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Abstract. It has been suggested that a “permanent” El Niño
climate state has existed in the warm Pliocene. One of the
main pieces of evidence of such conditions is the small east-
west sea surface temperature (SST) difference that is found
in proxy temperature records of the equatorial Pacific. Us-
ing a coupled version of the Zebiak-Cane model of inter-
mediate complexity for the tropical Pacific, we study the
sensitivity of the time-mean Pacific background state and
El Niño/Southern Oscillation (ENSO) variability to Pliocene
climate changes. The parameters varied in this sensitivity
study include changes in the trade wind strength due to a
reduced equator-to-pole temperature gradient, higher global
mean temperatures and an open Panama gateway. All these
changes lead to a westward shift of the position of the cold
tongue along the equator by up to 2000 km. This result is
consistent with data from the PRISM3D Pliocene SST recon-
struction. Our model further suggests that ENSO variability
is present in the Pliocene climate with only slight changes as
compared to today. A background climate that would resem-
ble a “permanent” El Nĩno with weak to no east-west tem-
perature difference along the equator is only found for very
weak trade winds which seem unrealistic for the Pliocene
climate.

1 Introduction

The El Niño/Southern Oscillation phenomenon (ENSO) is
one of the strongest and most studied modes of climate
variability on interannual time scales. Although the cen-
tre of variability is located in the tropical Pacific Ocean,
where strong sea surface temperature variations are ob-
served, El Nĩno affects climate, societies and ecosystems in
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many regions of the world (Philander, 1990). The future de-
velopment of this type of interannual variability remains con-
troversial, mainly because the interaction between long-term
mean climate changes and interannual variability is poorly
known. State-of-the-art coupled climate models, therefore,
predict a variety of changes for ENSO variability under in-
creasing greenhouse gases (Collins, 2005; van Oldenborgh
et al., 2005). A promising approach to improve our under-
standing of the behaviour of ENSO variability under differ-
ent long-term mean climate states is to study past warm cli-
mates. Changes in ENSO variability have been suggested for
the early to mid-Pliocene (5.3–3.6 Ma), where global mean
temperatures where about 3◦C higher than today (Ravelo
et al., 2004; Dowsett and Robinson, 2009), while estimates
of atmospheric greenhouse gas concentrations indicate only
about 30 % higher levels than today (Raymo et al., 1996).

Pliocene proxy climate reconstructions mostly have a too
coarse temporal resolution to resolve ENSO events, but they
are useful to determine the past climatology of the Pacific.
Reconstructions of sea surface temperatures (SST) in the
western and eastern equatorial Pacific from Mg/Ca pale-
othermometry andδ18O records suggest a substantially re-
duced east-west sea surface temperature (SST) gradient dur-
ing the early mid-Pliocene (Wara et al., 2005; Dekens et al.,
2007). Although there are also contradictory results from the
same drilling sites (Rickaby and Halloran, 2005), the small
east-west gradient prior to 2.7 Ma has lead to the hypoth-
esis that El Nĩno-like conditions were a permanent feature
of the Pliocene (Fedorov et al., 2006; Ravelo et al., 2006),
which is usually referred to as a “permanent” El Niño-like
state (Molnar and Cane, 2002). While the proxy data clearly
only record the background climate state and are, in general,
not able to resolve interannual climate variability, it remains
ambiguous from these studies whether the term “permanent
El Niño” refers to a climate state with interannual variabil-
ity around an El-Nĩno-like mean climate state (Brierley and
Fedorov, 2010) or to a climate state with weak or no zonal
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SST gradient and without ENSO variability (Philander and
Fedorov, 2003a; Fedorov et al., 2006). Fedorov et al.(2006)
even suggest the “Pliocene Paradox”: the tropical climate
states, in both Pliocene and today, are quite different, but
subject to about the same forcing. In their view, this “per-
manent” El Nĩno-like state could be a major factor to explain
the warmth of the early mid-Pliocene.

Coupled climate model simulations, however, have not
(yet) found a “permanent” El Niño-like state for the Pliocene.
Haywood et al.(2007) examine the thermal structure of trop-
ical oceans and, in particular, zonal temperature gradients in
the Pacific using the HadCM3 model. They carried out five
model simulations: one pre-industrial run, a Pliocene sim-
ulation and three sensitivity experiments in which the zonal
SST gradients across the different ocean basins are varied.
Consistent with proxy data, increased SSTs in the eastern
equatorial Pacific are found, however, even with a signif-
icantly reduced east-west temperature gradient (1.92◦C on
average) as compared to today, the model shows clear ENSO
variability. These simulations do not support the existence of
“permanent” El Nĩno-like conditions in the Pliocene. Fur-
thermore, their sensitivity runs indicate that it is unlikely
that permanent El Niño-like conditions, even if they existed,
caused the warmth of the mid-Pliocene. Similar results have
been found byBonham et al.(2009), who showed in several
Pliocene model experiments, that regional patterns of pre-
cipitation and surface temperature changes associated with
present-day El Nĩno teleconnections can be reproduced with-
out the existence of a permanent El Niño, or without any east-
ern Pacific SST warming at all.Jochum et al.(2009) tested
the hypothesis that the emergence of the Halmahera island in
the Pliocene could have changed the Indonesian throughflow
in such a way that the zonal SST gradient in the tropical Pa-
cific would be reduced. They used a coupled climate model
with different configurations of the Indonesian islands and
their simulations show interannual ENSO variability with a
slightly shifted west Pacific warm pool. These results, nev-
ertheless, do not exclude the possibility of the existence of
a “permanent” El Nĩno state, however, model simulations of
even warmer periods in Earth history also suggest ongoing
ENSO variability (Huber and Caballero, 2003; Galeotti et al.,
2010). Also, recent proxy data, that resolve interannual vari-
ability, indicate persisting El Niño variability in the Pliocene
(Watanabe et al., 2011; Scroxton et al., 2011).

