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On the relation between latent class analysis and

correspondence analysis' 2Zhg
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Latent class analysis (LCA) and correspondence analysis (CA) are closely related methods
for the analysis of contingency tables. For two—way tables earlier work has shown that both
models give reduced rank approximations. In this paper we show that a graphical
representation of rescaled LCA parameters can be made that is very similar to the usual
simple CA representation. Furthermore the reduced rank interpretation of LCA and simple
CA is extended to higher-way tables, and it is shown that in this context LCA and multiple
CA (a generalization of CA for the analysis of higher-way tables) are also very similar.
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1. Introduction

Latent class analysis (LCA) and correspondence analysis (CA) are methods for the analysis
of contingency tables. In this paper we study some aspects of their relation. We discuss two
subjects. First, we show for two—way contingency tables how graphical representations can
be made using LCA parameters. These representations are very similar to CA
representations. Second, we discuss the relation between LCA and CA for the analysis of
higher way tables.

2. Two-way tables
2.1 Simple CA and LCA
For two~way contingency tables simple CA provides the decomposition

[1=Dguu'+RAC"D,, ' (1)

where Il is a matrix of probabilities m; (i=1,...,I; j=1,...,)) of rank M; D, is a diagonal
matrix with marginal probabilities m,, D, is a diagonal matrix with marginal probabilities
T, U is a unit column vector whose length depends on the context; R is a matrix with row
scores 1, (m=1,...,M), C is a matrix with column scores Cim (m=1,..,M), and A is a
diagonal matrix with singular values A in decreasing order. The matrices R and C have
restrictions u'D,R = 0 = u'D_C, and R'D.R =1 = R'D.C. If M is chosen to be
M=min (I-1,J-1), then €very contingency table can be decomposed perfectly with (1).

CA provides a rank decomposition of a probability matrix (Gilula, 1979). This rank
interpretation can be seen by rewriting (1a) as [T = R*A*C*' where R* is a Ix(M+1)
matrix with scores m;, in column 1 and 7. r. in column m+1, C* is a Jx(M+1) matrix

+71m

with scores T, in column 1 and T, iCim in column m+1, and A* isa (M+1)x(M+1) matrix
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with elements 1, A, A,,...,Ay in decreasing order.

For a matrix P with observed proportions the full rank decomposition in (1) can be
obtained from a generalized singular value decomposition (GSVD; Greenacre, 1984). By
dropping the last columns of R and C, a lower rank approximation of IT is found. For
M*<M the rank (M*+1) approximation is optimal w.r.. D,"1/2IID_~1/2 in a LS sense

(see Greenacre, 1984). Recently CA is also estimated by ML (see Goodman, 1985; Gilula
and Haberman, 1986; Francis and Saint—Pierre, 1986). Only for the full rank decomposition
(i.e. rank M) the ML estimates are equal to the LS estimates.

LCA for a two~way contingency table also gives a rank decomposition of a
probability matrix (see, for example, Gilula, 1979). For rank N LCA is

where I, is an IxN matrix with probabilities r, restricted as Lm, =1, I is a JxN
matrix with probabilities T, restricted as Zﬂ‘jn =1, and I1 is a diagonal NxN matrix with

latent class sizes n, (X,m, = 1) on the diagonal. The model has (I-N)(J-N) degrees of

freedom. LCA gives a nonnegative rank decomposition of a probability matrix.

Gilula (1979) shows that a probability matrix can always be decomposed by LCA
with N=min (I,]) latent classes. Hence for rank N=M*+1=min (I,J) LCA is equivalent to
CA: for both models T;;=p;j- For rank N=M*+1=1 both models reduce to independence. De

Leeuw and van der Heijden (1989) show that for rank N=M*+1=2 LCA and CA are
equivalent. It follows that Gilula's statement (Gilula, 1979, 1984: Gilula and Haberman,
1986) that for rank 2 LCA does not necessarily imply CA, is incorrect. For 2 < N=M*+1 <
min(L,J) CA always implies LCA but the reverse does not hold (Gilula, 1979).

