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SUMMARY

In multiple-record systems estimation it is usually assumed that all registration relate to the same
population. In this paper, we develop a method which can be used when the registrations relate to
di�erent populations, in the sense that they cover, for example, di�erent time periods or regions. We
show that under certain conditions ignoring that the registrations relate to di�erent populations results
in correct estimates of population size. The EM algorithm is presented as a method that can be used
for more general problems. The parametric bootstrap is used to construct a con�dence interval. The
proposed method is then applied to a data set with �ve registrations of neural tube defects, that cover
di�erent time periods. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Capture–recapture analysis was developed by ecologist for assessing the size of animal pop-
ulations in the wild [1]. The population size is estimated from the degree of overlap between
two or more samples obtained from the same population. In epidemiology, capture–recapture
methods are used to estimate or adjust for the extent of incomplete ascertainment using
information from overlapping cases from distinct sources [2, 3]. The common labels for the
methods in human populations are, multiple-system, multiple-records systems, and multiple-
record systems method [2].
For two overlapping samples (from the same population) the method is used to estimate the

part of the population that is not observed (individuals in neither of the two samples). This
estimation is accomplished under the assumption of independence of inclusion probabilities
[2, 3]. Another assumption is homogeneity of inclusion probabilities over individuals. Although
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it has been long thought that the inclusion probabilities for both lists should be homogeneous
[2], it has recently been shown that only one of the lists has to have homogeneous inclusion
probabilities when the joint capture probability is positive [4, 5].
Categorical covariates are frequently used to diminish heterogeneity of inclusion probabili-

ties, and for this log-linear models are widely used as it is possible to incorporate strati�ca-
tion variables, and permit dependence between sources when there are more than two sources
[6–8].
In this paper, we deal with a special case of heterogeneous inclusion probabilities, namely

the case where the populations from where the lists emanate partially overlap. This results
in some individuals being systematically missed by one or more of the lists. Therefore the
joint inclusion probabilities are zero for some individuals in the combined population. A �rst
example is that lists do not cover the same region. For this example, a stratum is de�ned as
a subregion, and not every list is observed in each subregion. A second example is when lists
do not cover the same time periods. Here the strata are de�ned as the subperiods of time.
We approach the absence of observations in certain strata for certain lists as an incomplete
data problem.
The EM algorithm [9] is an iterative procedure for obtaining maximum likelihood estimates

in incomplete data. In the standard capture–recapture problem the EM algorithm can be used to
estimate part of the population missed by all sources [10]. As we have partially overlapping
populations there are more entries missing in the contingency table than in the standard
capture–recapture problem. When some lists are not operating in some strata, implying that
there are several unobservable cells that are a result from non-operating lists, the EM algorithm
can still be used to estimate these missing entries, and thus the population size.
Section 2 introduces the data set that will be used to illustrate the results. In Section 3, we

present two simple capture–recapture models; the �rst with one list operating in a subperiod
of another list, and the other where the two lists operate in di�erent but partially overlapping
years (time periods). We show under which conditions strati�cation by year can be ignored.
We then present the EM algorithm in Section 4, and show how it can be used to estimate
population size in partially overlapping populations, and further show that for simple models
the results will be equivalent with using traditional methods. In Section 5 we analyse the
data set on neural tube defects which motivated this article. Finally, Section 6 gives some
conclusions.

2. DATA

In this section, we will introduce the data set on neural tube defects (NTD’s) in the Nether-
lands that will be used to illustrate the procedure presented in the paper. In the Netherlands
cases with NTD’s are registered in several national databases. Furthermore, the Dutch Asso-
ciation of Patients with a NTD also conducts its own surveys [11]. In this analysis, we will
use �ve registrations which we describe brie�y.

1. Dutch Perinatal Database I (R1): This is an anonymous pregnancy and birth registry of
low risk pregnancies and births, even if care only relates to a part pregnancy or delivery.
Data over the period 1988 through 1998 are used.

2. Dutch Perinatal Database II (R2): This list registers anonymous data concerning the
birth of a child in secondary care. Data over the period 1988 through 1998 are used.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2267–2281
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3. National Neonate Database (R3): This list contains anonymous information about all
admissions and re-admissions of newborns to paediatric departments within the �rst 28
days of life. Data was used for the period 1992–1998.

4. Dutch Monitoring System of Child Health Care (R4): R4 registers live born infants with
a NTD who visit a paediatrician for the �rst time. All paediatric departments participate.
NTD’s are registered since 1993.

