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Special Attention to the Analysis
of Panel Data and Event History

Data

Peter G. M. van der Heijden™ and Jan
de Leeuwt

We present correspondence analysis as an exploratory method
that uses graphical representations to study the relation between
rows and columns of a two-way table with non-negaiive
entries. We present multiple correspondence analysis (MCA) as
ordinary correspondence analysis of a so-called stuperindicator
marrix. In this matrix, objects (e.g. persons) are in the rows,
and each category of each variable has a separate column.
MCA uses only the bivariate marginal frequencies 1o derive
a representation for the columns. Therefore, It can handle
data sets with many variables with many categories. We give
special anention to panel data and evenr history dara. We
show how these types of data can be coded in three-way
superindicator matrices with objects in the rows, categories of
the variables tn the columns, and time points in the layers.
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To analyze these data with MCA, we construct two-way
codings. We discuss the implications of choosing specific two-
way codings for the results of MCA. We compare Markov
chain maodeling of panel dara with stacistical mechods for event
histary data. We show that MCA can easily handle data sets
with many variables, categories, and time points and that it
can be used to study individual differences, uniike most
statistical approaches, in which persons are usually treated as
replications. MCA is a very flexible exploratory 100! of data
analysis, and much research in this area is needed.

1. INTRODUCTION

In the last 15 years, there has been a grawing interest in
correspondence analysis (CA), a tool for the analysis of categorical
data. CA has quite a long history (de Leeuw 1983). Since its
development in 1933, it has been reinvented several times under
different names. These approaches are formally identical, but their
objectives, rationales, and procedures can be quite different. CA
(also called simple CA) is intended for the analysis of two-way
tables, and it is (formally) identical to reciprocal averaging, canonical
correlation analysis, and simultaneous linear regressions (see, e.g.,
Nishisato 1980; Greenacre 1984). Multiple correspondence analysis
(MCA) i1s a version of CA that is meant for the analysis of more
than two variables; it is also known as homogeneity analysis and
the quantification method (see also Tenenhaus and Young 1985).
CA and MCA are cansidered the same in optimal scaling (Bock
1960} and in dual scaling {Nishisato 1980). The term correspondence
analysis originated in France, where it is very popular. Compared
with other approaches, CA places a heavy emphasis on geometrical
representations, which is probably one of the reasons it became so
popular, at least in France.

CA can handle many different types of data, such as paired-
comparison, ranking, rating, and sorting data (see, e.g., Nishisato
1986). Data are coded inta an appropriate two-way matrix (not
necessarily a contingency table) so that CA of this matrix reveals
saome important aspects of the original data. The matrix is
approximated in a least squares sense by a matrix of lower
rank. This lower-rank approximation is studied in graphical
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representations. Such representations show, among other things,
the relation between the row and column entries of the matrix. In
many applications the rows are individuals, and MCA gives a
representation of individual differences; i.c., it shows how individuals
differ in their relation to the columns. CA also finds optimal
quantifications for the rows and columns of the matrix under study.

In this paper we will focus upon CA of longitudinal data.
We speak of longitudinal data if one or more objccts or phenomena
are observed more than once using one or more variables. Our
objective is to show how CA can be used to analyze longitudinal
data and to compare it with more common approaches for analyzing
these data. For discrete time, many models can be formulated as
loglinear models {see Bishop, Fienberg, and Holland 1975; Plewis
1985). For continuous time, we find statistical models for the
analysis of event histories (see Tuma and Hannan 1984; Allison
1984). In both the discrete and the continuous time approaches,
the number of categories of the variable(s) under study may not
be too large because of empty-cell problems. We will show that
CA can easily deal with variables having a very large number of
categories. We will concentrate on the analysis of panel data and
event history data.

2. CORRESPONDENCE ANALYSIS OF CROSSTABLES

We will introduce correspondence analysis as a method for
the analysis of crosstables. For details and proofs, we refer to the
standard works of Nishisato (1980), Gifi (1981), Greenacre (1984),
and Lebart, Morineau, and Warwick (1984). Consider the crosstable
P, having values p,, where i (i=1, ..., I) indexes the [ rows, j
{/=1....,J) indexes the J columns, and p;=0. We denote the
margins as p,, and p,; for the rows and columns respectively (a
“+" replaces an index when summed over the corresponding
variable). In principle we can use CA to analyze any two-way
matrix with non-negative entries. One type of crosstable for which
CA is particularly suited is a contingency table. In this section we
will assume that P is a table with proportions that add up to one:
p+.=1. At the end of this section, we will discuss what tables can
be analyzed with CA.
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CA gives a graphical representation of P. In this represen-
tation, each row and each column of P has a separate point, and
the configuration of points tells us what is going on in the data. To
understand what is going on, we must know how distances between
points relate to aspects in the data. The distance between two row
points { and ' is a function of the differences between so-called
profiles of these rows. The profile for row { is defined as the vector
of conditional proportions p,/p,,. The differences between the two
profiles are weighted by (1/p.,), thus bringing down the influence
of the better-filled columnns:

8(id') = D)) (Pulpie—Prfpe ) (1)
!

Distances 8(¢,i') are called chi-squared distances. When 8(i,i'}) is
large, the profiles of rows i and {* differ much; whereas when 3(i, )
is small, the profiles of row i and {' are similar, and we conclude
that [ and ¢ are related in the same way to the columns. The chi-
squared distances between the rows show the dependence in matrix
P: When the matrix is independent, all row profiles are identical
and equal to the average row profile with values p./p,.=p.,, i.e.,
the marginal column proportions.

We want to find a representation of the row points in low-
dimensional euclidean space. We can obtain a solution as follows.
Without loss of generality, let [>J. First define D, and D, as
diagonal matrices with marginal row and column proportions p,,
and p., respectively. Now D;'P is the matrix with row profiles.
The [ rows can be plotted as points in a J-dimensional space by
using row vectors of D 'P as coordinates. By defining a weighted
euclidean metric D' for this space, we get chi-squared distances
between the rows (see Greenacre 1984 for more details). We can
center this configuration of row points by subtracting from each
row profile the average row profile with values p,,. This can be
done by using the matrix D (P—E)} as coordinates, where E is an
independent matrix: e,=p,.p., D;'E is a matrix with (identical)
profiles of the column totals. By this centering, the rows span a
(J—1)-dimensional subspace in the J-dimensional space, and the
center of this space can be interpreted as the point for the average
row profile.
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Similarly, we can plot the J columns as points in an ({—1)-
dimensional space with a weighted euclidean metric defined by
D' by using D! (P-E)7 as a matrix with coordinates. Since we
assumed that I>>J, and the columns are centered, the column points
span a (J—1}-dimensional subspace of the [-dimensional space. The
center can be interpreted as the point for the average column
profile. In this way we can also study the dependence in P from
the representation of the column points.

This study of the space of the rows and the columns is
simplified greatly when a large part of the distances is displayed in
a low-dimensional space. In CA this is accomplished as follows.
First, weights are defined for the row and column points by p,,
and p ., respectively. Then, new axes are defined in such a way
that weighted squared projected distances to these axes are
maximized for subsequent dimensions. If we denote the row
coordinates in this new coordinate system as #, for row [ an
dimension a, A} = Zp,.F} is maximized for dimension 1, then A}
=X.p,.# is maximized for dimension 2, and so for further
dimensions; the coordinates on distinct dimensions are uncorrelated.
The same criterion is used for the columns. The weighting by p..
is performed so that categories with large marginal proportions
have more influence on the determination of the new axes. The
new axes are found for the rows and columns simultaneously
by perfarming a generalized singular value decomposition (see
Greenacre 1984 for details). The generalized singular value
decompasition is performed of

D {(P-E)D-! = RACT, (2)

where A is a diagonal matrix with (J—1) singular values A, in
decreasing order; R"D,R = I = C'D.C; R is of order IxX(J—1) and
has elements 7, for category { on dimension «; C is of order
Ix(J-1) and has elements c,, for category j on dimension a.
Euclidean distances between the rows are chi-squared distances if
scores R = RA are used as coordinates, and euclidean distances
between the columns are chi-squared distances if scores C = CA
are used as coordinates. By rewriting (2) using R’7D,R = I =
C™D.C, we can find

R =RA =D;'PC, (3a)
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€ =CA=D;'P'R, (3b)

since D;'"EC = 0 = D7 'E"R. Equations (3a) and (3b) are known
as the rransition formulas. Equation (3a) shows that row scores R
can be derived from the column scores C by placing the row points
in the weighted averages of the column points, where weights are
defined by profile elements. Equation (3b) shows that column
scores C can be derived from the row scores R by placing the
column points in the weighted averages of the row points. Thus,
joint plots of row and column points are sometimes constructed
with coordinates (R,C) or (R,C). If the first choice is used, only
the distances between row points in full-dimensional space are chi-
squared distances; if the second chaice is used, only the distances
between column points ate chi-squared distances. Another possibility
is to use the pair (R,C) as coordinates, so that both distances
between rows and distances between columns are chi-squared
distances. However, the disadvantage of this is that the singular
values are used twice. This disadvantage is solved in the last
possibility by using {(RA'?, CA'?), but then neither the distances
between the rows nor the distances between the columns are chi-
squared distances.