2.2 Graphical representations of CA

CA is often used to make graphical representations. The full representation of a matrix P
requires M=min(I-1,J-1) dimensions. Usually only 2 or 3 dimensions are studied. Thus the
matrix P is approximated by a matrix I1. This approximation is optimal in a LS sense or an
ML sense, depending on the estimation procedure chosen. We describe here the graphical
representations based on I1.

Two graphical representations of I are made: one for the rows, using rows of RA
as coordinates, and one for the columns, using rows of CA as coordinates. In each
representation separately distances between points are equal to so—called chi-squared
distances. The chi—-squared distance 8%(i,i') between rows i and i' of the matrix II is
defined as

Ty gl
T Tis
T[+J

J
8y =Y

=

(3)

(a similar equation can be given for 82(j,j"}). Distances (4) are defined between two vectors
of conditional proportions nl-j/ni+, which are called the 'profiles’ of row i and i'. The two
representations are related by ‘transition formulas' RA = D,~1TIC, and CA = D_~1IT'R.

As an illustration we provide an example presented by Caussinus (1986). The matrix
1s a cross—classification of five age groups and four types of cancer. The fit of the rank 3

model, approximated by ML, is good: G?=.31, df=2. Graphical displays of the parameters
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are provided in figure la and 1b. These represent IT perfectly. Figure la shows that the
profiles for age groups 4, 5 and 7 are most extreme, the profile of 6 is in between 5 and 7,
whereas the profile of 8 is in between 4 and 7. The average profile with values T, is
located in the origin. In figure 1b the (column) profiles of cancer types A, B and C are most
extreme, D being in between A and the average profile with values m,,. The transition

formulas show that in age group 7 the conditional probability J1:ij/7ti .. for cancer C is higher

than average (n +j)» wWhereas those for cancers A and B are lower than average. Similarly,
the conditional probability Ttij/ﬂii , for cancer type A is highest for age group 5, and the

conditional probability Ttij/Tti+ for cancer type B is highest for age group 4.

2.3 Graphical displays of LCA

Usually LCA parameter estimates are not presented graphically. Here we propose a graphical
presentation. Graphical displays can be made by rescaling the conditional probabilities in IT,
and Il (with Z;w; =1 and Z;n, =1), into conditional probabilities in IT,* and I *

restricted as X m; *=1 and X n; *=1. The latter parameters are the probabilities to fall into

class n given category i or j. We derive I1 * (and, similarly, IT_*) as

I, = DM, @)

It is possible to represent a row in N dimensional space by using the row of IT* as

coordinates. Each point lies in the N~1 dimensional simplex because for each point its
coordinates add up to one. For example, if there are N=3 latent classes, the points lie in the
two dimensional triangle spanned by (1,0,0), (0,1,0) and (0,0,1). Such graphical
representations are common in compositional data analysis (Aitchison, 1986).

As an example we study again the data in table 1. The fit of the rank 3 model is
G?=.31 (df=2), identical to the fit of CA. For this example the models are equivalent. In
figure 2a and 2b we find the representation of the rescaled parameters. The point ‘'mean’ is
the point with parameters n_. The comer points specify the latent classes. The location of

the row points shows their relation to each of the latent classes. In figure 2a the persons
having age group 7 fall almost all into latent class 1, the persons having age group 5 fall all
into class 3, and the persons having age group 4 fall for the largest part in latent class 2,
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but also in 3. The solution for the column parameters is found in figure 2b. Persons having
cancer type C are more than average in class 1, and that the observations of B are more than
average in class 2. The two figures supplement each other: for example, persons in age
group 7 have more than average cancer type C.

This type of graphical representations were first made in van der Heijden et al.
(1989) and de Leeuw et al. (1990) in the context of latent budget analysis (LBA), a
reparametrization of LCA proposed by Clogg (1981). LBA is D,~1IT = IT *I1_', which is
equivalent to LCA and to IID_~! = IT II_*': they all produce the same estimates of
expected probabilities m;;. In LBA II1,* and I1.* are found directly.

2.4 Comparing CA and LCA

For our example both graphical representations are very similar: if we rotate the LCA
triangles and subsequently stretch or shrink their edges in an appropriate way, we find CA. |
This result holds always if the two models are equivalent. In such cases there exists a
matrix T of order Nx(N-1) such that I *T = R, since both IT.* and R give scores for the

rows in a reduced rank approximation of D,~!I1. A similar equation holds for IT_*.

