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Abstract: In the presence of continuous covariates, standard capture–recapture methods assume either that
the registrations operate independently at the individual level or that the covariates can be stratified and
log-linear models fitted, permitting the modelling of dependence between data sources. This article
introduces an approach where direct dependence between registrations is modelled leaving the continuous
covariates in their measurement scale. Simulations show that not accounting for possible dependence
between registrations results in biased estimation of both the population size and standard error. The
proposed method is applied to Dutch neural tube defect registration data.
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1 Introduction

One way to estimate the size of a closed population is to use capture–recapture models.
These models have received considerable attention in epidemiology (International
Working Group for Disease Monitoring and Forecasting, 1995a;b). The appeal of
these models is that the investigator may use existing, overlapping, incomplete lists of
diseased people (Hook and Regal, 2000), which may include, among others, hospital
records or patient group records. The old fashioned approach assumes that all
individuals have the same probability of being ascertained by a registration, implying
that the registrations are independent. Any dependence among the registrations leads to
a bias of the estimate derived under independence (Darroch et al., 1993: 1145).

The most prevalent method for analysing such data uses log-linear models (Cormack,
1989; Fienberg, 1972). In epidemiology, list dependence and heterogeneity (the
behaviour component) are the norm, and log-linear models are particularly useful in
modelling these phenomena (Schwarz and Seber, 1999: 438–439). Direct dependence
between lists is incorporated by introducing interaction terms in the models, and
‘observable’ heterogeneity is usually handled using stratification based on covariate
information.
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In the presence of continuous covariates, the standard approach independently
proposed by Alho (1990) and Huggins (1989) conditions on the captured individuals
and then uses a generalized Horvitz–Thompson estimator to estimate population size
(Pollock, 2002). This approach assumes that the lists are independent given the
covariates, or alternatively, the lists operate independently at the individual level
(Alho, 1990: 625). This is not plausible because most epidemiologic registrations are
likely to be dependent even after controlling for observed variables.

To minimize this deficiency, other authors, for example, Darroch et al. (1993, 1145)
proposed to stratify the observable continuous covariates of heterogenous catchability
and then fit models, such as the Rasch model (Agresti, 1994; Coull and Agresti, 1999;
Fienberg et al., 1999), to accommodate possible further heterogeneity within each
stratum. As the stratification is subjective, there is the possibility that for the same data,
researchers using different stratification routines might arrive at different estimates of
population size. Furthermore, there is possible loss of information and in some cases an
increased number of parameters to be estimated.

In this article, we propose a new methodology for capture–recapture models with
continuous covariates whereby list dependence is also modelled. It makes use of the
multinomial logit model proposed by (Bock 1975), which integrates log-linear model-
ling with the multinomial logit approach. When there are more than two lists, this
approach enables us to model the dependence between lists without stratifying the
observable covariates of heterogenous catchability. Compared to other formulations of
the multinomial logit model (Agresti, 2000; Haberman, 1979), Bock’s approach
explicitly formulates a design matrix for the columns of the data matrix under study,
on top of the usual covariate matrix. When the design matrix for the columns is
saturated, Bock’s model is equivalent to other formulations, save for the interpretation
of the logits.

In Section 2, we describe the data set we use to illustrate the approach. The
multinomial logit model as proposed by Bock (1975) is discussed in Section 3. In
Section 4, we show how the model can be used in the multiple system estimation. A
simulation is presented in Section 5. In Section 6, we analyse the data set in detail, and
conclude with a discussion in Section 7.

2 Data set

Neural tube defects (NTDs) are among the most frequent birth defects contributing to
infant mortality and serious disability (Van der Pal et al., 2003: 33). The most common
NTDs are anencephaly and spina bifida. A child with anencephaly cannot survive and
dies after birth, whereas a child with spina bifida can survive but often has serious
functional impairments.

