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Quantum theory of cold bosonic atoms in optical lattices
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Ultracold atoms in optical lattices undergo a quantum phase transition from a superfluid to a Mott insulator
as the lattice potential depth is increased. We describe an approximate theory of interacting bosons in optical
lattices which provides a qualitative description of both superfluid and insulator states. The theory is based on
a change of variables in which the boson coherent state amplitude is replaced by an effective potential which
promotes phase coherence between different number states on each lattice site. It is illustrated here by applying it
to uniform and fully frustrated lattice cases but is simple enough that it can be applied to spatially inhomogeneous
lattice systems.
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I. INTRODUCTION

The observation [1] of a cold-atom quantum phase transi-
tion between superfluid (SF) and Mott insulator (MI) states
was important on its own merits and because it suggested
future experimental studies of clean, highly controllable,
strongly correlated bosonic many-body systems. The promise
of early experiments has been borne out by studies that
have demonstrated unprecedented experimental control in
designing and investigating many-body systems whose Hamil-
tonian’s are known with a level of precision that is uncommon
in condensed-matter physics [2]. Cold-atom systems are not,
however, completely free of the real-world complications
that can confuse the interpretation of experiments. The most
obvious troublesome complications in simulating condensed-
matter many-body physics problems using cold atoms are that
experimental systems are always spatially inhomogeneous to
some degree and that they are often fairly small. In most cases,
the spatial inhomogeneity is an undesirable consequence of
an experimental necessity, for example, the harmonic trapping
potential employed in most cold-atom setups. In some cases,
though, it is the central focus of the experiment, as in studies
of disorder in strongly correlated bosonic systems [3,4]. In
this paper we describe an approximate theory of strongly
interacting bosons in an optical lattice that is sophisticated
enough to achieve a good qualitative description of both Mott
insulator and superfluid limits and yet simple enough that it
can be applied with relative ease to finite spatially inhomo-
geneous bosonic optical lattice experiments. The theory is a
generalization of the mean-field theory of the MI-SF phase
transition in which the potential which induces coherence
between different number states on a given lattice site is
elevated from a variational parameter to a fluctuating quantum
variable. We illustrate the potential of this simple theory by
applying it to uniform optical lattice systems with constant and
fully frustrated intersite hopping parameters.

The systems in which we are interested provide an approxi-
mate realization of the Bose-Hubbard Hamiltonian (BHH) [5],

HBHH = 1

2

∑
i

Uni(ni − 1) −
∑

i

(μ − εi)ni −
∑
〈i,j〉

tij a
†
i aj .

(1)

The BHH provides an accurate description of cold-atom
systems in which the optical lattice potential is strong enough
that only the lowest Bloch band is significantly occupied [6]. In
Eq. (1), a

†
i is the boson creation operator at site i, ni = a

†
i ai is

the number operator, tij is the hopping amplitude between sites
i and j , U is the on-site interaction energy, μ is the chemical
potential, and εi is an energy offset due to the trap or to other
intended or unintended local potentials. For a translationally
invariant system with nearest-neighbor hopping, mean-field
theory produces a phase diagram in μ/U -t/U space in which
SF states are interrupted at small t/U by a series of MI lobes
centered on half-odd integer values of μ/U , each characterized
by a different fixed integer value N of the number of atoms per
site (Fig. 1). Since t decreases and U increases with optical
lattice potential strength, t/U can be experimentally varied
over a wide range.

Depending on the regimes of the model’s parameter space,
different approximation schemes can be employed to study
the BHH. For instance, in the small t/U limit atom number
fluctuations on a given site due to hopping can be treated as
weak perturbations. Even near the SF-MI transition strong
interactions still suppress number fluctuations significantly,
reducing the physically relevant Fock subspace to two or three
number states and justifying mappings which transform the
BHH into spin models that can be attacked using a large arsenal
of extensively developed techniques [7]. On the other hand,
for large values of t/U , the interactions between cold atoms
are weak enough to justify Bogoliubov’s weakly interacting
boson theory. For large numbers of atoms per unit cell one
can often employ the rotor approximation, ai