The transition formulas (3a} and (3b) are a third way to
understand how CA displays the dependence in P: When for row
i the profile value p,/p;, is larger than the average profile value
p.,, taw i “pulls” more than average on f, causing j to be placed
nearer to {. By multiplying both values by p,., we find that i is
nearet to j when p,>p,.p., = e;, i.e., when the observed proportion
for cell {i.j) is larger than the independent proportion. Independence
can be seen ta be haseline model in CA: When P is independent,
all rows and columns fall into the origin, and the singular values
are all zero.

Interpretation of geometrical CA solutions is often made
easier by studying tables of contributions of dimensions and points.
In these contributions, the squared singular values play a crucial
role. First, it can be proved that the singular values relate in the
following way to the Pearson chi-square statistic X* for testing
independence:

trace A* X*/n, (4)
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where n is the sample size. This shows that CA splits the dependence
in the matrix into a number of dimensions. The proportion displayed
on dimension a is equal to AZ/Z A%, Second, for each dimension
a, AL =3p. P =2Zp.C so the squared singular value can for
each dimension be split up over the rows and columns by studying

proportions p, F2/Zp,. 72 and p,ciiZp.¢;, respectively. These
proportions add up to one for each dimension. A third type of
contribution can be derived for a specific point by dividing its
squared projected distance to the origin on a specific dimension by
its total squared distance to the origin in full-dimensional space:
Values 7i/Z. L, show how good point § is represented on
dimension o.

Another way to make interpretation easier is to use sup-
plementary information (if available) on the rows or columns of
the crosstable (see, e.g., Greenacre 1984). This supplementary
information is fitted into the CA solution as a second step, after
this solution has been derived from the crosstable. Consider a
matrix P of order IxJ and a supplementary matrix § of order LxJ
with extra information on the columns. Now, the L row profiles of
S, contained in D, 'S, are fitted into the solution with an equation
similar to the transition formula (3a):

R, =D 'SCA, (5a)

where R, contains the coordinates of the L supplementary rows.
The position of these supplementaty points can give us further
understanding of the configuration of the column points, from which
they are derived. Similarly, we can derive coordinates for L*
supplementary columns using

C. =D, 'STRA, (5b)

where D7 'S§7 is a matrix of order Jx L* that contains the L* profiles
of supplementary columns.

So far, we have presented CA as a tool for making graphical
representations of the dependence in a crosstable. It can be proved
(see, e.g., de Leeuw 1973; Nishisato 1980; Greenacre 1984} that
CA is formally identical to canonical analysis of contingency tables
(see Kendall and Stuart 1967, ch. 33), an approach that emphasizes
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the quantification of the categories of a two-way contingency table.
For canonical analysis, we can rewrite (2) as

P = E+D,RAC'D, = D,(1 + RAC™)D, , (6)

which is also known as the reconstitution formula. Now, the first
column of R gives aptimal scores for the row categories, the first
column of C gives optimal scores for the column categories, and
the first singular value 4, gives the maximized correlation between
the optimally scored row and column variables. The second column
of R (and C) gives optimal scores under the restriction that they
are orthogonal to the first column of R (and C), and these optimal
scores give the second maximized correlation A,, and so on for
further dimensions.

There is a large interest in the relation between CA and
other techniques for the analysis of categorical data. Goodman
(1981) found that when the frequencies are derived from an
underlying bivariate normal distribution {or a distribution that is
bivariate normal after a suitable transformation of the rows and
columns}, the scores in the first column of R and C are approximately
the same as the scores in the rows and columns of the log-
multiplicative RC association model. Goodman (1985, 1986} dis-
cusses this in more detail and also introduces forms of CA as a
model (see also Gilula and Haberman 1986). In our own work (van
der Heijden and de Leeuw 1985), we have given more attention to
the interpretation of {nonstatistical) CA as a tool for the analysis
of residuals from independence, an aspect that is clearly seen in
equation (6). Escofier (1984) extends CA by using the generalization

P=Q+SRACTS, (7)

where Q is a matrix with estimates of expected proportions under
some model that is less restrictive than independence, and 8, and
S, are diagonal matrices that do not necessarily consist of the
margins of P. Thus, in van der Heijden and de Leeuw (1985), we
use CA for the analysis of residuals from loglinear models in higher-
way tables. We start by coding higher-way tables into two-way
tables by stacking the categaries of the original variables (i.e., when
twa of the original variables have 2 and 3 levels, the new row
variable has 2x3=6 levels). It is easy to see that in this way the
values of the matrix E are equal to estimates of expected frequencies



CORRESPONDENCE ANALYSIS 51

for the loglinear moadel in which the set of row variables are
independent of the set of column variables. Instead of the
independent matrix E, one could choose, for example, a conditional
independence model and decompose residuals with (7). Other
examples of this approach use quasi-independence, symmetry, and
quasi-symmetry models. Overviews of this approach can be found
in van der Heijden (1987) and van der Heijden, de Falguerolles,
and de Leeuw (1989).

Goodman’s approach to CA as a model and our residual
analysis approach to CA are most useful when the table to be
analyzed is a contingency table with frequencies derived under
Poisson or (product-)multinomial sampling. But CA is also useful
for many other types of tables, for example, the Burt table and the
superindicator matrix, to be discussed in the next section. Another
table will be analyzed as an example. Generally speaking, CA is a
useful technique when the chi-squared distance is a useful measure
for the {dis)similarity between the rows or between the columns of
the matrix under study.

2.1. Example

For an example, we will analyze the matrix displayed in
Table 1. It is a matrix of order 18x(5X5), having hours from 6:00
A .M. until midnight in the columns and the joint bchavior of
husbands and wives in the rows. In the cells, we find the total
number of minutes in an hour that the husbands and wives in 326
couples spent at home (H), at work (W), travelling (T), shopping
(8), and in other activities (O). The column totals all equal
(326 x60), because each of the 326 couples spends 60 minutes in
an hour. The husband-wife pairs come from the National Travel
Survey of 1980 conducted by the Dutch Central Bureau of Statistics
(Moning 1983). From this survey, we selected the 326 couples in
which both partners worked more than 25 hours a week and in
which both kept diaries of their weekday activities. For mare
details, see van der Heijden (1987).

Table 1 tells us the specific hours in which activities were
performed. We use CA to study this. In CA, each column profile
is compared with the average column profile, having values 1/18.
Each row profile is compared with the profile of the column
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margins. Notice that this latter margin shows us that males generally
spend more time working, whereas women spend more time
shopping, etc. CA of Table | will nat show this, since it concentrates
on the departure from this margin.