In the Netherlands, newborns=deliveries with NTDs are registered in several data-
bases. The data include live births, fetal deaths and induced abortions. A problem is that
none of these databases are complete, and thus we propose to use capture–recapture
methods to estimate the numbers delivered with an NTD. As an illustration, we will use
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data from three of these incomplete registrations in the year 2000. We describe the
registrations briefly

1) Dutch perinatal database I (LVR1): This is a pregnancy and birth registry of low
risk pregnancies and births, even if care only relates to a part pregnancy or delivery.
In the Netherlands, the midwife is responsible for low risk pregnancies and births
(primary care).

2) Dutch perinatal database II (LVR2): This list registers anonymous data concerning
the birth of a child in secondary care. If a woman is referred from primary care to
secondary care (mostly high risk pregnancies), she can be registered in both LVR1

and LVR2.
3) National neonate database (LNR): This list contains anonymous information

about all admissions and readmissions of newborns to paediatric departments
within the first 28 days of life.

The children are matched using a set of key variables that form a unique set of data,
namely, the combination of mother’s birthday, child’s birthday, gender of child and
postal code. For more details on these registrations; refer Van der Pal et al. (2003).

The Dutch obstetric system is based on risk selection, meaning that everyone can start
at the midwife level (primary care, LVR1) unless there is a primary indication, such as
chronic disease of the mother or caesarean section in prior pregnancy. During
pregnancy the midwife decides, on the basis of a list of criteria, whether the woman
should be referred to the obstetrician (secondary care, LVR2). Thus low risk is used to
refer to deliveries where the safety of the mother and=or child is certain. High risk
pregnancies are referred to obstetric departments. It is possible to deliver in hospital
skipping the midwife, thus some low risk pregnancies can appear in LVR2. It is also
possible to appear in LVR2 and not in LVR1 owing to omissions.

In each of the three registries, delivery weight of the child is recorded. Abortions are
recorded in LVR1 and LVR2, but not in LNR. In this analysis, we will concentrate on
estimating the numbers of children who were delivered, that is, excluding aborted
children. A summary of data used in this analysis is shown in Table 1. Table 1 shows
that deliveries listed in LNR tend to have normal delivery weight, whereas cases with
low delivery weight are frequently listed in both LVR1 and LVR2. The reason is that
deliveries with low delivery weight are likely to be referred by the midwife (who reports
to LVR1) to the obstetrician who reports to LVR2. Delivery weight had a missing value

Table 1 Overlap information for delivered children

Ascertainment historya

[1,0,0] [0,1,0] [0,0,1] [1,1,0] [1,0,1] [0,1,1] [1,1,1] Total

Observed 43 37 16 24 7 17 4 148
Delivery weight

Mean 3.209 2.339 2.745 2.151 3.357 2.729 3.050 2.717
s.e. 0.109 0.170 0.258 0.252 0.167 0.196 0.228 0.083

aThe first element of the ascertainment profile refers to LVR1, the second to LVR2 and the third to LNR (1 is
present and 0 is absent).
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for a child listed in ‘LVR1 only’, which we replaced by the median of delivery weight for
children with the same ascertainment profile.

3 Bock’s multinomial logit model

Assume that an individual i (i¼ 1, 2, . . ., n) is classified in one of K nominal categories
indexed by k (k¼ 1, 2, . . ., K), such that nkji ¼ 1 if individual i falls in category k and 0
otherwise. The multinomial logit for individual i is z0i ¼ [z1ji, z2ji, . . . , zKji], implying
that the category probabilities for individual i are

pkji ¼
ezkji

PK
r¼1 ezrji

(3:1)

The reason we condition on i is to make it explicit that an individual denotes a stratum.
Now assume that for individual i, there are continuous or categorical variables

coded into H columns, indexed by h(h¼ 1, 2, . . ., H) and collected in a matrix X of
size n�H. Bock (1975) relates the multinomial logits in Z to the covariate matrix X
and a design matrix Y by a matrix of (regression) parameters L. The multinomial
logits are decomposed as Z ¼ XLY. Let the elements of Y be yjk, with j¼ 1, 2, . . ., J, the
elements of X be xih and the elements of L be lhj. Then, the category probabilities are
given by,

pkji ¼
exp(

PH
h¼1

PJ
j¼1 xihlhjyjk)