∼= √
n̄eiθi , that

is valid when the mean occupation number n̄ at each site is
so large that its relative fluctuations are small. The resulting
Hamiltonian is a quantum phase model in which the degrees
of freedom are the phases of the superfluid at different sites.
In this limit interactions induce phase fluctuations around a
mean-field state in which all sites adopt a common phase
[8]. All of these approaches have disadvantages in describing
realistic optical lattice experimental systems which may have
local superfluidity in one part of the system and local insulating
behavior in another and which typically have a mean boson
number on each lattice site of order 1 [9,10]. Our approach
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FIG. 1. (Color online) Mean-field phase diagram of the BHH.
The solid lobes correspond to the MI phases, characterized by integer
occupation of atomic sites. z is the coordination number, the number
of neighbors of any given site. For sufficiently large values of zt/U ,
the system enters the SF phase. The dashed curves are contours along
which the coherence field Berry curvature vanishes (see text).

has goals that are similar to those of other complementary
approximate theories [11–27]. We seek an approach that can
adequately describe the physics of the BHH in both insulating
and superfluid regimes and is simple enough that it can be
applied in the presence of inhomogeneities. One advantage of
our approach is that we treat interactions exactly, a feature
most useful in describing strongly correlated systems.

Our paper is organized as follows. In Sec. II, we describe the
flexible formalism that is the subject of this paper. In practical
applications it leads to a quadratic action for elementary
excitations of uniform or nonuniform interacting bosons. In
Sec. III, we report on illustrative applications first to the case
of a uniform BHH with constant intersite tunneling amplitudes
and then, as an example of a nonuniform system, to the case
of a uniform BHH with fully frustrated intersite tunneling
amplitudes. In Sec. IV we discuss the limitations of our theory
before concluding with a brief summary.

II. FORMALISM

Our approach is based on single-site interacting boson wave
functions |ψ(�)〉 which depend on a complex parameter �

and are defined as Fock-space normalized ground states of the
following single-site Hamiltonian,

h(�) = U

2
n(n − 1) − μn − �a† − �̄a. (2)

Note that the potential � induces coherence between single-
site states with different boson occupation numbers. The
mean-field theory of the BHH SF-MI phase transition [28]
can be derived by considering variational wave functions of
the following form,

|�(�)〉MF =
∏

i

|ψi〉. (3)

These mean-field wave functions do not allow for correlated in-
tersite fluctuations. The mean-field ground state is determined

by minimizing

E(�) ≡ 〈�(�)|HBHH|�(�)〉
〈�(�)|�(�)〉 (4)

with respect to the variational parameter �. In the SF state
�MF �= 0.

Our approach is to elevate � from a variational parameter
to a quantum variable with correlated spatial fluctuations by
allowing it to depend on site and on imaginary time [� →
�i(τ )] and then to construct an action S which depends on
these fluctuations [29,30],

S =
∫ β

0
dτ

[ ∑
i

i〈ψ(�i(τ ))|∂τψ(�i(τ ))〉i + E[�]

]
. (5)

Here at each instant of imaginary time

E[�] = 〈�[�]|HBHH|�[�]〉
〈�[�]|�[�]〉 , (6)

and the correlated product state is given by

|�[�]〉 =
∏

i

|ψ(�i)〉i . (7)

In practice, the action can be evaluated analytically only if
the coherence fields are expanded to leading order around
their mean-field values. The main advantage of this approach,
as stressed above, is its convenience in practical calculations,
especially for nonuniform systems. Before we elaborate on this
point, we examine some formal properties of our single-site
interacting boson wave functions |ψ(�)〉.

A. Formal properties of the wave function |ψ(�)〉
One method of characterizing the Fock-space wave func-

tions |ψ(�)〉 is to consider their expansion in terms of number
eigenstates,

|ψ(�)〉 =
∞∑

n=0

cn(|�|) exp(inφ�)|n〉, (8)

where we have noted that the magnitude of the expansion
coefficients depends only on |�| and defined φ� as the phase
of �. In Fig. 2 we plot c2

n = |〈n|ψ(�)〉|2 versus |�| for a
variety of n values for both μ/U = 0.4, which falls inside
the N = 1 MI lobe and for μ/U = 1.0 at the boundary of
the N = 1 and N = 2 MI lobes. This plot illustrates why spin
model approximations to the BHH are justified close to the
transition (for small values of |�|), since a small number of
number states dominate. As one goes deeper into the SF region,
the potential � induces coherence among more number states
and spin-model approximations will fail.

