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Influence of remote bands on exciton condensation in double-layer graphene
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We examine the influence of remote bands on the tendency toward exciton condensation in a system consisting
of two parallel graphene layers with negligible interlayer tunneling. We find that the remote bands can play
a crucial supporting role, especially at low carrier densities, and comment on some challenges that arise in
attempting quantitative estimates of condensation temperatures.
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I. INTRODUCTION

In the last few years, there has been enormous experimental
and theoretical interest in the properties of graphene, a
hexagonally ordered two-dimensional sheet of carbon atoms.1

Graphene is a gapless semiconductor whose valence and
conduction bands cross linearly near two inequivalent Dirac
points (valleys) located at the honeycomb lattice Brillouin
zone corners. Since the Fermi level in graphene can be shifted
by the electric field effect,2 the density and polarity of the
charge carriers can be tuned by the application of a gate
voltage.

A symmetric voltage applied between the layers of a
double-layer graphene system can induce an electron den-
sity in one layer, and an equal hole density in the other.
Under these circumstances electrons will tend3–5 to form a
broken symmetry state in which coherence is established
spontaneously between separate layers in the absence of
interlayer tunneling. The broken symmetry state is driven
by Coulomb interactions between layers and favored by
nesting between the nearly circular Fermi surfaces. In this
state the one-particle electron density matrix has nonzero
components that are off diagonal in the layer indices. A
bilayer spontaneous coherence state is a type of exciton
condensate (see below) which has particularly interesting
transport properties6,7 when the two layers can be contacted
independently. In graphene, the possibility of independently
contacting two graphene sheets separated by a distance of
several nanometers has recently been demonstrated.8,9 After
performing a particle-hole transformation on the holelike layer,
the broken-symmetry state can be viewed as a spatially indirect
electron-hole pair (exciton) condensate. This is the viewpoint
we will use throughout this paper.

In addition to having spin and valley degrees of freedom,
electron states in single-layer graphene are two-component
spinors with a sublattice degree of freedom. As a consequence,
the order parameter for exciton condensation has a four-
component sublattice structure. The structure of the double-
layer graphene system is illustrated in Fig. 1, where the blowup
at right emphasizes the four-component structure of the order
parameter. In the broken-symmetry state, all elements of the
expectation value 〈c†t,αcb,α′ 〉, where c

†
t,α is the creation operator

of an electron in the top layer in sublattice α = A,B, and
cb,α′ is the annihilation operator of an electron in the bottom

layer in sublattice α′ = A,B, can be nonzero at each crystal
momentum.

This system was first studied by Lozovik and Sokolik3 for
kF d � 1, with kF the Fermi momentum and d the interlayer
distance, and later revisited by a number of authors.4,5,10–13

Min et al.5 evaluated the ground-state superfluid density of the
condensate, demonstrating that it is proportional to the carrier
Fermi energy, and on this basis proposed that the Kosterlitz-
Thouless (KT) transition temperature for exciton condensation
could be of the order of room temperature in systems with high
carrier densities and small layer separations. This suggestion
was countered by Kharitonov et al.,11 who estimated that Tc <

1 mK because the interlayer interaction is strongly screened in
the normal state. In this paper we consider two graphene layers
without any dielectric so that the effective dielectric constant
for interlayer interactions ε = 1. Our work differs from earlier
work in that we include the influence of remote bands, which
play a supporting role. When a static screening approximation
is employed we find that the maximum critical temperature
is of the order of degrees Kelvin and occurs at rather low
carrier densities. Since static screening underestimates the
interlayer interaction, particularly for remote band effects,
higher condensation temperatures appear to be a possibility.

This paper is organized as follows. In Sec. II we present
the main results of our analysis for the condensate structure
and the transition temperature Tc. In Sec. III we present our
discussion and conclusions. Section IV describes important
technical details of the calculations used to obtain the results
described in Sec. II.

II. RESULTS

In this paper we estimate the transition temperature and
determine the optimal structure for exciton condensation in
double-layer graphene. The details of this calculation are
given in Sec. IV. We consider only order parameters that
have zero center-of-mass momentum. Using mean-field theory
we derive a self-consistent gap equation, which we solve
numerically in two approximations. First, to gain physical
insight, we approximate the screened Coulomb interaction by
a contact interaction. We determine the strength of the contact
interaction by performing an angular average over incoming
and outgoing momenta on the Fermi surface. In this version
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FIG. 1. (Color online) Double-layer graphene consists of two
parallel graphene sheets. The black dots are atoms in sublattice A and
the red dots are atoms in sublattice B. The four-component structure
of the condensate is illustrated at right. The exact definition of the
order parameter � is given in Sec. IV.

of our calculation, we use the full graphene dispersion, but we
find that substituting the Dirac dispersion with an appropriate
ultraviolet cutoff gives nearly identical results. In an effort to
obtain more quantitatively reliable results, we have also used a
separable approximation to the screened Coulomb interaction,
similar to the form used by Lozovik et al.,14 to determine the
gap at zero temperature. This calculation is carried out within
the Dirac approximation. The greatest source of uncertainty
in our work is the approximation used for the screened
interlayer interaction. In all of our explicit calculations we
use a static approximation which overestimates screening.
The critical temperatures we obtain will therefore tend to be
underestimated.

In the present section we present the results of our
calculations. We describe the optimal condensate structure,
which turns out to be the same in both approximations. We
then discuss the phase diagrams we obtain. The contact-
interaction approximation leads to unphysically high values
for the transition temperature, as may be expected for such a
crude model. In contrast, using the separable approximation
for the screened Coulomb interaction, we obtain a Tc of the
order of degrees Kelvin for typical carrier Fermi energies Vg =
0.25–0.5 meV and interlayer distances d < 4 nm, respectively.