In this paper, the problem of the Pliocene climatology
and El Nĩno variability is approached from a dynamical
systems point of view. Within this view, ENSO arises
because the Pacific climatology is susceptible to an os-
cillatory instability. The propagation features of the pat-
tern which is amplified (usually referred to as the ENSO
mode) can be described by a delayed-oscillator mecha-
nism (e.g., the recharge/discharge mechanism,Jin, 1997).
The amplitude of the spatial pattern of the mode is de-
termined by the distance to criticality and external noise
according to what is called a stochastic Hopf bifurcation

(Neelin and Dijkstra, 1995; Frankcombe et al., 2009).
Within this framework, a “permanent” El Niño state would

refer to a climatology with a small zonal temperature gradi-
ent which would be so stable that noise would not be able
to excite any El Nĩno variability. Such states have indeed
been found in early so-called flux-corrected coupled models
(Neelin and Dijkstra, 1995), but they were shown to be an
artifact of the flux-correction procedure. As soon as both the
climatology and El Nĩno are dependent on coupled feedbacks
(Dijkstra and Neelin, 1995), such “permanent” El Nĩno states
disappear and simultaneously it is difficult to eliminate the
Hopf bifurcation associated with the El Niño variability. On
the other hand, under certain boundary conditions, it may be
possible to create climatological mean states with a reduced
zonal SST gradient, that still show interannual variability.

In the following, we address the dynamics of the tropical
Pacific climatology and ENSO in the Pliocene using a fully-
coupled intermediate complexity model (Neelin and Dijk-
stra, 1995; van der Vaart et al., 2000). To be self-contained, a
brief description of the model components is given in Sect. 2,
together with the adaptation of the model to Pliocene climate
conditions. Section 3 contains the main results, where we
look at changes in the equator-to-pole temperature gradient,
increased greenhouse gas concentrations and the presence of
an open Panama gateway on the Pacific climate and ENSO
variability. In the final Sect. 4, we compare our findings with
proxy data compiled by the Pliocene Research, Interpretation
and Synoptic Mapping group (PRISM,Dowsett and Robin-
son, 2009) and discuss and summarize our results.

2 Model description

The model used for this study (van der Vaart et al., 2000)
is a fully coupled variant of the Zebiak-Cane model (Zebiak
and Cane, 1987). It captures the evolution of large-scale mo-
tions in the tropical ocean and atmosphere in an idealized
Pacific domain. In contrast to the Zebiak-Cane model, the
present model is not an anomaly model around a prescribed
climatological mean state, but the model itself generates the
mean climate state and its variability. This model has been
described, in detail, inDijkstra and Neelin(1995); van der
Vaart et al.(2000).

2.1 The coupled ocean-atmosphere model

The ocean component of the model consists of a shallow-
water layer of mean depthH with an embedded mixed layer
of fixed depthH1 (see Fig.1). The ocean basin has a zonal
extensionL and is unbounded in the meridional direction.
The flow evolution in the shallow-water layer with velocity
field (u,v,w) and thermocline displacementh (from its equi-
librium depthH ) is described by a reduced-gravity model,
where the active layer has a densityρ and the motionless
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layer below a densityρ+1ρ. The equations are (Zebiak and
Cane, 1987):

∂u

∂t
+amu−β0yv+g′

∂h

∂x
=

τ x

ρH
, (1a)

β0yu+g′
∂h

∂y
=

τ y

ρH
, (1b)

∂h

∂t
+amh+c2

o(
∂u

∂x
+

∂v

∂y
) = 0, (1c)

with boundary conditions∫
∞

−∞

u(0,y,t)dy = 0, u(L,y,t)= 0. (2)

The equations for the surface (Ekman) layer velocities
(us,vs) are

asus−β0yvs=
H2

H

τ x

ρH1
, (3a)

asvs−β0yus=
H2

H

τ y

ρH1
. (3b)

whereH2 = H −H1. In the equations above,am andas are
linear damping coefficients, in the shallow water and Ekman
layer, respectively.τ = (τ x,τ x) is the wind stress vector,
g′

= g1ρ/ρ is the reduced gravity andco =
√

g′H is the
phase speed of the first oceanic baroclinic Kelvin mode.

The zonal wind stressτ x is decomposed into an external
and a coupled contribution:

τ x
= τ x

ext+τ x
c , (4)

The coupled part of the wind stress is assumed to be pro-
portional to the zonal windfieldua, i.e., τ x

c = γτua, with γτ

a constant. The external wind stressτ x
ext is the part of the

wind stress that does not depend on the coupled feedbacks
within the basin and can be interpreted as the easterly wind
stress component due to the Hadley circulation (Dijkstra and
Neelin, 1995) and, hence, directly coupled to the equator-to-
pole gradient. It is assumed constant in the zonal direction
and in the meridional direction the external wind stress is as-
sumed to be symmetric with respect to the equator, having
the form (van der Vaart et al., 2000)

τ x
ext= −τ0e

[−
(y/La)2

2 ], (5)

where τ0 is a typical amplitude of the wind stress
(τ0 ∼0.01 Pa) andLa the atmospheric Rossby deformation
radius. The meridional wind-stress componentτ y is ne-
glected in this model.

