
Using attribute grammars to derive

e�cient functional programs�

M.F. Kuiper and S.D. Swierstra

Department of Computer Science, University of Utrecht

P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
email: kuiper@cs.ruu.nl

Abstract

Two mappings from attribute grammars to lazy functional programs

are de�ned. One of these mappings is an e�cient implementation of

attribute grammars. The other mapping yields ine�cient programs. It is

shown how some transformations of functional programs may be better

understood by viewing the programs as ine�cient implementations of

attribute grammars.

1 Introduction

The transformational approach to programming starts with writing very clear
and obviously correct programs. These programs are usually not very e�cient.
The e�ciency of the programs is improved by applying successive transforma-
tions.

In this article we show that rewrite rules employing tupling[11] and deriving
circular programs can be more easily expressed using attribute grammars[9,
10]. The method we decsribe also results in a form of common subexpression
elimination.

We de�ne two mappings from attribute grammars to functional programs.
One of these mappings, SIM, yields programs that visit the nodes of a cer-
tain data structure usually more than once. The other mapping, CIRC, yields
programs that visit the nodes of the same structure at most once. So a func-
tional program that is the image of an attribute grammar A under SIM can be
transformed into a possibly more e�cient program by applying CIRC to A.

�This paper was published in the Conference Papers of CSN'87: Computing Science in

the Netherlands. Published by SION in 1987.

1

Mapping CIRC can also be used to implement attribute grammars. CIRC
yields attribute evaluators that visit each node of a structure tree only once
and that perform no reevaluations of attribute values.

1.1 An example

The following example has been taken from [1]. The problem is to write a
program that takes as input a non-empty binary tree t. Every leaf of t is
labeled with an integer value. The output of the program must be a tree t0

with the same structure as t but every leaf in t0 is labeled with the minimum
of the leaf values in t.

A tree is either a leaf with a value n, denoted by (tip,n), or a node with
two subtrees, denoted by (fork,l,r). A straightforward functional program (Fig-
ure 1) consists of two functions, tmin and replace. Function tmin computes the
minimum of the tip values of a tree. Function replace replaces in a tree all
tip values by a given value. By combining these two functions the problem is
solved.

tmin (tip,n) = n
tmin (fork,l,r) = min (tmin l) (tmin r)

replace (tip,n) min in = (tip,min in)
replace (fork,l,r) min in

= fork (replace l min in) (replace r min in)

RESULT t = replace t (tmin t)

Figure 1: algorithm 1

In Algorithm 1 the nodes of the tree are visited twice i.e. the algorithm
inspects the type of each node twice. Bird [1] uses various rewrite techniques
to obtain a solution that visits every node of the tree only once. We will call
such a solution a one touch solution.

A di�erent way to obtain a one touch solution is to write an attribute
grammar for the input trees. The values of the functions tmin and replace are
attached as attribute values to the nodes of the tree (Figure 2). The attribute
grammar consists of three productions, numbered 0 to 2. The left hand side
and the right hand side of a context free production are separated by an arrow.
Attribution rules are written between curly brackets and immediately follow
the context free rule. Attribute a of nonterminal L is refered to as L.a. If
a context free rule contains more than one occurrence of a non-terminal then
their uses in the attribution rules are indexed, starting with 0.

2

0 : L ! tip
f L.tmin := tip.n ; L.replace := tip(L.min in) g.

1 : L ! L L
f L[0].tmin := min(L[1].tmin,L[2].tmin)
; L[0].replace := fork(L[1].replace,L[2].replace)
; L[1].min in := L[0].min in
; L[2].min in := L[0].min in g.

2 : ROOT ! L
f ROOT.replace := L.replace
; L.min in := L.tmin g.