The mean-field state is characterized by a time-independent
field �MF that minimizes the energy,

∂E

∂�i

∣∣∣
MF

= 0. (9)

[The first term of Eq. (5) does not contribute to the action
if � is time independent.] Quantum fluctuations are incor-
porated by employing a Gaussian-fluctuations approximation,
�i = �MF + zi . Since the time dependence comes from the
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FIG. 2. (Color online) The overlap of our interacting wave functions with Fock number states, |〈n|ψ(�MF)〉|2. Deep inside the SF phase
(large |�MF|), more number states come into play, the result of strong atom number fluctuations. At μ = 0.4U , only one Fock state, viz.
|n = 1〉, is dominant close to the phase boundary (small |�MF|), whereas there are two, |n = 1〉 and |n = 2〉, at μ = U , in accordance
with Fig. 1.

fields only, we expand the time derivative in the Berry phase
term as

∂τ = ∂

∂�i

�̇i + ∂

∂�̄i

˙̄�i = ∂�i
żi + ∂�̄i

˙̄zi . (10)

Substituting this in the action enables us to rewrite the first
term of Eq. (5), the Berry phase term, as Ci(�MF)z̄i żi , where
the gauge invariant Berry curvature of site i Ci , evaluated at
�MF, is given by [31]

Ci(�MF) =
〈
∂ψi

∂�̄i

∣∣∣∣ ∂ψi

∂�i

〉
−

〈
∂ψi

∂�i

∣∣∣∣ ∂ψi

∂�̄i

〉
. (11)

The Berry phase contribution to the action specifies the
quantization condition of our fluctuating variables and plays an
essential role in determining elementary excitation energies.

The energy functional, Eq. (6), can also be expanded around
its mean-field value,

E[�] = EMF + 1

2

∑
ij

[
d2E

d�id�j

∣∣∣∣
MF

zizj

+ d2E

d�̄id�j

∣∣∣∣
MF

z̄izj + c.c.

]
, (12)

where i and j stand for lattice sites and c.c. for complex
conjugate. Combining the Berry phase term with the second-
order contribution to the energy functional E(2), we construct
a quadratic action from which we can use to calculate the
elementary excitations. S ∼= SMF + S(2)[z̄i ,zi], where

S(2)[z̄i ,zi] =
∫ β

0
dτ

∑
i

[Ci(�MF)z̄i żi + E(2)[�]]. (13)

E(2)[�] contains all the second-order terms of (12).

B. Single site states at large n

Further insight into the properties of the single-site
Hamiltonian, Eq. (2), can be obtained by examining the
quantum phase model,

h(�) = U

2
n(n − 1) − μn − 2

√
n|�| cos(θ − θ�), (14)

that is derived from Eq. (2) by letting � → |�|eiθ� , and
employing the rotor approximation a → √

neiθ , which is valid
when number density fluctuations are small. In the rest of
this section we write � for |�|. Assuming that quantum
fluctuations are small allows us to determine the average atom
number no ∼ (�/U )2/3 and phase θo = θ� by minimizing
h(�) with respect to n and θ . In addition, we can expand
Eq. (14) to second order about the extrema no and θ� to arrive
at the quadratic Hamiltonian,

h(�) = const + 3U

4
(n − no)2 + �4/3

U 1/3
(θ − θ�)2. (15)

Phase and atom number are conjugate variables and we,
therefore, recognize (15) as a quantum harmonic oscillator
Hamiltonian. Using this analogy, we find the energy level
spacing ω = √

3U 1/3�2/3, mass m = 2/3U , typical den-
sity fluctuation δn ≡ 〈(n − no)2〉1/2 ∼ (�/U )1/3, and typical
phase fluctuation δθ ≡ 〈(θ − θ�)2〉1/2 ∼ (U/�)1/3. We see
that density fluctuations are suppressed and phase fluctua-
tions enhanced as �MF approaches 0 at the MI transition
boundary.