A. Condensate structure

In the condensed state, the order-parameter sublattice
structure [�α,α′ (k) with α,α′ = A,B] is optimized. (The
explicit definition of the order parameter � is given in
Sec. IV.) We find that the structure that is optimal (i.e., that
minimizes the thermodynamic potential) has the form � ≡
(�AA,�AB,�BA,�BB) = (�1,�2,−�2,−�1), where �1 �
�2. The property that �AA = −�BB can be understood
in terms of the primary mechanism by which condensate
formation lowers the energy of the system, namely, the opening
of an avoided crossing gap between the conduction band of
one layer and the valence band of the other layer. In the Dirac-
band approximation the conduction- and valence-band sub-
lattice spinors are [1, exp(iφk)]/

√
2 and [1,− exp(iφk)]/

√
2,

respectively, where k is momentum measured from the
Brillouin-zone corner and φk is the angular orientation of this
momentum. An order parameter with �AA = −�BB couples
these spinors with equal strength at all φk. To avoid confusion,
we note that this order-parameter structure does not represent a
charge-density wave since, e.g., �AA describes the correlation

between the A-sublattice sites in the two layers and not within
a single layer.

We note that the same order-parameter sublattice structure
is associated with the broken inversion symmetry often
thought15 to be plausible in isolated graphene sheets. In that
case, of course, the mean-field potential couples sites in the
same layer. Broken inversion symmetry in an isolated graphene
sheet is analogous to chiral symmetry breaking in elementary
particle physics and is most likely to occur in neutral sheets
without any carriers. Experiments appear to establish that
spontaneous gaps do not in fact occur in single-layer graphene;
angle-resolved photoemission experiments16 are perhaps most
conclusive in this respect. Spontaneous gaps do, however,
appear17 in neutral graphene sheets when a magnetic field
is applied. It is sometimes argued18 that the appearance of
gaps in a field demonstrates that this order is barely avoided
and latent even in the absence of a field. (For a contrary
view, see Ref. 19). We will show that, because of their order-
parameter compatibility, latent sublattice-pseudospin chiral
symmetry-breaking order in a single layer is favorable for
bilayer excitonic order. Although the presence of carriers
always acts against order in an isolated graphene layer, we
show that in the bilayer case it acts in favor of order provided
that the carrier densities have opposite signs in opposite layers.

B. Full dispersion and close-band approximation

In this section we consider the influence of the full
graphene dispersion and the close-band approximation on
our result for the transition temperature (Fig. 2). Since
we are interested in qualitative effects, it is sufficient to
consider the contact-interaction approximation results. We
show in Fig. 3 the critical temperature Tc as a function of
the effective interaction strength U for a fixed carrier Fermi
energy Vg = 0.1 eV. The transition temperature Tc is scaled
by the hopping strength t = 2.8 eV. Note that the interaction
strength U in our model has the units of energy and that
it is obtained as the continuum model interaction strength
divided by the unit-cell area. The solid line is obtained

Top layer Bottom layer

band band

band band

Vg

Vg

FIG. 2. Dirac approximation band dispersions for the top and
bottom layers. The shaded areas correspond to filled states. The
four components of the order parameter in the band representation
are indicated. These components are related to the components of
the order parameter in the sublattice representation by a unitary
transformation. In the close-band approximation only the (lower-
energy) valence band in the top layer (bottom left) and the (higher-
energy) conduction band of the bottom layer (top right) are retained.
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FIG. 3. Tc(U ) for the contact-interaction approximation for
Vg = 0.1 eV. Here, U is the effective interaction strength in eV
units. The critical temperature Tc is expressed in units of the hopping
parameter t = 2.8 eV. The solid line is obtained using the full
dispersion, the dashed line using the Dirac approximation, and the
dotted line using the close-band approximation.

using the full graphene dispersion and the dashed line using
the Dirac approximation. When we employ the close-band
approximation, we obtain the dotted curve. Below we relate
the parameter U to the contact-interaction approximation
to the screened Coulomb interaction: V scr(q) → U , where
V scr(q) is the screened interlayer interaction matrix element.

When we want to employ the Dirac approximation, we are
confronted with the fact that the theory has one free parameter,
namely, the value of the cutoff energy ξ that is needed to cure
the ultraviolet divergence in the gap equation on which Tc

will depend. In Sec. IV we explain how to choose ξ , so that
the results obtained using the Dirac dispersion and the full
graphene dispersion overlap for temperatures corresponding
to the low energies where the two dispersions do not differ
noticeably. With this choice of ξ , we obtain the dashed curve
in Fig. 3 for the Dirac model and the solid curve for the
full π -band model. Note that the curves differ only slightly
and then only for temperatures kBT > 0.2t at which the
difference between the full graphene dispersion and Dirac
dispersion becomes noticeable. Since the results obtained
using the Dirac and full dispersions do not differ appreciably,
we use the Dirac approximation for the contact-interaction
phase diagrams shown in the next section. The dotted curve in
Fig. 3 is the result of the close-band approximation, discussed
further below.

Notice that the critical temperature is weakly dependent
on interaction strength at large U and strongly dependent on
interaction strength at small U . The weak dependence occurs
in the range of values where U is strong enough to produce
order even when the carrier Fermi energy is set to zero, and
the strong temperature dependence in the range of U where
order is assisted by the gate-driven Fermi surface nesting.
To understand this observation, consider the linearized Tc

equation which is derived in detail in Sec. IV and represented
there by Eq. (14):

1

U
= 1

2

∫ ξ

0
dε ν(ε)

∑
s=±1

1 − 2nf (ε + sVg)

ε + sVg

.

