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Abstract

Optimal designs for polynomial growth models for longitudinal data with autocorrelated errors
determine the optimal allocation and number of time points. A-, D-, and E-optimal designs for
linear, quadratic and cubic growth models with four or less time points on the time interval [0; 2]
are given and four robustness properties of these designs are examined. The 6rst considers the
robustness against using too many time points. It is shown that the design with the number of
time points equal to the number of regression coe8cients is optimal, and that the e8ciency of
a design decreases when the number of time points increases. The second robustness property
deals with the consequences of using an incorrect order of the polynomial. The e8ciency of a
design is shown to be generally higher if the assumed order of the polynomial is closer to the
true order. The third robustness property deals with the robustness against an incorrect value of
the autocorrelation coe8cient. Results show that the optimal designs are very robust. The fourth
robustness property considers the robustness of optimal designs with respect to other optimality
criteria. The optimal designs are shown to be very robust to the other two optimality criteria.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Optimal designs; Robustness; E8ciency; Autocorrelation; Polynomial

1. Introduction

Longitudinal studies are carried out in many 6elds of science to study the change
of a particular outcome variable across time or age. Examples can be found in
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various 6elds of study. A small literature search resulted in the following examples.
In life stock production science, linear, quadratic and cubic growth models were used
to model the weight of cattle of less than 20 months (De Behr et al., 2001). In a
study on child development quadratic growth models were used to describe the total
number of phonological processes of children between the age of 2 and 9 (Burchinal
and Appelbaum, 1991). Quadratic growth models were also used to model the lung
volumes of foetuses between 20 and 40 weeks (Chang et al., 2003). Cubic growth
models were used to 6t the body mass of beetle larvae up to 200 days (Greenberg and
Ar, 1996). A sixth-order polynomial was found to best describe the logarithm of dry
plant weight of a plant species called Blackstonia perfoliata (Elias and Causton, 1976).

A researcher designing a longitudinal study has to decide on the number and al-
location of time points. In practice, the choice of a design of a longitudinal study is
often driven by non-statistical criteria and preconditions such as a limited budget or
a limited number of measurements per subject, and the design with equally spaced
time points is frequently selected because of its feasibility. A number of recent papers
has focussed on the optimal allocation of time points in a longitudinal study from a
statistical point of view. Abt et al. (1997) derived optimal designs for slope parameter
estimation and growth prediction in a linear growth curve with intraclass (compound
symmetry) and autocorrelated error structures. In a follow-up paper Abt et al. (1998)
studied A-, D-, and E-optimal designs for quadratic growth curves. Tan and Berger
(1999) derived D-optimal designs for linear, quadratic, and cubic growth curves as
a function of the autocorrelation coe8cient and compared the optimal designs with
the designs with equally spaced time points. D-optimal designs for polynomial regres-
sion models with order less than seven and uncorrelated errors were also presented by
Atkinson and Donev (1996). Chang and Lay (2002) studied the optimal allocation of
time points for the growth curve model E(y | x) = �0 + �1x + �2x� with � known and
assuming uncorrelated errors.

Many optimal designs depend on the regression model that generates the data.
Longitudinal data are often modelled using a polynomial regression model and the
order of the polynomial needs to be known to derive the optimal design. This may
cause problems since the order is usually unknown in the design stage and selecting
an incorrect order may lead to a less e8cient design with too few or many time points
and a less e8cient allocation of these time points. Moreover, the degree of correlation
between two repeated measurements needs to be known in the design stage since it
also aGects the optimal design, see the papers mentioned above. Furthermore, many
optimality criteria exist and each of these may lead to a diGerent optimal design. A
researcher seldom has just one optimality criterion in mind when planning a longitu-
dinal study and it is therefore important to study the robustness of an optimal design
with respect to diGerent optimality criteria.