The harmonic oscillator analog, based on the identifications
p ↔ δn and q ↔ δθ , can also be used to derive an expression
for the on-site Berry curvature that is valid at large �. The
Berry curvature is determined by the dependence of the
single-site wave function on the magnitude and phase of �.
We, therefore, consider the influence of perturbations on the
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FIG. 3. (Color online) A log-log plot of the Berry curvature as
a function of the coherence field |�MF|. Note the power-law decay
rule Ci(�MF) ∼ |�MF|−4/3 at large |�MF| values predicted by Eq. (19).
This plot is calculated from Eq. (11). The chemical potentials μ are
measured in units of U .

eigenstates of Eq. (15),

h′ = p2

2m
+ 1

2
mω2q2 − λpp − λqq = h − λpp − λqq.

(16)

To first order in λp and λq the ground state of h′ is given by

|φo〉′ = |φo〉 +
∑
n�=o

〈φn|λpp + λqq|φo〉
εn − εo

|φn〉. (17)

where εn and |φn〉 are the eigenvalues and eigenfunctions of h.
It follows that the harmonic oscillator Berry curvature is given
by [cf. Eq. (11)]

C = Im

[〈
∂φ

∂λ2

∣∣∣∣ ∂φ

∂λ1

〉
−

〈
∂φ

∂λ1

∣∣∣∣ ∂φ

∂λ2

〉]

=
∑
n�=o

Im

[ 〈φo|p|φn〉〈φn|q|φo〉 − 〈φo|q|φn〉〈φn|p|φo〉
(εn − εo)2

]
.

(18)

The matrix elements in this expression can be evaluated using
[h,p] = imω2q and [h,q] = −ip/m to find

C(�) = 1

ω2
(19)

and hence for our single-site states C ∼ �−4/3 at large �.
This result is confirmed by the plot (Fig. 3) of Berry curvature
values numerically obtained from Eq. (11).

III. APPLICATION TO THE BOSE-HUBBARD
HAMILTONIAN

We now test the theory’s practical utility, first, by applying
it to the BHH for a uniform optical lattice and, second,
by applying it to the fully frustrated BHH which has four
atoms per unit cell and, therefore, introduces inhomogeneity.

Separating �i into its mean-field and fluctuation contributions,
the single-site Hamiltonian hi becomes

hi = ni(ni − 1)

2
− μni − a

†
i �MF − ai�̄MF − a

†
i zi − ai z̄i .

(20)

The fluctuations are treated perturbatively. We write

|ψ〉i = |ψo〉i + |ψ�〉izi + |ψ�̄〉i z̄i , (21)

where

|ψ�〉i = ∂|ψ〉i
∂�i

= −
∑
n�=0

i〈ψn|a†
i |ψo〉i

Eo − En

|ψn〉i . (22)

Here |ψn〉i and En are the eigenstates and the energy levels of
the unperturbed on-site Hamiltonian. With Eq. (22), the Berry
curvature can be calculated from Eq. (11) quite easily. The
energy of the system, given by Eq. (6), can also be expanded (to
quadratic order) in terms of the fluctuating fields [cf. Eq. (12)],

E = E(o) +
∑

i

E�i
zi +

∑
ij

(E�i�j
zizj + E�̄i�j

z̄izj ) + H.c.,

(23)

where we naturally identify

E�i
= ∂E

∂�i

∣∣∣∣
MF

, E�i�j
= 1

2

∂2E

∂�i∂�j

∣∣∣∣
MF

, . . . . (24)

The indices i and j refer to either same site or neighboring
sites. For a uniform lattice, both the Berry curvature and the
energy derivatives are independent of site indices. The mean-
field state is determined by setting the first derivative terms to
zero. The MI phase boundary is defined by the largest value
of t/U for a given μ/U for which the energy is miminized
by |�| = 0 on all sites. For the uniform BHH this procedure
reproduces the familiar phase diagram plotted in Fig. 1.

A. Elementary excitations in a uniform lattice

To determine the elementary excitations of the BHH [15],
we turn to the second-order action, Eq. (13), where we use
Eq. (23) for the energy functional. For a uniform lattice, we
Fourier-transform the fluctuations zi ,

zi = 1

β
√

N

∑
k,n

zkne
i(k·ri−ωnτ ), (25)

where β is the inverse temperature, ωn are the Matsubara
frequencies, and N is the number of sites in the lattice. The
resulting action is

S(2)[z̄z] = 1

β

∑
k,n

[−iωn C(�MF)z̄knzkn + z̄knAkzkn

+ zknB̄kz−k−n + z̄knBkz̄−k−n]

= 1

β

∑
k,n�0

[z̄kn z−k−n]
M(k,n)