Here, ν(ε) is the isolated layer density of states per spin and
valley per unit cell, nf (ε) is the Fermi distribution function,
and s = − and s = + terms correspond, respectively, to
close and remote band contributions. (The cross contributions
between these two pairs vanish identically in the linearized
gap equation.) When the carrier Fermi energy Vg → 0 the
two types of particle-hole pairs make identical contributions
to the right-hand side that decrease with temperature on the
scale of the bandwidth ∼3t and approach 1/2t for T → 0.
[The 1/t dependence for T → 0 can be understood by noting
that ν(ε) ∝ ε/t2.] The linearized gap equation for Vg → 0 has
a solution only if U/t � 2. For Vg > 0 the situation changes.
The remote band contribution decreases slightly as these bands
are separated from the Fermi energy. At the same time the
close-band contribution from small ε is enhanced, and in
fact diverges logarithmically as T → 0 because the density of
states ν(Vg) is finite when the energy denominator vanishes.
This is the Fermi-surface nesting effect. Because the right-hand
side diverges, the linearized gap equation will always have a
solution. On the other hand, because the divergence is only
logarithmic, the critical temperature will be extremely small
if U is well below the strength at which coherence already
appears for Vg → 0. This observation accounts for the rapid
drop in Tc at a particular interaction strength. Because the
high-energy contributions of close and remote bands are nearly
identical, the interaction strength required for a high critical
temperature is badly underestimated if the remote bands are
ignored. Note that the lowest temperature illustrated in Fig. 3
∼0.003t is ∼100 K.

C. Phase diagrams

In this section we discuss the phase diagrams constructed
from contact-interaction and separable-potential approxima-
tions. We start with the former to gain physical insight and then
compare with the latter. In Fig. 4, we show how the contact-
interaction transition temperature versus effective-interaction
strength curve depends on carrier density. From right to left
the three curves correspond to the carrier Fermi energies
Vg = (0,0.2,0.3) eV. In Fig. 4 we see that Tc is an increasing
function of both U and, for a fixed value of U , also an
increasing function of Vg .

This figure provides a nice illustration of the separate roles
played by the carriers (the conduction-band states occupied by
electrons and the valence-band states occupied by holes) and
higher-energy states in forming the instability. The contribu-
tion of the carriers to the linearized gap equation scales with
the density of states at the Fermi level, and hence with Vg . The
higher-energy contribution depends on the density of states far
away from the Dirac point near the model’s cut-off energy. For
Vg = 0 only the remote band contribution is present and the
system has a quantum critical point at UQCP = 6.25 eV, which
is indicated in Fig. 4 by the dot. Because of the 1/E weighting
factor in the gap equation combined with the linear in E density
of states of the Dirac model, this quantum critical point satisfies
a Stoner-like criterion ν(ξ )U = 1, where ν(ξ ) is the density
of states at the cutoff energy ξ . When Vg �= 0, condensation
occurs at any value of U , but not at low temperatures unless U

is close to UQCP. The carrier contribution has a larger relative
importance, and values of U that are substantially smaller than
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FIG. 4. The scaled critical temperature Tc/t versus the effective
interaction strength U in electron volts for several values of the
carrier Fermi energy Vg for the contact-interaction approximation.
From right to left the curves correspond to Vg = (0,0.2,0.3) eV. The
locations of the normal state and condensed state are indicated. The
quantum critical point is marked by a dot.

UQCP can still yield high transition temperatures when Vg is
pushed toward the largest physically realistic values ∼0.3 eV.
The high-energy state contribution to the gap equation can be
captured approximately by replacing the interaction among
carriers by the effective interaction Ueff = U/(1 − U/UQCP).
We note that room-temperature condensation corresponds to
kBTc � 10−2t , which is a low temperature on the scale of this
phase diagram.

The Tc prediction based on the constant interaction model
depends on a procedure for constructing an accurate value
of U . We discuss such a procedure in Sec. IV where we
derive an expression in which U depends on Fermi energy
Vg and interlayer distance d. We estimate U by performing
the angular average of the screened interlayer Coulomb
interaction over incoming and outgoing momenta restricted
to the Fermi surface. The phase diagram thus obtained is
shown in Fig. 5, where we plot the transition temperature Tc

in Kelvin versus the interlayer distance d in nanometers. From
right to left the curves correspond to carrier Fermi energies
Vg = (0.05,0.1,0.15) eV. We observe that Tc is a decreasing
function of d, as expected. The behavior of Tc, which decreases
as a function of Vg , is opposite to the behavior observed
in Fig. 4 in which Vg was varied at fixed U . This behavior
illustrated in Fig. 5 occurs because screening increases with
density of states and hence with Vg , decreasing the value of U .
Both the high transition temperatures and the trends illustrated
in this figure are suspect, however, because static screening at
the Fermi energy is irrelevant for the high-energy states in the
linearized gap equation. This conundrum demonstrates that
reliable Tc estimates are challenging.

In Sec. IV we show how to obtain the transition temperature
Tc as a function of interlayer distance d and carrier Fermi
energy Vg using a separable-potential approximation. In Fig. 6
we plot the resulting transition temperature Tc in Kelvin versus
interlayer distance d in nanometers for three fixed carrier
Fermi energies. The solid line corresponds to Vg = 0.1 meV,
the dashed to Vg = 0.3 meV, and the dotted to Vg = 1 meV.
The separable-potential approximation is more realistic and at

Vg 0.05 eV

Vg 0.10 eV

Vg 0.15 eV

0 5 10 15 20 d nm

1

102

104

Tc K

FIG. 5. Tc(d) critical curves calculated in the Dirac approxima-
tion with the transition temperature Tc in Kelvin versus the interlayer
distance d in nanometers for the contact-interaction approximation.
From right to left the curves correspond to Vg = (0.05,0.1,0.15) eV.
To the right of or above a curve the system is in the normal phase; to
the left of or below a curve the system is in the condensed state.

small d captures the expected increase of Tc with Vg . In Fig. 7
we plot the separable-potential transition temperature Tc in
Kelvin versus carrier Fermi energy Vg in millielectron volts for
three fixed interlayer distances. The solid line corresponds to
d = 2 nm, the dashed to d = 4 nm, and the dotted to d = 8 nm.
Corresponding points are indicated by colored markers in
Figs. 6 and 7. In Fig. 7 we see that Tc has a nonmonotonic
dependence on Vg . This behavior is due to a competition
between the increase of screening (as in Fig. 5) and the increase
of the Fermi energy for larger Vg (as in Fig. 4). The maximum
Tc for fixed d occurs for kF d � 0.001 and the height of the
maximum is 1/d. This conclusion is, however, also based on
an approximation scheme that is unreliable for the high-energy
virtual states that appear in the gap equation. We note that in
obtaining Figs. 6 and 7 we approximated the polarizability
of graphene by a constant, neglecting the increase of 	 with
scattering momenta q > 2kF . Including this dependence will