Figure 2: an attribute grammar for the problem

This non-circular attribute grammar can be mapped to a set of functions
(Figure 3). For every non-terminal X in the grammar a function eval X is
created. Eval X takes as arguments a structure tree and the inherited attributes
of X. The result of eval X is a list of the synthesized attributes of X. In an
attribute grammar it is perfectly possible for an inherited attribute of a non-
terminal to depend on some of the synthesized attributes of that same non-
terminal. This will result in seemingly cyclic de�nitions where an argument
in a function call depends on the result of that same call. In the example a
cyclic de�nition occurs in the where-part of eval ROOT. With our method such
counterintuitive constructs are easy to understand and easy to write.

eval L (tip,n) min in = (n,(tip,min in))
eval L (fork,l,r) min in

= (min m1 m2 ,(fork,r1,r2))
where (m1,r1) = eval L l min in

(m2,r2) = eval L r min in

eval ROOT t = r
where (m,r) = eval L t m

Figure 3: a one touch solution

In this article we formally show how to use the mappings from attribute
grammars to functional programs. Attribute grammars are de�ned in the sec-
ond section. Then, in section 3, it is shown how to implement attribute evalua-

3

tors that do not perform an explicit tree walk on a structure tree. In section 4
the mappings from section 3 are used to rewrite functional programs. Section
5 contains a comparison with related work.

2 Attribute grammars

In this section attribute grammars are de�ned. The de�nitions are taken,
almost literally, from [14].

2.1 De�nitions

A context free grammar G = (T;N; P; Z) consists of a set of terminal symbols
T , a set of non-terminal symbols N , a set of productions P and a start symbol
Z 2 N .

When evaluating attributes we are not interested in the concrete syntax.
Semantic analysis takes place using the abstract syntax. A structure tree obeys
the abstract syntax. We assume that G describes the abstract syntax. To every
node in a structure tree corresponds a production from G.

De�nition 2.1 An attribute grammar is a 4-tuple AG = (G;A;R;B). G =

(T;N; P; Z) is a context free grammar. A =
[

X2T[N

A(X) is a �nite set of

attributes, R =
[
p2P

R(p) is a �nite set of attribution rules and B =
[
p2P

B(p)

is a �nite set of conditions. A(X) \ A(Y) 6= ; implies X = Y . For each
occurrence of non-terminal X in the structure tree corresponding to a sentence
of L(G), exactly one rule is applicable for the computation of each attribute
a 2 A(X).

Elements of R have the form

X:a := f(: : : ; Y:b; : : :):

In this attribution rule, f is the name of a function, X and Y are non-terminals
and X:a and Y:b denote attributes. We assume that the functions used in the
attribution rules are strict.

De�nition 2.2 For each p : X0 ! X1 : : : Xn 2 P the set of de�ning occur-
rences of attributes is AF (p) = fXi:ajXi:a := f(: : :) 2 R(p)g. An attribute X.a
is called synthesized if there exists a production p : X ! � and X.a is in AF(p);
it is inherited if there exists a production q : Y ! �X� and X:a 2 AF (q).

AS(X) is the set of synthesized attributes of X. AI(X) is the set of inherited
attributes of X.

4

De�nition 2.3 An attribute grammar is complete if the following statements
hold for all X in the vocabulary of G:

� For all p : X ! � 2 P;AS(X) � AF (p)

� For all q : Y ! �X� 2 P;AI(X) � AF (q)

� AS(X) [AI(X) = A(X)

� AS(X) \ AI(X) = ;

Further, if Z is the root of the grammar then AI(Z) is empty.

De�nition 2.4 An attribute grammar is well de�ned (WAG) if, for each struc-
ture tree corresponding to a sentence of L(G), all attributes are e�ectively com-
putable. A sentence of L(G) is correctly attributed if, in addition, all condi-
tions yield true.

De�nition 2.5 For each p : X0 ! X1 : : : Xn 2 P the set of strict attribute
dependencies is given by

DDP (p) = f(Xi:a;Xj :b)jXj :b := f(: : : Xi:a : : :) 2 R(p)g

The grammar is locally acyclic if the graph of DDP(p) is acyclic for each p 2 P .

