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Current-induced rotational torques in the skyrmion lattice phase of chiral magnets
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In chiral magnets without inversion symmetry, the magnetic structure can form a lattice of magnetic whirl lines,
a two-dimensional skyrmion lattice, stabilized by spin-orbit interactions in a small range of temperatures and
magnetic fields. The twist of the magnetization within this phase gives rise to an efficient coupling of macroscopic
magnetic domains to spin currents. We analyze the resulting spin-transfer effects, and, in particular, focus on
the current-induced rotation of the magnetic texture by an angle. Such a rotation can arise from macroscopic
temperature gradients in the system as has recently been shown experimentally and theoretically. Here we
investigate an alternative mechanism, where small distortions of the skyrmion lattice and the transfer of angular
momentum to the underlying atomic lattice play the key role. We employ the Landau-Lifshitz-Gilbert equation
and adapt the Thiele method to derive an effective equation of motion for the rotational degree of freedom. We
discuss the dependence of the rotation angle on the orientation of the applied magnetic field and the distance to
the phase transition.
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I. INTRODUCTION

In a magnetic metal, angular momentum can be transferred
from spins of the conduction electrons to the magnetization and
vice versa. In nonequilibrium conditions, this flow of angular
momentum—the so-called spin-transfer torques—results in
very interesting phenomena if the magnetization is spatially
nonuniform.1 For example, a spin-polarized current is able
to induce domain-wall motion in nanowires,2,3 microwave
oscillations in magnetic multilayers,4,5 or vortex oscillations in
magnetic nanopillars.6 The ability to control magnetic config-
urations by electric currents may have interesting applications
for nonvolatile magnetic memory.7

Most experimental studies investigate spin-transfer torque
effects in nanostructures, which will be important for the
design of future memory devices. In such nanostructures,
rather large current densities (typically larger than 1011A/m2)
are needed to induce the motion of domain walls, but they can
be applied in these systems without substantial Joule heating.
Recently, spin transfer torque effects at much smaller current
densities (106A/m2) have been observed by Jonietz et al.8 with
neutron scattering in a bulk sample of MnSi. In this material
a peculiar magnetic structure, a lattice of magnetic whirls or
“skyrmions,” is stabilized in a small range of magnetic fields
and temperatures, see Fig. 1. A rotation of this skyrmion lattice
by a finite angle is observed experimentally if the current
density exceeds a critical threshold value.

MnSi is an example of a chiral magnetic metal. While its
Bravais lattice is cubic, the atomic structure (P213) has no
inversion symmetry. It is therefore “chiral” (i.e., the atomic
crystal and its mirror image do not match). The chirality of
the crystal implies that the magnetization likes to twist in this
material due to relativistic effects (the Dzyaloshinskii-Moriya
interaction), typically by forming a spiral. Close to the critical
temperature and in the presence of a small magnetic field,
a more complex magnetic structure is formed: a skyrmion
lattice. Such a skyrmion lattice is, in some aspects, similar to
the vortex lattice in a type-II superconductor. The magnetic
structure is organized in a hexagonal lattice perpendicular to

the magnetic field and is translationally invariant in the parallel
direction. While in a superconductor the phase of the order
parameter winds by 2π around the core of each vortex where
the order parameter vanishes, the winding of the magnetization
is more complex, see Fig. 1. The magnetization remains always
finite, but its direction winds once around a sphere without any
singular point. Such a configuration is topologically stable and
is called a “skyrmion” after the nuclear physicist Tony Skyrme,
who showed in a pioneering work that certain configurations
of pion fields have the same properties as baryons.9,10

Experimentally, the hexagonal magnetic lattice in MnSi
was detected by neutron scattering.11 The winding of the
magnetization was identified by an extra contribution to the
Hall effect.12 Also other materials with the same crystal
symmetry show the same skyrmion phase [e.g., Fe1−xCoxSi
(Refs. 13–15)]. In the latter material, the skyrmion structure
has been directly measured using Lorentz force microscopy
by Yu et al.14 Theoretically, it has been pointed out in a
pioneering early work of Bogdanov and Yablonskii16 that
Dzyaloshinskii-Moriya interactions in chiral magnets favor
magnetic skyrmion textures. Based on a mean-field analysis, it
was, however, argued17 that in materials with the symmetry of
MnSi such a phase is never thermodynamically stable but only
metastable. In contrast, we showed theoretically in Ref. 11
that the skyrmion phase becomes thermodynamically stable
in a small temperature window when thermal fluctuations
are properly taken into account. Interestingly, the skyrmion
phase becomes stable even on the mean-field level in films
with a small perpendicular magnetic field.14 Skyrmion-like
magnetic textures in chiral magnets have, for example, also
been considered in Refs. 18–24.

From the perspective of spin-transfer torque, skyrmion
lattice phases as in MnSi are particularly interesting as the
peculiar twist of the magnetization results in an efficient
coupling of currents and the magnetization. Whereas for
traditional spintronic devices such a coupling primarily occurs
when the magnetization winds in a domain wall or some
nanoscopic device, it extends over the macroscopic bulk phase
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FIG. 1. (Color online) Magnetic phase diagram of MnSi taken
from Ref. 8. At small magnetic fields close to the critical temperature
Tc = 29.5 K a skyrmion lattice is stabilized, historically denoted as
the A phase. The inset shows the hexagonal arrangements of single
skyrmions.

for a skyrmion lattice. Indeed, the so-called gyrocoupling
vector, introduced by Thiele25 many years ago to describe
the motion of magnetic domains, becomes proportional to
the volume as the gyrocoupling per volume can directly be
identified with the skyrmion density. Physically, this coupling
can either be visualized as arising from Berry phases which an
electron picks up when moving across a skyrmion texture26 or
as a Magnus force arising from the interplay of external and
circulating internal spin currents.8

The above described gyrocoupling and further dissipative
forces are expected to induce a motion of the skyrmion
lattice above a critical current strength determined by the
pinning of the magnetic structure by disorder. The resulting
translational motion of the magnetic structure is, however,
extremely difficult to observe with neutron scattering and has
not yet been detected. Instead, the most pronounced effect
of a current is a rotation of the magnetic lattice by an angle
as described above. In Ref. 8 it was shown experimentally
and explained theoretically that such a rotation arises from
the interplay of spin-torque effects and thermal gradients in
the sample. In this paper, we want to investigate other forces
which can also induce rotations of skyrmion lattices even in
the absence of thermal gradients. Such forces can arise due
to small distortions of the skyrmion lattice induced by the
underlying atomic lattice. Rotations without thermal gradients
have not yet been observed experimentally, but may become
important in future experiments and/or other materials with
skyrmion phases.