5. Dutch Association of Patients with a NTD (R5): A short questionnaire was sent to
every member of R5 with a NTD a�ected child between 1988 and 1998.

Children were linked on date of birth, zip code, mother’s date of birth and gender of child
[11]. It should be noted that abortions are possible in R1 and R2, whereas they cannot appear
in the other registrations. Therefore, we consider only children with a pregnancy duration
from 24 weeks (the legal limit for pregnancy termination in the Netherlands).
None of these databases include all cases of neural tube defects because of, for instance,

non-participation of health care professionals. Thus multiple-record systems estimation has to
be used to estimate the size of babies born with NTD’s. The usual approach is to �t log-linear
models with a structural zero for the observations missed by all lists [3]. In our situation this
usual approach cannot be adopted as some of the registrations are not available for some
years: for 1988–1991 only three registrations are available (R1,R2,R5) and in 1992 only four
registrations are available (R1,R2,R3,R5). The frequencies for all years are given in Table I.
In 1988–1991, observations with an inclusion pro�le of 01000 also include observations that

could have been 01100, 01010, and 01110 had R3 and R4 been active. In 1992, observations
with an inclusion pro�le of 01100 also include observations that could have been 01110 had
R4 been active. Similar statements could be said for some other inclusion pro�les.
In the next sections, we show that the EM algorithm is a tool which can e�ectively analyse

data of this form, by utilizing information on relations between registrations while stratifying
by year. We start by showing for simple cases what can go wrong when one ignores the fact
that the registrations do not come from the same population.

3. CAPTURE–RECAPTURE METHODOLOGY

In this section, we discuss the problem of estimating population size in ‘dual record sys-
tems’ when the registrations relate to di�erent but overlapping populations, for example, the
registrations may cover di�erent but overlapping time periods. In particular, we study what
happens if this fact is ignored, that is, if it is assumed that both registrations refer to the
same population. We show one example where the union of the two populations is estimated
unbiased, and one where the resulting estimate is biased. This then serves as a motivation for
a general solution discussed in Section 4.

3.1. Simple capture–recapture model

The simplest multiple-record systems consists of two lists. Let �1 and �2 be the probability of
capture by list 1 and 2, respectively. The joint probabilities are denoted by �ij (i=0; 1; j=0; 1),
where �10 is the probability to be in list 1 only, �01 is the probability to be in list 2 only
and, �11 is the probability to be in both lists. The corresponding frequencies are shown in
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Table II. Dual-record system problem.

List 2

List 1 Not included Included

Not included 0∗ n01
Included n10 n11

∗Treated as structurally zero cell.

Table II. The probability �00 and frequency n00 are unknown and have to be estimated in
order to compute an estimate of the unknown population size N . Furthermore nij =N�ij.
Assume that for each sample, each individual has the same inclusion probability. Then �1,

�2 and N can be estimated by

�̂1 =
n11

n11 + n01
; �̂2 =

n11
n11 + n10

N̂ =
n11
�̂1�̂2

(1)

and this result forms the basis of our development.

3.2. Two lists and two strata

Assume now that we have two strata, for example, 2 years (or time periods). Year is a
stratifying variable with two categories indexed by k, where k=1 denotes the �rst year and
k=2 the second year. Let �1|1 and �2|1 be the probabilities to be in the list 1 and 2 in the �rst
year and �1|2 and �2|2 be the probabilities to be in list 1 and 2 in the second year. Let the joint
probabilities for the �rst year be �ij|1 and the joint probabilities for the second year be �ij|2.
Let the unknown population size for year 1 and 2 be N1 and N2, respectively. By analysing
the data from each year (or time period) separately we can estimate �1|1; �2|1, and N1 by

�̂1|1 =
n11|1

n11|1 + n01|1
; �̂2|1 =

n11|1
n11|1 + n10|1

N̂1 =
n11|1

�̂1|1�̂2|1
(2)

and �1|2; �2|2, and N2 by

�̂1|2 =
n11|2

n11|2 + n01|2
; �̂2|2 =

n11|2
n11|2 + n10|2

N̂2 =
n11|2

�̂1|2�̂2|2
(3)

Now let list 2 be observed only in the �rst year such that the observed table can be set
out as in Table III.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2267–2281
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Table III. Dual-record system problem with 2 years.

List 2

Year List 1 Not included Included Total

1 Not included 0∗ n01|1
Included n10|1 n11|1

2 Not included 0∗ 0∗

Included ? ? n10|2 + n
†
11|2

∗Structurally zero cells.
†Only the margin is observed.