CA gives eigenvalues A7 = 0.47 (76 percent of chi square},
i3 = 0,06 (10 percent), and A3 = 0.04 (0.06 percent). To decide
upon the number of dimensions that we are going to study, we can
use the elbow or scree criterion, known from dimension-reduction
techniques like factor analysis. It tells us that we can restrict
attention to the first dimension only. Results are summarized in
Figure 1. The hours are presented horizontally and the quantifi-
cations on the first dimension are presented vertically. The activities
are represented on the vertical line on the left, and the hours are
represented by points that are connected for adjacent hours. The
morning hours 6, 7, and 8 (i.e., from 6:00 A.M. until 9:00 A.M.)
and the evening hours 18 to 23 are gquantified negatively; the other
hours are quantified positively, Thus, in the morning and evening,
the couples perform activities different from the activities they
perform in the hours between. _

The quantifications of the row categories show what these
activities are. We use the transition formulas (3a) and (3b). To
interpret the row categories, it is helpful to study the contributions
of these points to the first dimension. This shows contributions of
0.38 for HH (both partners at home) and 0.43 for WW (bath
partners at work). Thus, more than 80 percent of the chi square
displayed on this dimension stems from the fact that rows HH and
WW depart from the average, being the profile with values 1/18.
We now understand the quantification of the hour points: In the
morning and in the evening, husbands and wives are both at home
more than the average for the whole day, whereas during working
hours, they are both at work more than the average for the whole
day. The time-point quantifications, which all have about equal
contributions, are determined mainly by these two points. There is
a dip during lunch time because some persons go home then. Other
states do not contribute much. Only the state in which both partners
do other things (OO) takes account of another 0.04 and is quantified
very negatively, since these activities are performed more than
average in the evening. This does not mean that we should not
interpret the position of the other states; they do not contribute
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FIGURE 1 Analysis of data in Table 1. Quantifications on first dimension for the rows
and columns. The J activity quantifications are displayed on the verticat line
an the left; the P period quantifications are connected hy a sotid line on
the right.

much because they have a lower mass than the categones HH,
WW,. and Q0. For example, the state in which one partner shops
while the other works (WS and SW) occurs more than average
during working hours, whereas shopping together ($5) occurs more
than average after working hours but before the evening (in
the Netherlands most shops close at 6:00 P.M.). Furthermore,
discrepancies between “opposed” states such as HT and TH can be
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studied: This shows, for example, that in the morning, women stay
at home somewhat {onger than men and that in the evening, they
are at home again eariier. These latter interpretations are more
speculative, because these points have little influence on the
soiution, and it is possible that higher dimensions lead us to a
different interpretation. Therefare, it is generally advisable to check
conclusions like these in the data or to study whether these points
have large contributions on higher dimensions. CA is used here to
obtain only a global idea of the most important departure from
independence (76 percent is displayed). Higher dimensions show
mainly unstructured peculiarities in the departure.

Note that it would have been unusual to study Table 1
with loglinear analysis, because the assumption of independent
observations {minutes) is clearly violated. If the observations in
Table 1 were independent, CA could be interpreted as giving a
representation of the residuals from the loglinear model in which
hours are independent of the joint behavior of the couples (see
above, and van der Heijden and de Leeuw 1985).

3. MULTIPLE CORRESPONDENCE ANALYSIS

There are many ways to introduce multiple correspondence
analysis (MCA). Standard references are Benzecri (1973}, Nishisato
(1980), Gifi (1981), Greenacre (1984), and Lebart et al. (1984).
Here we will discuss three ways. First, we will introduce MCA as
CA of a so-called indicator matrix. In this context we will emphasize
a chi-squared distance interpretation of MCA. Second, we will
show that MCA can be interpreted as principal components analysis
(PCA) of categorical data. Here the quantification interpretation
of MCA will be stressed. Third, we will introduce MCA as CA of
a sa-called Burt matrix. This will make it easier to relate MCA to
the decomposition of chi square and to loglinear analysis.

3.1. Correspondence Analysis of a Superindicator Matrix

Data are very often coded into a matrix with objects as rows
and variables as columns. The objects can be, for example, persons,
schools, countries, or household units. The variables denote aspects
on which the objects are measured. We will assume that the
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TABLE 2
A Small Example of a Categorical Data Matrix (Panel A) and its Superindicator
Matrix (Panel B)

Panel B
Panel A a b c p q v u v w
a q W 1 0 0 ] 1 a 0 0 1
a ¥ W 1 0 0 0 ] 1 0 0 1
c r v Q0 0 1 0 1 Q Q 1 0
b q u 0 1 0 ] 1 a 1 0 0
a r W 1 a 0 0 0 1 a 0 1
b p t 0 1 0 1 0 0 1 0 0
c ¥ W 0 Q 1 0 0 1 0 0 1
c P v 0 0 1 1 0 a a 1 0
c q w o 6 1 0 1 0 0o 0 1
a P v 1 a a 1 0 0 0 1 0

Note. There are ten abjects (rows), and three variables, each with three
calegories.

resulting measures are categorical. In Table 2, panel A, we present
an example of a data matrix for ten persons and three variables.
The entries of the matrix, X, are simply letters; i.e., a, b, ¢ for
variable 1, p, gq, r for variable 2, and u, v, w for variable 3. The
matrix has columns X” (m=1, . . ., M) and elements x,,,, where i
(i=1, . . ., I} indexes the n rows. We can transform each column
(variable) X™ into a so-called indicator matrix G™ with elements
g7, where g7 = 1 if object { falls into category j {j=1, ..., J} of
variable m, and g = ( otherwise. Variable m has k,, categories.
By concatenating the M indicator matrices G™ horizontally, we get
a so-called superindicator matrix, denoted by G. G has » rows and
k = 2k, columns. In our example, the matrix G has nine columns
(see Table 2, panel B}. CA of G is known as MCA. We will now
apply this by discussing the properties of CA of G.

CA gives a graphical representation of both row profiles and
column profiles of a matrix. So the »n row profiles in D;'G are
plotted as points in a k-dimensional space. Notice that because each
row in G has m 1s, B, = I/m, and a row profile is a vector with m
values equal to l/m, the other values being (). Also, all row profiles
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have identical weights. The metric of this space is defined by D',
where D, has diagonal elements (g} )/nm, 2,g/7 being the marginal
frequency of category j of variable m, and nm being the total
number of 1s in the superindicator matrix. Two row points will be
near cach other when they have similar profiles, i.e., when the
objects fall into the same categories of the m variables. The column
profiles of G are plotted as points in n-dimensional space. Assaciated
with these points are masses (2,g//)/nm that are proportional to the
marginal frequencies of the categories. Two column profiles will be
near each other when there are many objects that fall either into
both of these categories or into neither of these categories. The
dimensionality of the subspaces that are spanned by the row points
and the column points is min((n—1), (k—m)), where (n—1) is the
dimensionality of the centered a-dimensional column space and
(k—m) is the dimensionality of the centered row space, since for
each variable m, 28 = 1, and therefore centering eliminates m
dimensions. Related to this is a special property of the category
scores. For each variable on each dimension, they add up to zero
when we weight them with the marginal frequencies of the
categories: Xgliciy = 0 for each dimension « and each variable m,
where ¢, is the quantification of category j of vanable m on
dimension «.

Because G is a binary matrix, the relation between the row
points and column points simplifies. Equation (3b} now shows that
if the normalization (R,C) is chosen, a column paint, i.e. a category,
is in the centroid of the objects that fall into that category. Equation
(3a) shows that if (R,C) is chosen, an object point is in the average
of its categories. In most applications, normalization (R,C) is
chosen.

In most applications, supplementary information on the
objects (e.g., sex, place of birth) is also available. When the
supplementary information is (made) categorical, we can code it
into a (super}indicator matrix S and apply equation (5b). Thus, we
find supplementary category points that are in the average of all
objects that fall into these categories (see Greenacre 1984).

3.2. Principal Components Analysis of Categorical Data

One way to define PCA is as follows. Consider a set of m
quantitative variables collected in a matrix Q having columns Q.
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Then, the first principal component, R', is the linear combination
of the m variables Q" that maximizes the average of the squared
correlations A1 = X, (cor(R',Qm})*/m. The average A{ is called the
first eigenvalue, and the correlations cor(R',Q™) are known as
component loadings. The second principal component, R?, is the
linear combination that maximizes 43 = Z,,(cor(R*,Q™))*m under
the restriction that it is uncorrelated with the first, and so on for
further dimensions.

MCA can easily be fitted into this framework. Consider the
matrix X, with categorical measures in the cells (see Table 2, panel
A, for an example). Suppose we have analyzed the table G, derived
from X, with CA. This gives us scores collected in R and C and
eigenvalues collected in A?. Consider now only the first dimension
of CA, i.e., the first column of row scores R! and column scores
C!', where the scare of category j of variable m is denoted with
. We can use the category scares ¢} to derive from the original
matrix X a quantified data matrix Q by replacing the categories in
X by their carresponding quantifications in C'. The relation between
PCA and MCA is such that these category scores are optimal in
the sense that A7 = 5, (cor(R',Q™)}*/m is maximized. Using C?, we
can construct a newly quantified data matrix Q by filling in these
category scores, and these category scores are optimal in the sense
that A7 = X, _(cor(R2,Q"))*m is maximized under the restriction
that R' is uncorrelated with R2, and so on for further dimensions.
This shows that MCA is a PCA for categorical variables that are
optimally quantified for each subsequent principal component.