The evolution of the sea surface temperatureT is de-
scribed by

∂T

∂t
+aT (T −T0)+

w1

H1
H(w1)(T −Ts(h))+u1

∂T

∂x
+v1

∂T

∂y
= 0, (6)

Fig. 1. Schematic representation of the Zebiak-Cane model show-
ing the shallow-water layer with embedded surface mixed layer in
the ocean. The shallow-water layer is bounded below by the ther-
mocline. Coupled to the ocean part there is the atmosphere model
with horizontal velocities and geopotential height.

whereaT is a linear damping coefficient,u1 = us+u and
v1 = vs+v are the horizontal velocities in the mixed layer,
w1 = ws+w the vertical velocity just below the mixed layer,
H the Heaviside function andT0 is the radiation equilibrium
temperature. The subsurface temperatureTs depends on the
vertical temperature distribution and, hence, on the thermo-
cline depthh according to

Ts(h) = Ts0+(T0−Ts0)tanh(
h+h0

Ĥ
), (7)

whereĤ andh0 represent control parameters for the steep-
ness and the offset ofTs profile, andTs0 is a characteristic
temperature of the water being upwelled into the mixed layer.

The ocean model is coupled to a Gill atmosphere model
(Gill , 1980) with zonal and meridional velocities(ua,va),
geopotential heightφ and a linear damping coefficientA.
The atmosphere is driven by heat fluxes from the ocean that
depend linearly on the anomalies of sea surface temperature
T with respect to the radiation equilibrium temperatureT0,
with proportionality constantαT . The governing equations
of the atmosphere model are

∂ua

∂t
+Aua−β0yva−

∂φ

∂x
= 0, (8a)

∂va

∂t
+Ava+β0yua−

∂φ

∂y
= 0, (8b)

∂φ

∂t
+Aφ−c2

a(
∂ua

∂x
+

∂va

∂y
) = αT (T −T0), (8c)

whereca is the phase speed of the atmospheric Kelvin wave.

2.2 Control simulation: standard case

In order to obtain the proper climatology of the present-day
Pacific together with realistic ENSO variability, a control
case is defined, where the standard parameter values, as in
Table1, are used. Results of a 20 year simulation under these
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Fig. 2. Climatology and variability as simulated by the model under present-day conditions with standard parameter values, as indicated in
Table1. The radiation equilibrium temperatureT0 = 30◦C and the external wind-stress amplitudeτ0 = 0.01 Pa.(a) Time-mean spatial SST
distribution in◦C. Contour interval is 1◦C. (b) SST anomalies (in◦C) in the cold tongue on the equator atx = 12 500 km from Indonesia.
(c) Time-mean thermocline depth anomalyh (in m). Contour interval is 10 m.(d) Time-mean zonal wind velocityua (in m s−1). Contour
interval is 2 m s−1.

parameters are shown in Fig.2. A contour plot of the time
mean sea surface temperatureT (Fig. 2a) indicates that the
cold tongue with a minimal temperature of about 24◦C is
situated at a realistic position in the east (about 12 000 km
from Indonesia, or atx = 0.8L). The position of the SST
minimum and the increasing SST towards the coast of South
America is determined by the coupled feedbacks within the
basin, i.e., the upwelling and thermocline feedback as ex-
plained inDijkstra and Neelin(1995). A warm pool is ob-
served in the western part of the basin, having the radia-
tive equilibrium temperatureT0 = 30◦C. Periodic variations
of SST anomalies (with respect to the mean state in Fig.2a)
in the cold tongue (atx = 0.8L) are found (Fig.2b) with
an amplitude of∼4◦C and a period of∼ 3.5 yr. The time-
mean thermocline depthh is shallow in the eastern part of
the basin and deep in the west (Fig.2c) with the typical slope
in the thermocline across the basin. The time-mean zonal
wind responseua (Fig. 2d) shows the intensification of the
easterly winds over the whole central equatorial Pacific with
a maximum to the west of the cold tongue.

In summary, this control case shows that under the chosen
standard set of parameters the basic features of the present-
day Pacific climatology and ENSO variability are well cap-
tured by the model. Similar results have been obtained by
van der Vaart et al.(2000), where also the spatial patterns of
thermocline and SST anomalies of ENSO events were pre-
sented (not shown here).

Table 1. Standard values of parameters used in the model as in
(van der Vaart et al., 2000).

L = 1.5×107 m c0 = 2 m s−1

ca = 30 m s−1 H = 200 m

H1 = 50 m

F0 =
τ0L

c2
0ρH

= 0.2 δs = 0.3

r =
amL
c0

= 0.1 η1 =
h

Ĥ
= 5.01

εs =
asL
c0

= 37.5 δ = 1.0

γs =
H2
H1

F0 = 3.0 α =
Ly

La
= 0.2

3s =
Ly

L
3s =

Ly

L
= 2.0×10−2

εa =
AL
c0

= 1.25 αw =
H1
H̃

= 1.0

µ =
αT 1T L

c3
a

= 3.0 η2 =
h0

Ĥ
= 0.5

εT =
aT L
c0

= 0.694 T0 = 30

δw = 5.0×10−2 Ts0 = 23.0

2.3 Pliocene conditions

We mimic the changes in radiative forcing between Pliocene
and present day through a change in the radiation equilibrium
temperatureT0. This is the temperature which would occur in
the absence of ocean dynamics, i.e., through a local surface
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heat flux equilibrium over the ocean. As mentioned above,
the early mid-Pliocene warm period was characterised by
global mean surface temperatures approximately 3◦C higher
than today (Dowsett and Robinson, 2009). Although the dy-
namics involvingT0 are complicated and beyond the scope
of this paper, a higher global mean temperature implies also
a higherT0. This motivates us to study the sensitivity of the
climate states and the ENSO variability of the model ver-
susT0.