The purpose of the present paper is to study robustness properties of optimal designs
for 6rst-, second- and third-order polynomials with autocorrelated errors, and to give
guidelines for the planning of longitudinal studies. Three optimality criteria are used:
A-, D-, and E-optimality. Four robustness properties are studied: robustness against too
many time points, against an incorrect order of the polynomial, against an incorrect
value of the autocorrelation coe8cient, and with respect to other optimality criteria.
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A few papers on this topic have been published previously, but these either restricted
to one or two optimality criteria, ignored autocorrelation, or did not investigate all
four robustness properties. So far, no thorough and systematic investigation of these
four robustness properties of A-, D-, and E-optimal designs has been published. This
paper summarizes and builds upon results that have been published so far, and 6lls
up some gaps in knowledge. Wong (1994) studied the robustness of A-, D-, E-, and
G-optimal designs for polynomial models with uncorrelated errors against an incorrect
order of the polynomial and against other optimality criteria. He showed that D-optimal
designs are more robust to an incorrect order of the polynomial than A-optimal de-
signs, which in their turn are more robust than E-optimal designs. Furthermore, he
showed that D-optimal designs are robust in terms of A-optimality but not in terms
of E-optimality, while the robustness of A-, and E-optimal designs with respect to
A-, D-, and E-optimality was shown to be high. Abt et al. (1997) showed that the
two-points design with equal load at the beginning and end of the study turns out to
be the best for the linear growth model in almost all situations. In their follow-up
Abt et al. (1998) showed that, with only one exception, A-, D-, and E-optimal designs
for quadratic growth models are independent of the value of the autocorrelation co-
e8cient. Tan and Berger (1999) studied the robustness of D-optimal designs against
an incorrect order of the polynomial. They concluded that the best choice is to use
the highest possible relevant order of the polynomial and to have the number of time
points equal to the number of regression coe8cients. Moreover, they showed that the
equally spaced design is almost as e8cient as the D-optimal design.

The remainder of this paper is as follows. In the next section the polynomial growth
model with autocorrelated errors is presented and optimality criteria and their rationale
are given. Since optimal designs are not easily calculated analytically, they are obtained
numerically. This section also shows how the robustness of a design can be expressed
in terms of a relative e8ciency. The next section studies four robustness properties:
robustness against using too many time points, against using an incorrect order of the
polynomial, against using an incorrect value of the autocorrelation coe8cient, and with
respect to other optimality criteria. An application in the next section shows how the
results can be used in a practical setting. Finally some conclusions are given.

2. Optimal designs and relative e�ciencies

A polynomial regression model of order p is used to model the response yij of
subject j at time point i

yij = �′f(ti)ij + eij; (1)

where �= (�0; �1; : : : ; �p)′ is the vector of regression coe8cients, f(ti) = (1; ti ; : : : ; t
p
i )′

is the vector of polynomial terms, and eij is the random error term. Note that the
regression coe8cients are assumed constant across subjects so that the model is a
6xed eGects model. In this paper linear (p= 1), quadratic (p= 2) and cubic (p= 3)
growth curves are studied. The number of time points per subject is denoted q, and each
subject is measured once at each time point. It is assumed that all subjects are measured
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at the same time points, hence the time points ti are not subscribed j. Consequently,
a unique estimate of the regression coe8cients can only be obtained when q¿p+ 1.

For each subject j model (1) can be expressed in a more general matrix–vector
notation

yj = Xj� + ej; (2)

where yj is the vector of length q with responses, Xj is the q by (p + 1) design
matrix, and � is the vector of length p +1 with regression coe8cients. The vector ej
of random errors has zero mean and q× q covariance matrix �2Vj. The element (i; i′)
of the matrix Vj is equal to �|ti−ti′ |, where �∈ [0; 1] is the autocorrelation coe8cient
that gives the correlation between two time points that are one unit of time apart. The
maximum likelihood estimator of the vector of regression coe8cient is

�̂ =

(∑
j

X′
jV

−1
j Xj

)−1∑
j

X′
jV

−1
j yj; (3)

with covariance matrix

var(�̂) =

(∑
j

X′
jV

−1
j Xj

)−1

: (4)

The design � is an element of the design space � and gives the allocation of time
points. The design � is aGected by the number of time points q, and is henceforward
denoted �q. The amount of information in a design is measured by the information
matrix Mp(�q), which is equal to the inverse of the covariance matrix of the parameter
estimates. Note that the information matrix is subscribed p to stress the dependency
on the order of the polynomial.