[
zkn

z̄−k−n

]
, (26)
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FIG. 4. (a) Dispersion inside the MI region. (b) Dispersion at the phase boundary. (c) Dispersion inside the SF phase. Elementary excitation
energy ω(k) vs. k for a two dimensional uniform BHH along the line, k ≡ kx = ky (a is the lattice constant). Note that the spectrum is gapped
in the insulating phase and gapless at and beyond the phase boundary. Also note that for small k, the dispersion is linear in the SF region, in
accordance with Goldstone’s theorem. In this approximate theory the dispersion is quadratic at the phase boundary. ω(k) is measured in units
of U .

where

M(k,n) =
[−iωnC(�MF) + Ak B̄k

Bk iωnC(�MF) + Ak

]
,

Ak = 1

2

∂2E

∂�̄i∂�i

∣∣∣∣
MF

+ ∂2E

∂�̄i∂�j

∣∣∣∣
MF

[cos(kxa) + cos(kya)],

Bk = ∂2E

∂�i∂�i

∣∣∣∣
MF

+ ∂2E

∂�i∂�j

∣∣∣∣
MF

[cos(kxa) + cos(kya)],

(27)

and a is the lattice constant. Here, the indices i and j denote
neighboring sites. By setting the determinant of the matrix
M(k,n) in Eq. (26) to zero, we obtain an expression for the
excitation spectrum,

ω(k) =
√

A2
k − |Bk|2
C(�MF)

. (28)

In accordance with Goldstone’s theorem, Eq. (28) yields a
gapless Goldstone mode in the SF phase with linear dispersion
at long wavelengths [Fig. 4(c)]. As the MI phase boundary is
approached and crossed, excitations become more localized
and the mode dispersion weakens [Fig. 4(b)] and [Fig. 4(a)].
At certain points in the phase diagram the Berry curvature
C(�MF) vanishes (Fig. 1) and our theory of the excitation
spectrum becomes unreliable. We return to this point in the
discussion section.

B. Fully frustrated lattices

As mentioned above, the theory outlined in Sec. II is
designed with inhomogeneous systems in mind and is general
enough to be applied to systems where the translational
symmetry is reduced, or altogether lost. We demonstrate
this with the case of a two-dimensional uniform lattice in
which the tunneling amplitude sign alternates in one direction
(see Fig. 5). This hopping model corresponds to a half-flux
quantum per square lattice plaquette and is referred to as a
fully frustrated BHH [32]. For this case we allow translational

symmetry to be broken by doing the mean-field minimization
for a lattice with four sites per unit cell. The quadratic theory
is similarly modified, with the M matrix in Eq. (27) enlarging
to an eight by eight matrix.

A detailed mean-field study of the quantum phase transi-
tions in the fully frustrated lattice has been carried out else-
where [33]. Here we apply Eq. (9) on each site of a plaquette to
find the mean-field values of the fields, �A,�B,�C , and �D .
The elementary excitations of the system follow from the
second order action, Eq. (13). We take advantage of the
(reduced) translational symmetry by Fourier decomposing
the fluctuation fields at each site,

zsl(r,τ ) = 1

β
√

N

∑
k

zsk(τ )eik·rl , (29)

where l refers to plaquettes and s to the four sites (A, B,
C, and D) within a given plaquette. The Berry phase term,

A B

CD

AB

C D

CD

A B

−t t

t

t

FIG. 5. Fully frustrated lattice. The thick bonds are the links with
hopping amplitude tij = −t that frustrate intersite coherence. The
dashed box contains a unit cell of the frustrated lattice.
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FIG. 6. (a) Excitation modes inside the MI phase. Each mode is doubly degenerate. (b) Excitation modes inside the SF phase. Elementary
excitations of the fully frustrated lattice plotted along k ≡ kx = ky (a is the lattice constant). The lowest dispersion is gapped inside the insulator
and gapless beyond the phase boundary. Again, obeying Goldstone’s theorem, the lowest dispersion in the SF phase is gapless and linear at
small k; ω(k) is measured in units of U .

calculated at the mean-field state defined by the above four
fields, becomes ∑

sk

Cs z̄sk(τ )∂τ zsk(τ ), (30)

while the energy term contains all the second-order devia-
tions of the energy about this mean-field state. Replacing
zsk(τ ) → √

Cszsk(τ ) reduces the action into the standard
form

S(2) =
∫ β

0
dτ

∑
k,s

{z̄sk(τ )∂τ zsk(τ ) + E(2)[z̄sk(τ ),zsk(τ )]}.