In the following we will first introduce our theoretical
framework based on the appropriate Ginzburg Landau theory
(Sec. II) and the standard Landau-Lifshitz-Gilbert (LLG)
equation (Sec. III) for the magnetization.27–29 Possible modifi-
cations of the LLG equations due to the presence of spin-orbit
coupling30 and its ramifications are left for future studies. We
then use the method of Thiele,25 which means we project
the LLG equations onto the translational mode to derive an
effective equation of motion, from which we can infer the
drift velocity of the skyrmion lattice (neglecting the effects of
pinning by disorder). Extending this method, we also derive
an effective equation for the rotational degree of freedom. In
Sec. IV we finally apply our theory to the skyrmion lattice.

As the relevant distortions of the skyrmion lattice depend
sensitively on the direction of the magnetic field, we derive
specific predictions for the dependence of the rotation angle
on the orientation of fields and currents.

II. GINZBURG-LANDAU THEORY FOR THE SKYRMION
LATTICE IN EQUILIBRIUM

We begin with a brief review of the Ginzburg-Landau
theory for the skyrmion lattice used in Ref. 11 and discuss
additional terms that orient and distort the skyrmion lattice. As
we will later show, these latter terms are necessary to enable
angular momentum transfer from the magnetization to the
atomic crystal lattice. In the following, we will always consider
chiral magnets with the same symmetry (P213) as MnSi or
Fe1−xCoxSi where skyrmion phases have been observed11,13,14

and are predicted11 to occur generically.
As the skyrmion lattice phase occurs only in a small

temperature window close to the classical phase transition, one
can use a Ginzburg-Landau model to describe the equilibrium
properties. The weak spin-orbit coupling λSO in MnSi gives
rise to a clear separation of energy scales that allows a
classification of terms in the Ginzburg-Landau free energy
in powers of λSO. The strongest energy scale is determined by
ferromagnetic exchange interactions that favor spin alignment,
while the relativistic rotationally invariant Dzyaloshinskii-
Moriya spin-orbit interaction, D ∼ λSO, favors chiral spin
alignment on a weaker scale. Keeping only terms up to order
λ2

SO, the free energy is still rotationally invariant,

F [M] =
∫

d3r [r0 M2 + J (∇ M)2

+ 2D M · (∇ × M) + U M4 − B · M], (1)

where M(r) is the local magnetization, B the external
magnetic field, and r0,J,D,U are parameters (U,J > 0).
We will choose D > 0 that selects in the helical phase a
left-handed spiral with wave vector Q = | Q| = D/J . As all
magnetic structures develop on the length scale 1/Q ∼ 1/D,
each gradient term contributes with a power λSO, so that Eq. (1)
becomes indeed of order λ2

SO. As we will discuss below, the
magnetic structure is only oriented with respect to the atomic
crystal lattice by weaker terms that are of higher order in λSO

and break the rotational symmetry.31,32

After rescaling length r̃ = Qr , the magnetization M̃ =
[U/(JQ2)]1/2 M and field B̃ = [U/(JQ2)3]1/2 B the free
energy functional reduces to

F = γ

∫
d3r̃ [(1 + t)M̃

2 + (∇̃ M̃)2

+ 2 M̃ · (∇̃ × M̃) + M̃
4 − B̃ · M̃], (2)

where γ = J 2Q/U , and t = r0/(JQ2) − 1 measures the
distance to the critical temperature (i.e., within the mean-field
approximation, the system is spiral spin-ordered for t < 0,B =
0 and paramagnetic for t > 0,B = 0). From now on, we will
omit all tildes to simplify the notation, but keep in mind that
we have chosen particular units.
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To describe the skyrmion lattice at finite B, one can expand
the magnetization in plane waves

M(r) = Mf +
∑

Qj ∈LR

(m Qj
ei Qj ·r + c. c.), (3)

where the sum extends over all elements Qj of LR that denotes
the reciprocal lattice without Q = 0, and we introduced the
uniform ferromagnetic component Mf . The Fourier composi-
tion converges rapidly when more and more Qj are included
(as has been shown explicitly Ref. 33) as the skyrmion lattice is
a smooth, singularity-free texture. For the rotationally invariant
free energy functional Eq. (1) (i.e., to leading order in λSO),
the reciprocal lattice is a two-dimensional hexagonal lattice
perpendicular to the external field B and Mf is parallel to B.
Using this ansatz in Eq. (1), one obtains a local minimum of the
Ginzburg-Landau free energy for a range of parameters. This
minimum is characterized by an almost constant amplitude
of the magnetization and describes in real space a lattice of
skyrmions. The skyrmion is topologically characterized by an
integer winding number (for B‖ ẑ)

W = 1

4π

∫
UC

dxdy �̂ · (∂x�̂ × ∂y�̂), (4)

where �̂ = M/|M| is the direction of the magnetization and
we integrate over the magnetic unit cell (UC). As one obtains
W = −1, the magnetic texture corresponds to a lattice of
antiskyrmions. As discussed in Ref. 33, on the mean-field
level there is always a solution of the mean-field equations
with a lower energy corresponding to the “conical” helix with
a Q vector parallel to B. However, for a small range of
B and t the mean-field energy difference between the latter
and the skyrmion lattice phase is tiny. For this reason, it
is important to consider corrections beyond the mean-field
approximation. In Ref. 33 we have calculated the correction
to the free energy arising from Gaussian thermal fluctuations
around the mean-field solution, which turn out to stabilize the
skyrmion phase. Due to the fluctuations the skyrmion lattice
therefore becomes a global rather than local minimum.