De�nition 2.6 Let S be the attributed structure tree corresponding to a sen-
tence in L(G), and let K0 : : :Kn be the nodes corresponding to an applica-
tion of p : X0 ! X1 : : : Xn. The set DT (S) = fKi:a ! Kj :bjXj :b :=
f(: : :Xi:a : : :) 2 R(p)g, where we consider all applications of productions in S,
is called the dependency relation over the tree S. The dependency graph of S,
DG(S), is the graph of the relation DT (S).

The following theorem gives another characterization of well-de�ned attri-
bute grammars. A proof can be found in [14].

Theorem 2.1 An attribute grammar is well-de�ned i� it is complete and the
graph DG(S) is a-cyclic for each structure tree S corresponding to a sentence
of L(G).

3 Functional implementations of attribute gram-

mars

Attribute grammars are used to specify the semantics of programming lan-
guages. They specify the computation of attribute values attached to nodes in
a structure tree. An attribute grammar can be transformed into a compiler[6].
A compiler based on attribute grammars usually consists of two parts: the �rst

5

part parses the input and builds a structure tree; the second part, the attri-
bute evaluator, decorates the structure tree i.e. it evaluates attributes that are
attached to the nodes of the tree. Traditional implementations of attribute
grammars perform a tree walk on the structure tree. Nodes in the structure
tree are visited. During each visit to a node a subset of the attributes attached
to the node is evaluated.

An alternative way to structure a compiler based on attribute grammars
is to let the �rst part of the compiler construct the dependency graph of the
structure tree of the input program. The second part of the compiler will
reduce the constructed graph. Nodes in the graph correspond with attribute
occurrences. A node that corresponds to an attribute a is labelled with the
semantic function de�ning the value of a. If attribute a directly depends on
attribute b there will be an arc from the node corresponding with a to the node
corresponding with b.

An attribute evaluation scheme that explicitly constructs the dependency
graph and then reduces this graph will be called a 2-phase attribute evaluation
scheme. The �rst phase builds the graph. The second phase reduces the graph.

In this approach attribute values are viewed as terms. A term is either
a basic value or a function applied to a list of terms. The basic values in
the terms are the basic values in the attribute grammar, like integers and
characters. The function symbols in the terms are the names of the semantic
functions in the attribute grammar. An attribute evaluator must compute the
synthesized attributes of the root of a structure tree. The dependency graph
is a representation of these attributes.

We will, from now on, abstract from the use of attribute grammars in com-
piler generation. We consider attribute grammars as describing computations
of values attached to nodes in a labelled tree.

3.1 A circular implementation of attribute grammars

The 2-phase attribute evaluation scheme can be implemented in a functional
language with lazy evaluation and local de�nitions. In this article SASL [13] will
be used. We will de�ne the mapping CIRC that maps an attribute grammar
into a functional program. CIRC constructs a SASL program that takes as
input a structure tree corresponding to the underlying context free grammar
of the attribute grammar. Trees are represented in SASL as lists. Every node
consists of a marker and other lists representing the subtrees of the node. The
marker in a node determines the applied production rule.

The pattern matching facility of SASL is used to distinguish between dif-
ferent productions with the same left hand side non-terminal. We will anly use
simple forms of patterns. In our programs patterns are denotations of �nite
lists; the �rst element is the marker, which is a constant; the other elements
are identi�ers. The use of patterns in the function de�nitions is not essential.

6

The di�erent productions of a non-terminal can also be distinguished in the
body of the functions by using conditional expressions.

Assume that an attribute grammar AG=(G,A,R,B) is given, and B=;. As-
sume, without loss of generality, that for all X in N

AI(X) = fX:inh0; : : : ; X:inhkX�1g

and
AS(X) = fX:s0; : : : ; X:slX�1g:

So X has kX inherited and lX synthesized attributes.
A non-terminal N0 is translated into a SASL function eval N0. The �rst

argument of eval N0 is a labelled tree. Production p : N0 ! N1 : : : Nn is
translated into a de�nition for eval N0:

eval N0 (p; L1; : : : ; Ln) inh
0

0
: : : inh0kN0

= (s0
0
; : : : ; s0lN0�1

)

where BODY(p)

BODY(p) is the translation of R(p), the attribution rules for p. For every
attribution rule , de�ning a synthesized attribute of N0,

N0:sj := f(: : :)

in R(p), BODY(p) contains a SASL de�nition

s0j = f(: : :).