In the description of ordinary CA, we discussed three types
of contributions that could be computed to simplify the interpretation
of the CA solution. The first type was the proportion of chi square
that was decompased in each dimension. This type of contribution
is less useful in MCA, since the last dimensions of the MCA
solution can be shown to be artifacts due to linear dependencies
(see, e.g., Greenacre 1984, ch. 5). Therefore, distances on these
last dimensions shouid not be interpreted. The second type was the
decomposition into subsequent dimensions of the distance of a point
to the origin in full-dimensional space. Now that we know that the
last dimensions in the MCA solution are artifacts, this type of
contribution is not very useful either. Only the third type of
contribution is useful: the contribution of individual row and column
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points to a dimension. For the rows of G, this contribution is easily
derived, because all row weights, defined by D,, are identical. For
the columns of G, it is most useful to sum these contributions per
variable so that it is clear how much a particular variable (instead
of a particular category) contributes to a specific dimension. The
contribution (g7, /nm)(En)*/AZ shows the contribution of category
j of variable m to dimension a. By adding up over the categories
jin variable m, we have the contribution of variable m:
(g inm)(€n)*A5. This quantity is closely related to the squared
correlation between the quantified variable m and the row scores
for dimension ¢, since (cor(R=,Q™)) = X,(g7/n)(¢z)* (for a proof,
see Tenenhaus and Young 1985).

3.3. Correspondence Analysis of the Burt Matrix

Further insight into MCA can be obtained when we consider
it as CA of the so-called Burt matrix B=G’G. Table 3 displays the
Burt matrix for our little example. The Burt matrix can be
considered a concatenation of all univariate margins {as diagonal
submatrices on the diagonal of the Burt matrix) and bivariare
margins. CA of the matrix G is related to CA of the matrix B=G'G
in the following way: Column scores C derived from analysis of G
are equal to column (and row) scores C derived from analysis of
B. The only difference is in the singular values: For these, we have
Aawy = M), where A,p, 1S the singular value for the analysis of

TABLE 3
The Burt Matrix for the Example in Table 2

a b < p g r t v W
a 4 0 0 1 1 2 0 i 3
b il 2 il 1 1 0 2 0 0
e Q Q0 4 1 1 2 a 2 2
P 1 1 1 3 0 0 1 2 0
g 1 1 1 Q 3 Q 1 0 2
r 2 a 2 0 0 4 a 1 3
y 0 2 0 1 1 il 2 0 0
v 1 0 2 2 0 1 0 3 0
w 3 0 2 il 2 3 a 0 5
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the Burt matrix, and A..g, is the singular value for the analysis of
the superindicator matrix G.

Ordinary CA decomposes the departure from independence.
When we apply this to the Burt matrix, we see that an “independent”
matrix derived from the Burt matrix is in fact a matrix with marginal
independence for all pairs of variables. So MCA studies the
departure from bivariate marginal independence, restricting attentian
to the bivariate marginal dependence. Now, the relation with chi
square displayed in equation (4) needs ta be changed: This relation
becomes Z Aupy = Zotiey = (k~m}+Z, 2, . X2, ./n, where X, .. is
the chi square for testing independence in the marginal table of
variables m and m'. It also shows, in loglinear analysis terminology,
that second- and higher-order interactions are ignored. There are
circumstances in which this is a serious drawback. However, by
restricting attention to marginal bivariate dependence, we can study
the relation between many variables with many categories without
running into empty-cell problems. Therefore, MCA has a large
range of possible applications.

The Burt matrix also gives us a further understanding of the
quantification interpretation of MCA. In CA the categories of the
two variables are quantified in such a way that the correlations are
maximized. By quantifying, we can derive for each dimension a
correlation for the contingency table. In MCA the variables are all
quantified optimally under the restriction that the quantifications
of the categories of a variable are identical for the relations with
all other variables. With these quantifications, a correlation
coefficient can be derived from each subtable of the Burt matrix,
and this matrix can be reduced to a correlation matrix for each
dimensicn.

3.4. Missing Data

So far, we have discussed MCA with no missing values.
When there are missing values, it is not known in which category
an object falls. Most often this is remedied by coding 0 in the
indicator matrix for all categories of the missing variable. In many
instances, formulas will change a little, because with missing values,
row margins are not the same for all rows. MCA with missing
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values is treated in detail by Meulman (1982; see also Nishisato
1980, ch. 8; Greenacre 1984, ch. 5).

4. THREE-WAY SUPERINDICATOR MATRICES

In the sequel, we concentrate on the analysis of longitudinal
data. We speak of longitudinal data when a group of objects is
observed more than once at the same time points on the same
(group of) variable(s). We assume that the measures are categorical.
Therefore, longitudinal data can be coded into a three-way
superindicator matrix G, having elements g, where g7 = 1 if object
i falls into category j of variable m at time point ¢ (¢ = 1, . . ., T},
and g7 = 0 if not. The three modes of G are the object mode
indexed by i, the category mode indexed by a combination of j and
m, and the time mode indexed by ¢, so only the last mode is new.
This way of coding longitudinal data is not very restrictive. The
only restrictive feature is that in principle, all objects must be
measured at the same {(and not at different} time points. If they
are not, we have to code some abjects at specific time points as
missing, or use an extra category for them. However, in both
possibilities, results can be influenced to some extent by the fact
that a number of objects are missing at specific time points.

The coding is useful not only in discrete time applications.
Observations in continuous time can be coded into a three-way
superindicator matrix when we keep in mind that in practice, the
precision with which time is observed is limited: Continuous time
observations are measured in days, hours, minutes, or seconds.
Large precision implies only that the number of time points is very
large, making the time mode of the matrix G very large. Three-
way superindicator matrices were first introduced by Saporta (1981),
see also de Leeuw, van der Heijden, and Kreft (1985} and van der
Heijden (1987).

Our approach to the analysis of G is to recode the three-way
data in G into a two-way marrix and to analyze this two-way coding
with MCA. In principle there are three ways to construct two-way
codings: First, we can concentrate on separate slices of the three-
way data block. Second, we can concatenate these slices. Third,
we can concentrate on margins of the three-way matrix G. In this
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paper we will not analyze slices but concentrate instead on
concatenations of slices and on marginal tables.

There are three ways to concatenate slices. First, we can
concatenate the T time-point slices horizontally so that we obtain
a broad matrix with objects in the rows and categories of variables
at specific time points in the columns. We will refer to this matrix
as the BROAD matrix and denote it as G, having elements
8% Second, we can concatenate the T time-point slices vertically,
yielding a LONG matrix with categories of variables in the columns
and object-time-point combinations in the rows. The LONG
matrix will be denoted as G, with elements gf%,,. Third, we can
construct a matrix with time points in the columns and combinations
of objects and categories of wvariables in the rows. However,
relations between the rows and columns of this matrix are not easily
interpretable; therefore, we will skip this possibility.

For the marginal tables, we also have three possibilities.
First, we can add up over the time points. This gives a matrix
denoted as G with objects in the rows and categories of variables
in the columns. The entries g, of G" are frequencies indicating
the number of times that object J falls into category j of variable
m. Second, we can add up over the objects so that we have a
matrix with time points in the rows and categories of variables in
the columns. This matrix will be denoted as G7/, and entries g7,
are frequencies indicating the number of objects that fall into a
specific category at a specific time point. The third marginal matrix,
obtained by adding up over the category mode, is the uninteresting
matrix with all entries équal to g/, = m, the number of variables.

So we conclude that the three-way matrix G gives us four
interesting two-way matrices, namely, the BROAD and the LONG
matrices obtained by concatenating slices, and the marginal matrices
GY and G". Below, we will discuss MCA of panel data and of
event history data. Specifically, we will discuss the aspects of the
data that are revealed when we analyze each of the four possible
two-way matrices and compare this to more usual techniques for
the analysis of these data.
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5. MULTIPLE CORRESPONDENCE ANALYSIS OF PANEL
DATA

We speak of panel data if a group of objects is measured
more than once at specific time points using one or more variables.
Such data can always be coded into the three-way superindicator
matrix G. We will first consider univariate panel data. Then we
will discuss the analysis of multivariate panel data.