Within the theory on the Pacific cold tongue (Dijkstra and
Neelin, 1995), an initially weak east-west SST gradient due
to the external wind stress is amplified by coupled feedbacks
leading to the present-day cold tongue position and ampli-
tude. Several studies have suggested that the Pliocene Hadley
circulation was weaker due to the smaller equator-to-pole
temperature gradient (Tziperman and Farrell, 2009; Brier-
ley et al., 2009; Etourneau et al., 2010). Furthermore, in a
warmer climate the atmosphere contains more water, while
precipitation is constrained by the radiation budget. Con-
sequently, the atmospheric overturning circulation becomes
weaker in a warmer climate (Held and Soden, 2006; Vecchi
and Soden, 2007). Therefore, a sensitivity study will be per-
formed as well of the effect of an increasing/decreasing am-
plitude of the external wind stressτ0 (in Eq.5) on the Pacific
climate state and ENSO characteristics in the model.

Finally, the Pliocene continental configuration was slightly
different from the modern one in that the Central American
Seaway was still open. This gateway connecting the tropical
Atlantic and Pacific Oceans was located at about 3◦ N. Re-
constructions of the upper-water column hydrography of the
eastern and western equatorial Pacific usingδ18O andδ13C
proxy records have indicated that surface waters of the east-
ern equatorial Pacific were warmer than those in the west be-
tween 5 and 4 Ma (Cannariato and Ravelo, 1997). This can
be explained by warm Atlantic surface water flowing through
the (still open) Central American seaway into the Pacific and
increasing the local sea surface temperatures. To model this
effect, we assume that these warm waters affect the surface
layer of the eastern Pacific ocean only. Hence, in the model
SST equation, we add a local relaxation term proportional
to the difference between the eastern equatorial Pacific SST
and western equatorial Atlantic temperatureTA . The modi-
fied SST Eq. (6) then becomes:

∂T

∂t
+aT (T −T0)+

w1

H̃
H(w1)(T −Ts(h))+

u1
∂T

∂x
+v1

∂T

∂y
+aT f (x,y)(T −TA) = 0, (9)

with

f (x,y)= e
x−L
LPG ·e

−
4

W2
PG

(y−YPG)2

.

The function f (x,y), with zonal and meridional length
scalesLPG andWPG controls how far the effect of warm At-
lantic water extends into the Pacific and the parameterYPG
determines the latitudinal position of the gateway.

3 Results

In the first subsection we study the changes in the Pacific
climatology and ENSO variability to variations of the radia-
tion equilibrium temperatureT0 and the external wind stress
strengthτ0. In the second subsection, we consider the effect
of an open Central American Gateway.

3.1 Sensitivity to the external wind stress and the
radiation equilibrium temperature

We perform a suite of model experiments where two param-
eters, the amplitude of the external wind stress and the radia-
tion equilibrium temperature are changed. Each simulation is
integrated for about 20 yr and the last 14 yr of output are used
for analysis. As the model solutions are quickly in equilib-
rium, such a short integration time is sufficient to determine
ENSO period and time-mean state properties. One of the
most important variables for the background climate state is
the position of the cold tongue, which we define as the zonal
location along the equator where the (time-averaged) SST is
minimal.

The amplitude of the external wind stress is varied within a
rangeτ0 = [0.005−0.02] Pa, while the standard value in the
control simulation isτ0 = 0.01 Pa. Simulations were done
for each value ofτ0 with increments of 0.001 Pa. The time-
mean SST distributions along the equator in Fig.3a show
that the zonal location of the cold tonguexC shifts to the
east with increasing external wind stress. The cold tongue
is located approximately 11 000 km from Indonesia for small
τ0 and shifts eastward by about 2000 km for largeτ0.

The radiation equilibrium temperature is varied between
T0 = [28–32]◦C with increments of 0.5◦C. For the standard
value ofτ0 = 0.01 Pa the position of the cold tongue shifts
westward with increasingT0 (Fig. 3d). Figure4a shows the
zonal position of the cold tongue as a function of the ex-
ternal wind stress and the radiation equilibrium temperature.
The eastward shift with increasingτ0 occurs for all values of
T0 considered, as well as the westward shift with increasing
T0 occurs for all values ofτ0. For τ0 = 0.01 Pa,xC shifts
from approximately 12 750 km from Indonesia for smallT0
to about 11 500 km from Indonesia for higherT0. The west-
ward shift of the cold tongue due to increasingT0 is more
pronounced for small external wind stress.