PK
r¼1 exp(

PH
h¼1

PJ
j¼1 xihlhjyjr)

(3:2)

Notice that without Y, Equation (3.2) is equivalent to the standard multinomial logit
model (Agresti 2000). This implies that Y can be thought of as a matrix of constraints.
As in typical multinomial logit models, some of the logits can be redundant. Here the
redundancy is eliminated by defining Y appropriately.

The log-likelihood for the multinomial logit model can be expressed as

‘ ¼
Xn

i¼1

XK

k¼1

nkji log [pkji]

and thus the first order derivative of the log-likelihood with respect to lst
(s ¼ 1, 2, . . . , J and t ¼ 1, 2, . . . , H) is

@‘

@lst

¼
Xn

i¼1

XK

k¼1

nkji

pkji

xispkji ytk �
X

r

ytrprji

 !" #

42 E Zwane and P van der Heijden



The second order derivatives of the log-likelihood are

@2‘

@lst @luv

¼ �
Xn

i¼1

XK

k¼1

pkjixisxiuytk yvk �
XK

r¼1

yvrprji

" #

(3:3)

The solution of the likelihood equations corresponds to the maximum of the likeli-
hood. The Newton–Raphson algorithm can be used to arrive at the solution (Bock,
1975: 526).

If we collect the elements of Z by row into a vector z and the elements of L by row
into a vector l, then we can define Bock’s model as the conditional logit model given by
z ¼ [X� YT]l. This representation shows that some columns of the matrix resulting
from [X� YT] can be dropped or alternatively that some elements in L can be set
to zero.

The model just presented can be fitted with available software by exploiting the
similarity of the likelihood function with that of the stratified proportional hazards
model (Chen and Kuo, 2001). For small data sets, though impractical in the presence of
continuous covariates, the model can be fitted as a log-linear model with a nuisance
parameter for each distinct value of the set of covariates (Aitkin and Francis, 1992).

4 Multiple system estimator

In this section, we show how the multinomial logit model proposed by Bock can be used
to estimate the population size. We consider the estimation of the population size for a
problem with three lists, but the ideas can easily be extended to accommodate cases
with more than three lists. For two lists, our approach is identical to the approach
detailed in Alho (1990).

Assume that for each individual there is a covariate vector xi with elements xih
(h ¼ 1, . . . ,H), with xi1 ¼ 1. Each individual has a unique capture profile and the set of
possible capture profiles is {100, 010, 001, 110, 101, 011, 111}. Using this, we define a
vector ni ¼ [n100ji,n010ji,n001ji,n110ji,n101ji,n011ji,n111ji], where nabcji ¼ 1 if individual i has
capture profile [a,b,c] and nabcji ¼ 0 otherwise.

To illustrate how Y is defined, consider a model assuming that list 1 and 2 and list 2
and 3 are dependent in the presence of covariates. For this model, Y is given by

1
0

0

0
1

0

0
0

1

1
1

0

1
0

1

0
1

1

1
1

1

list 1

list 2

list 3

list 1:list 2

list 2:list 3

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

0 0 0 1 0 0 1

0 0 0 0 0 1 1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

(4:1)
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In Equation (4.1), the labels for the columns are the capture profiles, and for clarity the
elements of Y will be denoted by yj(abc) rather than yjk, where yj(abc) is the element in
row j of Y corresponding to capture profile [a,b,c]. The labels for the rows in Equation
(4.1) are the main and interaction effects. This matrix is equivalent to the transposed
design matrix of a log-linear model (for situations without covariates) assuming list 1
and 2 and list 2 and 3 are dependent, without an intercept. This shows that the main
and interaction effects are defined in the same way as in the log-linear model. In
principle, Y can be a more complex design matrix whose parameters have an
interpretation in terms of unobserved heterogeneity (Darroch et al., 1993).