5.1. Univariate Panel Data

We can consider panel data as univariate when either the
number of variables is one or a composite variable is constructed
by stacking the categories of two or more variables into one new
variable. For the general case, we saw that the three-way
superindicator matrix G could be reduced to four interesting two-
way codings of the data. For this specific univariate application,
the LONG matrix G4 gives a trivial solution with all singular
values equal to one, since G“VY has rows with one 1, the other
values being zero.

The most interesting analysis is the analysis of BROAD
marrix G'Y0. This matrix has one row for each ohject and one
column for each category at each time point. Each row has T values
of ane, the others being zero. The chi-square distance interpretation
of MCA indicates that each object (row) is compared with the
average row profile, being the profile of the column margins g,
(we skip the superscript m, since there is only one variable). These
column margins specify the distnbutions of objects over the
categories at the 7 time points. The profile of these column margins
is placed in the origin. Note that we do not study the structure
within the column margins, only the departure from this average.
Objects are placed near each other when their profiles depart in
the same way from the average profile, and they are placed far
from each other when they depart in different ways. A separate
analysis of the column margins of G9 can be useful to complement
the analysis of G'* itself. In this way we can understand from what
the objects depart. The column margins are collected in the marginal
matrix G™. This matrix shows how categories relate to time points.
CA of G¥ compares the T distributions of objects with the average
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distribution over all time points given by the column margins of
G".

When we interpret the MCA of GV as a PCA of nominal
variables, the variable that is measured at T time points is considered
in GU7 as a set of T distinct variables that will simultaneously
receive an optimal quantification. So MCA gives T distinct sets of
quantifications of this variable, one set for each time point ¢. This
interpretation of MCA of G is closely related to MCA of the
marginal matrix GY. Gifi (1981, ch. 10) shows that equality
constraints (i.e., under which two or more rows/columns receive
identical quantifications) can be obtained with ordinary CA programs
by simply replacing the two or more rows/columns by ane row/
column that is the sum of the original rows/columns. Therefore,
the analysis of the marginal marrix G* gives a solution for the
analysis of G*“? in which category j obtains identical quantifications
for each time point . The transition formula (3a) shows that if in
the analysis of G'“? the category quantifications of corresponding
categories do not differ much, the row scores R (i.e., the scores
for the abjects) for the analysis of G will be approximately equal
to those for G*.

We conclude that for the three-way superindicator matrix,
there are three interesting two-way matrices to be analyzed. The
analysis of G‘¥* is in general most interesting, because it shows how
objects depart in different ways from the average. This analysis can
be supplemented by the analysis of G™, giving more insight into
this average. The analysis of G* shows us a constrained analysis of
G,

So far, we have only considered matrices that can be derived
from the three-way matrix G by adding up or concatenating slices
of the data black. For the special case in which the number of time
points T=2, we can also construct a fransition matrix with the
categories for r=1 in the rows and the categories for =2 in the
columns. It can be proven that an ordinary CA of such a transition
matrix comes to the same as MCA of the matrix G, in the sense
that the former solution can be derived from the latter (see, e.g.,
Gifi 1981; Greenacre 1984). This property hoalds for contingency
tables in general. We can also use CA to analyze panel data with
three or more waves by creating a contingency table with a new
composite variable, with the stacked categories of the first few time
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points in the rows and the categories of the last time point in the
columns. For an example, and its relation to Markov chain madels,
see van der Heijden (1987). We will now discuss an MCA example
for three time points and then discuss the relation of MCA of
univariate panel data to Markov chain models.

5.2. Example

In 1987 and 1988, Meerens, Boer, and Tan (1988) conducted
a panel study of the decrease in income resulting from unemployment
or medical disability. The first interview was conducted in January
1987, the second in July 1987, and the third in January 1988. There
were 402 respondents at all three time points. Longitudinal
information was collected for many variables (for more details, see
Meerens et al. 1988). We concentrate here on the question,
“Consider a person receiving money from social security. How
much may such a person according to your standards earn in a
month without notifying the social security office?” (In the
Netherlands, earning extra money without notifying the social
security office is illegal.) At time 1, the passible answers are “no
idea,” “nothing,” “less than f100,” “between fl100 and 249"
“between 250 and f499," “more than f500,” and “unlimited, or
could not specify an amount.” (One Dutch guilder, denoted as f1,
equals roughly $0.3.) Because of the divers answers falling into this
last alternative, at time points 2 and 3 two extra alternatives were
added to this list: “the same amount as when I worked™ and *I
know that it is allowed, but I don't know how much.” So there are
TX9x9=567 possible response patterns, only 204 of which were
used. For this reason, more traditional approaches that use the
three-way matrix of order 7xX9x9 cannot be applied. The sequence
of analyses below is in our opinion typical for an adequate study
of panel data with MCA.

We start by coding the 402 profiles into a three-way indicator
matrix of order 402x9x3, of which at time 1 two categories are
empty by design. The first analysis we perform is the analysis of
the marginal matrix G” of order 9x3. This matrix is displayed in
Table 4. Although this matrix can easily be studied by eye only,
we will do a CA for expository purposes. CA gives a solution that
is dominated by a distinction between time 1 and times 2 and 3:
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TABLE 4
Marginal Frequencies of Responses at Times 1, 2, and 3 to the Question
About Sacial Security Income

Response Time | Time 2 Time 3
Na idea 30 6 13
Nathing 6l 66 56
Less than £100 19 19 21
Between £100 and {249 64 68 56
Between 250 and 500 110 92 87
More than £500 77 45 35
Unlimited 21 13 16
Same amount as when I worked — 68 57
I know it is allowed, but [ — 25 4]

dan't know how much

Totals 402 402 412

This is due to the two categories that are zero by design at time 1
and to the “no idea" category, which has a high frequency at time
1 and a low frequency at times 2 and 3. So this analysis shows a
somewhat trivial result. In de Leeuw and van der Heijden (1988),
we discuss a procedure for the analysis of incomplete tables that is
closely related to the loglinear quasi-independence model. Practi-
cally, it implies that independent values are imputed into the cells
that make the table incomplete. For our example, these independent
values are 81.97 and 43.28. When we analyze the table with the
imputed values, we find a dominant eigenvalue of (.13 (93 percent).
The time points are quantified as —0.50, 0.49, and (.16 for time 1
to time 3. Now the main difference is between the profiles for times
1 and 2, time 3 being in between. Categories “no idea,” “greater
than {500, and “unlimited” receive negative quantifications,
showing that frequencies of these categories are particularly large
at time 1 and become smaller at time 2 {(and to a lesser extent, at
time 3). On the other hand, the categories “nothing,” “less than
f100," and “f100-£249" are quantified positively, showing that the
number of persons that fell into these categories at time 2 (and to
a lesser extent, at time 3) became larger.
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Now that we have some insight into the changes at the group
level, we can study individual differences in changes with MCA.
We do this by analyzing the BROA D matrix of order 402 x 25 (we
can omit the two empty columns). MCA gives first few eigenvalues
0.621, 0.557, 0.514, 0.467, 0.441, and 0.411. We study only two
dimensions here, thus using MCA only to show the most important
information in the data. The first two dimensions are shown for
the persons {(rows) in Figure 2 and for the categories (columns} in
Figure 3. These twa figures are related in the sense that each
category point is in the average of the persons that fall into it. In
Figure 2, each different response pattern is represented by a point,
so there are 204 distinct points. For this data set, the points are
placed in a triangular configuration, and most points are located in
the left corner. The chi-squared distance interpretation implies that
response patterns (i.e. persons) are placed closer together when
they have many elements in common (here, they are identical when
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FIGURE 3 Category points in two dimensions.

they have three elements in commeon), and they are placed farther
apart when they have little in common. We can interpret the form
of the configuration of points when we study the plot of category
points. Here we see in the upper right carner the categories for
“less than 100, in the lower right corner “nothing,” and in the
left corner the other categories. Category points are close together
when they have many persons in common; therefore, for example,
the categories “less than f100” at times 1, 2, and 3 have many
persons in common. This shows that persons who fall into “less
than f100” at one of the time points very often fall into this category
at other time points. When these persons change categories, they
are most likely to change to nearby categories, since these categories
have the most persons in common with the “less than f100™ category.
For the persons falling at least once in “less than f100," these are
the categories for “f100-£249." Persons falling at least once in “less
than f100" will seldom change to other categories, because
“less than f100" is relatively far from all other categories. The
configuration of the remaining points can be interpreted in a similar



CORRESPONDENCE ANALYSIS 69

fashion: A curve can be drawn from “less than {100 via “f100-£249,"
“£250-£499." “£500 or more,” “unlimited,” “no idea™ to “nathing.”
Figure 2 shows that most persons have a response pattern with
categories that are in adjacent clusters in this curve. However,
there are several exceptions: There are also paints between the
upper right and lower right carners representing persons who change
from “nothing” to “less than £100.” That the distance between “less
than f100™ and “f100-£249" is much larger than the distance between
“f100-£249" and “f250-f499" indicates that more changes occur
between categories of the latter pair than between thase of the
former pair. Most changes occur between the categories in the left
corner. The new categories “the same amount as when I worked”
and “I know that it i1s allowed, but I don’t know how much” are
between all other categories, indicating that they are found together
with all other categaries.

