conclude that CA of incomplete tables facilitates the interpretation of patterns in the
matrix of residuals.

7. Conclusion

We think that in general CA can be helpful for the analysis of residuals from inde-
pendence models. It tries to find structure in the residual cells, which is especially useful
for large tables. Whether some structure is found will be revealed by the singular values,
and the proportion of chi-square they account for.

The procedure proposed, correspondence analysis of incomplete tables, seems to be a

good al.ternative to correspondence analysis in all cases where the study of departure from
quasi-independence seems more logical, or appropriate, than from independence. Thus the
scope of CA is broadened to an important class of applications. Our CA of incomplete
tables, using the quasi-independence model, is equivalent to the French procedure for

missin.g data called "reconstitution of order zero", and this further justifies the French
procedure. It also follows that CA of incomplete tables can be done using computer
programs for ordinary CA. It is only necessary to construct the proper input matrix for
the CA prog~’am (see section 4).
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