The optimal design �∗
q is the design among all possible designs �q in the design

space � for which the inverse information matrix is minimized. Since matrices cannot
be ordered in a unique way, various functions �p(�q) have been proposed as optimality
criteria, which at least have to be convex and diGerentiable. Three optimality criteria are
used in this paper, namely A-, D-, and E-optimality. An A-optimal design minimizes
Ap(�) = tr(M−1

p (�q)), where tr(B) denotes the trace of matrix B. This is equal to
minimizing the average variance of the parameter estimates. So, A in the name of this
criterion stands for average. A D-optimal design minimizes Dp(�) = det(M−1

p (�q)),
where det(B) denotes the determinant of matrix B, and thus the D in the name of
the criterion stands for determinant. This is equal to minimizing the volume of the
con6dence ellipsoid of the parameter estimates. An E-optimal design minimizes Ep(�)=
�max(M−1

p (�q)), where �max(B) denotes the maximum eigenvalue of matrix B. This is
equal to minimizing the variance of the least well-estimated contrast a′�, subject to
the constraint a′a = 1. So E in the name of the criterion stands for extreme. See
Kiefer (1975) for a more extensive discussion of these optimality criteria.

A nice feature of D-optimal designs is that they do not depend on the chosen time
interval [a; b]. A linear transformation of the time interval leaves the D-optimum design
unchanged. Unfortunately, this is not generally the case for A- and E-optimal designs.
As an illustration optimal designs on the time interval [0; 2] are derived and it is shown
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how robustness properties of these designs can be studied. An application in Section
4 shows how the results can be used in a practical setting. The A- and E-optimal
designs and their robustness properties may change when another time interval is used.
However, the methods to derive the optimal designs and to study their robustness
properties remain unchanged.

Only solutions for which t1 = 0 and tq = 2 were derived, since designing a longi-
tudinal study often requires 6xing the 6rst and last time point. The optimal designs
were derived numerically using the S-PLUS 2000 (S-PLUS, 1999) function NLMINB,
which minimizes non-linear functions subject to bound-constrained parameters using a
quasi-Newton method. To avoid 6nding a local minimum, 10 diGerent sets of random
starting values were used. When diGerent sets of starting values resulted in diGerent
solutions, the design with the smallest value of the optimality criterion �p(�q) was
selected. This random search algorithm seems to work well and is much faster than
evaluating each possible combination of time points (Ouwens, 2002). Equivalence the-
orems can be used for construction and checking of optimal designs for models with
uncorrelated data, see for instance Atkinson and Donev (1996).

The optimal allocations of time points for p+16 q6 4 and �∈ [0:0001; 0:995] are
given in Fig. 1. For large � the optimal time points for linear and quadratic growth
are almost equally spaced. For small � the optimal time points converge to the optimal
time points in a model with uncorrelated errors as given in Table 1. For linear growth
with two time points the optimal time points are 0 and 2, irrespective of the optimality
criterion and value of the autocorrelation coe8cient. Most D-optimal designs in Fig. 1
are symmetric around the time point 1. The only exception are the D-optimal designs
for linear growth with three time points, the D1(�3)-optimal designs. As is obvious, if
the design with time points 0, t, and 2 is D-optimal, then the design with time points
0, 2-t, and 2 is also D-optimal.

Robustness properties of designs are expressed in terms of relative e8ciencies. Note
that designs �q may vary in their number of time points per subject. To fairly compare
the designs with diGerent numbers of time points per subject, only designs with the
same total number of measurements are compared. The total number of measurements
is given by n= q×mq where q is the number of time points per subject and mq is the
number of subjects. Then the A-, D-, and E-e8ciencies of a design �q relative to the
optimal design �∗

q∗ are given by

Ap-EG(�q; �∗
q) =

q∗

q

tr(M−1
p (�∗

q∗))

tr(M−1
p (�q))

; (5)

Dp-EG(�q; �∗
q) =

q∗

q

{
det(M−1

p (�∗
q∗))

det(M−1
p (�q))

}1=(p+1)

(6)

and

Ep-EG(�q; �∗
q) =

q∗

q

�max(M−1
p (�∗

q∗))

�max(M−1
p (�q))

; (7)

respectively. q∗ and q are the number of time points per subject under design �∗
q∗ and

�q, respectively. The inverse relative e8ciency gives the number of times the design
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Fig. 1. Optimal allocation of time points as a function of �. Dotted lines: A-optimal design. Solid lines:
D-optimal design. Dashed lines: E-optimal design.

Table 1
Optimal time points for polynomial growth models in the time interval [0; 2] with uncorrelated errors and
q = p + 1

p A-optimal design D-optimal design E-optimal design

1 0, 2 0, 2 0, 2
2 0, 1.057, 2 0, 1, 2 0, 1.069, 2
3 0, 0.528, 1.572, 2 0, 0.553, 1.447, 2 0, 0.526, 1.582, 2
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�q needs to be replicated to have the same value of the optimality criterion �p(�∗
q∗)

as the optimal design �∗
q∗ (Atkinson and Donev, 1996). So, e8ciencies of, say, 0.8 or

0.9 or higher are preferred. As is obvious, the e8ciency of an optimal design is equal
to 1.