For all categaries, the points for times 1, 2, and 3 are near
each other, indicating that relatively many persons remain in the
same state. [t is dangerous to interpret the small differences between
the locations of a category at times 1, 2, and 3 because we are
looking at a two-dimensional representation of a high-dimensional
configuration, and although these two dimensions are most import-
ant, much information i1s hidden in higher dimensions. However,
on both dimensions it is generally true that the points for time 2
are further away from the center than the points for times 1 and
3. This is also shown by the contributions of the time points to the
dimensions: For times 1, 2, and 3 respectively, these are 0.317,
0.358, and 0.326 for dimension 1 and 0.307, 0.388, and 0.305 for
dimension 2. This shows that the separation of person points is due
more to their scores at time 2 than to their scores at times 1 and
3 (see the next section on Markov chain models and multiple CA).
These differences are very small. This is shown by the fact that the
analysis of G (a constrained analysis of the BROAD matrix) gives
almost the same configuration of person points: For the first
dimension, the correlation between the person scores for the
constrained and the unconstrained analyses is 0.996; for the second
dimension, it is 0.989.

As a second step in the multiple CA of the BROAD matrix,
we will relate supplementary information to the solution: the age
of the persons (in four categories), their sex, and whether they
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stopped working for medical reasons (M) or became unemployed
(I)). We relate this information to the person points to find out
whether persons with specific characteristics can be found in a
specific part of the configuration. Thus, we use the supplementary
information to explain differences between persons’ scores on the
longitudinal variable. We have derived from the three supplementary
variables one new composite variable having 4 x2x2=16 categories,
and we have computed averages for each of these 16 categories.
(This strategy can only be applied when the product of all levels
of the supplementary variables is not too large. If the product is
large, we have to compute averages for each level of each variable
separately.) See Figure 4. The categories discriminate most in the
direction from the left corner to the lower right corner. In general,
medically unfit persons more often state “nothing,” whereas
unemployed persons more often mention high amounts. There
doesn't seem to be much difference by sex: Corresponding male
and female points are quite near each other. There also seems to
be a tendency for some unemployed groups to lie near the upper
right corner (i.e., a small amount is allowed).

5.3. Muliiple Correspondence Analysis and Markov Chain
Models

In the presentation of MCA as a CA of the Burt matrix, we
explained that MCA concentrates on the bivariate marginal
dependence in the higher-way contingency table. In terms of
loglinear analysis, a Burt matrix gives an adequate summary of the
higher-way contingency table if a model with only first-order
interactions fits the data reasonably well. If the bivariate margins
are not sufficient for an adequate description of the data, then
some of the information in the higher-way table is ignored.

Let's now consider Markov chain models. For discrete time,
Markov chain models can be formulated in terms of loglinear
models {see Bishop et al. 1975; Plewis 1985) and hence in terms
of fitted margins. Assume that we have three-wave panel data
coded into a three-way contingency table with elements f,,. If the
data in the three-way matrix can be described by a nonstationary
first-order Markov chain, then the two marginal tables with elements
fy+ and f., are sufficient to describe the data (cf. Plewis 1985).

i
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FIGURE 4 Supplementary points in two dimensions.

Adjacent time points are dependent, while times [ and 3 are
independent given 2, and hence the marginal matrix f;., can be
derived as fi., = X, f;. fepff +;+- If the data in the three-way matrix
can be adequately described by a stationary first-order Markov
chain, then we need only one transition matrix and the initial
proportions at time 1 to describe the data. For the three-wave
example, this transition matrix can be estimated using the marginal
tables with clements £, and f, 4.

The Burt matrix uses all possible transition matrices for two
time points. MCA ignores three- and higher-way transition matrices.
If the data follow a noustationary or stationary first-order Markov
chain, then all the information necessary to describe this chain is
present in the Burt matrix, and MCA does not ignore any useful
information. The sufficient margins are in the submatrices adjacent
to the diagonal matrices. The other matrices in the Burt matrix can
be derived from these sufficient margins. For the stationary Burt
matrix, we find that the submatrix farthest from the diagonal (in
Table 3, this is the matrix with elements f..,) approximates
independence the most. This follows from the limiting-state behavior
of Markov chains: If the time passed is taken to be large enough,
the initial state of an object provides no information about the
present state. A transition matrix from time 1 to the last time point
would show a matrix with equal rows, i.e., an independent matrix.
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So the farther apart two time points are, the more unrelated they
are. The implication for MCA is that in a solution, the intermediate
time points, which are the time points that are most related to the
largest number of other time points, will have the largest contribution
to the solution. For nonstationary Markov chains, similar results
can be shown to hold under some conditions.

5.4. Multivariate Panel Data

So far, we have discussed the analysis of univariate panel
data. Multivariate panel data could be dealt with in this framework
by stacking the categories of these variables into a new composite
variable and by dealing with this variable as if it were an ordinary
variable. Another possibility, on which we will focus in this
section, is to code the multivariate panel data into the three-way
superindicator matrix and to analyze this matrix by first recoding it
into two-way matrices. This differs from the situation for univariate
panel data in that we are now able to work with the LONG matrix,
because we have more than one 1 in each row. So we now have
four possible matrices that could be analyzed: (a) the BROAD
matrix GU9, in which the T slices of the three-way data block are
concatenated horizontally; (b} the LONG matrix G%, in which
the T slices of the three-way data block are concatenated vertically;
(c) the marginal matrix G*, which can be considered again as a
constrained analysis of the BROAD matrix but which also gives a
constrained analysis of the LONG matrix, in which the T sets of
object scores are constrained to be identical; and (d) the marginal
matrix G™, which consists of the column margins of the BROAD
matrix.

The analysis of the BROAD marrix G can perhaps be most
easily understood when we think of it as a PCA for nominal
variables. For gquantitative longitudinal data, it is not unusual to
construct BROAD matrices (cf. Visser 1985) and to analyze them
with PCA or factor analysis. Many types of information are to be
found in the solution of the MCA of GY9. First, it can show the
relation between distinct variables at identical time points. Second,
it can show the relation between identical variables at distinct time
points. And third, it can show the relation between distinct variables
at distinct time points. One type of information is not displayed in
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the solution, namely, the relation between categories and time
points. This information is in the marginal matrix G™ and has to
be analyzed separately, as we analyzed the univariate data. The
analysis of the marginal marrix G can again be considered as
providing a constrained solution for the BROAD matrix—con-
strained in the sense that each category receives identical quantifi-
cations for all time points.

MCA of the LONG matrix gives only one set of scores for
all the categories but T sets of scores for the objects, namely, one
set for each time point. This analysis can also best be understood
as a PCA for nominal variables. A possible drawback of MCA of
the LONG maitrix is that category quantifications can be found that
distinguish in the first place the different time points and not the
different individuals; i.e., there are 7T sets of object scores that are
approximately similar in each set but very different between sets.
This might happen when the distributions of the categories differ
considerably over time points. Such a solution might be considered
rather uninteresting, because a similar—and more easily
interpretable—solution might be obtained from the analysis of the
marginal matrix G™. (This gives a solution in which object scores
at identical time points are restricted to be the same.)