(31)

Having elevated the fluctuations into quantum variables (obey-
ing bosonic commutation relations), we are now in a position

to employ the transformation �z = B�v, where �z = [
zsk(τ )
z̄s−k(τ ) ],

that preserves the commutation relations and perform
Bogoluibov diagonalization [34,35] to transform the action
into

S(2) =
∫ β

0
dτ

∑
k

[v̄k∂τ vk + ω(k)v̄kvk] , (32)

from which we can easily identify ω(k) as the excitation
spectrum. A few sample plots of the dispersion are shown
in Fig. 6.

We now sketch out the extension of this approach to the
case of lattices with even less symmetry (optical lattices in
harmonic traps, for example) or to entirely inhomogenous ones
(disordered lattices). For a lattice with N sites, the mean-
field state is determined by solving the N coupled equations,
Eq. (9), for the coherence fields �i,MF. Vanishing or finite
values of �i,MF determine the absence or presence of superfluid
order on a given site i, respectively. In solving the coupled
equations, it is, of course, advisable to take advantage of the
reduced symmetry, if present, as we have done here with the
fully frustrated lattice (for a lattice in an isotropic harmonic

trap, one can appeal to rotational symmetry to significantly
reduce the degrees of freedom). Once �i,MF are obtained, the
second-order terms that go into the action, Eq. (13) can be read
off from Eqs. (23) and (24). The extraction of the excitation
energies from the action [34,35], similar to the steps that led to
Eq. (32) is described in the appendix. In this manner, one can
determine the basic properties, i.e., the ground state as well as
the low-energy excitations of interacting bosonic systems in a
lattice in the presence of spatial inhomogeneities.

IV. DISCUSSION

As demonstrated above, the Berry phase is the critical
ingredient in formulating the quantum theory and calculating
the elementary excitations from it. As such, the excitation
spectra one obtains become unreliable if and when the Berry
curvature vanishes. The dashed curves in Fig. 1 trace the
contours in the phase diagram where the Berry curvature,
Eq. (11), of the uniform BHH becomes zero. One point of
view toward restoring the quantum theory is to retain terms
that are second order in time derivative in deriving the action,
Eq. (5) [36,37]. Here, we content ourselves to exploring the
consequences of a vanishing Berry curvature to our theory.
To have a better understanding of these special points, we
focus on the MI phases, where the Berry curvature is explicitly
given by

C = n + 1(
μ

U
− n

)2 − n(
n − 1 − μ

U

)2 . (33)

For n = 1, for instance, C vanishes at μ/U = √
2 − 1,

corresponding to a set of points in the phase diagram with
particle-hole symmetry. In other words, in our formalism, there
is no distinction between the definitions for the annihilation
and creation operators that emerge from quantizing the fluctua-
tions, rendering their commutator zero. This is consistent with
the results of Ref. [5], where quantum phase transitions at the
tips of the MI phases, the multicritical points with particle-hole
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symmetry, belong to the universality class of the XY model,
where the time derivative is second order, in contrast to
anywhere else across the phase boundary where it is first order,
and there is an absence of particle-hole symmetry [5,8].

In summary, the relative ease with which the above theory
has determined the basic properties of the fully frustrated
optical lattice higlights its main focus: inhomogenous systems,
such as optical lattices in symmetry breaking harmonic traps,
or experimental set-ups with controlled disorder, which have
generated lots of interest lately [38]. Our theory complements
previous efforts that have studied the BHH, and its results,
such as the mean-field phase diagram and the excitation modes
compare well with past conclusions [11–27]. The advantage
of our formalism is its broad applicability to systems that
are not spatially uniform, as is the case with most real-
world experimental setups. In addition, for these setups, the
simplicity, and accuracy of our theory make it a relatively
convenient mechanism to interpret the experimental results.
Though we have focused here at zero temperature, we do not
anticipate any particular difficulty in extending the theory to
finite temperatures. It may also be interesting to modify the
theory developed here for other lattice Hamiltonians, such as
those involving next-neighbor interactions, where interesting
phases such as charge density waves and supersolids are
predicted [39].
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APPENDIX