Once X and Y are defined, the multinomial logit model is used to relate the
characteristics of each person listed to their probability of being captured by each
list. The fitted capture probabilities are conditional on being observed at least once.
However, the resulting parameter estimates can be used to estimate the unconditional
probability that the ith individual is never captured, denoted by P̂0ji as

P̂0ji ¼
1

1þ
P

r exp(
P

h

P
j xihlhjyjr)

Using these probabilities, the estimated population size is

N̂ ¼
Xn

i¼1

N̂i ¼
Xn

i¼1

1

1� P̂0ji

 !

(4:2)

where N̂i is the contribution of individual i to the estimate of the population size. Thus
our estimator is the same as the Horvitz and Thompson (1952) estimator proposed by
Alho (1990: 625) and Huggins (1989: 136), with the only difference being in the
estimation approaches, implying that any optimality properties of their estimators also
hold for Equation (4.2). Thus our estimator is also unbiased. In a model in which the
lists are assumed to be independent so that Equation (4.1) does not include the final two
rows, Equation (4.2) results in an estimate of the population size identical to those of
Alho (1990) and Huggins (1989).

4.1 Interpretation of parameters

As in the models of Alho (1990) and Huggins (1989), the estimated parameters are the
logits of the capture probabilities. Instead of having the number of different logits of
the capture probabilities equal to the number of lists, if there are interactions between
the lists the logits are dependent on whether an individual has been listed in another
list. For example, assume that there is a single covariate xi for individual i and that
Y is given by Equation (4.1) and further let Pjji denote the capture probability to list j
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(j ¼ 1,2,3) for individual i. For this small example, L and X are given by

L ¼ [
l11 l12 l13 l14 l15

l21 l22 l23 l24 l25
] and X ¼

1 x1

1 x2

..

. ..
.

1 xn

2

6
6
6
4

3

7
7
7
5

Using this, the logits of the capture probabilities for list 1 are

logit(P1ji) ¼
l11 þ l21xi, if not in 2
(l11 þ l14)þ (l21 þ l24)xi, if also in 2

�

The equations for logit(P2ji) and logit(P3ji) can be derived in a similar way.

4.2 Variance estimation

In this section, we will derive an estimator of both the conditional and the unconditional
variance of N̂. Using standard results for conditional variances (Seber, 1982: 9) we have

var(N̂) ¼ E[var(N̂jL̂)]þ var(E[N̂jL̂]) (4:3)

For ease of notation, let V1 ¼ E[var(N̂jL̂)] and V2 ¼ var(E[N̂jL̂]). V1 reflects the
sampling fluctuation in the multinomial distribution conditional on being observed
and as such does not account for variability in the observed sample size. V2 reflects
variability in the observed sample size.

V1 can be estimated using the delta method. To use the delta method, we need the
first derivative of N̂i with respect to lhj which is

@N̂i

@lst

¼ xis

P̂0ji

1� P̂0ji

 !

�
X

k

ytk, p̂kji

 !

(4:4)

and the second derivative of Bock’s model with respect to lambda given in Equation
(3.3). Using this, the conditional variance estimator is given by

V̂1 ¼
Xn

i¼1

@N̂i

@lst

 !T
@2‘

@lst,@luv

� ��1
@N̂i

@luv

 !2

4

3

5 (4:5)

This variance only takes into account that the inclusion probabilities are estimated, but
not the fact that the observed sample is drawn from a population.