3. Robustness properties

3.1. Robustness against too many time points

Fig. 2 shows the e8ciency of optimal designs with p+16 q6 6 time points relative
to the e8ciency of the optimal design with q∗ = p + 1 time points as a function of
�∈ [0:0001; 0:995]. The e8ciency decreases to q∗=q = (p + 1)=q if � → 1. This is
obvious, since no information is added to the information matrix if � is close to 1.
Hence, the values of the optimality criteria remain unchanged if an additional time
point is added. So, the second factor at the right-hand side of Eqs. (5)–(7) is equal to
1, and the e8ciency goes to the 6rst factor at the right-hand side of these equations,
which is equal to q∗=q. For instance, the e8ciency of the optimal design with four
time points for linear growth is as low as 0.5, which means that it has to be replicated
twice to do as well as the optimal design with two time points.

Tan and Berger (1999) argue that the e8ciency of D-optimal designs goes to 1 when
� → 0. As follows from Fig. 2, this is also the case for A- and E-optimal designs.
Thus, a design with q=p+ 1 time points is most e8cient and the robustness of only
these designs against an incorrect order of the polynomial, against an incorrect �, and
against other optimality criteria will be studied in the next three sub-sections.

3.2. Robustness against an incorrect order of the polynomial

In the design stage the order of the underlying polynomial that generates the data is
often unknown. Using an incorrect order of the polynomial may result in a design that
is less e8cient. For instance, consider the case where a researcher assumes that the
data are generated by a second order polynomial (quadratic growth). Then, a design
with three time points as given in the upper right plot of Fig. 1 is the optimal design. If
the true model were a linear growth model, a design with two time points located at 0
and 2 would be the optimal design. Eqs. (5)–(7) can be used to calculate the e8ciency
of the optimal design �∗

q with q = p + 1 time points for the incorrect assumed order
p against the optimal design �∗

q∗ with q∗ = p∗ + 1 time points for the true order p∗.
The plots at the left side of Fig. 3 show these e8ciencies if the assumed model is
quadratic and the true model is linear; those at the right side show the e8ciencies if
the assumed model is cubic and the true model is quadratic or linear. As argued in
the previous section, these e8ciencies go to q∗=q when � → 1. So for large � the
e8ciencies may be very low. For instance, the e8ciency of an optimal design for a
cubic growth model goes to 0.5 when the true model is linear and � → 1. In other
words, such a design would have to be replicated twice to do as well in terms of the
optimality criterion as the optimal design with two time points for the linear model.
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p + 1 time points and as a function of �.
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Fig. 3. Robustness of optimal designs against an incorrect order of the polynomial.

Fig. 3 also shows that the e8ciency of a design is in general higher if the assumed
order is closer to the true order. So, when planning a longitudinal study one should
choose the highest relevant order of the polynomial. This guideline, however, does not
apply to A- and E-optimal designs when � is small. In such cases, the e8ciency of the
optimal design for a cubic growth model may be larger if the true underlying model
is linear than when it is quadratic.

3.3. Robustness against an incorrect chosen value of the autocorrelation coe8cient

As follows from Fig. 1 the optimal allocation of time points is often locally optimal
in the sense that it depends on the true value of the autocorrelation coe8cient �. To
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plan a study, a realistic value of � must be chosen in order to calculate the optimal
allocation of time points. In this section the robustness against an incorrect chosen
value of � is studied for designs with q = p + 1 time points. As follows from the
upper left plot in Fig. 1 the optimal time points of �1(�2)-optimal designs are globally
optimal since they do not depend on the value of �. This is not the case for �2(�3)-
and �3(�4)-optimal designs, although the optimal allocation of time points of these
designs only slightly depends on �, see the upper and lower plots at the right side of
Fig. 1. Fig. 4 shows the e8ciencies of �3(�4)-optimal designs for the chosen �=0:005,
0.25, and 0.50 as a function of the true �. The e8ciencies of these and also of all
other possible values of the chosen � are very high (¿ 0:9), and thus the �3(�4)-
optimal designs are very robust against an incorrect chosen value of �. As is obvious,
the e8ciency is equal to 1 if the chosen � is equal to the true �. The e8ciencies of
�2(�3)-optimal designs against an incorrect chosen � are larger than 0.99 for A- and
E-optimal designs and equal to 1 for D-optimal designs, since the optimal allocation
of time points for the latter optimality criterion does not depend on the true �. Plots
of these e8ciencies are not shown.