For every attribution rule, de�ning an inherited attribute of Nj (1 � j � n),

Nj :inhi := f(: : :)

in R(p), BODY(p) contains a SASL de�nition

inh
j
i = f(: : :).

Occurrences of Nj :si and N0:inhl in f(: : :) are replaced by sji and inh
0

l respec-
tively. For every Nj , 1 � j � n, BODY(p) contains a de�nition

(sj
0
; : : : ; s

j

lNj�1
) = eval Nj Lj inh

j
0
: : : inh

j

kNj�1

Theorem 3.1 Let AG be a WAG, and let S be a structure tree obeying the
context free grammar of AG. The execution of CIRC(AG) with input S termi-
nates.

Proof: The SASL program CIRC(AG) contains two kinds of functions: the
eval functions and the semantic functions.

7

First note that the eval functions never cause non-termination. They split
their �rst argument, a �nite structure tree, in smaller parts and pass these to
the eval-functions in their body.

The semantic functions are strict by de�nition. They do not terminate
if they are called with a non-terminating argument or if they cause in�nite
recursion. If the latter happens then AG contains an error. So, to show that
the execution of CIRC(AG) terminates, it must be shown that the semantic
functions are always called with well de�ned arguments.

With the call of a function in BODY(p) corresponds a piece of the depen-
dency graph DG(S). Suppose that BODY(p) is evaluated during the execution
of CIRC(AG) S. If BODY(p) contains the de�nition

a = f(: : : ; b; : : : ; c; : : :)

then DG(S) contains nodes corresponding with a,b and c (say �, � and
);
furthermore DG(S) contains arrows from � to � and from
 to �.

So if the computation of CIRC(AG) S leads to a in�nite sequence of function
calls then DG(S) must contain a cycle. This contradicts the assumption that
AG is WAG. 2

The case B 6= ; is an easy extension of the case B = ;; the result of an
eval function is extended with a boolean value. This boolean value indicates
whether all conditions in the tree passed to this function yielded true.

4 Using attribute grammars to derive functional

programs

Mapping CIRC can be used to implement attribute grammars. In this section
we will de�ne another mapping, SIM, from attribute grammars to functional
programs. SIM can also be applied to all well de�ned attribute grammars.
SIM is however too ine�cient to act as a realistic implementation of attribute
grammars. SIM and CIRC can be used in the derivation of e�cient func-
tional programs. A functional program that is the image of AG under SIM is
usually ine�cient: nodes in the structure may be visited more than once and
attributes may be evaluated more than once. A more e�cient program, equiv-
alent with SIM(AG) can be derived by applying CIRC to AG. The strategy in
transforming a functional program F is: �rst �nd an attribute grammar AG
such that F=SIM(AG) and then apply CIRC to AG. Program F0=CIRC(AG)
is equivalent with F

SIM maps every synthesized attribute to a function. For every synthesized
attribute N.s of AG, SIM(AG) contains a function eval N.s. Eval N.s takes as
arguments a structure tree and all the inherited attributes of N0. If

� s is a synthesized attribute of non-terminal N0 which depends on v other
attributes,

8

� p : N0 ! N1 : : : Nn 2 P and

� SF(p) contains N0:s := h(: : :)

then SIM(AG) contains the de�nition

eval N.s (p; L1; : : : ; Ln) a0 : : : av�1 = h(: : :)

where BODY 0(N:s)

For every de�nition of an inherited attribute

Nj :inh� := g�(: : :)

in SF(p), BODY 0(N:s) contains a de�nition

inhj� = g�(: : :).