To incorporate the variability in the observed sample, V2 has to be added to the
conditional variance estimate. Note that V2 assumes that the estimated inclusion
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probabilities are fixed, and the usual Horvitz and Thompson (1952) variance estimator
for independent observations given by

V̂2 ¼
Xn

i¼1

P̂0ji

(1� P̂0ji)
2

can be used.
From these equations, it is evident that when the inclusion probabilities are large (that

is P̂0ji is small for all i) V̂2 will be small, and when the estimated parameters in the
model are unreliable (have large standard errors) V̂1 will be large.

The problems with asymptotic confidence intervals have been discussed at length in the
literature. The International Working Group for Disease Monitoring and Forecasting
(1995a: 1049) noted that for virtually all capture–recapture models, the distribution of the
population size is skewed, and thus bootstrap and likelihood-based confidence intervals are
preferred. An implementation of the parametric bootstrap for capture–recapture models
with continuous covariates is discussed in Zwane and Van der Heijden (2003). Alterna-
tively, the confidence intervals can be computed on the log scale (Chao, 1987).

5 Simulations

The effect of dependence of inclusion probabilities on continuous covariates has been
highlighted by several authors, but there is much less attention for remaining depen-
dence between lists after accounting for covariates. The objectives of this section is to
examine both the impact of residual dependence between lists (underfitting), by
comparing the method assuming independence between lists to the method we have
just sketched, and the effects of overfitting. To perform the simulation, a data set of 500
cases was generated, and for each case a single continuous covariate xi was randomly
drawn from the standard normal distribution. The probabilities of being seen in
list 1 (P1ji), list 2 (P2ji) and list 3 (P3ji) were generated using logit(P1ji) ¼
0:5� 0:5xi, logit(P2ji) ¼ �0:5� 0:5xi, and logit(P3ji) ¼ 1:0� 0:25xi.

The data generation was performed using the method described by Oman and
Zucker (2001). The data sets were created such that list 1 and list 2 are dependent. We
varied c12(g), which is a parametric normal model correlation matrix parameter for the
correlation of list 1 and list 2, from 0 to 1. For each value of c12(g), 1000 simulations
were performed. For each data set, the population size was estimated using the method
assuming independence between lists (the Alho–Huggins approach) denoted by
[1, 2, 3]x, a model assuming list 1 and list 2 are correlated (the true model), denoted
by [12, 3]x and a model assuming list 1 and list 2 and list 1 and list 3 are correlated,
denoted by [12, 13]x. The coverage is the number of times the 95% asymptotic
confidence interval includes the true value of the population of 500.

Table 2 shows that when the correlation between the lists is low
(c12(g) ¼ 0:0 or c12(g) ¼ 0:1), the underfitting and true model perform well, but with
increasing levels of correlation, the model [1, 2, 3]x fits poorly in terms of the AIC. When
we compare the mean estimates, we find that [12, 3]x performs very well, whereas [1, 2, 3]x
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underestimates the true population and the standard error. In terms of coverage model,
[12, 3]x is superior, and this is more pronounced for values of c12(g) greater than 0.1.

To evaluate the effects of another form of model mis-specification, we compare an
overfitting model (i.e., one with more dependencies than the true model) with the true
model. As shown in Table 2, the overfitting model is unbiased for low levels of
dependence between the lists but is highly variable. In addition, as this model has more
parameters it is penalized by the AIC resulting in it having a slightly higher AIC
compared with the true model.

In conclusion, this simulation shows that in models with continuous covariates ignoring
interaction between sources may severely bias the point estimates and the confidence
interval. In addition, it is shown that fitting a more complex model than required results in a
slight bias and increased variability in the estimate of the population size.