3. Higher-way tables

3.1 MCA and LCA

MCA is an extension of simple CA to the situation of more than two variables. MCA
decomposes the so—called Burt matrix by a set of restricted CA's. The Burt matrix is a
symmetric matrix that is a concatenation of diagonal univariate margins and the bivariate
margins of the higher—way contingency table. For three variables 1, 2 and 3 let the
probabilities be denoted as T where i is the index for variable 1, j for 2 and k
(k=1,...,K) for 3. This higher-way table is coded into the Burt matrix having order
(I+J+K)x(I+J+K). The sub—matrices on the diagonal of the Burt matrix are diagonal with
elements ., =« +j+ and m,, respectively. The off-diagonal sub—matrices are the three
bivariate margins that we denote by I1,,, IT,4 and I1,,. The Burt matrix is decomposed

by the following restricted CA's:

[To=Dy(uu' + RIAR;)D,=RIAR; (5a)
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MM = Dy(uu'+ RIARy)D; =R}AR} (5b)

[z = Dyuu’ + R)AR;)D; = RA 'R} (50)

where Dy, D, and D are diagonal with elements Mo Tyju and rt_,, respectively, and R,,
R, and Ry give the scores for variables 1, 2 and 3, restricted as u'D)R;, = u'D,R, =
u'D3R; =0 and R;'D,R, = R;'D3R; = R3'D3R; = I Due to the restriction that the
scores for a variable are identical in distinct decompositions, maximally M=(I-1)+(J-
1)+(K-1) sets of orthogonal scores are required to give a joint decomposition of the
univariate and bivariate marginal matrices (see, for example, Greenacre, 1984). The set of
decompositions can be easily generalized if there are more than three variables by calculating
a set of scores R, for each additional variable s.

The scores of MCA can be obtained by a GSVD of the Burt matrix (see Greenacre,
1984). By ommitting the last columns of scores a scaled version of the Burt matrix is
approximated in a LS sense. No ML approximations of the Burt matrix are proposed in the
literature, although some models are inspired by MCA (see below). ;

LCA for higher—way tables is a strai ghtforward extension of the model for two—-way
tables. For three variables the model for the probabilities Tj 1s

N
Tk = Z Tl i (6)
n=}
wthrestrictions = Zom; = Zm;, = Iymy,. For more than three variables model (6)

has an extra set of conditional probabilities for each extra manifest variable.

It is not straightforward to compare MCA and LCA, because MCA is defined in
terms of the bivariate margins, whereas LCA is defined in terms of the higher-way table. A
possible approach to solve this is by defining a model for MCA in terms of the higher-way
table. This is done by de Leeuw (1983) and Green (1988, 1989), for example (compare
also Choulakian, 1988, and Kohlmann, 1990). For a three—way table their proposal is

P P P
log e = u + i + ugp + sy + 2 Wrgfp + 2. Wrglp + 3 Wil 7
p=l p=l p=l

which is a model for log Tij with bilinear terms to describe two—factor interactions. This

model is similar to MCA in the sense that sets of scores are estimated for each variablethat
play the same role in each two—variable interaction. In going from MCA to (7) the following
assumptions are made. First, the three— and more—variable interactions in the higher-way
table can be neglected. This is motivated by the fact that in the Burt matrix only bivariate
margins are studied. Second, in going from MCA to logbilinear decompositions, it is
assumed that it is allowed to approximate log (1+x) by x, which is only allowed if x is
small compared to zero. Third, it is assumed that the two—factor interaction in the full matrix
has the same form as the two~factor interaction in each of the bivariate marginal tables.

The similarity of LCA to (7) can be discussed by using the loglinear formulation of
LCA in terms of the unobserved contingency table (see Haberman, 1979)
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log g = u + ujg + Uzg) + Usg) + Ugm) + Uiagn) + U24gn) + Uddgam) @)

where the u—parameters add up to zero over each index. In order to find a model for the
manifest variables only, we have to add up (8) over the latent variable, indexed by n. The
collapsibility theorem in Bishop et al. (1975) shows that this wil change the interaction
TeIMS UypG4), Ups(iky Y23(k) @Nd Upa3ky. that will generally not be equal to zero anymore if
we add up over the latent variable. Notice that if the three—factor interaction Uj93ijky In the
collapsed version of (8) would be zero, and the two—factor interactions Uiy U13(ik) and
Un3 k) would be restricted as in (7), then we have the MCA~like model (7). Not much

work is done on model (7) yet, and it is not known whether adding up (8) over the N latent
classes will lead to the restricted two—factor interactions in (7).