3.4. Robustness with respect to other optimality criteria

In this section the robustness of optimal designs with respect to other optimality
criteria is studied for designs with q = p + 1 time points. As already follows from
the top left plot of Fig. 1, the �1(�2)-optimal designs do not depend on the chosen
optimality criterion. This is not true for the �2(�3)- and the �3(�4)-optimal designs,
see the upper and lower plots at the right side of Fig. 1. The optimal allocations of
time points for the A- and E-optimal designs are rather similar. As a consequence, the
A-e8ciency of E-optimal designs and the E-e8ciency of A-optimal designs are almost
equal to 1, see Fig. 5. As follows from this 6gure, the e8ciencies of �2(�3)-optimal
designs with respect to other optimality criteria is at least 0.99, and the e8ciencies
of �3(�4)-optimal designs with respect to other optimality criteria is at least 0.91. So,
the �2(�3)- and the �3(�4)-optimal designs perform very well in terms of the other
optimality criteria.

4. An application

In livestock species, growth is generally an economically important trait. It is there-
fore self-evident that much attention has been paid to modelling weight as a function of
age. Many diGerent growth curves have been proposed and evaluated in various species.
Examples are the class of polynomial curves, step-wise linear curves, and non-linear
curves, such as power, sigmoid and exponential growth. A study on the relationship
between age and weight may be very time-consuming and expensive. It is therefore
necessary to carefully design the study.

This section discusses the issues that arise when designing a study on polynomial
growth. Suppose, for instance, that a researcher is interested in the relation between
age and body weight of male cattle of a particular breed up to the age of two years.
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Fig. 4. Robustness of �3(�4)-optimal designs against an incorrect chosen value of �.

Resources are limited such that a total of 300 measurements can be taken. So, the 6rst
question is whether a design with a few animals and many observations per animal is
preferred above a design with many animals and only a few observations per animal.
As was shown in Section 3.1 of this paper the optimal number of time points per
animal is determined by the order of the true underlying polynomial, which is often
unknown in the design stage. As was shown in Section 3.2 the best choice is to select
the highest relevant order. Moreover, results from similar studies in the past may be
used to decide on the polynomial order. De Behr et al. (2001) showed that a cubic
model describes the growth of Belgian Blue males up to 1.67 years (20 months) best in
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Fig. 5. Robustness of �2(�3)- and �3(�4)-optimal designs with respect to other optimality criteria.

terms of squared multiple correlation. This information may convince the experimenter
to use this order of the polynomial to model growth of the breed under his study up
to the age of two years. Then, a design with 75 animals and four measurements per
animal is most e8cient in terms of A-, D-, and E-optimality.

The second question is the optimal location of the time points. The optimal allocation
is determined by the degree of autocorrelation and the selected optimality criterion. As
followed from Section 3.4, the optimal designs on the time interval [0; 2] are very
robust with respect to the other optimality criteria. Moreover, an incorrectly chosen
value of the autocorrelation coe8cient leads to only a very small loss in e8ciency,



M. Moerbeek / Computational Statistics & Data Analysis 48 (2005) 765–778 777

see Section 3.3. So, a design with measurements at time points 0, 0.5, 1.5, and 2 years
does well for all three optimality criteria. Note that the points in this design are not
equally spaced.

This optimal design based on a cubic growth model is less e8cient when the true
model is linear or quadratic. As follows from the plots at the right-hand side of Fig.
3 the e8ciency of this design may be as low as 0.66 when the true response model
is quadratic, and as low as 0.5 when the true response is linear. Consequently, the
optimal design has to be replicated 1.5 times or twice when the true response model is
quadratic or linear and the chosen response model is cubic. Of course, models with a
higher order than the cubic growth model cannot be 6tted to the data since all animals
are measured at the same four time points.