A. Orientation of the skyrmion lattice

Within the isotropic free energy functional of Eq. (1),
the two-dimensional lattice spanned by the Qj vectors is
always perpendicular to B but its orientation within this
plane, described by an angle �, is not fixed due to the
remaining rotational symmetry around the B axis. This
rotational symmetry is, however, broken by terms of higher
order in spin-orbit coupling λSO not yet included in Eq. (1),
which, in turn, will lead to a preferential direction of �. Due
to the sixfold symmetry of the undistorted skyrmion lattice,
� can only be fixed by terms that generate an effective
potential of the form cos(6n� − ϕ0) with n = 1,2, . . . and
ϕ0 = const. Lowest order perturbation theory in terms like
M4

x + M4
y + M4

z or (∂2
x M)2 + (∂2

y M)2 + (∂2
z M)2 does not

produce such a potential. One example of a term that can
lock � in lowest order perturbation theory is

FL = γL

∫
d3r

[(
∂3
x M

)2 + (
∂3
y M

)2 + (
∂3
z M

)2]
. (5)

The effective potential generated by this term is extremely
small because γL/γ ∼ λ4

SO [note that we use the rescaled
variables of Eq. (2)], but there are no terms of lower order
in λSO which can orient the skyrmion lattice.

For the range of parameters considered in this work, a
positive γL describes the experimental observation11 that one
of the reciprocal lattice vectors Qj tends to be oriented in
a 〈110〉 direction (as in MnSi). A subtle problem is the
explanation of the orientation of the skyrmion lattice for a
magnetic field in 〈100〉 direction. For this special case, FL

of Eq. (5) does not pin the angle � to linear order in γL as
FL is symmetric under a rotation by π/2 around 〈100〉 and
cos[6(� + π/2)] = − cos[6�]. Therefore the orientation of
Qi vectors is determined by effects of higher order in λSO.

B. Distortion of the skyrmion lattice

Terms of higher order in spin-orbit coupling λSO will also
distort the skyrmion lattice so that it will deviate from the
perfect hexagonal structure predicted by Eq. (1). In lowest
order in λSO, such distortions are, for example, caused by the
term

FD = γD

∫
d3r[(∂xM

y)2 + (∂yM
z)2 + (∂zM

x)2], (6)

which is also written in our rescaled units. Such a term
is consistent with the B20 crystal structure of MnSi. The
prefactor γD (in rescaled units) is again small, γD/γ ∼ λ2

SO,
but expected to be much larger than γL of Eq. (5), γL/γD ∼
λ2

SO. Note, however, that this term would lock the orientation
� only to order γ 2

D � γL.
The skyrmion lattice obtained in the presence of the

term (6) is a two-dimensional reciprocal lattice, that is, a
distorted hexagonal lattice. Its reciprocal lattice vectors Qj

are generically not perpendicular anymore to the external
magnetic field B (i.e., B · Qj 	= 0), but to a slightly changed
normal vector n̂. Thus, n̂ is defined by

n̂ · Qj = 0. (7)

Moreover it is normalized n̂2 = 1 and has a positive overlap
with the magnetic field B · n̂ > 0.

III. SPIN TRANSFER AND ROTATIONAL TORQUES

To describe the dynamics of the orientation �̂(r,t) =
M(r,t)/|M(r,t)| of the magnetization M(r,t) in the presence
of spin-transfer torques due to electric currents we use the
standard Landau-Lifshitz-Gilbert (LLG) equation,27–29

(∂t + vs · ∇) �̂ = −�̂ × Heff + α �̂ ×
(

∂t + β

α
vs · ∇

)
�̂. (8)

Here vs is an effective spin velocity parallel to the spin current
density, j s ∼ Mvs ∼ j c p/e, with the charge current density
j c, the local spin polarization p and the electron charge e. The
last two terms describe the effect of magnetization relaxation,
leading to a Gilbert damping constant α and a dissipative spin
transfer torque parameter β.

The magnetization precesses in the effective magnetic field
Heff ≈ − 1

M
δF

δ�̂
. Strictly speaking Eq. (8) is only valid for a

constant amplitude of the magnetization, |M| = const., and
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therefore one has to define carefully how Heff is obtained from
a Ginzburg-Landau free energy F [M] when |M| is varying.
As shown in Ref. 33, in the skyrmion phase the amplitude of
the magnetization varies only little so that the LLG equation,
which does not include the dynamics of the amplitude, can be
used as a good approximation. For our numerical implemen-
tation, we use the approximation Heff ≈ − 1

M
δF
δM

∂ M
∂�̂

where

M2 = 〈M2〉 is the average equilibrium magnetization; other
implementations Heff will only slightly influence our results.

The LLG equation, Eq. (8), can be cast into the equivalent
form

�̂ × (∂t + vs · ∇) �̂ + α

(
∂t + β

α
vs · ∇

)
�̂ = Heff . (9)

The skyrmion lattice of an idealized system without
anisotropies spontaneously breaks translation and rotation
invariance perpendicular to the magnetic field. Thiele25 sug-
gested to project the equations onto the relevant translational
modes. We will use this approach below and extend it
in a straightforward way also to the rotational degree of
freedom. Technically, the corresponding equations of motion
are obtained by multiplying Eq. (9) with Ĝ �̂, where Ĝ is the
generator of the translation or rotation mode, and integrating
over a two-dimensional unit cell (UC) of the skyrmion crystal.
With the help of these equations, we derive the drift velocity vd

and the effective rotation angle δ� induced by the spin current.