Vg 0.1 meV

Vg 0.3 meV

Vg 1.0 meV

0 2 4 6 8d nm

2

4

6

Tc K

FIG. 6. (Color online) Transition temperature Tc in Kelvin versus
interlayer distance d in nanometers for three fixed carrier Fermi
energies for the separable-potential approximation. The solid line
corresponds to Vg = 0.1 meV, the dashed to Vg = 0.3 meV, and the
dotted to Vg = 1 meV. The points corresponding with Fig. 7 are
indicated by the colored markers.
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FIG. 7. (Color online) The critical lines of transition temperature
Tc in Kelvin versus carrier Fermi energy Vg in millielectron
volts for three fixed interlayer distances for the separable-potential
approximation. The solid line corresponds to d = 2 nm, the dashed
to d = 4 nm, and the dotted to Vg = 8 nm. The points corresponding
with Fig. 6 are indicated by the colored markers.

lead to a suppression of the transition temperatures shown in
Figs. 6 and 7.

As mentioned before, the use of a static screened Coulomb
interaction is unreliable for high-energy intermediate states
in the gap equation. If we assume that our static screening
estimate U is appropriate for ε < 2Vg and another estimate Ũ

is appropriate for ε > 2Vg , the gap equation becomes

1

U
= Ũc

Ũc − Ũ

1

2

∫ 2Vg

0
dε ν(ε)

∑
s=±1

1 − 2nf (ε + sVg)

ε + sVg

.

Here Ũc is the value of Ũ necessary to solve the Vg = 0 gap
equation:

1

Ũc

= ν(ξ ),

where ν(ξ ) is the density of states evaluated at the ultraviolet
cutoff. In Fig. 8 we show the Tc versus d lines for several
values of Ũ/Ũc. From left to right the curves correspond to
Ũ/Ũc = 0.5,0.7,0.9.

1 2 4 8
d nm

0.01
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1

10

100

Tc K

FIG. 8. The critical lines of transition temperature Tc in Kelvin
versus interlayer distance d in nanometers for Fermi energy Vg =
0.1 eV. From left to right the curves correspond to Ũ/Ũc =
0.5,0.7,0.9.

III. DISCUSSION

In this paper we have discussed a number of possible
estimates for the critical temperature for exciton condensation
in Coulomb coupled graphene layers in which a gate voltage
has been applied to induce nesting between the conduction-
band Fermi level in the high-density layer and the valence-band
Fermi surface of the low-density layer. One of our main results
concerns the sublattice structure of the interlayer coherence
order, which tends to be mainly off diagonal in sublattice and
opposite in sign for the AA and BB components. This structure
is due to the momentum-direction dependence of intersubband
phases in both conduction- and valence-band states near the
K and K ′ valleys in graphene. Similar observations have been
made previously.10,21 These extra phases cause contributions
to the anomalous interlayer self-energy that are off diagonal in
sublattice to tend toward small values, yielding approximate
cancellation. In a bilayer system this self-energy structure
leads to compatible self-energy contributions from coherence
between the bands with nested Fermi surfaces and from
coherence between the two remote bands, the valence band
of the high-density layer and the conduction band of the
low-density layer. In addition, the sublattice structure of bands
remains consistent in graphene out to energies well beyond the
Fermi energies of the nested bands, implying that contributions
to interlayer coherence can be expected from high-energy
states in both carrier and remote bands.

Critical temperature estimates for coherent graphene bilay-
ers are considerably complicated by the importance on the one
hand of screening by the gate-induced carriers at low energies,
and on the other hand, of lattice scale correlations at high
energies. For a two-dimensional system, mean-field theory
overestimates the transition temperature to a superfluid and
instead a KT transition should be considered. For strong short-
range interaction this consideration leads to a correction of
the transition temperature by a factor ∼3.22 We have reported
on a number of Tc estimates that are based on momentum-
and frequency-independent interactions. When appropriate
values for the effective interaction strength are estimated
based on low-energy screening considerations, large critical
temperatures tend to occur at low carrier densities simply
because screening is then minimized. These Tc estimates likely
misrepresent trends as a function of carrier density, since
screening at high energies is, in fact, not strongly influenced
by carriers. On the other hand, they do correctly capture
the fact that spontaneous coherence would appear even in
systems without carriers if interactions were strong enough.
In the contact-interaction approximation the gap equation
in the absence of carriers implies a Stoner-like criterion in
which order appears for Uν(ξ ) > 1, where ν(ξ ) ∼ 1/(ta)2 is
the density of states at the graphene Dirac model ultraviolet
cutoff. The interaction assumes this form because the density
of states in graphene increases linearly with energy over a very
broad energy range. It is interesting to compare this condition
with the corresponding Stoner-like condition for density-wave
states in a single-layer graphene sheet, Uν(ξ ) > 1.23

In the single-layer case, experiment seems to clearly
indicate that the ground state is not a density-wave state, i.e.,
that U < ν(ξ )−1. On the other hand, the fact that density-
wave states appear to occur in the presence of a magnetic
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field may suggest that the criterion is nearly met. If so,
Fig. 8 shows that gating-induced Fermi-surface nesting can
enhance electron-hole pairing correlations and induce order at
substantial temperatures.

The difference between our results and the prediction by
Kharitonov et al.11,13 that Tc is maximally of the order of
millikelvins deserves further comment. First, the value of
the dielectric constant for the system we consider, ε = 1,
differs from the value ε � 4 from Refs. 11 and 13. This
difference leads to a drastic difference in the prediction for Tc,
as mentioned above. Furthermore, in their estimate of the upper
limit for Tc, Kharitonov et al. set the width of the pairing region
to zero, while we have shown that Tc depends exponentially
on the ratio of this width to the Fermi energy. This distinction
is important for the low Fermi energies we consider. A similar
effect leads to the enhancement of the gap at zero temperature,
as shown in Ref. 14. None of these estimates include the effect
of finite frequencies, which is likely to reduce screening effects
and raise transition temperatures further.