For every synthesized attribute Nj :s� , 1 � j � n, BODY 0(N:s) contains a
de�nition

s
j

� = eval Nj :s� Lj inh
j
0
: : : inh

j

kj�1
.

Figure 1 contains an example of an image of SIM. This is a rather typical
example. The images of SIM contain a lot of functions each working on the
entire structure tree. As can be seen in the example the structure tree is
visited more than once. The example does not show that during the execution
of SIM(AG) attribute values might be computed more than once.

To apply our method of transforming functional programs it is necessary
to �nd, given a functional program F, an attribute grammar AG such that
F=SIM(AG). We �rst need some terminology. In this section we use the word
function to denote a function de�ned in some functional program F. If a func-
tion de�nition has the form

f hpatternihother-argumentsi= hexpression i

then we say that the function f is de�ned with pattern hpatterni and that
hpatterni is used in the de�nition of f . Note that there usually will be more than
one de�nition of f , with di�erent patterns. The function tmin from Algorithm 1
is de�ned with patterns (fork,l,r) and (tip,n). Two functions are called pattern
equivalent if they are de�ned with the same set of patterns. Likewise two
patterns p0 and p1 are called function equivalent if the set of functions de�ned
with p0 and the set of functions de�ned with p1 are equal. Clearly these two
relations are equivalence relations. We let NF

g denote the set of functions that

are pattern equivalent with function g; NP
r denotes the set of patterns that are

function equivalent with r. We will use Nx for either NF
x or NP

x if it can be
deduced from the context which set is meant.

To construct AG from F, assuming F=SIM(AG), we must �rst of all de�ne
the nonterminals of the grammar. Nonterminals are represented in F in two

9

di�erent ways; in the patterns and in the functions. The patterns in the pro-
gram correspond to context free productions in the grammar. The left hand
sides of these productions are nonterminals. The nonterminals are also repre-
sented by the functions implementing their synthesized attributes (the eval N:s
from the de�nition of SIM). There is a close connection between these two rep-
resentations. In F the functions implementing the synthesized attributes of
nonterminal X are de�ned with patterns whose productions have as lefthand
side that same nonterminal X. This connection is the key to inverting SIM.

Lemma 4.1 Let F be a functional program and AG be an attribute grammar.
If F=SIM(AG) then there exists a bijection ' from fNF

f j f is a function in F

g to fNP
p j p is a pattern used in F g such that '(NF

f) = NP
p implies that f is

de�ned with p.

Proof: Let N be the set of nonterminals from AG. Then every f in F
corresponds to a synthesized attribute of a nonterminal in N . Let �F be the
mapping that assigns to a function the nonterminal it corresponds with. Every
pattern used in a function de�nition in F is associated with a context free
production from AG. Let �P be the mapping that assigns to a pattern p the
lefthand side nonterminal of the production that is associated with p. Mapping
' de�ned by

'(Nf) = Np () �F (f) = �P (p)

is the required bijection. 2
For the de�nition of SIM�1 we need some further terminology. A function

de�nition is in normal form if it has the form

hfunction-identi�eri hpatterni hargument-identi�eri�
=hresult-identi�eri
where

(hidenti�eri = hfunction-identi�eri fhpatternig hidenti�eri�)�

A function is called a pattern function if all its de�nitions contain a pat-
tern. A function is called a semantic function if none of its de�nitions contains
a pattern. We let patf (semf) stand for a pattern function (semantic function).
A subpattern is a Li occurring in pattern (m;L0; : : : ; LK�1). A terminal pat-
tern is a pattern whose subpatterns are passed to semantic functions only. A
nonterminal pattern is a pattern whose subpatterns are passed to pattern func-
tions only. Subpatterns of a terminal pattern stand for synthesized attributes
of terminals, in nonterminal patterns they stand for sub trees of a structure
tree.

Theorem 4.1 Let F be a set of function de�nitions in normal form. F is the
image of an attribute grammar AG under SIM i�

1. there exists a bijection ' from fNf j f is a function in F g to fNpj p is a
pattern used in F g such that '(Nf) = Np implies that f is de�ned with
p.