In this section, we discuss some of the diagonalization
procedure we employed above to arrive at Eq. (32). The need
to perform Bogoliubov diagonalization of many degrees of
freedom arises in most considerations of many-body problems,
especially inhomogenous ones, and there are now a number
of sources in the literature one can consult for more details

[34,35]. Here we give a more succint summary. Let

�z =
[

zi

z̄i

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2
...

zN

z̄1

z̄2
...

z̄N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where N is the total number of sites in the optical lattice.
As mentioned above, these fluctuations are now quantum
variables, and thus obey bosonic commutation relations,

[�z,�z†] = I, where I = [
1 0
0 −1

], with 1 and 0 being the N × N

identity and zero matrices, respectively.
We introduce the Hamiltonian H such that second-order

energy terms of the action, such as the one in Eq. (31),
can be written as E(2)[z̄i ,zi] = �z†H�z. Our goal is to perform
a canonical transformation �z = B�v that diagonalizes the
Hamiltonian H while preserving the bosonic commutation
relations,

B†HB = D
(A1)

[�v,�v†] = I,

where D = {ε1,ε2, . . . ,ε2N } are the eigenmodes of interest.
Using Eq. (A1) alongside the identities B†IB = I (which
follows from the commutation relations) and I = I−1, we
obtain the expression

H̃B = D̃B, (A2)

where

D̃ ≡ I−1D = {ε1,ε2, . . . ,εN , − εN+1, − εN+2, . . . , − ε2N }.
If we consider each vector �bi comprising the matrix B, we
see that Eq. (A2) is essentially an eigenvalue problem, where
the eigenvalues are particle-hole pairs (εi = −εi+N ), and εi ,
where 1 � i � N are the fundamental excitation modes of the
theory such as those plotted in Fig. 6.
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[9] S. Fölling, A. Widera, T. Müller, F. Gerbier, and I. Bloch, Phys.
Rev. Lett. 97, 060403 (2006).

[10] G. K. Campbell, J. Mun, M. Boyd, P. Medley, A. E. Leanhardt,
L. G. Marcassa, D. E. Pritchard, and W. Ketterle, Science 313,
649 (2006).

[11] D. S. Rokhsar and B. G. Kotliar, Phys. Rev. B 44, 10328 (1991).
[12] W. Krauth, M. Caffarel, and J.-P. Bouchaud, Phys. Rev. B 45,

3137 (1992).
[13] J. K. Freericks and H. Monien, Phys. Rev. B 53, 2691 (1996).
[14] N. Elstner and H. Monien, Phys. Rev. B 59, 12184 (1999).
[15] D. van Oosten, P. van der Straten, and H. T. C. Stoof, Phys. Rev.

A 63, 053601 (2001).

033622-7

http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevLett.98.130404
http://dx.doi.org/10.1103/PhysRevLett.98.130404
http://dx.doi.org/10.1038/nphys1726
http://dx.doi.org/10.1038/nphys1726
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevLett.97.060403
http://dx.doi.org/10.1103/PhysRevLett.97.060403
http://dx.doi.org/10.1126/science.1130365
http://dx.doi.org/10.1126/science.1130365
http://dx.doi.org/10.1103/PhysRevB.44.10328
http://dx.doi.org/10.1103/PhysRevB.45.3137
http://dx.doi.org/10.1103/PhysRevB.45.3137
http://dx.doi.org/10.1103/PhysRevB.53.2691
http://dx.doi.org/10.1103/PhysRevB.59.12184
http://dx.doi.org/10.1103/PhysRevA.63.053601
http://dx.doi.org/10.1103/PhysRevA.63.053601


DAGIM TILAHUN, R. A. DUINE, AND A. H. MACDONALD PHYSICAL REVIEW A 84, 033622 (2011)

[16] D. B. M. Dickerscheid, D. van Oosten, P. J. H. Denteneer, and
H. T. C. Stoof, Phys. Rev. A 68, 043623 (2003).

[17] C. Schroll, F. Marquardt, and C. Bruder, Phys. Rev. A 70, 053609
(2004).

[18] J. J. Garcı́a-Ripoll, J. Cirac, P. Zoller, C. Kollath, U. Schollwöck,
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