In conclusion, we have determined the sublattice structure
of the condensate and discussed the interlayer coherence
phase diagrams predicted by various estimates of interlayer
interaction strengths. Our calculations make no assumptions
about the sublattice structure of the condensate and take the full
graphene dispersion into account. When contact-interaction
approximations are used, high transition temperatures can
occur. For the separable-potential approximation, we find
transition temperatures of the order of degrees Kelvin for
the parameter range Vg = 0.25–0.5 meV and d < 4 nm. This
result differs greatly from the result obtained by Kharitonov
et al.,11,13 that Tc is maximally of the order of millikelvins,
mainly because of the important role played in our calculations
by states at high-energy intermediate states with ε > 2Vg .
Careful consideration of the roles of retardation effects and
coherence in reducing screening could increase Tc estimates
further.

IV. METHODS

In this section we describe the methods we used to obtain the
results shown in Sec. II. We use a functional-integral approach
since it provides a convenient starting point to account for
non-mean-field effects.

A. Action of double-layer graphene

The coherent-state path-integral representation for the
partition function Z is given by

Z =
∫

d[ψ∗]d[ψ]e−(S0[ψ∗,ψ]+SI [ψ∗,ψ])/h̄, (1)

where the integration is over all Grassmann-valued fields
ψ∗ and ψ that are antiperiodic on the interval [0,h̄β]. The
noninteracting action S0[ψ∗,ψ] in Eq. (1) is given by

S0[ψ∗,ψ] =
∑
k,ωn

∑
α,α′,σ,σ ′

ψ∗
α,σ (k,iωn)

× [−h̄G−1
0;α,σ ;α′,σ ′(k,iωn)

]
ψα′,σ ′(k,iωn), (2)

where the momenta are restricted to the first Brillouin zone, the
ωn = π (2n + 1)/h̄β are the fermionic Matsubara frequencies

with β = 1/kBT the inverse temperature, α = A,B is the
sublattice index, and σ = t,b is the which-layer pseudospin
index. We ignore the electron spin for this moment, to return
to it later. In the tight-binding model for graphene, the inverse
noninteracting Green’s function from Eq. (2) is

G−1
0;σ ;σ ′(k,iωn) = −δσ,σ ′

h̄

(−ih̄ωn − μσ f (k)

f ∗(k) −ih̄ωn − μσ

)
,

where μσ is the chemical potential for the σ layer and
f (k) = −t(1 + e−ik·r1 + e−ik·(r1+r2)), where t = 2.8 eV is the
nearest-neighbor hopping strength, and r1 and r2 are the
lattice vectors.1,16 The interaction contribution to the total
action SI [ψ∗,ψ] in Eq. (1) describes the interaction between
electrons via the Coulomb interaction and consists of both
intralayer and interlayer terms. The effect of the intralayer
terms is to renormalize the chemical potentials μσ and hopping
strength t and to screen the interlayer interaction.16,20 These
terms will be omitted in the remainder of this paper. To account
for them, we assume that the renormalized chemical potentials
are such that in the normal state the top layer is electron and the
bottom layer holelike, with equal densities. The corresponding
Fermi levels are denoted by the carrier Fermi energy Vg . To
incorporate the effect of screening by density fluctuations, we
use the screened instead of the bare Coulomb interaction as
the interlayer interaction. Then, SI [ψ∗,ψ] consists only of
interlayer terms and is given by

SI [ψ∗,ψ] =
∫ h̄β

0
dτ

∑
r,r′

∑
α,α′

V scr(r − r′)

×ψ∗
α,t (r,τ )ψ∗

α′,b(r′,τ )ψα′,b(r′,τ )ψα,t (r,τ ), (3)

where the position summations are over all N unit-cell
positions. Since the transition depends only weakly on the
precise stacking of the layers,4 we make the simplifying
assumption that the stacking is such that the A sites (B sites)
of the top layer lie directly above the A sites (B sites) of the
bottom layer.

The statically screened interlayer Coulomb interaction is
given by

V scr(q) =
∑

r

V scr(r)eiq·r

= V (q)e−qd

1 − 2V (q)	(q) + (1 − e−2qd )V 2(q)	2(q)
, (4)

where

V (q) = e2

4πε0ε

1

A

2π

q

is the bare interaction,3 ε0 is the permittivity of the vacuum,
ε is the dielectric constant of the surrounding medium which
we take to be air, with ε = 1, d is the distance between the
graphene layers, and A = 3

√
3a2/2 is the area of the graphene

unit cell, with a = 0.142 nm the nearest-neighbor distance
between the carbon atoms. The polarizability 	 is given in
the Dirac approximation by 	(q) = −4ν(Vg) for q < 2kF ,
which is the momentum range relevant for the carrier-band
contribution to the gap equation. The factor 4 is due to spin
and valley degeneracy, and the density of states is ν(Vg) =
(A/2π )Vg/(3at/2)2.24 This form of SI [ψ∗,ψ] is valid in
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the long-wavelength approximation, where the interlayer
Coulomb interaction is independent of the sublattice index. It
will be convenient to introduce the dimensionless momentum
variable y = qd, so that the dimensionless interaction Ṽ scr(y)
becomes

Ṽ scr(y) ≡ 1

V (1/d)
V scr(y/d)

= e−y

y + 2γ (ε)kF d + (1 − e−2y)(γ (ε)kF d)2/y
, (5)

where we defined

−qV (q)	(q) ≡ γ (ε)kF = 9.66kF /ε.