10

2. if Nf = Ng then f and g have the same number of arguments.

3. global functions are not partially parameterized.

4. a function that is called twice with the same pattern in the same where-
clause is called with exactly the same identi�ers as arguments

5. a pattern is either a terminal pattern or a nonterminal pattern

6. each subpattern is passed as argument to global functions of the same
equivalence class only.

Proof: =) From the de�nition of SIM and lemma 4.1.
(= Suppose the conditions hold. De�ne AG by:

nonterminals the set of nonterminals is N = fNF
f j f is a function in F g

terminals the set of terminals T = fTpatjpat is a terminal pattern in Fg.

productions let pat = (m;L0; : : : ; LK�1) be a pattern used in F. If pat is a
nonterminal pattern then AG contains a production

m : NP

pat ! NL0
... NLK�1

where NLj is de�ned as the equivalence class of the function to which Lj
is passed as an argument. If pat is a terminal pattern then AG contains
a production

m : NP

pat ! Tpat

synthesized attributes NonterminalNf has a synthesized attributeNf :g for

all g 2 Nf . Terminal Tpat has a synthesized attribute Tpat:n for each
subpattern n of terminal pattern pat.

inherited attributes Nonterminal Nf has k inherited attributes Nf :inhi,0 �
i < k, if a de�nition of f contains k argument-identi�ers.

attribution rules Let

f p (m;L0; : : : ; LK�1) a0 : : : av�1 = r where where-clause

be a de�nition from F. TR(x) is the translation of identi�er x occurring
in the where-clause:

TR(x) =

8>>>><
>>>>:

semf : : :TR(y) : : : if x = semf : : : y : : : is the de�ning
occurrence of x

Npatf :patf if x = patf Lj : : : is the de�ning

occurrence of x
Nf :inhj if x is an argument identi�er

11

If x is the result-identi�er of f and the where-clause contains the def-
inition x = semf : : : y : : : then the attribution rules contain Nf [0].f :=
semf : : : TR(y) : : :. For every de�nition x = patf Lj arg0 : : : argM�1

the
attribution rules contain Npatf [l]:inhi := TR(ai) (0 � i < M) where l is

the the number of elements from NLj in the sequence (m;L0; : : : ; LK�1);
L0; : : : ; Lj�1. if x is the result-identi�er of f then the attribution rules
will also contain Nf [0]:f := Npatf :patf .

From the conditions it follows that the above is the de�nition of an attribute
grammar. It is straightforward to check that, after renaming some identi�ers,
F=SIM(AG). 2

In the remainder of this section we will demonstrate our technique with a
simple example. The problem[4] is to �nd the deepest nodes of a tree. A tree
may have many leaves at the same depth so the result is a list of leaves. The
program we derive is lazy: only lists that are needed to construct the answer
are computed. The �rst and ine�cient solution consists of two functions, depth
and front.

depth (tip,n) = 0
depth (fork,l,r) = 1 + max (depth l) (depth r)

front (tip,n) = (n,)
front (fork,l,r) = depth l > depth r ! front l

depth l < depth r ! front r
depth l = depth r ! front l + front r

The functions depth and front are pattern equivalent, and the patterns (tip; n)
and (fork; l; r) are function equivalent so the grammar has only one nonter-
minal. We will call this nonterminal L. Since (tip; n) is a terminal pattern

the grammar has one terminal T (tip,n). We will call this terminal tip. The
grammar has two context free productions, one for pattern (tip; n) and one for
pattern (fork; l; r):

0 : L ! tip
1 : L ! L L

L has two synthesized attributes L:depth and L:front, but no inherited at-
tributes since depth and front have no other arguments besides the patterns.
The functions are not in the normal form required by the theorem but can be
brought in this form by introducing some new identi�ers. As an example a
normal form for depth is

depth (fork,l,r) = r
where r = 1 + max y z

12

y = depth l
z = depth r

Following the construction in the proof of theorem 4.1, substituting L for
Ndepth , we get TR(y) = L[1]:depth and TR(z) = L[2]:depth. The attribution

rules attached to production 1 will contain

L[0]:depth := 1 + TR(y) TR(z)

The corresponding attribute grammar can be easily constructed:

0 : L ! tip fL.depth := 0; L.front := list(n) g.