6 Application to NTD data

The purpose of this study is to estimate the number of children delivered with a NTD.
In Table 3, we present two sets of analyses. In the first set, we ignore the delivery weight and
in the second it is incorporated. For model selection, we use the crude AIC, as it has been

Table 2 Estimates of population size for varying degrees of dependence between the first and the second list

c12(g)

Mean
Pearson’s
correlation
r12(g) Model AIC

Mean
estimate Minimum Maximum

Mean
standard
deviation Coverage

[1, 2, 3]x

0.0 0.06 1619 500.0 475.4 525.4 7.53 94.0
0.1 0.11 1608 497.1 472.8 519.1 7.37 90.7
0.2 0.17 1598 494.2 470.4 519.4 7.21 82.2
0.3 0.22 1589 491.3 467.6 516.7 6.98 72.0
0.4 0.28 1579 488.6 461.2 513.4 6.87 57.9
0.5 0.34 1569 485.8 458.7 506.5 6.71 45.7
1.0 0.62 1512 471.6 444.5 499.2 5.97 3.4

[12, 3]x

0.0 0.06 1621 500.2 474.2 527.3 7.92 94.4
0.1 0.11 1608 500.1 473.3 527.3 8.20 95.3
0.2 0.17 1594 499.9 472.2 525.9 8.48 94.2
0.3 0.22 1576 500.0 473.7 528.0 8.71 95.6
0.4 0.28 1554 500.4 470.0 536.1 9.10 94.3
0.5 0.34 1527 500.6 468.5 528.2 9.41 93.9
1.0 0.62 1298 500.3 467.5 538.6 11.00 94.8

[12, 13]x
0.0 0.06 1623 501.7 472.7 561.5 12.50 94.9
0.1 0.11 1610 502.3 467.7 584.6 13.70 92.6
0.2 0.17 1596 501.9 464.1 589.8 14.80 92.5
0.3 0.22 1578 502.5 463.3 579.3 16.32 94.0
0.4 0.28 1556 503.9 460.7 598.7 18.72 94.0
0.5 0.34 1529 505.2 457.5 636.1 21.90 93.8
1.0 0.62 1302 597.2 555.0 633.0 862729.30 100.0
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shown using simulations (for capture–recapture problems without covariates) that it tends
to pick the data generating model more frequently (Stanley and Burnham, 1998: 492).

Both sets of analyses show that there is dependence between LVR1 and LNR
(Table 3). The AICs show that models incorporating delivery weight fit much better
than the log-linear models. After the inclusion of delivery weight the standard errors are
larger, implying that there is extra uncertainty in the estimate of the population size.
The best models (M5b and M7b) show that even after the inclusion of covariates the
dependence between LVR1 and LNR persists.

A cause for concern is that the estimated population sizes for the models are different
even though the model fits are similar. In this situation, basing inferences on M5b or M7b
alone is risky (Hoeting et al., 1999: 383). To overcome this concern, we propose to
incorporate model uncertainty into our estimates using the model averaging approach
detailed in Burnham and Anderson (2002). This approach allows for model selection
uncertainty to be incorporated into the standard errors and reduces bias in the parameter
estimates in cases when there are a number of models with similar AICs with (substantially)
different estimates of the population size and=or their standard errors. All the models with
covariates had support from the data using the rough guide from Burnham and Anderson
(2002: 171). The model averaged estimate of the population size computed from the models
incorporating covariates is 214 deliveries with a standard error of 41.94 deliveries, implying
the log-based confidence interval is [168, 367].

Table 4 presents the parameters for the best models, that is, models M5b and M7b. To
interpret the parameters in Table 4, we focus on the significant parameter estimates for
delivery weight l̂2j, as the parameter estimates l̂1j play the role of intercepts. The parameter
estimate l̂24 in model M5b shows that the probability of being listed in both LVR1 and

Table 3 Estimates of population size for the covariates models

Model
Design
matrixa

Covariate
matrix AIC

Estimated
population V̂1 V̂2 95% C.I.b

Without delivery weight
M1a [1, 2, 3] 1 524.6 217 197 101 [190, 260]
M2a [12, 3] 1 526.3 207 357 83 [178, 264]
M3a [13, 2] 1 522.9 202 170 74 [179, 242]
M4a [1, 23] 1 523.8 234 439 136 [198, 295]
M5a [12, 13] 1 522.6 183 172 43 [164, 225]
M6a [12, 23] 1 525.6 246 2143 164 [188, 391]
M7a [13, 23] 1 523.3 214 374 96 [183, 272]
M8a [12, 13, 23] 1 524.6 184 762 44 [157, 289]