B. Derivation of the effective action

Since the condensed state is a broken-symmetry state,
we cannot resort to perturbation theory to determine Tc.
Instead, we perform a so-called Hubbard-Stratonovich trans-
formation to obtain an effective action in terms of the order
parameter for exciton condensation. Concretely, this procedure
entails multiplying the partition function Z from Eq. (1)
by a Gaussian functional integral with value unity over the
order parameter �α,α′ (r,r′,τ ) that is on average given by
V scr(r − r′)〈ψ∗

t,α(r,τ )ψb,α′ (r′,τ )〉. By an appropriate choice of
the parameters in this integral, the interacting action SI [ψ∗,ψ]
from Eq. (3) can be canceled from the argument of the exponent
in the functional integral equation (1). Then, the integral
over the electron fields can be performed analytically and an
effective action is obtained in terms of the order parameter,
which is given by

Seff[�
∗,�]

= −h̄ Tr ln(−Ĝ−1) + h̄β

N

∑
k,k′,K,ωm

∑
α,α′

(
1

V scr

)
(k − k′)

×�∗
α,α′ (k,k + K,iωm)�α,α′ (k′,k′ + K,iωm), (6)

where ωm = 2πm/h̄β are now the bosonic Matsubara frequen-
cies, ( 1

V scr )(k) is the Fourier transform of the inverse interaction
in position space 1/V scr(r − r′), and where Ĝ−1 = Ĝ−1

0 − �̂

with the electron self-energy given by

h̄�α,σ ;α′,σ ′(k,iωn; k′,iωn′ )

= −[δσ,bδσ ′,t�α′,α(k′,k,iωn − iωn′ )

+ δσ,t δσ ′,b�
∗
α,α′ (k,k′,iωn′ − iωn)]. (7)

We determine Tc for a second-order phase transition to the
condensed state by expanding the effective action Seff[�∗,�]
in Eq. (6) to second order in the order parameter �∗ and
�. Since we expect the order parameter to be translationally
invariant in space and time, we only consider the contribution
of the zero frequency and zero center-of-mass momentum
components of the order parameters �∗ and � to the effective
action Seff[�∗,�] in Eq. (6). For notational simplicity, we
define the shorthand �α,α′ (k,k,0) = �α,α′ (k). This procedure
yields

Seff[�
∗,�] = h̄β

∑
k,k′

∑
α1,α2,α3,α4

�∗
α1,α2

(k)

×Mα1,α2,α3,α4 (k,k′)�α3,α4 (k′), (8)

where

Mα1,α2,α3,α4 (k,k′) = 1

N
δα1,α3δα2,α4

(
1

V scr

)
(k − k′)

− δk,k′Bα1,α2,α3,α4 (k), (9)

with the interlayer polarization B given by

Bα1,α2,α3,α4 (k)

= − 1

h̄2β

∑
ωn

G0;α3,t ;α1,t (k,iωn)G0;α2,b;α4,b(k,iωn)

= 1

4

⎛
⎜⎜⎜⎝

B0 eiφB1 −e−iφB1 B2

e−iφB1 B0 e−2iφB2 −e−iφB1

−eiφB1 e2iφB2 B0 eiφB1

B2 −eiφB1 e−iφB1 B0

⎞
⎟⎟⎟⎠. (10)

Here we dropped the k dependence of the Bi , defined φ =
arg[f (k)], and

B0 = 2B(+,+) + B(−,+) + B(+,−),

B1 = B(−,+) − B(+,−),

B2 = 2B(+,+) − B(−,+) − B(+,−).

Moreover

B(st ,sb) = −nf (εst ,t (k)) − nf (εsb,b(k))
εst ,t (k) − εsb,b(k)

, (11)

with st ,sb = ±1 and top and bottom layer dispersions

εs,t (k) = s|f (k)| + Vg and εs,b(k) = s|f (k)| − Vg,

with s = ±1. The letter B is chosen in Eqs. (10) and (11)
because Eq. (11) is the expression of a bubble diagram, which
describes screening by electron-hole pairs. We note that when
we perform a particle-hole transformation in the (holelike)
top layer, the numerator of the right-hand side of Eq. (11)
becomes 1 − nf (εs1,t (k)) − nf (εs2,b(k)), and we obtain the
familiar expression for the ladder diagram from BCS theory.

Now, we comment on the importance of the real electron
spin. Each independent fermion species contributes to the
screening of the Coulomb interaction. Therefore, a factor
of 2 due to the spin degeneracy should be included in the
expression for the polarizability 	(q), as we did above. The
interlayer Coulomb interaction is to a very good approximation
independent of spin, and we need to consider how the effective
action equation (8) changes if we include the electron spin, in
Eqs. (2) and (3). The electron spin can be incorporated in our
formalism by extending the definition of α to include both
the sublattice and spin quantum numbers, so that the order
parameter has 16 components. The noninteracting Green’s
functions in the expression for B in Eq. (10) are diagonal in
spin, so that the same is true for B in Eq. (10) and M in Eq. (9).
Thus, we find that the contributions to the effective action of
the four spin-pairing channels are decoupled and thus we find
four identical Tc equations, one for each channel. Thus, it is
correct for the determination of the phase diagram to ignore
the electron spin in our formalism.
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C. Derivation of the linearized gap equation

The transition temperature Tc is now given by the maximum
temperature for which the matrix M defined in Eq. (9) has a
zero eigenvalue, or equivalently the maximal temperature for
which for all k, α1, and α2 we have∑

k′

∑
α3,α4

Mα1,α2,α3,α4 (k,k′)�α3,α4 (k′) = 0.

To get rid of the Fourier transform of the reciprocal interaction,
we multiply with V scr(k′′ − k) and sum over k to obtain the
gap equation

�α1,α2 (k) = 1

N

∑
k′,α3,α4

V scr(k − k′)Bα1,α2,α3,α4 (k′)�α3,α4 (k′).

(12)

Below, we use two methods to find approximate solutions of
Eq. (12), namely, by modeling the interaction as a contact
interaction and using the separable-potential approximation.

We remark that the screened interaction in Eq. (12) should
in the first instance be evaluated at frequency ω = εk − εk′ .
The frequency and wave-vector arguments which appear in
the remote band part of this integral are ones for which our
static screening approximation is not reliable. It is, however,
not immediately clear how to improve on the approximation
we employ because of corrections to the simple RPA screening
function and the role of σ and σ ∗ bands that we do not
consider. We therefore choose to use the static RPA screening
functions in this paper, but remain cognizant of limitations
in the predictive power of our (or any other) semianalytic Tc

calculation.