Assume that we ignore the fact that the registrations refer to di�erent populations, by
ignoring (the variable) year. Let us denote the elements in the table where year is ignored
by nij|+. These elements are related to the elements in Table III by n11|+ = n11|1; n01|+ = n01|1,
and n10|+ = n10|1 +n10|2 +n11|2. The question is: can Equation (1) be used to estimate N? And
if so, under what assumptions? In other words, when would ignoring the fact that list 2 is
observed only in 1 year lead to an unbiased estimate of the population size? The observations
to be estimated are n00|+ = n00|1 + n00|2 + n01|2. Using this we �nd that

�̂1|+ =
n11|1

n11|1 + n01|1
; �̂2|+ =

n11|1
n11|1 + n10|1 + n11|2 + n10|2

N̂+ =

(
n11|1
�̂1|1

)(
n11|1 + n10|1 + n11|2 + n10|2

n11|1

)
(4a)

=

(
n11|1
�̂1|1

)(
1

�̂2|1
+
n11|2 + n10|2
n11|1

)
(4b)

= N̂1 +

(
n11|2 + n10|2

�̂1|1

)
(4c)

= N̂1 +

(
n11|2

�̂1|1�̂2|2

)
(4d)

Equation (4) shows that if �̂1|1 = �̂1|2, then N̂+ = N̂1+N̂2. Thus for two lists and 2 years (or
strata) even if the joint inclusion probability of some individuals in the combined population
is zero the dual record-systems estimator can still be used, as long as �̂1|1 = �̂1|2, that is, the
list observed in both years (or strata) has to have homogeneous inclusion probabilities.

3.3. Two lists and three strata

Instead of 2 years we now assume that we have two list and 3 years. We denote the third
year by k=3. Assume that list 1 operates in the years 1 and 2, and list 2 operates in years

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2267–2281
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Table IV. Dual-record system problem with 3 years.

List 2

Year List 1 Not included Included Total

1 Not included 0∗ 0∗

Included ? ? n10|1 + n
†
11|1

2 Not included 0∗ n01|2
Included n10|2 n11|2

3 Not included 0∗ ?
Included 0∗ ?

Total n01|3 + n
†
11|3

∗Structurally zero cells.
†Only the margin is observed.

2 and 3, such that the years where list 1 and 2 are operational partly overlap but the year
for list 2 are not necessarily a subset of the years where list 1 is active. The cells actually
observed are: n1+|1 in the �rst year, n10|2; n01|2, and n11|2 in the second year, and n+1|3 in the
third year (see Table IV).
Only the observations in the year 2 have non-zero joint inclusion probabilities. Ignoring year,

the elements of the resulting table are related to those in Table IV by n11|+ = n11|2; n10|+ = n10|1
+n11|1 +n10|2, and n01|+ = n01|2 +n01|3 +n11|3. The estimates of �1|+; �2|+; N+ from this table
are

�̂1|+ =
n11|2

n01|2 + n11|2 + n01|3 + n11|3
; �̂2|+ =

n11|2
n10|1 + n11|1 + n10|2 + n11|2

N̂+ = n11|2

(
n01|2 + n11|2 + n01|3 + n11|3

n11|2

)(
n10|1 + n11|1 + n10|2 + n11|2

n11|2

)
(5a)

= n11|2

(
1

�̂1|2
+
n01|3 + n11|3
n11|2

)(
n10|1 + n11|1
n11|2

+
1

�̂2|2

)
(5b)

=
n11|1

�̂1|2�̂2|1
+ N̂ 2 +

n11|3
�̂1|3�̂2|2

+
(n10|1 + n11|1)(n01|3 + n11|3)

n11|2
(5c)

This shows that, even if �̂1|1 = �̂1|2 and �̂2|2 = �̂2|3, collapsing the table over years results in a
positively biased estimate of population size, the bias being (n10|1 + n11|1) (n01|3 + n11|3)=n11|2.
However, as this quantity has observable values it can be substracted from N̂+ to get an
unbiased estimate for the population size.
In conclusion, we note that in certain cases ignoring strati�cation (strata can be years or

time periods) is not a problem in the estimation of the population size but in some cases it
is. Furthermore, it is not possible to estimate the population sizes for each of the strata (or

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2267–2281
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years) separately. This shows that there is a need to develop a general approach which would
work for the cases where strati�cation has to be incorporated in the models.