Due to coupled feedbacks, the sensitivity of SST in the
eastern Pacific (Fig.4a) to external wind stress changes is
large. This effect is related to the thermocline feedback
causing more cold waters being upwelled into the surface
layer with increasing wind stress and, as a result, the east-
ern equatorial Pacific SST decreases. Figure4b shows the
temperature of the cold tongue for all applied values ofτ0
andT0. At the standard radiation equilibrium temperature
of T0 = 30◦C, a τ0 = 0.01 Pa produces a minimum SST of
T ≈ 23.5◦C which decreases to≈ 20.5◦C for the largest ap-
plied τ0. A similar decrease in the cold-tongue temperature
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Fig. 3. Effects of changing the external wind stressτ0 and the radiation equilibrium temperatureT0 on the climatology (i.e., the time-mean)
of the tropical Pacific.(a–c)Zonal SST distribution(a), thermocline depth anomaly(b) and upwelling velocity below the mixed layerw1
(c) along the equator for differentτ0 between 0.005−0.02 Pa. The equilibrium temperatureT0 is kept constant atT0 = 30◦C. The legend in
(a) holds for(a–c). (d–f) Zonal SST distribution(d), thermocline depth anomaly(e) and upwelling velocity below the mixed layerw1 (f)
along the equator for differentT0 between 28−32◦C. The external wind stress amplitudeτ0 is kept constant atτ0 = 0.01 Pa. The legend in
(d) holds for(d–f).

with increasingτ0 is simulated for all other values ofT0.
As the sensitivity in the western Pacific is much smaller,
the zonal SST gradient increases withτ0. This is shown
in Fig. 4c where the zonal SST differenceTE−TW versus
τ0 andT0 is plotted. For example, forT0 = 30◦C, the zonal
SST difference increases from 1◦C atτ0 = 0.005 Pa to 7◦C
at τ0 = 0.02 Pa.

Although the changes in mean SST under varyingT0 and
τ0 are larger in the east than in the west, the sensitivity of
the mean thermocline toT0 andτ0 is weaker in the eastern
Pacific than in the western Pacific (Fig.3b, e) as has been
observed in other models as well (DiNezio et al., 2009). The
resulting large changes in the eastern tropical Pacific SST
are due to strongly increased upwelling velocities for strong
wind τ0 and warmer radiation equilibrium temperaturesT0

(Fig. 3c, f). The maximum value of the upwelling velocity
below the mixed layerw1 along the equator shifts westward
with decreasingτ0 and increasingT0, which explains the shift
of the minimum SST.

The temperature and position of the cold tongue changes
quite dramatically when increasingτ0 above 0.008 at
T0 = 30◦C (Fig. 4a–b). This is related to changes that oc-
cur in ENSO variability: when the external wind stressτ0
is small, the system has a weak cold tongue state with high
SSTs and there is no ENSO variability. Onceτ0 reaches a
critical value (at the first Hopf bifurcation), this steady state
becomes unstable, leading to the generation of oscillatory
ENSO behaviour and a change in the background state. In
Fig.3b–d, the transition between the two regimes is indicated
by the red line.
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Fig. 4. Effects of changing the external wind stressτ0 and the radi-
ation equilibrium temperatureT0 on the climatology (i.e., the time-
mean) of the tropical Pacific.(a) Time-mean zonal position of the
cold tongue (in km from Indonesia) at the equator as a function of
τ0 andT0. (b) Time-mean temperature of the cold tongue as a func-
tion of τ0 andT0. (c) Time-mean zonal SST difference between
west and east Pacific at the equator as a function ofτ0 andT0. The
red line in the contour plots divides the area into regions with and
without ENSO variability. Left of the red line there is no ENSO
variability. White area: the model yields unphysical results.

In general, the zonal position of the cold tonguexC and
the east-west temperature differenceTE−TW depends more
strongly on variations in the external wind stressτ0 than on
the radiation equilibrium temperatureT0. However, increas-
ing τ0 and increasingT0 have counteracting effects on the
zonal location of the cold tongue.

The amplitude and period of ENSO variability is shown
in Fig. 5. The amplitude is defined as the standard devia-
tion of SST in the cold tongue (i.e., where the minimum SST
along the equator occurs) and the period is determined from
a spectral analysis of the SST time series in the cold tongue.
For equilibrium temperaturesT0 up to 28−29◦C, the ENSO
mode is dampened for allτ0 because the coupled feedbacks
involved in the system are not strong enough to sustain oscil-

Fig. 5. Effects of changing the external wind stressτ0 and the ra-
diation equilibrium temperatureT0 on the ENSO variability of the
tropical Pacific. The red line in both plots is the same as in Fig.4
and divides the area into regions with and without ENSO variability.
In the white areas of the plots, the model yields unphysical results.
(a) The ENSO amplitude (in◦C) measured as the standard devia-
tion of SST in the cold tongue as a function ofτ0 (in Pa) andT0.
(b) The ENSO period (in years) as a function ofτ0 (in Pa) andT0.

latory behaviour. For temperaturesT0 = 29.5–32◦C, a suf-
ficiently large τ0 is needed (τ0 ≈ 0.009 Pa forT0 = 30◦C)
to generate ENSO variability. Both amplitude and period
quickly increase to values of∼3◦C and∼3.5 yr, respectively,
for τ0 = 0.01 Pa andT0 = 30◦C. ForT0 = 29.5◦C ENSO be-
haviour is absent for very large values ofτ0, since then the
mean state (which also changes withτ0) is stable again. For
the rangeT0 = 31–32◦C, the critical value ofτ0 (first Hopf
bifurcation) decreases toτ0 ∼0.006 Pa, and ENSO variabil-
ity is much stronger with amplitudes reaching 6◦C and pe-
riods between 3.5 and 4.5 yr (Fig.5). A similar behaviour
is found byJin (1998) who investigated the dependence of
the amplitude and period of the ENSO mode on the dynami-
cal coupling strength. In our case, whenτ0 is too small, the
system has a weak cold tongue state, which is not enough to
sustain an oscillatory ENSO mode because the thermocline
feedback is weak (Jin, 1998). Whenτ0 is very large, the East-
ern Pacific becomes very cold and this probably gives rise to
a weak stratification that leads to reduced feedbacks and con-
sequently to a dampened ENSO mode. In the range ofτ0 and
T0, where ENSO variability exists, decreasing wind strength,
in general, leads to a smaller ENSO amplitude because of the
weakened thermocline tilt in the mean state (DiNezio et al.,
2011).
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Fig. 6. Effect of an open Panama gateway on the Pacific time-
mean zonal SST distribution at the equator and the SST variabil-
ity in the cold tongue. The radiation equilibrium temperature and
the external wind stress are fixed atT0 = 30◦C andτ0 = 0.01 Pa,
respectively.(a) Time-mean zonal SST distribution at the equator
for three different western Atlantic inflow temperaturesTA and the
standard case with closed gateway.(b) SST anomalies (in◦C) in
the cold tongue (minimum SST along the equator) for three differ-
ent western Atlantic inflow temperaturesTA and the standard case
with closed gateway.