A. Translational mode

Multiplying Eq. (9) with the generator of the translational

mode, which is given by Ĝ
i

trans�̂ = ∂i�̂, the occurring integral∫
d2r (∂i�̂) · Heff ∝

∫
d2r (∂i�̂) · δF

δ�̂
, (10)

vanishes due to translational invariance. In the stationary limit,
where the magnetic structure drifts with a constant velocity,
�̂ = �̂(r − vd t), one obtains25,34

G × (vs − vd ) + D (βvs − αvd ) = 0, (11)

with

Gi = εijk

1

2

∫
UC

d2r �̂(∂j �̂ × ∂k�̂), (12a)

Dij =
∫

UC
d2r ∂j �̂ ∂i�̂. (12b)

In Ref. 25, the vector G (up to prefactors) has been identified
by Thiele as a “gyrocoupling vector” as it translates a spin
current to an effective Magnus force in perpendicular direction.
In fact, the gyrocoupling vector is just proportional to the
winding number W of Eq. (4) per unit cell,

Gi = 4πW n̂i , (13)

and points in a direction orthogonal to the two-dimensional
skyrmion lattice, see Eq. (7). It is therefore topologically
quantized. Note that in the presence of a distortion term like
Eq. (6), the surface normal n̂ is not necessarily parallel to the
applied magnetic field B. The effective Magnus force caused
by G must be equal to a counter force acting on the electrons.
Indeed, electrons which follow adiabatically the magnetic
texture, pick up a geometric Berry phase which results in a

transverse force corresponding to an effective magnetic field
of strength |G|/(4πAUC) where AUC is the area of the magnetic
unit cell. The resulting topological Hall effect of the expected
strength has been already observed in Ref. 12.

The dimensionless matrix D is called the “dissipative
tensor”25 as it describes together with α and β the effects
of dissipative forces on the moving skyrmion lattice. As
the magnetization direction � only varies within the two-
dimensional plane of the skyrmion lattice, the 3 × 3 matrix
D possesses a zero eigenvalue corresponding to the normal
direction n̂. Within the plane of the skyrmion lattice, the matrix
D is diagonal in lowest order in spin-orbit coupling λSO due
to the six-fold symmetry of the skyrmion lattice. So we can
approximate to lowest order in λSO

Dij ≈ DP ij , (14)

with the projector P ij = (11 − n̂ · n̂T )ij . To lowest order in the
current vs , G and D can be evaluated using the equilibrium
magnetization.

For most magnetic bulk structures G vanishes and therefore
vd = vsβ/α. For the topological nontrivial skyrmion lattice
phase, we have instead a finite skyrmion density W = −1 and
thus a finite G. From Eq. (11) we then obtain for the in-plane
drift velocity v

‖
d = Pvd in agreement with Ref. 34

v
‖
d = β

α
v‖

s + α − β

α3(D/4πW )2 + α

(
v‖

s − αD
4πW

n̂ × v‖
s

)

≈ v‖
s − (β − α)D

4πW
n̂ × v‖

s , (15)

with the in-plane spin-velocity v
‖
s = Pvs and n̂ is the normal

vector given in Eq. (7). The last line is obtained in the limit
α,β � 1, which is appropriate in the limit of small λSO as the
damping terms arise from spin-orbit coupling effects. The drift
velocity v

‖
d of the skyrmion lattice is not parallel to the spin

velocity v
‖
s due to the Magnus forces arising as counterforces

to the topological Hall effect.12

B. Rotational mode

The rotational mode differs in several aspects from the
translational one. Most importantly, weak spin-orbit interac-
tions break rotational invariance and therefore a rotational
torque due to the current can be balanced by a countertorque
of the underlying atomic crystal lattice. Note that an infinitely
large skyrmion domain formally needs an infinite time to
reorient due to the fact that a rotation by a small angle leads to
infinitely large time-dependent changes of the magnetization at
large distances and to dissipation forces. In practice, domains
are always finite and we will therefore proceed calculating the
change of the steady-state orientation of the skyrmion lattice
in the presence of a small current.

To derive the equation of motion for the rotational degree
of freedom we need the generator of rotations, Ĝrot. The
magnetic texture rotated by a finite angle φ around the axis
defined by the normal vector n̂ of Eq. (7) is generally given by
�̂

′
(r) = Rn̂(φ)�̂[R−1

n̂ (φ)r] where Rn̂(φ) is the rotation matrix.
For infinitesimal angles this rotation matrix reads [Rn̂(φ)]ij =
δij + φεikj n̂k + O(φ2) with the Levi-Civita tensor εikj . From
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this follows the needed generator �̂
′
(r) − �̂(r) = φĜrot�̂ +

O(φ2) with Ĝrot�̂ = n̂ × �̂ − [n̂(r × ∇)]�̂. As above, we
multiply Eq. (9) by Ĝrot�̂ and integrate over space to obtain
an effective equation for the rotational degree of freedom

PR (vs − vd ) + PD (βvs − αvd ) = τ. (16)

The left-hand side describes how a rotational torque is created
by the applied current. In general, a matrix is needed to describe
the current-induced rotational motion. As we consider only
rotations around a given axis, we can instead use the two
vectors PR and PD ,

P i
R =

∫
UC

d2r (�̂ × ∂i�̂)(Ĝrot�̂), (17a)

P i
D =

∫
UC

d2r ∂i�̂ (Ĝrot�̂), (17b)

which we term the reactive and dissipative rotational coupling
vectors, respectively. These central quantities describe how a
velocity leads to a torque around the axis defined by the normal
n̂. The reactive term arises from the Berry phases picked up by
spin currents in the presence of a nontrivial spin-texture while
the dissipative terms can directly be traced back to the damping
terms. As the magnetic texture in the skyrmion lattice phase
only varies within a plane, the two coupling vectors are or-
thogonal to its normal, PR · n̂ = 0 and PD · n̂ = 0. As a con-
sequence, only the in-plane velocities v

‖
d and v

‖
s enter Eq. (16).

The rotational torque exerted by the current is balanced
on the right-hand side of Eq. (16) by the flow of angular
momentum from the skyrmion lattice to the underlying atomic
lattice. The torque

τ =
∫

UC
d2r Heff(Ĝrot�̂) = − ∂f

∂�
≈ −χ δ�, (18)

can be expressed by the change of free energy (per magnetic
unit cell and divided by the magnetization) upon a rotation of
the magnetic structure by the angle �. To obtain the correct
sign note that � describes the rotation of the magnetization
and not of the coordinate system. In the linear response regime,
the torque τ can be expanded in the small deviation δ� from
the equilibrium orientation, see discussion in Sec. II A. The
restoring force depends on the susceptibility (i.e., the “spring
constant”)

χ = ∂2f

∂�2
. (19)

In Eq. (18), we further used that the torque ∂f/∂� vanishes in
equilibrium for vs = 0.