4. EM ALGORITHM

A widely used method for analysis of partially classi�ed counts is the EM algorithm [9]. This
technique was developed for data that are ‘missing at random’ (MAR). In a survey context,
missing values are said to be MAR if the occurrence of the missing value is conditionally
independent of the actual response that would have been observed given the observed re-
sponses to the other questions; that is, the occurrence of the missing value can depend on
observed responses to other questions, but given these, it does not depend on the missing
value itself. Loosely speaking, for our case this implies that, observations from years where
all registrations are active and observations from years with non-operating registrations that
have the same characteristics do not di�er systematically by year. If the data are MAR, the
missingness is called ‘ignorable’ because ignoring the missing data mechanism does not a�ect
likelihood-based inferences, such as the maximum likelihood (ML) estimates. ML produces
estimates that are asymptotically unbiased [12, p. 264] if the model is true.
Under the ignorability assumption the EM algorithm can be used to obtain the ML estimates

[9]. The EM algorithm is an iterative procedure with two steps in each iteration: the E-step and
the M-step. The E-step of the EM algorithm computes the expected complete data su�cient
statistics given the current parameter estimates and the observed data; in this case this entails
distributing partially classi�ed counts using information in other years. The M-step computes
new ML estimates of the parameters based on the current values of the expected complete-data
su�cient statistics.
Applying the EM algorithm to capture–recapture data with partially overlapping popula-

tions is valid, if the non-operating lists are missing by design (such that the missingness is
ignorable). For epidemiological capture–recapture data populations might partially overlap, for
example:

• by year due to development of registrations which are hoped to be better than active
ones or the closing of obsolete existing registrations,

• and by region as some regions might have registrations that are not yet implemented in
other regions.

These examples are all design based, implying that the use of the EM algorithm is valid.

4.1. General procedure

In this section, we illustrate the general procedure of the EM algorithm. In our procedure
the EM algorithm is used to distribute the observations from years where some registrations
are not operational, and as such it is similar to the standard EM algorithm, whilst [10] is
a non-standard application of the EM algorithm in that it is used to estimate observations
missed by all lists. The notation used here is similar to that in Reference [9, p. 182].
Let nik denote the frequencies of the hypothetical complete data, where i=(1; 2; : : : ; I) is

an index denoting a cross-classi�cation of S lists such that I =2S − 1, and k=(1; 2; : : : ; K)
is the index for Year (which is fully observed). Note that for each list, is=(0; 1), where

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2267–2281
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s=(1; 2; : : : ; S) is the index for a list. The hypothetical complete data consist of I ×K cells
(with cells denoted by cik), such that nik denotes the observed frequency of individuals clas-
si�ed into cell cik , with corresponding probabilities �ik ;

∑
i

∑
k�ik=1.

The observed data consist of two sets of years: (1) a set of years, denoted by S1, where all
lists are operating (completely classi�ed observations), and (2) a set of years, denoted by S2,
where not all the lists are operating (partially classi�ed observations). Note that it is a possible
that S1 is empty; if S2 is empty, then there is no missing data problem and the data can be
analysed in a standard way. We partition the partially classi�ed observations into J groups,
so that within each group, all units have the same set of possible cells (during partitioning
we ignore year). Suppose rjk denotes the count for the partially classi�ed observations in the
kth year which fall in the jth group; let Sjk denote the set of cells to which the observations
might belong. De�ne indicator functions �(cik ∈ Sjk), i=(1; 2; : : : ; I) and j=(1; 2; : : : ; J ) where
�(cik ∈ Sjk)=1 if cell cik belongs to Sjk and 0 otherwise.
Let �̂(t)ik be the current estimate of the probability for cell cik after the tth iteration of

the M-step. The (t + 1)th E-step of the EM algorithm calculates the expectation of the cell
frequencies (nik) for the partially classi�ed frequencies (rjk) using

n̂(t+1)ik =

∑K
p=1 �̂

(t)
ip �(cip ∈ Sjp)∑K

p=1

∑I
l=1 �̂

(t)
lp�(clp ∈ Sjp)

× rjk (6)

The above expression distributes the partially classi�ed counts (rjk) using the current estimates
of the conditional probabilities of falling in cell cik given that on observation falls in the set
of categories Sjk .
The n̂(t+1)ik in (6) denote the completed data at the (t + 1)th iteration. In the M-step a

log-linear model is �tted to the completed data, with the cells missing by design denoted
as structurally zero. Thus we maximize the so-called complete data log-likelihood. Let S∗

denote the set of cells corresponding to years where all lists are operating, that is, where all
relevant counts are observed. The complete data likelihood at iteration t+1 denoted by ‘(t+1)

is given by

‘(t+1) =
∑

cik∈S∗
nik ln �ik +

∑
cik∈Sjk

n̂(t+1)ik ln �ik (7)

The �tted probabilities, �̂ik , from the log-linear model �tted in the M-step are then used in
the E-step of the (t+1) iteration, where they are denoted by �̂(t+1)ik , to derive updates for the
completed data. This procedure is repeated until the complete data log-likelihood converges.
After convergence the parameter estimates are used to �nd point estimates for the structurally
zero cells, and an estimate of the population size.