In the context of quantitative variables, a similar problem is
that average differences in the analysis of LONG matrices can lead
to spurious correlations. This is sometimes circumvented by vertically
concatenating T slices that are each in deviation from the mean
(see Bentler 1973). Escofier (1988) recently proposed a comparable
procedure, which she called conditional MCA (see also van der
Heijden 1987, ch. 7). Using the generalizations of CA (see equation
(7)), we decompose not the departure from independence for the
total matrix G but the departure from independence in each of
the T submatrices. So, for P in equation (7), we take the observed
LONG matrix GYY, whereas the matrix Q has elements
Lun+L(+0/8+n+- When for 8, and S, simply the margins of P are
taken, it can be shown that the generalized CA solution can be
obtained with ordinary CA programs by analyzing the matrix
(P—Q+E). In fact, conditional MCA can be used in a similar way
in the more general situation in which we want subgroups of objects
to have an average of zero (see also van der Heijden 1987 and van
der Heijden and Meijerink 1989 for more details).
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6. MULTIPLE CORRESPONDENCE ANALYSIS OF
EVENT HISTORY DATA

Event history data specify not only the sequence of states
(categories) that apply to an object but also how long each object
is in a specific state. Event history data can be coded into the
familiar three-way superindicator matrix G by going from continuous
time to discrete time points and making a superindicator matrix for
each time point. So, g7=1 if object { falls into category j of variable
m at time point ¢, and gi=0 otherwise. In this approach, event
history data are just a special form of panel data, namely, a form
that tells us for each time point the category in which an object
falls.

In general, the number of time points T will be very large;
for example, T=1,440 if we consider one day divided into minutes.
Therefore, it is difficult to analyze the data without imposing any
restrictions. We restrict the analysis by aggregating the data over
time points within larger periods. For example, we can subdivide
a day into hours, and instead of 1,440 time points, we then construct
a matrix G with 24 time periods p (p=1, . . ., P), where elements
g7 denote the number of minutes in hour p that object i spent in
category j of variable m. This idea was first worked out by Deville
and Saporta (1980, 1983); see also Saporta (1981, 1983), de Leeuw
et al. (1985), and van der Heijden (1987). Let's again consider the
analysis of the BROAD matrix G the LONG matrix GV, and
the two marginal matrices G¥ and G™.

In principle, the analysis of these matrices does not differ
much from the analysis of panel data. Therefore, we will not
distinguish between the univariate and multivariate cases. The
BROAD matrix G'“7) shows how the objects spend their time in
the periods chosen. MCA of the BROAD matrix will show how
objects depart from the average time spent. Unlike the analysis of
G, in the analysis of GU?' the category quantifications are
restricted to be identical within each period. It will be clear that
to save information, we must choose the periods in such a way that
within periods, objects do not change states much but that
berween periods, the distributions are as different as possible. This
consideration can lead to a choice of periods of unequal length
(see, €.g., de Leeuw et al. 1985).
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The average from which the objects depart is collected in
the column margins of the BROAD matrix, i.e., the matrix G™.
This matrix shows that some states are better filled in some periods
and that other states are better filled in others. An analysis of this
matrix supplements the analysis of the BROAD matrix. In the
marginal matrix G”, the number of periods is reduced to one. This
matrix shows how the objects spend their time. In an MCA of G",
the category quantifications are restricted to be the same over the
complete time range.

The situation for the LONG matrix is slightly different from
what it was for univariate panel data: If we have event history data
for one variable and if the periods are chosen so that state changes
occur, the analysis of the LONG matrix will not give a trivial
solution. In general, however, the analysis of the LONG matrix
will approach the (uninteresting) analysis of a diagonal matrix if
the number of periods is chosen to be sufficiently large, so that
time periods will be short and the number of objects in only one
state will be large.

6.1. Example

In the first section, we discussed the analysis of a matrix of
18 hours by 25 categories, with each cell representing the number
of minutes in an hour that 326 couples spend in a specific category.
This matrix can be considered as the margin G™ of the three-way
data block G of order 326x25x18. We will now analyze the
BROAD matrix G, having order 326x(25x18). In fact, the
number of the columns of the matrix is slightly smaller than
25x18=425; it is 343. Not all joint activities are displayed at each
hour (see zero frequencies in Table 1), and we find no quantifications
for such joint activities.

MCA of the BROAD matrix gives as first few eigenvalues
0.422, 0.390, 0.339, 0.294, 0.271, 0.259, 0.249. A plot of the 326
objects (the couples) can be found in Figure 5. The cloud of points
has a peculiar form. On the first dimension, a distinction is made
between two groups: A large number of couples appears on the
left, and a smaller number appears on the right. Low on the second
dimension, an even smaller group of couples is visible. This
phenomenon goes on in higher dimensions. In each dimension, a
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FEGURE 5 Row paints in two dimensions.

small group of couples is separated from the rest: Couples in a
separated cluster differ in the same respect from the average event
history that is summarized in G and that is dominated by the
larger group of couples. This is also reflected in the eigenvalues,
which drop from 0.422 only very gradually. We conclude that the
bulk of couples have quite the same event histories, probably
because we selected couples in which both partners work more than
25 hours a week and we are only studying working days.

The category quantifications in Table 5 and their plot in
Figure 6 show how the group on the right in Figure 5 differs from
the larger group. In Figure 6, the hours are presented along the
horizontal, and the quantifications on dimension 1 are presented
along the vertical. For the five categories in which both partners
perform the same activity, we have connected the points for adjacent
hours. To determine the points on which we must concentrate, we
study the contribution of each individual point to dimension 1;
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thus, we find a subdivision {(in proportions} of the eigenvalue 0.422.
By adding up over the 18 hours, we find contributions of the 25
joint activities to dimension 1; by adding up over the 25 joint
activities, we find contributions of the 18 hours on dimension 1.
When we focus on the hours, we find that the hours between 8:00
A.M. and 5:00 P.M. clearly contribute most; thus, on dimension
1, the couples are distinguished mainly on the basis of their
departure from the average joint activities in these hours, say
working hours. When we then focus on the joinr activities, we find
that the HH category (bath partners at home) and the WW category
(both partners at work) contribute most (57 percent and 24 percent,
respectively). So the couples on the right in Figure 5 are separated
from the couples on the left mainly because they depart in opposite
ways on these joint activities. Figure 6 shows that during working
hours, the couples on the right are much more often both at home
and much less often both at work than the couples on the left.
Since we know from the sample that both partners work at least
25 hours a week, the couples on the right probably have a day off.
After working hours, the couples on the right do not differ much
from the couples on the left. When we study Table 5 and Figure 6
more carefully, we find that most of the joint activities in which at
least ane of the partners is working (i.e., one W) are quantified
negatively in all hours; so for the objects on the left, at least one
of the partners is working. These couples travel more often in the
morning (7T has negative quantifications), probably to their work,
and also more between 4:00 P.M. and 6:00 P.M., probably from
work. We can also see a lunch dip for both partners travelling or
shopping: In the morning and afternoon, these activities are
performed more by the couples having a day off, whereas during
lunch time, these behaviors are evenly spread between the couples
on the right and those on the left. To interpret Figure 6, we first
studied the activities that contribute much. We did not necessarily
give much attention to the most extremely quantified activities,
such as $S in the evening, since these activities may have a very
low frequency. (8§ is performed only 150 minutes after 6:00 P.M.
However, the couples doing this are all quantified extremely
positive. }

For the second dimension, we find that the hours between
8:00 A.M. and 4:00 P.M. contribute between 5 percent and 10
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percent each, the evening hours contributing about 3 percent each.
The activities contributing much are WH (58 percent) and HW (9
percent), WO (4 percent) and OW (5 percent), WW (5 percent}),
SH (5 percent) and TH (4 percent). A table similar to Table 5 (not
displayed here for reasons of space) shows that the couples
quantified negatively in Figure 5 are couples in which the wives
work during ordinary working hours and the husbands are at home
(WH) or doing other things (WO). During working hours wives
also travel more while the husbands are at home {TH}. For the
rest of these éouples, we find that the husbands work more than
average in the evening while the wives are at home (HW) or daoing
other things (OW) and that wives shop more in the carly evening
while the husbands are at home (SH). We can classify the couples
quantified negatively on dimension 2 roughly as couples in which
the wives work more than average during ordinary working hours
while the husbands do things other than working and the husbands
work more in the evening while the wives do things other than
working.