5. Conclusions

D-optimal designs are invariant under linear transformations of the time interval.
For this optimality criterion the optimal design has number of time points equal to the
number of regression coe8cients p+1. Using more time points q leads to a minimum
e8ciency equal to (p+ 1)=q. The second conclusion for D-optimal designs is that the
chosen order of the polynomial should be as close as possible to the true order. The
e8ciency of using an incorrect order may be as small as (p∗ + 1)=(p + 1), where
the numerator and denominator of this ratio are equal to the number of time points in
the true and chosen order of the polynomial. The third conclusion is that D-optimal
designs are very robust against an incorrect chosen value of the autocorrelation coef-
6cient. Finally, the D-optimal designs on the time interval [0; 2] are very robust with
respect to the other optimality criteria.

Robustness properties of A- and E-optimal designs for models on the time interval
[0; 2] were also derived in Section 3. The conclusions with respect to the four robustness
properties were generally similar to those for a D-optimal design. However, the A- and
E-optimal designs depend on the chosen time interval, and so do their robustness
properties. The conclusions of such optimal designs with respect to the four robustness
properties as given in Section 3 may therefore change if another time interval is chosen.
In order to study the robustness properties of designs on a chosen time interval, the
optimal time points and the value of the optimality criterion have to be computed using
a computer program that minimizes non-linear functions subject to bound constrained
parameters, such as the S-PLUS 2000 function NLMINB. The robustness properties of
such designs in terms of relative e8ciencies can then be calculated from Eqs. (5)–(7).

Acknowledgements

I wish to thank an anonymous referee for helpful comments and suggestions. This
research was supported by a grant from the Netherlands Organization for Scienti6c
Research (NWO).



778 M. Moerbeek / Computational Statistics & Data Analysis 48 (2005) 765–778

References

Abt, M., Liski, E.P., Mandal, N.K., Sinha, B.K., 1997. Optimal designs in growth curve models. Part I.
Correlated model for linear growth: optimal designs for slope parameter estimation and growth prediction.
J. Statist. Plann. Inference 64 (1), 141–150.

Abt, M., GaGke, N., Liski, E.P., Sinha, B.K., 1998. Optimal designs in growth curve models—II. Correlated
model for quadratic growth: optimal designs for parameter estimation and growth prediction. J. Statist.
Plann. Inference 67 (2), 287–296.

Atkinson, A.C., Donev, A.N., 1996. Optimum Experimental Designs. Clarendon Press, Oxford.
Burchinal, M., Appelbaum, M.I., 1991. Estimating individual developmental functions: methods and their

assumptions. Child Develop. 62 (1), 23–43.
Chang, F.-C., Lay, C.-F., 2002. Optimal designs for a growth curve model. J. Statist. Plann. Inference

104 (2), 427–438.
Chang, C.-H., Yu, C.-H., Chang, F.-M., Ko, H.-C., Chen, H.-Y., 2003. Volumetric assessment of normal

fetal lungs using three-dimensional ultrasound. Ultrasound Med. Biol. 29 (7), 935–942.
De Behr, V., Hornick, J.L., Cabaraux, J.F., Alvarez, A., Istasse, L., 2001. Growth patterns of Belgian Blue

replacement heifers and growing males in commercial farms. Livestock Product. Sci. 71 (2–3), 121–130.
Elias, C.O., Causton, D.R., 1976. Studies on data variability and the use of polynomials to describe plant

growth. New Phytol. 77 (2), 421–430.
Greenberg, S., Ar, A., 1996. EGects of chronic hypoxia, normoxia and hyperoxia on larval development in

the beetle tenebrio molitor. J. Insect Physiol. 42 (11–12), 991–996.
Kiefer, J., 1975. Optimal design: variation in structure and performance under change of criterion. Biometrika

62 (2), 277–288.
Ouwens, M.J.N., 2002. Improving Parameter Estimates in Generalized Linear Mixed Models. Maastricht

University, Maastricht.
S-PLUS, 1999. S-PLUS 2000 User’s Guide. MathSoft, Seattle.
Tan, F.E.S., Berger, M.P.F., 1999. Optimal allocation of time points for the random eGects model. Comm.

Statist. Simulation Comput. 28 (2), 517–540.
Wong, W.K., 1994. Comparing robust properties of A, D, E and G-optimal designs. Comput. Statist. Data

Anal. 18 (4), 441–448.


	Robustness properties of A-, D-, and E-optimal designs for polynomial growth models with autocorrelated errors
	Introduction
	Optimal designs and relative efficiencies
	Robustness properties
	Robustness against too many time points
	Robustness against an incorrect order of the polynomial
	Robustness against an incorrect chosen value of the autocorrelation coefficient
	Robustness with respect to other optimality criteria

	An application
	Conclusions
	Acknowledgements
	References