3.2 Effect of Panama gateway

To represent the effect of the Panama gateway, we use the
modified SST Eq. (9). To obtain the magnitude of the length
LPG, a scale analysis is performed where we assume that
the advection term in the zonal directionu1

∂T
∂x

(representing
the Atlantic inflow with a characteristic zonal velocityU ) is
of the same order as the termaT f (x,y)(T −TA). Hence,
U T −TA

LPG
∼ aT (T −TA). From this it follows thatLPG∼

U
aT

.
The flow velocity through the gatewayU is of the order
10−1 m s−1 (von der Heydt and Dijkstra, 2006; Lunt et al.,
2008). With a physical damping time scale of SST anoma-
lies aT = 0.925× 10−7 s−1 (see Table1), we estimate that
the length scaleLPG∼ 103 km. The PRISM3D continental
configuration data (Dowsett and Robinson, 2009) are used
to approximate the widthWPG of the throughflow, assuming
that this is of the same order as the width of the gateway: we
useWPG∼2.4◦

' 270 km. In the results below, we, there-
fore, use the parametersL/LPG= 15 and 4(Ly/WPG)2

= 4.8
in the functionf (x,y) in the modified SST equation (Eq.9).

First, we consider the case that the gateway opening is lo-
cated at the equator and the sensitivity of the model climate
and ENSO variability to the western Atlantic ocean temper-
atureTA is explored. Figure6a shows the influence of the
western equatorial Atlantic oceanTA on the time-mean SST
of the equatorial Pacific ocean. For comparison, the standard
case, in which the gateway is closed, is included in the plots.
Significant differences in both the SST of the eastern Pacific
ocean and the location of the cold tongue are found depend-
ing onTA . Opening the gateway leads to an increase of the
SST of the eastern equatorial Pacific and this effect becomes
stronger if the Atlantic temperatureTA is higher. Further-
more, we find a small westward shift of the position of the
cold tongue, which is at most 500 km forTA = 32◦C, as if
the cold tongue is “pushed away” in the western direction
upon opening the gateway. Figure6b shows the effect of the
inflowing Atlantic water on the characteristics of the ENSO
variability for different temperaturesTA . In the presence of
warm Atlantic inflow, the amplitude of ENSO amplitude de-
creases and the variability is dampened in the case of high
Atlantic temperatureTA = 32◦C. This may also explain the
relatively large shift in the position of the cold tongue when
comparing the cases withTA = 30◦C andTA = 32◦C: When
changing from a mean climatology without ENSO variability
to one with variability, the mean state changes due to recti-
fication. The period of ENSO variability becomes slightly
shorter with increasing inflow temperature.

The throughflow between the equatorial Atlantic and Pa-
cific ocean may result in a change of the equilibrium tem-
peratureT0, which means that besides the direct effect of the
throughflow, an additional forcing mechanism is introduced
in the system. In other words, we must be careful with com-
paring the results obtained from these experiments with those
of the “gateway-closed” case where this additional forcing is
not present. In the appendix, it is shown that the modification
of T0 by the throughflow is 0.1◦C at most and can, therefore,
be neglected. The insignificance of this term can also be seen
from the graphs in Fig.6, where only the SST of the eastern
part of the basin is affected; the SST of the western part stays
at the equilibrium temperatureT0 for all TA .

According to the PRISM3D topography data, the Panama
gateway was not exactly located at the equator: it was located
at approximately 3◦ N, which is equivalent to a distance of
∼300 km from the equator. A latitudinal shift of the gate-
way is simulated by means of changing the control parame-
ter YPG. The results of a simulation withYPG= 300 km are
shown in Fig.7 and compared with the control case where
the gateway is closed and the case where the gateway is lo-
cated at the equator. The time-mean SST in the eastern equa-
torial Pacific ocean hardly changes between the cases with
the open gateway at different latitudes (Fig.7a). The ampli-
tude and period of ENSO variability are smaller than with
the gateway closed, but slightly larger than with the gateway
at the equator.
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Fig. 7. Effect of the meridional position of the Panama gateway
on the Pacific time-mean zonal SST distribution at the equator and
the SST variability in the cold tongue. The radiation equilibrium
temperature and the external wind stress are fixed atT0 = 30◦C and
τ0 = 0.01 Pa, respectively.(a) Time-mean zonal SST distribution at
the equator for different positions of the Panaman gateway: 300 km
north of the equator, on the equator and a closed gateway.(b) SST
anomalies (in◦C) in the cold tongue (minimum SST along the equa-
tor) for different positions of the Panaman gateway: 300 km north
of the equator, on the equator and a closed gateway.