As a last step, we could study the relation between
supplementary information and the object scores in the same way
we did for panel data (compare Figure 4). Because of lack of space.
we did not do this (but see van der Heijden 1987).

In sum, we think that bivariate and multivariate event
histories can very well be studied by means of MCA. A possible
limitation is the number of objects compared with the number of
activities. If the former is small compared with the latter, the
solution can become unstable. In general, however, solutions can
be made more stable by restricting the quantifications of each
category to be identical within larger time periods. This amounts
to separating the total time range into only a few time periods,
thus reducing the number of columns of the BROAD matrix.

6.2. MCA Compared with Statistical Event History Analysis

We now compare MCA of event history analysis with
statistical approaches, such as those summarized in Allison {1984)
and Tuma and Hannan (1984}. Allison discusses a number of
dimensions along which the statistical approaches differ, and we
will use some of these to place MCA into his framework. A first
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dimension 1s that between regression methods and distributional
methods. In MCA we use both aspects in an analysis. First,
homogeneous groups of objects are formed on the basis of the
differences in distributions of behavior over time. This gives us one
set of ohject scores for each dimension. Second, supplementary
information is related to these sets of object scores by computing
averages over supplementary categories. In MCA, we use a two-
step procedure to find object scores and then relate these to the
supplementary information. This is done in one step in the methods
described by Allison. It is also possible to do this in a combined
step for MCA using canonical CA (ter Braak 1986). With canonical
CA we can find object scores that are restricted to be a linear
combination of a set of supplementary variables, However, this has
not yet been applied to the analysis of event history data.

A second dimension discussed in Allison is that of repeated
versus nonrepeated events, and a third dimension is that of single
versus multiple kinds of events. Single nonrepeated events can be
dealt with in MCA by using in our three-way indicator matrix two
categories: “event did not yet happen™ and “event happened.”
Similarly, “censored” can be defined as a separate category as an
alternative to “event happened.” (Another approach using simple
CA is proposed by Nakache, Asselain, and Lasry [1984] and will
be discussed below.} In our approach, single repeated events can be
dealt with by counting the number of times an event maximally
happened, x, and defining x+1 categories, namely, “event did not
yet happen,” “event has happened once,” to “event has happened
‘x times.” In fact, this is a way to analyze point processes with
MCA. We deal with point processes here not by defining the points
themselves but by defining the time between the points as distinct
states. If the number of times an event happens for an object is
very large and the number of objects to which this happens is small,
MCA can form homogeneous groups of abjects by placing this
small number of objects in the periphery of the plot of object
scores. However, this can be remedied by defining the state “event
happened more than x times” in such a way that the number of
objects in it 1s large enough to reduce the number of categories.
When there are mudtiple kinds of events, we can deal with those in
the same way, namely, by defining states an aobject is in. So, if we
deal with unrepeated multiple kinds of events and there are, say,
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K kinds of events, we define K+1 categories, namely, “nothing has
happened yet” to “state K has happened.” With repeated multiple
kinds of events where a specific kind of event can follow itself, we
define categories like “nothing has happened,” “event & has
happened one time,” “event k has happened two times,” “event k*
has happened one time,” etc. When we deal with repeated muitiple
kinds of events where a specific event cannot follow itself, we can
count the number of times events have happened, but we can also
define only K possible categories, indicating the state an object is
in. In fact, this is the case for the example that we analyzed in this
paper, and it is also the only type of example that is published (see
Deville and Saporta 1983; dc Leeuw et al. 1985; van der Heijden
1987). However, we have practical experience with some of the
other cases mentioned above, where MCA gave satisfactory results.

A fourth dimension mentioned by Allison {1984) is that of
discrete time versus continuous time. MCA is applicable in both
cases: In the case of discrete time, we work with panel data, and
in the case of continuous time, we use the fact that continuous time
1s always measured with discrete precision, defining the state an
object is in at a specific time point. Because the time dimension of
the three-way (super}indicator matrix becomes very large when
precise measurements are used, we reduce this martrix by defining
time periods.

Another problem occurs when objects are not measured over
the same time range (apart from the fact that, of course, the time
scale can be defined in various ways). This situation can be dealt
with by defining an extra category, “not observed yet™ or “nat
observed anymore.” Hawever, the drawback is that MCA can find
a solution that distinguishes objects on the basis of these categories.
Therefore, it is probably better to define a person as missing during
the period he/she is not observed and to code all categories in this
periad as ). We have not used this to analyze event history data,
but this approach to missing data works quite well in the context
of MCA of “ordinary” incomplete data.

Nakache et al. (1984) perform simple CA on a special
contingency table to analyze unrepeated single event histories. This
work is similar to the work of Laird and Olivier (1981), who also
use contingency tables to show that survival analysis can be
performed using loglinear models. Nakache et al. construct a matrix
in which the columns are the categories of the explanatory vanables
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and the rows are specific grouped lengths of survival times, split
up for censored individuals and noncensored individuals. In the
example they use, there are ten rows: five for censored persons.
and five for noncensored persons. The five survival lengths are (-6
months, 6-24 months, 24-60 months, 6(0~120 months, and more
than 120 months. In each cell of the matrix, we find the number
of individuals who fall into a specific category of an explanatory
variable and who have a specific survival time. This matrix is
analyzed with simple CA. For the exampie Nakache et al. use, the
survival time periods are quantified monotonically on the first
dimension, both for the censored persons and for the noncensored
persons. The profiles of the explanatory variables for the noncen-
sored individual objects are fitted into this solution {this can be
done with transition formula (3), where C 1s the matrix with
category scores for the explanatory variables and D;'P is the matrix
with profiles for the individuals), thus obtaining scores for each
individual. Nakache et al. correlated these scores with the scores
for these noncensored individuals using the Cox regression model
and found a correlation of (.88, which gives some justification for
the exploratory procedure they applied.

As we have tried to describe above, MCA of event history
darta is a very flexible exploratory approach. Much research in this
area is needed. For example, practical experience of MCA with
many types of event history data is limited, and it is not clear how
or whether exploratory CA can be used prior to confirmatory
survival analysis. In principle, it seems that it can be used for all
sorts of event histories, and it can easily handle data with a large
set of states (in our example, we used 25}. Computationally, neither
a large amount of objects nor a large amount of time periods
creates a problem. However, results might become unstable when
the number of time periods and categories is too small compared
with the number of objects. This problem can be solved by making
the periods larger, thus making the number of columns smaller,
thus restricting the quantifications of categories to be constant for
a longer time span.

7. CONCLUSIONS

We have discussed some of the properties of CA and MCA,
concentrating on MCA of panel and event history data. Compared
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with more usual data analysis approaches, MCA is less hampered
by empty-cell problems because it uses only the bivariate marginal
dependence in the data. Therefore, it can analyze data sets with
many variables, categories, and time points that cannot be analyzed
with approaches like Markov chain models or processes. On the
other hand, MCA sometimes ignores information that is too
important to ignore. However, we have seen that if a first-order
Markov model fits adequately, MCA uses all information in the
analysis.

Another difference between MCA and more usual approaches
is that MCA finds scores for objects; therefore, it is possible to
study individual differences. This is rather different from the more
usual approaches, in which objects are treated as replications and
differences between objects are usually neglected or considered to
be the result of random error. There, if the differences between
objects become too large, objects are often split up into a few
subgroups and are considered again as replications in these
subgroups. This is one of the ways to link supplementary information
(like sex, age, SES) to the process under study. It is not possible
to link all these supplementary variables at the same time because
of empty-cell problems. On the other hand. in MCA we find
quantifications for objects that emphasize differences between them.
To these scores we can easily relate a large number of supplementary
variables by computing averages for each category.

We think that MCA can be useful in obtaining a first idea
of what is going on in the data. No assumptions have to be fulfilled
for the technique to work. If we concentrate on the bivariate
margins, interesting information might be ignored, but the range
of possible applications becomes very large. Bivariate margins can
be reasonably filled even though the total number of objects is
much smaller than the total number of possible profiles (i.e., cells
in the multiway contingency table). This is one important advantage
of MCA. MCA is also a good alternative to many modeling
techniques when the number of categories of the variables is large,
making interpretation of parameters quite difficult. In this sense
also, the MCA approach is far maore exploratory in nature and we
think in many applications also far more realistic, especially when
no theory is available to use a specific model or distribution.
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