With delivery weight (D)
M1b [1, 2, 3] 1 þ D 510.1 212 200 95 [187, 256]
M2b [12, 3] 1 þ D 507.6 211 459 91 [179, 276]
M3b [13, 2] 1 þ D 508.0 199 194 70 [175, 241]
M4b [1, 23] 1 þ D 505.8 236 599 154 [196, 308]
M5b [12, 13] 1 þ D 503.9 183 192 44 [163, 227]
M6b [12, 23] 1 þ D 506.2 274 9835 245 [180, 646]
M7b [13, 23] 1 þ D 503.9 226 921 133 [184, 319]
M8b [12, 13, 23] 1 þ D 506.8 193 1437 59 [158, 341]

a1 is LVR1, 2 is LVR2 and 3 is LNR.
bConfidence intervals computed on the log scale; refer Chao (1987: 787). Using asymptotic confidence
intervals results in some lower endpoints being less than the observed sample.
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LVR2 decreases with increasing birth weight, whereas l̂21 shows that the probability of
being listed in LVR1 increases with increasing birth weight. This simply confirms a feature
of the databases, as high risk pregnancies (mostly with a low delivery weight) are more
likely to be referred by the midwife than births with a normal delivery weight.

The parameters of model M7b show another feature of our databases. For instance,
l̂25 shows that the probability of being listed both in LVR2 and in LNR increases with
increasing delivery weight. In the same model, l̂22 shows that the probability of being
listed in LVR2 decreases with increasing delivery weight.

All these logits confirm our expectations, as children with a low delivery weight are
more likely to be referred by the midwives (who report to LVR1) to the obstetricians
(reporting to LVR2) than children with normal delivery weight, leading to a high
probability to be in both lists for children with a low birth weight. Children with a
normal delivery weight are also more likely to be taken to paediatric departments (who
report to LNR) in the first 28 days of life. Children with abnormally low delivery
weight are more likely to die or are still born.

To compare our estimates to other approaches proposed in the literature, for
example the Rasch model (Agresti, 1994; Darroch et al., 1993) we discretized the
continuous variable delivery weight into a binary variable D�, such that

D� ¼
0, if D < 2:5 kg
1, if D�2:5 kg

�

The resulting data are shown in Table 5. The log-linear model with the minimum AIC
for the data in Table 5 includes the interactions LVR1:LVR2 and LVR1:LNR. The AIC

Table 4 Parameters for the models with the lowest AICs

L entry Parameter Estimate s.e. z-value P-value

Model M5b

l11 LVR1 �2.826 1.386 �2.039 0.041
l12 LVR2 0.108 1.075 0.101 0.920
l13 LNR �1.760 0.849 �2.074 0.038
l14 LVR1 � LVR2 2.675 1.397 1.915 0.056
l15 LVR1 � LNR �1.760 1.643 �1.071 0.284
l21 LVR1:D 1.066 0.471 2.262 0.024
l22 LVR2:D �0.017 0.372 �0.047 0.963
l23 LNR:D 0.387 0.303 1.276 0.202
l24 ½LVR1 � LVR2�:D �1.172 0.477 �2.456 0.014
l25 ½LVR1 � LNR�:D 0.174 0.522 0.333 0.739

Model M7b

l11 LVR1 �0.064 0.607 �0.105 0.917
l12 LVR2 2.957 0.936 3.159 0.002
l13 LNR 0.935 1.244 0.752 0.452
l14 LVR1 � LNR �3.438 1.727 �1.991 0.046
l15 LVR2 � LNR �2.556 1.360 �1.880 0.060
l21 LVR1:D �0.164 0.246 �0.670 0.503
l22 LVR2:D �1.282 0.320 �4.006 0.000
l23 LNR:D �0.800 0.427 �1.873 0.061
l24 ½LVR1 � LNR�:D 0.960 0.556 1.728 0.084
l25 ½LVR2 � LNR�:D 1.110 0.458 2.424 0.015
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for this model is 24.9, and 183 is the estimated number of deliveries with an NTD.
Although there is little difference between this model and model M5b in Table 3, some
of the log-linear models with the discretized variable had an undefined estimate of the
population size.