Another insight comes from the work of Whittaker (1989). He suggests that (7) can
be derived as follows: let there be three categorical variables that are conditionally
independent given N independent normally distributed continuous variables, then, if we add
up over these continuous variables, we find (7). These results are relevant for our
discussion above. First, as in LCA the manifest variables are conditionally independent
given the latent variables. Second, by adding up over the latent variables — which is also
done in LCA — Whittaker (1989) arrives at model (7) that was suggested for MCA. The
difference with the situation for LCA is, first, that there are N latent continuous variables in
Whittaker's formulation, whereas there is one latent variable with N classes in LCA, and,
second, by assuming a normal distribution for each of the continuous variables, model (7)
does not need three— and higher—factor terms.

A new way to relate MCA and LCA is presented in section 3.4.

3.2 Graphical displays of MCA
In MCA graphical representations are made for the category points. Usually only the first
few dimensions of the full-dimensional solution are studied, for example, for the variable s
only the first few columns of RyA serve as coordinates. We give an example derived from
data published in McCutcheon (1987).

A data set with four variables is analyzed, dealing with the attitude of respondents
towards survey research. Respondents could judge the Purpose of survey research as
'good’, 'depends’ and 'waste of time', the Accuracy as 'mostly true' and 'not true’; the
Understanding of respondents was judged by the interviewer as 'good’ or 'fair, poor’, and
the Cooperation as 'interested', 'cooperative' or 'impatient/hostile’. The first two
dimensions of the solution are given in figure 3. The first dimension shows the distinction
between 'good’ respondents, who have a positive attitude towards the purpose and
accuracy, and seem to be interested and understand it well, versus 'bad’ respondents on the
right. On the second dimension we find at the top that being merely cooperative or even
impatient/hostile goes together more often than average with a fair/poor understanding,
whereas a judged purpose of the survey as depends or waste is found more often than
average with an answer 'not true' on accuracy.

3.3 Graphical displays of LCA

We can make graphical representations of LCA parameters by rescaling the parameters in the
same way as we did in section 2.2 for two variables: i.e., we collect the parameters T, Tin
and m, in matrices I}, TI, and I, and rescale these as in (4) to II, *, TI,* and II*.
As before, a rescaled parameter specifies the probability to fall into latent class n given that
someone falls into a specific manifest category. The rescaled parameters are used to make a
graphical representation for each of the manifest variables separately. For the example
discussed earlier in section 3.2 we will overlay these representations. The fit for N=3 latent
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classes is adequate: G* = 21.89 (df=16). A graphical representation is given in figure 4.
3.4 Comparing MCA and LCA

For the two examples the configurations of points for LCA are remarkably similar (but not
identical) to those for MCA. In other words, there exists a matrix T of order (N-1)xN that
makes IT; T similar to Ry, I, T similar to R,, and I, T similar to Ry (compare 2.4).

For the two—variable case LCA and simple CA could be linked by showing that they
are reduced rank decompositions for the two—way contingency table. For the situation with
more than three variables earlier work has tried to link LCA and MCA by reformulation
MCA as a model for a higher—way table (see section 3.1).

However, we can also try to relate LCA and MCA by studying what LCA implies in
terms of the Burt matrix. For higher—way tables LCA can be considered as a reduced rank
model in the sense that, for N latent classes, the matrix of probabilities Tk is the sum of N

independent matrices (see (6)). So the higher-way matrix is approximated by a higher—way
rank N model. By adding up (6) over the third variable, for example, we find (2). Thus the
three bivariate margins are also approximated implicitly by the rank N matrix. It follows that
LCA and MCA are related via the Burt matrix because they both provide reduced rank
approximations of the bivariate margins in the Burt matrix.
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