D. Approximation 1: Contact interaction

The contact-interaction approximation is rather crude for
the Coulomb interaction and can only be used to obtain
qualitative results for the phase diagram and the condensate
structure. In this approximation, we replace the interaction
matrix elements in momentum space V scr(k − k′) in Eq. (12)
by an effective strength U which is an appropriate average of
V scr over its arguments. It then follows that the components of
the order parameter �α1,α2 (k) are independent of momentum.
This approach was used previously for this system.10,14

However, because the contact interaction averages out the
structure of the Coulomb interaction, one may only expect
to obtain qualitative results using this approximation. Setting
V scr(k − k′) = U in Eq. (12), we obtain a 4 × 4 matrix
equation

�α1,α2 = U

N

∑
k′,α3,α4

Bα1,α2,α3,α4 (k′)�α3,α4 ,

so that the critical condition is that the 4 × 4 matrix � =
(U/N )

∑
k B(k) has eigenvalue 1. We have that

� = U

4N

⎛
⎜⎜⎜⎝

	0,0 	1,1 −	1,1 	2,0

	1,1 	0,0 	2,2 −	1,1

−	1,1 	2,2 	0,0 	1,1

	2,0 −	1,1 	1,1 	0,0

⎞
⎟⎟⎟⎠,

where we defined

	i,l = 1

N

∑
k

Bi(k) cos{l arg[f (k)]}.

The eigenvalues of 	 can be computed in closed form. Setting
the largest eigenvalue → 1 yields the following Tc equation:

1 = U

8

[
2	0,0 − 	2,0 − 	2,2

+
√

16	2
1,1 + (	2,0 − 	2,2)2

]
. (13)

We remark that the eigenvector corresponding to this largest
eigenvalue has opposite (A,A) and (B,B) components, a
result previously found in a model without intersublattice
components for the order parameters �A,B and �B,A.10

1. Dirac approximation

It is interesting to consider the result for the critical
temperature equation (13) in the Dirac approximation and
compare its solution to the critical temperature obtained using
the full dispersion. The linear Dirac spectrum is often used
as an approximation to the dispersion of graphene, where one
sets f (k) = (3at/2)(kx + iky). Then, the Bi(k) depend only
on the length of k and it follows that the 	i,l vanish for nonzero
angular momentum l. Then, Eq. (13) can be written as

1 = U

2N

∑
k

[B(−,+) + B(+,−)]

= U

2

∫ ξ

0
dε ν(ε)

∑
s=±1

1 − 2nf (ε + sVg)

ε + sVg

, (14)

where we used nf (−ε) = 1 − nf (ε), a factor 2 was added
in the second line to account for the presence of the valley
degeneracy in the momentum integral, and ξ is some high-
energy cutoff, on which we comment below. Again, ν(ε) is the
density of states for a single valley and spin species. Equation
(14) describes the situation of band-diagonal pairing, as
described previously,14 in which there is no pairing between the
close-lying conduction bands, and far-laying valance bands.
Following an approach used to analyze superconductivity in
single-layer graphene,25 we can evaluate Eq. (14) further and
obtain

y

λ
+ x

∫ y+x

y−x

dx ′ tanh(x ′)
x ′ − ln [cosh(y − x) cosh(y + x)]

= 2x

∫ x

0
dx ′ tanh(x ′)

x ′ − 2 ln cosh(x), (15)

with x = βVg/2, y = βξ/2, and the dimensionless coupling
constant given by λ = Uν(ξ )/2. The system has a quantum
critical point only for Vg = 0 and UQCP = 6.25 eV, where
λ = 1/2 and UQCPν(ξ ) = 1, which is a Stoner criterion for
the spontaneous polarization of the valence bands in the two
layers which are filled for Vg = 0. An important point is that
the solution of Eq. (15) depends on the high-energy cutoff ξ ,
and only when we choose a particular value for ξ , are we able
to compare the results obtained using the Dirac approximation
and the full dispersion. We find this value of ξ by demanding
that the interaction strength UQCP at which the quantum critical
point occurs for the Dirac approximation in Eq. (15) coincides
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with the value of UQCP obtained from Eq. (13). This equality
leads to the equation

ν(ξ ) = 1

2N

∑
k

1

|f (k)| ,

which yields ξ = 6.83 eV. The results obtained using this
procedure are discussed in Sec. II and shown in Fig. 3. When
y � x � 1 we may approximate Eq. (15) to obtain a BCS-like
result for the transition temperature

kbTc = Vg

2

√
ξ − Vg√
ξ + Vg

exp

(
− 1

Uν(Vg)
+ ξ

Vg

+ C − 1

)
,

(16)
where C = limR→∞{∫ R

0 [tanh(x)/x]dx − ln(R)} = 0.82.

Apart from the usual BCS term in the exponent −1/Uν(Vg),
we also find an additional term which scales as the length of
the pairing region ξ over the Fermi energy Vg . This effect
will also influence the Tc found in our separable-potential
approximation and one of the reasons that we predict a
higher value of Tc for small Fermi energies as compared to
Refs. 11 and 13. We finally note that the gap equation on
the close-band approximation can be obtained from Eq. (14)
by only taking the s = −1 term of the summation. The
close-band results are also discussed discussed in Sec. II and
shown in Fig. 3. We note that an equation similar to Eq. (16)
was found in Ref. 14 for the magnitude of the gap at zero
temperature.

2. Estimation of U

By estimating the effective interaction strength U as a
function of the interlayer distance d, we may transform the
horizontal axis in Fig. 4 and obtain the phase diagram with the
transition temperature versus d. We estimate U by evaluating
the angular average of the screened interaction equation (4)
over the incoming and outgoing momenta restricted to the
Fermi surface, k and k′, respectively,

U (d) =
∫
εk,εk′=Vg

dk dk′ V scr(k − k′)∫
εk,εk′=Vg

dk dk′ (17)

= 1

π

∫ π

0
dφ V scr(2kF sin(φ)), (18)

which can be easily evaluated numerically.