4 Summary and Discussion

We have studied the behaviour of ENSO variability and
the time-mean tropical Pacific climatology under conditions
mimicking the Pliocene climate state within the fully cou-
pled Zebiak-Cane model (van der Vaart et al., 2000). In this
model, coupled processes affect both the climatology and
the ENSO variability as explained in detail inDijkstra and
Neelin (1995). This is in contrast to the original Zebiak-
Cane model, which had the climatology prescribed. Within
our model, the climatology is generated by the coupled pro-
cesses and, therefore, changes from cases with and without
ENSO variability due to rectification.

Both the external wind stress amplitude and the radiation
equilibrium temperature have been varied in a range that
is potentially important for the early to mid-Pliocene warm
period. It has been suggested, that the Hadley circulation
was weaker than today in the Pliocene (Brierley et al., 2009;
Tziperman and Farrell, 2009; Held and Soden, 2006), which,
in our model is represented as a smaller external wind stress

τ0. Our simulations show that the zonal position along the
equator of the cold tonguexC shifts to the west with de-
creasing external wind stress amplitudeτ0. Furthermore, the
Pliocene was characterised by higher global mean temper-
atures (Ravelo et al., 2004), which motivates the study of
a range of different radiation equilibrium temperaturesT0 in
the model. TheT0 variation also leads to changes in the zonal
position of the cold tongue and we find that it shifts west-
wards with increasingT0 though this effect is smaller than
when decreasing the external wind stressτ0. Both effects
together may have resulted in a westward shift of the cold
tongue of about 1750 km, when assuming the Pliocene ra-
diation equilibrium temperature to be 0.5–1◦C warmer than
the present day climate and about 10 % weaker trade winds
(τ0 = 0.9,T0 = 30.5–31◦C in Fig.4a)

In the Pliocene, the Panama gateway was still open allow-
ing water from the Atlantic to flow into the Pacific (Cannari-
ato and Ravelo, 1997). This has been included in our model
by an advection-relaxation balance in the surface tempera-
ture. We find that the opening of the gateway induces again a
(small) westward shift of the cold tongue and an increase of
the SST of the eastern equatorial Pacific.

Hence, all parameters that have been studied in our sim-
ulations suggest that in the Pliocene climatology the cold
tongue would be shifted to the west as compared to present-
day conditions. This is indeed seen in observational data
as shown in Fig.8. In this figure, the annual mean zonal
SST distribution along the equator in the Pacific ocean as
compiled in the PRISM3D dataset from different proxies
(Dowsett and Robinson, 2009) is compared with present day
observations averaged from 1971–2000 from two datasets
(HadISSTRayner et al., 2003 and NOAA Optimum inter-
polationReynolds et al., 2002). The eastern tropical Pacific
is much warmer in the Pliocene than in the present day, how-
ever, the minimum SST along the equator for the Pliocene is
only slightly warmer than the minimum of the present day
and its location has shifted about 1100 km westward. Note,
however, that the PRISM data are based only on a few data
points along the equator (triangles in Fig.8), and in partic-
ular the minimum SST along the equator is not based on an
actual data point. Therefore, the uncertainty in the value of
the minimum SST is relatively large. Nevertheless, the mini-
mum SST needs to be somewhere between the data points at
95◦ W and 133◦ W suggesting, in any case, a westward shift
of the cold tongue as compared to the HadISST dataset.

In the parameter range ofT0 andτ0 that we have explored,
the model shows climatologies with and without ENSO vari-
ability. For example, for very low external wind stress ampli-
tudes at the standard value of the radiation equilibrium tem-
perature, ENSO variability is dampened and the time-mean
position of the cold tongue is shifted strongly westwards. In
this case, also the temperature of the cold tongue becomes
relatively warm while the western equatorial Pacific remains
at similar temperatures, thereby, reducing the east-west SST
difference along the equator. These climatologies show the
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Fig. 8. Zonal SST profile at the equator from observations in different datasets: the HadISST (solid line) and the NOAA Optimum Interpola-
tion SST V2, 1971–2000 timeseries (dashed line) for the present-day conditions. The dotted line denotes the zonal SST profile at the equator
as inferred from proxy data for the Pliocene in the PRISM3D dataset. The triangles along the x-axis indicate the zonal position of data points
along the equator, where the PRISM data are based on.

largest resemblance with a state that might be called “perma-
nent El Nĩno”, however, note that they occur only for very
weak wind stresses. On the other hand, for fixed external
wind stress, an increase in the radiation equilibrium tem-
perature leads to a slightly larger east-west SST difference
(Fig. 4c) and stronger ENSO variability (Fig.5).

ENSO variability is present in our model simulations over
a large parameter domain. Only for colder than present-day
radiation equilibrium temperatures the Pacific climatology is
stable (no variability) and together with low values of the ex-
ternal wind stress this leads to a climatology with strongly
reduced east-west SST difference. For very high radiation
equilibrium temperatures and strong external wind stress, the
model results become unphysical (too large amplitude of the
thermocline anomaly) and have, therefore, been excluded
in the analysis. In the presence of an open Panama gate-
way, ENSO variability has a smaller amplitude and shorter
period as compared to cases without the gateway, however,
ENSO variability is damped only if very warm Atlantic wa-
ter (TA = 32◦C) enters the Pacific at the equator.

Two mechanisms have been proposed that could poten-
tially create ‘permanent’ El Niño conditions (Chiang, 2009).
The first one involves tectonic changes in the region of the
Indonesian throughflow.Cane and Molnar(2001) suggested
that the northward displacement of the northern tip of New
Guinea across the equator at about 5 Ma could have resulted
in more warm South Pacific water feeding the equatorial
countercurrent and, thereby, warming the west Pacific warm
pool which, in turn, allowed the Bjerknes feedback to be-
come active and eventually established the present day strong
east-west SST difference.