When discussing Eq. (17) a careful interpretation of the
terms linear in r is necessary, which arise for any rotational
mode. We have checked that they vanish for symmetrically
shaped macroscopic domains. These terms give, however,
extra rotational torques for domains with asymmetric shape
with shape-dependent sign and strength. Assuming that these
average to zero, we neglect all terms linear in r and
approximate

P i
R ≈

∫
UC

d2r (�̂ × ∂i�̂)(n̂ × �̂), (20a)

P i
D ≈

∫
UC

d2r ∂i�̂ (n̂ × �̂). (20b)

Within linear response, we can solve Eq. (16) for the
rotational angle δ�, (provided that |χ | 	= 0)

δ� = − 1

χ
[PR (vs − vd ) + PD (βvs − αvd )] , (21)

where in linear order in vs the coefficients are again eval-
uated with the equilibrium magnetization. Together with the
equation for the drift velocity, Eq. (15), this is our central result
(together with its numerical evaluation discussed below). Note
that only the in-plane velocities v

‖
s and v

‖
d enter Eq. (21) and

generate a rotation as the orthogonal components are projected
out. Using the explicit solution for the drift velocity, Eq. (15),
the equation for δ� simplifies for small α and β to

δ� ≈ −β − α

χ

[ D
4πW

PR(n̂ × vs) + PDvs

]
, (22)

with W = −1 for the skyrmion lattice. As many other spin-
torque effects,35 the rotation vanishes for α = β where the
effective Galileian invariance of Eq. (8) allows only for trivial
solutions where the magnetic structure drifts with the current.

IV. THEORY FOR δ� IN SKYRMION LATTICES

For the undistorted skyrmion lattice [i.e., for the rotationally
symmetric Ginzburg-Landau free energy Eq. (1)], the rotation
angle δ� vanishes by symmetry. The sixfold rotational sym-
metry of the hexagonal magnetic lattice implies immediately
that the two rotational coupling vectors PR and PD of
Eq. (17) have to vanish. More precisely, as the orientation of a
hexagon is described by a third-rank tensor, a rotational torque
will only show up to order v3

s , too small for any observable
effect (at least in bulk materials, where only relatively small
current densities can be applied, see Ref. 8). To obtain an
effect already in linear order in vs , one has to take into account
that the skyrmion lattice is slightly distorted by a coupling to
the underlying atomic crystal lattice. Furthermore, one has to
investigate the origin of the restoring forces, χδ�, which also
arise from higher order spin-orbit coupling terms.

We have systematically investigated which symmetry-
allowed terms in the Ginzburg-Landau theory to leading order
in λSO give rise to (i) a distortion allowing for rotational
coupling or (ii) a preferred orientation of the magnetic lattice.
Two representatives of such terms are given by FL in Eq. (5)
and FD in Eq. (6) with coupling constants γL and γD ,
respectively. FD leads to small, but finite rotational coupling
vectors, such that PR and PD are of order O(γD). The term
FL, on the other hand, orients the skyrmion lattice and gives
rise to a finite susceptibility χ ∼ O(γL). While γD is very
small, a sizable δ� is only obtained because the susceptibility
χ is even smaller γL/γD ∼ λ2

SO. As a consequence, a sizable
effect δ� ∝ γD/γL can be expected.

A. Numerical solution of the skyrmion lattice

For the numerical evaluation of δ�, we have to evaluate the
coefficients of the formula for the rotation angle, Eq. (21),
with the equilibrium magnetization texture M(r) of the
skyrmion lattice obtained from the free energy functional of
Eq. (2) together with Eqs. (5) and (6). To obtain M(r), we
employ the following mean-field approximation. We minimize
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the free energy functional with the ansatz of Eq. (3) for
the magnetization, but we include in the sum only the
three smallest reciprocal lattice vectors Qj . This is a good
approximation as it turns out that higher order terms contribute
(both experimentally and theoretically11) maximally a few
percent to the total magnetization. For simplicity, we do not
include the effects of thermal fluctuations in our calculation.
While these are essential to promote the skyrmion solution
from a local minimum to a global minimum of the free energy,
they are expected to give rise only to small renormalization of
prefactors at least not too close to the phase transition as was
checked explicitly in Ref. 33.

Hence, we will approximate the static magnetic texture
in total by 27 real parameters μi , i = 1, . . . ,27: the uniform
magnetization Mf , two reciprocal lattice vectors Q1, Q2

(with Q3 = − Q1 − Q2) and three complex vectors M Qj
,

j = 1,2,3. In this representation, the solution that accounts
for the sliding motion of the skyrmion lattice can then be
written in the absence of pinning forces by disorder and to
linear order in the applied current as

M(r,t) = M(r − vd t,{μi}), (23)

where vd is the drift velocity of the magnetic structure.

B. Numerical evaluation of δ�

With the help of the magnetic texture M(r) in equilibrium
we can evaluate the gyrocoupling vector G, the dissipative
tensor D, the rotational coupling vectors PD and PL, and
the susceptibility χ that are needed to determine the rotational
angle δ� using Eq. (21). In the limit of small α,β � 1, Eq. (21)
reduces to Eq. (22), and after collecting all prefactors arising
from the rescaling of variables, we then obtain

δ� = �0 δϕ(t,B̃, ĵ ) for α,β,γL,γD � 1, (24)

where �0 is given by

�0 = vs

h̄(α − β)
√

U

Q2J 3/2

γD

γL

. (25)

The dimensionless function δϕ(t,B̃, ĵ ) depends only on the
dimensionless distance from the critical point t , the direction
and strength of the dimensionless magnetic field B̃, see Eq. (2),
and the orientation of the current.