1 : L ! L L fL[0].depth := 1 + max(L[1].depth,L[2].depth)
;L[0].front := L[1].depth > L[2].depth ! L[1].front

L[1].depth < L[2].depth ! L[2].front
L[1].depth = L[2].depth !

append(L[1].front,L[2].front)g.

Now we can apply CIRC to derive the e�cient solution:

eval L (tip,n) =(0,n)
eval L (fork,l,r) =(1 + max l depth r depth,

l depth > r depth ! l front
l depth < r depth ! r front
l depth = r depth ! l front + r front)
where (l depth,l front) = eval L l

(r depth,r front) = eval L r

5 Related work and conclusions

Other researchers have also described methods to translate attribute gram-
mars into functions or procedures. Jourdan[5] gives a mapping from attribute
grammars to functions. His target language is a non-lazy functional language.
His translation yields a correct implementation for the class of absolutely non-
circular attribute grammars[8]. Katayama[7] translates attribute grammars
into Pascal procedures. In his scheme attributes may be evaluated more than
once, although he claims otherwise. An overview of these and other evaluation
techniques is given in[3].

Deransart and Maluszynski[2] use attribute grammars to analyse logic pro-
grams. They derive conditions under which a Prolog program allows a non-
standard, but e�cient, evaluation strategy.

13

Takeichi[12] obtains one touch algorithms by introducing higher order func-
tions.

The main conclusion of this article must be that attribute grammars can be
used to derive e�cient functional programs. Whether the mapping CIRC is a
feasible implementation of attribute grammars largely depends on the e�ciency
of functional language implementations and is beyond the scope of this article.

References

[1] R.S. Bird. Using circular programs to eliminate multiple traversals of data.
Acta Informatica, 21:239{250, 1984.

[2] P. Deransart and J. Maluszynski. Relating Logic Programs and Attribute
Grammars. Technical Report 393, INRIA, April 1985.

[3] J. Engelfriet. Attribute grammars: attribute evaluation methods. In B.
Lorho, editor, Methods and Tools For Compiler Construction, pages 103{
138, Cambridge University Press, 1984.

[4] J. Hughes. Lazy memo-functions. In J-P. Jouannaud, editor, Func-
tional Programming Languages and Computer Architecture, pages 129{
146, Springer, 1985.

[5] M. Jourdan. An E�cient Recursive Evaluator for Strongly Non-circular
Attribute Grammars. Technical Report 235, INRIA, October 1983.

[6] U. Kastens, B. Hutt, and E. Zimmerman. GAG: A Practical Compiler
Generator. Springer, 1982.

[7] T. Katayama. Translation of attribute grammars into procedures.
TOPLAS, 6(3):345{369, July 1984.

[8] K. Kennedy and S.Warren. Automatic generation of e�cient evaluators
for attribute grammars. In Proceedings of third conference on POPL,
pages 32{49, ACM, 1976.

[9] D.E. Knuth. Semantics of context-free languages. Math. Syst. Theory,
2(2):127{145, 1968.

[10] D.E. Knuth. Semantics of context-free languages (correction). Math. Syst.
Theory, 5(1):95{96, 1971.

[11] A. Pettorossi. Methodologies for Transformations and Memoing in Ap-
plicative Languages. PhD thesis, University of Edinburgh, October 1984.

[12] Masato Takeichi. Partial parametrization eliminates multiple traversals of
data structures. Acta Informatica, 24:57{77, 1987.

14

[13] D.A. Turner. A new implementation technique for applicative languages.
Software-practice and experience, 9:31{49, 1979.

[14] W.M. Waite and G.Goos. Compiler Construction. Springer, 1984.

15