The Rasch model expressed as a log-linear model of quasi-symmetry (Darroch et
al., 1993) fitted poorly with an AIC of 34.0 and an estimate of 190 deliveries.
Refinements of the Rasch model (Darroch et al., 1993: 1143) did not fit better than
the log-linear model with the lowest AIC. The Rasch model can also be defined by
assuming that the subjects are homogeneous within a set of latent classes (Bartolucci
and Forcina, 2001: 715). A model of this form with two latent classes resulted in
an AIC of 47.8 and an estimate of the population size of 219. The algorithms used to
fit this model are freely downloadable from http:==www.stat.unipg.it=�bart=
software.html. Owing to lack of degrees of freedom, we did not consider the ordinary
latent class model.

In summary, as the Rasch model do not fit better than the log-linear model with the
lowest AIC, we conclude that the lists are not of the same kind (International Working
Group for Disease Monitoring and Forecasting, 1995a: 1053). In essence, this implies
that some of the lists are connected, such that conditionally on a latent class, the
probability of appearing in a given list is larger (or smaller), if the subject already
appears in a related list (Bartolucci and Forcina, 2001: 715).

7 Conclusion and discussion

We extended the widely used conditional likelihood approach of Alho (1990) and
Huggins (1989) by including residual dependence between lists when there are three or
more sources for models incorporating continuous covariates. Thus rather than
stratifying observable covariates and then fitting log-linear models, we have shown
that it is possible to use the observable covariates in their measurement scale. This
approach is particularly useful in epidemiology where minimal information is usually
collected for each person by each registry resulting in omission of a number of variables
that might explain the inclusion to each of the registries. In this instance, dependence
will remain even after controlling for the observed variables.

Notice that although we use model averaging to arrive at one estimate of the
population size, the performance of the model averaging approach has not been

Table 5 Overlap information for delivered children

Delivery

Ascertainment historya

weight [1, 0, 0] [0, 1, 0] [0, 0, 1] [1, 1, 0] [1, 0, 1] [0, 1, 1] [1, 1, 1] Total

<2.5 kg 4 17 4 14 0 4 1 44
�2.5 kg 39 20 12 10 7 13 3 104

aThe first element of the ascertainment profile refers to LVR1, the second to LVR2 and the third to LNR (1 is
present and 0 is absent).
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evaluated for models incorporating covariates (Stanley and Burnham, 1998: 402). This
remains a topic of further study.

From simulations, we observed that not accounting for dependencies in registrations
(when they exist) after controlling for covariates leads to biased estimates of both the
population size and the standard errors. This is more pronounced when the dependence
between the lists is strong. Furthermore, with increasing number of lists, even at low
levels of positive dependence the estimate of population size and its standard error are
underestimated, resulting in very poor coverage levels.

It is worth mentioning that the method presented accounts only for observed
heterogeneity, where the covariates defining heterogenous catchability are continuous
(or a mixture of continuous and categorical variables). Using this approach enables
parsimonious parameterization and thus the precision of all parameter estimates is
increased (Pollock, 2002: 86). Our approach is different from the approaches of
Bartolucci and Forcina (2001), Darroch et al., (1993) and Stanghellini and Van der
Heijden (2004) among others, where both observed heterogeneity (owing to only
categorical covariates) and unobserved heterogeneity are taken into account. It would
be interesting to develop models where unobserved and observed heterogeneity owing
to continuous covariates are taken into account.
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