We will first discuss the dependence of δ� on the relative
and absolute orientation of the magnetic field B and applied
current vs . Afterwards we discuss the dependence of δ� on
the distance, t , to the phase transition.

1. Orientational dependence of δ�

Within our theory, the rotation angle δ� is proportional to
the product of vs and a vector in the skyrmion lattice plane,
which is almost perpendicular to the magnetic field B with
deviations of order γD . As a consequence, when rotating the
current around the direction of a magnetic field, a simple cosine
dependence is obtained. This is demonstrated in Fig. 2 where
a numerical evaluation of δ� using Eq. (21) as a function of
vs for various values of α and β is shown. The blue solid line
corresponds to the limit of small α,β where δ� reduces to
Eq. (24).

[110] [11-1] [00-1] [-1-10] [001] [111] [110]

direction of current

-0.04

-0.02

0

0.02

0.04

δΦ
 / 

Φ
0

α,β → 0
α=0.05, β=0.1
α=0.1, β=0.2
α=0.15, β=0.3

FIG. 2. (Color online) Effective rotation angle δ� in units of �0,
Eq. (25), for a magnetic field, B, in [1-10] direction as a function
of the current direction perpendicular to [1-10] for various values of
α,β given in the inset. The other chosen parameters are t = −0.8,
|B̃| = 0.5

√−2t , γD = 0.01, and γL = 0.001.

The dependence of δ� on the direction of the field, B̂, on
the other hand, is substantially more complicated. The three
figures, Figs. 3, 4, and 5, give an overview on how δ� depends
on the orientation of B̂ for fixed current direction. Several
of the main features in these figures can be understood from
symmetry considerations as explained in the following. Special
properties cannot only be expected when the field is oriented
along either a two-fold 〈100〉 axis or a three-fold 〈111〉 axis,
but also for a field perpendicular to a 〈100〉 axis as in this case
the product of time reversal and π rotations around 〈100〉 maps
B (and the skyrmion lattice) upon itself.

Figure 3 shows how the rotation angle changes as the field
B is rotated around the [110] axis for a current parallel to [110].
For this geometry, one of the reciprocal lattice vectors is in the

[1-10][00-1] [001][-11-1] [1-11] [-111][1-1-1]

rotation angle around [110]

-2

0

2

4

δΦ
 / 

Φ
0 

α, β → 0
α = 0.05, β = 0.1
α = 0.10, β = 0.2
α = 0.15, β = 0.3

-0.2

0

0.2

δΦ
 / 

Φ
0 

[-110] [1-10] [-110]

[-110] [-110]

FIG. 3. (Color online) Effective rotation angle δ� in units of
�0, Eq. (25), for a current, vs , in the [110] direction as a function
of the direction of the magnetic field, B, perpendicular to [110]
(other parameters as in Fig. 2). Note that for the high symmetry
directions 〈111〉 and 〈100〉 δ� vanishes. Close to the 〈100〉 direction
the effect is maximal (see text). For certain directions, the effect
depends sensitively on the size of α (in the rescaled units β is less
important) as it affects the direction of the drifting skyrmion lattice.
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[1-10] [0-11] [-101] [-110] [01-1] [10-1] [1-10]
direction of magnetic field

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 δ
Φ

/Φ
0

α,β → 0
α=0.05, β=0.1
α=0.1, β=0.2
α=0.15, β=0.3

FIG. 4. (Color online) Effective rotation angle δ� in units of �0,
Eq. (25), for a current, vs , in the [111] direction as a function of
the direction of the magnetic field, B, perpendicular to [111] (other
parameters as in Fig. 2).

absence of a current always oriented in the [1-10] direction
for the parameters chosen in Fig. 3. Note that the directional
dependence is not very universal and depends on the structure,
sign, and size of the dominant anisotropy terms and even the
size of the damping constants. A universal feature is, however,
that δ� vanishes (to linear order in vs) for magnetic fields
in one of the two relevant high-symmetry direction (note that
〈110〉 is not a symmetry axis of the B20 structure of MnSi). As
〈100〉 is a two-fold screw axis and 〈111〉 a three-fold symmetry
axis, both PD and PR and, consequently, also δ� are zero for
a magnetic field oriented in these directions (as PD and PR are
perpendicular to B because n̂ becomes parallel to B for these
high-symmetry directions). Away from the two high-symmetry
directions, 〈100〉 or 〈111〉, we obtain finite coupling vectors,
PD and PR , and a transfer of angular momentum from the
magnetic texture to the crystal lattice resulting in a finite δ�.

[001] [011] [010] [01-1] [00-1] [0-1-1] [0-10] [0-11] [001]

direction of magnetic field

-2

-1

0

1

2

δΦ
 / 

Φ
0

α,β → 0
α=0.05, β=0.1
α=0.1, β=0.2
α=0.15, β=0.3

FIG. 5. (Color online) Effective rotation angle δ� in units of �0,
Eq. (25), for current, vs , in the [100] direction as the function of
the direction of the magnetic field, B, perpendicular to [100] (other
parameters as in Fig. 2). Note that for this orientation, the rotation
angle vanishes quadratically in the limit α,β → 0 due to a special
symmetry, see text.

As we have limited our analysis to effects that are linear in
the current, a reversal of the current direction always leads to a
sign change of the rotation angle, δ� → −δ�. To linear order
in the damping coefficients α and β, where Eq. (21) reduces
to Eq. (22), also a reversal of the magnetic field direction,
B → −B leads to a sign reversal δ� → −δ� (blue solid line
in Fig. 3). This is not the case if contribution of higher order
in α,β are incorporated (time reversal is broken not only by
B but also by the applied current and dissipative and reactive
forces have opposite signatures under time reversal). Even
for realistic values of α ∼ 0.1 (Ref. 36), the latter can have
a large effect and can even change the sign of δ� for certain
crystallographic directions, see Fig. 3. As a consequence, there
is generically no specific symmetry with respect to a reversal of
the current and the magnetic field, δ�(B, j ) 	= δ�(−B, − j ).