Testing this hypothesis is beyond the scope of our coupled
model, as within this model there is no continental geometry
or in- and outflow from other ocean basins. In the case of
the Panama gateway, the inflow of warm surface water is rel-
atively straightforward to model by an additional relaxation
term, however, in the case of the Indonesian throughflow this
method is more difficult to apply mainly because there is out-
flow through the Indonesian throughflow and the differences,
suggested byCane and Molnar(2001), result from subtle
changes of the flow structure north and south of the equator.
Fully coupled global climate model simulations have, how-
ever, shown that the northward movement of New Guinea
would result only in very modest warming of the west Pa-
cific warm pool and the central equatorial Pacific (Jochum
et al., 2009). Furthermore, these simulations suggest that a
pronounced zonal SST difference and ENSO variability is
present with both positions of New Guinea. Therefore, ad-
ditional modelling work is needed to quantify the effect of a
changed Indonesian throughflow on the tropical Pacific cli-
matology.

The second mechanism that has been proposed is of a more
global nature and is based on the assumption that the tropical
thermocline as a whole was deeper in the Pliocene than today
(Philander and Fedorov, 2003b). While deep ocean waters
were cooling throughout the last 35 million years,Philan-
der and Fedorov(2003b) suggest that the associated gradual
shallowing of the thermocline reached a threshold around 3
million years ago which allowed cool deep waters being up-
welled to the surface in the eastern tropical Pacific as well
as in other main upwelling regions in the world. Therefore,
a substantial east-west temperature gradient along the equa-
tor in the Pacific could only develop after about three million
years ago.
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While this second mechanism may have contributed to the
intensification of the tropical Pacific east-west temperature
difference in the Pliocene, our model results indicate that the
dynamics of the Pacific climatology and associated variabil-
ity is more complicated. In the model results, states with and
without ENSO variability exist and both in general display a
substantial east-west temperature gradient (except the states
for very weak external wind stress). Our results further show
that the SST difference between two points along the equa-
tor is not sufficient to characterise the tropical Pacific climate
state, as subtle shifts in the spatial pattern of both the clima-
tology and the variability may occur.

Recently, proxy data have been analysed that have the
potential to resolve interannual ENSO variability (Scroxton
et al., 2011; Watanabe et al., 2011), and both suggest ongoing
interannual variability in the Pliocene tropical Pacific.

In summary, from our model simulations, it seems un-
likely that a “permanent” El Nĩno like Pacific climatology
has existed under the Pliocene climate conditions. Coupled
feedbacks as, for example, the amplification of the east-
erly wind due to the existence of a (initially) small east-
west temperature gradient and the subsequently strengthened
east-west temperature difference (Bjerknes feedback), make
it difficult to establish a climatology with weak zonal tem-
perature gradient and without ENSO variability. This study
clearly suggests that Pliocene ENSO variability potentially
was similar to today with weaker trade winds and higher
global mean temperatures. The position of the cold tongue
was most likely shifted westward by 1000–2000 km with re-
spect to the present day position. Therefore, the east-west
SST difference as inferred from proxy records potentially un-
derestimates the real SST gradient.

Appendix A

Effect of the Atlantic inflow on the equilibrium
temperature

The inflow of Atlantic water through an open Panama Gate-
way is modelled by adding a termT −TA to the SST equa-
tion (see modified SST Eq.9). In fact, an extra forcing
mechanism is introduced to the system, which may result
in a changed equilibrium temperature. In this section, we
show that the change in equilibrium temperature due to the
throughflow is small and can be neglected.

In the unperturbed case, the equilibrium temperatureT̄ of
the system results from the SST equation (Eq.6) in steady
state and the absence of ocean dynamics (i.e.,u1 = v1 =

w1 = 0) and is equal toT0. With the additional term in
the modified SST equation, the equilibrium temperature be-
comes:

aT

(
(T̄ −T0)+f (x,y)(T̄ −TA)

)
= 0, (A1)

or

T̄ (x,y) =
T0+TAf (x,y)

1+f (x,y)
= T0+

(TA −T0)f (x,y)

1+f (x,y)
≡ T0+1T̄ (A2)

where 1T (x,y) represents the change in the equilibrium
temperatureT0 caused by the Atlantic inflow. To estimate
the overall change across the basin,1T̄ (x,y) is integrated
over the model domain:

< 1T̄ >= (TA −T0)
L

LyL

∫
∞

−∞

∫ L

0

f (x,y)

1+f (x,y)

dxdy < (TA −T0)

∫
∞

−∞

∫ 1

0
f (x,y) dxdy, (A3)

where the right-hand integral is the maximal value the

left-hand integral can attain. Withf (x,y) = e
x−L
LPG ·

e
−

4
W2

PG
(y−YPG)2

, the right-hand integral of Eq. (A3) is

(TA −T0)

∫
∞

−∞

∫ 1

0
f (x,y)dxdy =

√
πLPGWPG

2LLy

(1−e
−

L
LPG )(TA −T0). (A4)

By substituting the values L
LPG

= 15 and 4( Ly

WPG
)2

= 4.8
(Sect. 3.3), < 1T > is estimated to be approximately
0.05(TA −T0) at most. In the experiments, we presented in
Sect. 3.3,TA −T0 is maximally 2◦C. Hence, the modulation
of the equilibrium temperatureT0 by the throughflow does
not exceed 0.1◦C, and can, therefore, be neglected.
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