E. Approximation 2: Separable approximation

In order to obtain a quantitative prediction for the mean-
field transition temperature, it is not sufficient to approximate
the screened Coulomb interaction by a contact interaction. In-
stead, we will approximate the screened Coulomb interaction
by a function which is separable in the incoming and outgoing
momenta, as was also done in Ref. 14 to determine the gap
at zero temperature. We show below how to implement this
procedure concretely. We will consider s-wave solutions for
the gap functions of the form

�α1,α2 (y) = �α1,α2 (y)eilα1 ,α2 φ, (19)

where φ is the azimuthal angle of k, the lα1,α2 is the angular
momentum quantum number, and we transformed to the
dimensionless momenta y = kd. Since we showed that the

influence of the full dispersion is small, we continue in the
Dirac approximation, where we may rewrite the gap equation
(12) as

�α1,α2 (y) = A

2πd2

∑
α3,α4

∫
y ′ dy ′ V av

α1,α2,α3,α4
(y,y ′)

× BR
α1,α2,α3,α4

(y ′)�α3,α4 (y ′), (20)

where we defined the angular averaged interaction

V av
α1,α2,α3,α4

(y,y ′) = 1

2π

∫
dφ′ ei(lα3 ,α4 φ′−lα1 ,α2 φ)einα1 ,α2 ,α3 ,α4 φ′

V scr

× (
√

y2 + y ′2 − 2 cos(φ′ − φ)yy ′), (21)

where we anticipated the fact that the lα,α′ will be chosen such
that the right-hand side of Eq. (21) does not depend on φ. We
furthermore defined the radial part of B from Eq. (10) as BR

in the following way:

Bα1,α2,α3,α4 (y/d) = BR
α1,α2,α3,α4

(y)einα1 ,α2 ,α3 ,α4 φ,

where B should be considered in the Dirac approximation and
the values of the integers nα1,α2,α3,α4 can be read from the
expression for B in Eq. (10). Note that we did not include an
extra factor 2 due to the valley degeneracy, since we assume
that there is no intervalley scattering. Then, we may argue
that each valley pairing channel leads to an equivalent gap
equation, and we may ignore the valley label, similar as we
did above for the electron spin. The right-hand side of Eq. (20)
should be independent of φ, which is the case when

lA,A = lB,B = l0, lA,B = l0 − 1, and lB,A = l0 + 1.

for some integer l0. Then, the gap equation (20) can be written
in a simplified form as

�α1,α2 (y) = γ (ε)

4

∑
α3,α4

∫
y ′ dy ′ Ṽ av

lα1 ,α2
(y,y ′)

× B̃α1,α2,α3,α4 (y ′)�α3,α4 (y ′), (22)

where

Ṽ av
l (y,y ′) = 1

2π

∫
dφ cos(lφ)

× Ṽ scr(
√

y2 + y ′2 − 2 cos(φ)yy ′),

where Ṽ scr(y) was defined above in Eq. (5). We defined B̃R

as the dimensionless form of BR , i.e., with the B(s1,s2) from
Eq. (11) replaced by the dimensionless B̃ defined by

B̃(st ,sb) = −
1

1+exp[β ′(st y−kF d)] − 1
1+exp[β ′(sby+kF d)]

(sty − kF d) − (sby + kF d)
,

with β ′ = βh̄vf /d. From these expressions we obtain that
for a fixed value of kF d the transition temperature is 1/d

and increases linearly with the Fermi momentum kF and
the carrier Fermi energy Vg . Up to this point, our rewriting
of the gap equation (12) is exact, under the ansatz equation
(19). In order to be able to obtain numerical results, we now
approximate Ṽ av

l (y,y ′) by a function that is separable in y and
y ′. This approximation amounts to choosing a function V sep
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FIG. 9. We plot Ṽ av
l (y,y) and [V sep

l (y)]2 by the solid and dashed
lines, respectively, for the cases l = 0 (top graph) and l = 1 (bottom
graph).

such that

Ṽ av
l (y,y ′) � V

sep
l (y)V sep

l (y ′). (23)

From Eq. (22) we see that the y dependence of �α1,α2 (y) in
this case is V

sep
lα1 ,α2

(y) so that it is natural to define �α1,α2 (y) =
V

sep
lα1 ,α2

(y)�′
α1,α2

. The gap equation (22) thus becomes a 4 × 4

matrix equation independent of y,

�′
α1,α2

= γ (ε)

4

∑
α3,α4

∫
y ′ dy ′ V sep

lα1 ,α2
(y ′)V sep

lα3 ,α4
(y ′)

× B̃α1,α2,α3,α4 (y ′)�′
α3,α4

. (24)

After choosing a functional form of V
sep
l we can find the

transition temperature as the largest temperature for which
Eq. (24) has a solution. For our purposes, it is sufficient to
choose the following form of V

sep
l :

V
sep
l (y) = V av

l

(
y,yref

l

)
√

V av
l

(
yref

l ,yref
l

) ,

where yref
l is some reference momentum. It is natural to choose

yref
l as the position of the maximum of V av

l (y,y), which yields

yref
l=0 = 0 and yref

l=1 � 2.61γ (ε)kF d.

To gain insight into the effect of this approximation, we plot in
Fig. 9 the functions Ṽ av

l (y,y) and [V sep
l (y)]2, which would fall

on top of each other if the approximation equation (23) were
exact. In Fig. 9 we plot Ṽ av

l (y,y) and [V sep
l (y)]2 by the solid and

dashed lines, respectively, for the cases l = 0 (top graph) and
l = 1 (bottom graph). Since [V sep

l (y)]2 is always lower than
Ṽ av

l (y,y) one expects that the transition temperatures found in
our analysis are a lower boundary for the mean-field transition
temperature for exciton condensation.
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