A geometry, where the field is oriented along the [1-10]
direction and the current along the [110] direction, is an
exception as 〈100〉 is a two-fold rotation axis which allows
to map B → −B and j → − j . Precisely this geometry
has been studied experimentally in Ref. 8, where the same
scattering pattern was observed when both field and current
were reversed. Within our conventions for δ� (defined relative
to the field orientation), this corresponds to a reversal of δ�

when both current and field directions are reversed. In contrast,
our symmetry analysis above shows the opposite behavior (for
all symmetry-allowed anisotropies and even beyond linear re-
sponse theory). This discrepancy was resolved in Ref. 8 where
it was shown that additional symmetry breaking temperature
gradients explain the experiments, see introduction.

The specific directions 〈100〉 for the magnetic field require
extra consideration as for this orientation the susceptibility χ

of Eq. (19) vanishes to linear order in γL as discussed below
Eq. (5). More precisely, denoting by δ the angle between B̂
and [001] (for the geometry of Fig. 3), the relevant potential is
proportional to γLδ2 cos 6� while PR and PD vanish linearly
in δ. Therefore δ� ∼ 1/δ as can be seen in Fig. 3. Only for
very small δ effects of order γ 2

L lead to a rounding of the
divergence. If B̂ is precisely oriented in [001], one also has
to include further anisotropy terms in the analysis, see the
discussion in Sec. II A, and the predictive power of our theory
along such special symmetry directions is limited.

In Fig. 4 the current-induced rotation angle is shown for a
current in the [111] direction when the magnetic field is rotated
perpendicular to this direction. By symmetry the pattern
repeats itself every 120◦. Note that δ� becomes small but does
not vanish for fields in the 〈110〉 directions, see also Fig. 2.

For current in the [100] direction and magnetic field
perpendicular to [100] one again obtains large values for δ�

when the field points in a 〈001〉 direction. Remarkably, δ�/�0

vanishes exactly in the limit α,β → 0 for this configuration
while it is finite for other orientations of B and j . The reason
is again a special symmetry: the product of time reversal T

and a rotation by 180◦ around the [100] direction. Under
this symmetry, B is mapped upon itself. It also enforces
that the reactive rotational coupling vector, PR , which is
even under T , points in [100] direction while the dissipative
rotational coupling vector, PD , which is odd under T , has
to be perpendicular to [100]. Using Eq. (15) one obtains
that vs − vd becomes perpendicular to vs while βvs − αvd
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becomes parallel to vs to leading order in β and α. Therefore
all current-induced torques vanish for α,β → 0 according to
Eq. (16).

2. Dependence of δ� on the distance to the phase transition
and order of magnitude estimate

When discussing the physics close to the phase transition,
one first has to emphasize that all phase transitions are
expected to be of first order. This is obvious already on the
mean-field level both for the transition to the conical phase
(where the ordering vectors jump) and for the transition to
the paramagnetic phase (due to the presence of a cubic term
in the Ginzburg Landau description in the presence of a
finite magnetic field). The latter transition is, however, also
strongly affected by thermal fluctuations, which drive even
the transition from the paramagnetic to the helical phase first
order.32 This effect makes it very difficult to estimate the
precise location of the phase transition line.

As all transitions are first order, the rotation angle is
formally nonsingular at the transition. In practice, however,
a complex interplay of phase transition dynamics, pinning
effects, the external drive by currents, heating effects, and
even surface properties can be expected in the regime where
both phases are locally stable. These questions are certainly
far beyond the goal of the present study.

We therefore restrict our analysis to the overall dependence
of the rotation angle on the parameter t , which can be
controlled by temperature in the experiments. Figure 6 displays
the dependence of δ� on t for fixed magnetic field strength
and various orientation of B in the limit of small α and β

when Eq. (24) is valid. For the chosen set of parameters,
δ� grows upon increasing t (i.e., for growing temperature).
The overall magnitude of the effect, might, however, be
overestimated as the mean-field theory cannot describe the
first-order transitions quantitatively. Qualitatively different
results for the t dependence are obtained in cases where
anisotropy terms dominate which are not quadratic in the order
parameter (as assumed by us), but are of higher order implying
a larger sensitivity to the distance to the phase transition.

-0.55 -0.5 -0.45 -0.4 -0.35
t

-0.4

-0.2

0

0.2

0.4

δΦ
 / 

Φ
0

[0.293,-0.293,1]
[-1,1,0]
[-1,1,0.586]
[-111]
[-0.707,0.707,1]
[1,-1,0]
[-0.293,0.293,1]

FIG. 6. (Color online) Angle δ� in the limit of small α,β, see
Eq. (24), for a current in [110] direction and various orientations of the
magnetic field, see legend, as a function of the dimensionless distance
t from the critical point (t = −0.8, |B̃| = 0.5

√−2t , γD = 0.01 and
γL = 0.001).

Finally, we would like to estimate the order of magnitude
of the rotation. As both γL and γD are unknown, it is not
possible to predict quantitatively the size of the expected
rotation angle δ�. One can, however, make a crude order of
magnitude estimate by counting powers of spin-orbit coupling
λSO. For t ∼ 1 we can estimate δ� ∼ �0, see Eq. (25). We
approximate Q = λSO/a, a3

√
U/J 3/2 ∼ 1/kBTc, γL/γD ∼

λ2
SO (see above), and with the drift velocity of charge, vs ∼ ja3

to obtain

δ� ∼ h̄ja2

ekBTc

α − β

λ4
SO

. (26)

For MnSi spin torque effects were observed8 for currents of
the order of 106 A/m2. In the appropriate dimensionless units
this corresponds to h̄ja2

ekBTc
∼ 10−7 (using the lattice constant

a ≈ 4.2 Å and Tc ≈ 30 K), which shows the smallness of
the applied currents (in most spin-torque experiments currents
are five to six orders of magnitude larger). In MnSi α ∼ 0.1
appears to be surprisingly large as electron-spin-resonance
experiments show a rather broad peak.36 Using λSO ∼ 0.01,
one could in principle obtain sizable rotation angles δ� ∼
O(1). Experimentally, no such rotation was observed in
an experimental setup which avoids temperature gradients.
Taking the crudeness of the estimates given above into account,
this result is unfortunately also consistent with our analysis,
especially as for the experimental setup (field along [110],
current along [1-10]) the effect turns out to be suppressed by
another factor of 0.05, see Fig. 2.

V. SUMMARY AND DISCUSSION

The focus of this paper is the investigation of a specific
mechanism how spin transfer torques can lead to a spatial
rotation of the magnetic skyrmion texture by a finite angle. Our
analysis started from the observation that a perfect skyrmion
lattice has neither a preferred orientation perpendicular to
the applied magnetic field nor can a small current exert
(to linear order) a rotational torque to such a symmetric
structure due to its sixfold rotational symmetry. The magnetic
texture is, however, embedded in the atomic crystal of the
host material. This environment breaks rotational symmetry
leading both to a preferred orientation of the skyrmion lattice
in equilibrium by tiny spin-orbit coupling effects and also to
a small distortion of the skyrmion lattice which enables the
current to exert rotational torques. The balance of these two
effects determines the rotation angle. A systematic analysis
of such effects is possible as all relevant phenomena are
controlled by weak spin-orbit coupling effects and occur on
long length scales. Overall the following picture emerges.
First, angular momentum is transferred from the spins of
the conduction electrons to the magnetization. This induces
a rotation until all rotational torques are balanced and the
angular momentum is flowing from the magnetic texture (via
spin-orbit coupling effects) to the underlying atomic lattice.

There are several other effects which can also lead to
rotational torques. Most relevant for the experiment in Ref. 8 is
that macroscopic inhomogeneities can lead to inhomogeneous
forces and therefore also to rotational forces. In Ref. 8 these
could be controlled experimentally by small temperature
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gradients in the sample. A temperature gradient leads to a
different strength of forces at the “hot” and the “cold” side
of a magnetic domain and therefore to torques. Reversing
the temperature gradient therefore leads to a reversal of the
rotation angle. Moreover the shape of a magnetic domain
can be the origin of forces which orient the domain in the
presence of a current. These torques are likely to be of random
sign and might be responsible for the smearing of the neutron
scattering signal observed in Ref. 8. Finally, also distortions of
the skyrmion lattice by disorder can lead to a reorientation
of a sliding lattice. This physics, which is based on the
nonlinear response of the moving lattice, has previously been
investigated for vortex lattices in superconductors.37,38 Finally,
also the current itself can distort the skyrmion lattice and lead
to a reorientation of the lattice. By symmetry, this effect occurs,
however, only to third order in the current density.

Besides the more widely studied translational motion,
we expect that also the rotation of magnetic textures will
continue to be an important signature of spin-torque effects.6

Depending on the setup both rotation and translation can
define “soft modes” where pinning effects are weak and small
forces can lead to sizable effect. To analyze such rotational
forces we have projected the widely used Landau-Lifshitz-
Gilbert equation onto the rotational degree of freedom using
a straightforward generalization of the approach used by
Thiele25 for translational motion. We expect that this approach
should also be useful to analyze other sources of rotational
torques both in skyrmion lattices and other experiments where
rotation plays a role.39

After this work was completed, a new type of damping term
was suggested by Zang et al. in Ref. 40 which complements the
Gilbert damping in the LLG equation. This additional damping
will modify prefactors in our results for the rotation angle but
we do not expect any qualitative changes.
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APPENDIX: ALTERNATIVE DERIVATION OF THE
ROTATION ANGLE δ�

The derivation of Eq. (21) for the rotation angle was based
on the projection of the LLG equation on the rotational mode

around an axis defined by the normal vector n̂ of the skyrmion
lattice, see Ref. (7). To check this approach and confirm the
validity of Eq. (21), we used an alternative derivation without
projection to the rotational mode.

In this alternative approach, we have solved for a steady-
state solution of the LLG equation (8) directly within the
variational ansatz of Eq. (23) with variational parameters μi ,
i = 1, . . . ,N with N = 27. To determine the change δμi of
the variational parameters in the presence of a current vs ,
we multiply Eq. (9) by ∂�̂/∂μi and integrate over space. As
the effective magnetic field Heff vanishes in equilibrium, we
expand it to linear order in the deviations δμi to obtain N

equations generalizing Eq. (21)

PR,i(vs − vd ) + PD,i(βvs − αvd ) = f ′′
ij δμj , (A1)

where the generalized reactive and dissipative coupling vec-
tors, PR/D,i and the stiffness matrix f ′′

ij are given by

(PR,i)n =
∫

UC
d2r (�̂ × ∂n�̂)

∂�̂

∂μi

, (A2a)

(PD,i)n =
∫

UC
d2r ∂n�̂

∂�̂

∂μi

, (A2b)

f ′′
ij =

∫
UC

d2r
∂�̂

∂μi

∂ Heff

∂μj

= − 1

M

∫
UC

d2r
∂2F

∂μi∂μj

.

(A2c)

As discussed in Sec. III B, terms in the integrand that are
linear in the coordinate r arise from derivatives with respect to
the reciprocal lattice vectors Qj . We again neglect such terms
which is justified for symmetric boundary conditions.

The rotation angle δ� can be obtained from the changes
in the magnetic texture parameterized by the deviations
δμi of the variational parameters. The rotation is obtained
from the change δ Qi of the reciprocal lattice vectors of the
skyrmion lattice. For small δ� we have δ Qi = (∂ Qi/∂�) δ�.
Multiplying this formula by (∂ Qi/∂�) and summing over i

allows to solve for δ�. Thus, we get the alternative expression
for the rotation angle

δ� =
∑

i δ Qi · ∂ Qi

∂�∑
i

∂ Qi

∂�
· ∂ Qi

∂�

. (A3)

The deviations δ Qi are obtained by solving Eq. (A1) using
Eq. (15) for the drift velocity vd .

We have checked both analytically and numerically that
Eqs. (A3) and (21) give identical results, and thus confirmed
the validity of the Thiele approach in the present context for
the rotational motion.
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