4.2. Dual list examples

To illustrate the EM algorithm we use the examples presented in Sections 3.2 and 3.3. For
the example given in Section 3.2 there are two lists and two years (strata), with only list 1
operating in the second year. In this example there is only one partially classi�ed frequency
and it occurs in the second year, and using the notation presented in the general procedure
the partially classi�ed observation is denoted by r12 (r12 ≡ n1+|2, see Table III, and for sim-
plicity we proceed with n1+|2). As detailed earlier in the E-step we compute the conditional

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:2267–2281
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expectations for n10|2 and n11|2 using

n̂(t+1)10|2 =
�̂(t)10|1

�̂(t)10|1 + �̂
(t)
11|1

× n1+|2

n̂(t+1)11|2 =
�̂(t)11|1

�̂(t)10|1 + �̂
(t)
11|1

× n1+|2

In the M-step the complete data log-likelihood is maximized with respect to the unknown
parameters �ij|k with n10|2 and n11|2 replaced by their conditional expectations n̂

(t+1)
10|2 and n̂(t+1)11|2 .

Thus we maximize (compare with Equation (5))

‘(t+1) =
∑
i;j
nij|1 ln(�ij|1) + n̂

(t+1)
10|2 ln(�10|2) + n̂

(t+1)
11|2 ln(�11|2)

To maximize this log-likelihood we use a log-linear model with structural zeros for the un-
known counts, that is n00|1, n00|2 and n01|2. Thus the complete data likelihood is maximized
over 5 cells. The parameters can then be used to estimate the frequencies for the structurally
zero cells. It can easily be veri�ed that the total number of observations missed by all lists
n00|1 + n00|2 + n01|2 is equal to that obtained by collapsing the table as shown in Section 3.2.
Thus the EM is also able to provide the solution to the problem.
Collapsing over years in the example in Section 3.3 resulted in a biased estimate of the

population size. Here, we show that the EM algorithm results in an unbiased estimate of the
population size. This example has two partially classi�ed counts and they are denoted by r11
and r23 (r11 ≡ n1+|1 and r23 ≡ n+1|3, see Table IV). In the E-step we compute the conditional
expectations for n10|1, n11|1, n01|3, and n11|3 using

n̂(t+1)10|1 =
�̂(t)10|1

�̂(t)10|1 + �̂
(t)
11|1

× n1+|1; n̂(t+1)11|1 =
�̂(t)11|1

�̂(t)10|1 + �̂
(t)
11|1

× n1+|1

n̂(t+1)01|3 =
�̂(t)01|3

�̂(t)01|3 + �̂
(t)
11|3

× n+1|3; n̂(t+1)11|3 =
�̂(t)11|3

�̂(t)01|3 + �̂
(t)
11|3

× n+1|3

In the M-step the complete data log-likelihood is maximized with respect to the unknown
parameters �ij|k with n10|1, n11|1, n01|3, and n11|3 replaced by their conditional expectations
n̂(t+1)10|1 , n̂

(t+1)
11|1 , n̂

(t+1)
01|3 , and n̂

(t+1)
11|3 , respectively. In this instance we maximize

‘(t+1) =
∑
i;j
nij|2 ln(�ij|2) + n̂

(t+1)
10|1 ln(�10|1)

+n̂(t+1)11|1 ln(�11|1) + n̂
(t+1)
01|3 ln(�01|3) + n̂

(t+1)
11|3 ln(�11|3)

In the M-step a log-linear model with structurally zero cells is �tted to maximize the like-
lihood. In this instance the complete data has 7 cells and there are 5 structurally zero cells.
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After convergence the parameters can then be used to estimate the frequencies for the struc-
turally zero cells. It can be easily veri�ed that the estimate of population size obtained using
the EM algorithm is unbiased, and thus it results in an estimate of population size from the
collapsed table corrected for the bias found in equation (5).

4.3. Model selection

As there might be several competing models than can be entertained, it is imperative to
�nd a parsimonious model which best �ts the data. The likelihood ratio test can be used to
discriminate between two competing (log-linear) models. This test compares the di�erence
in deviance (−2× log-likelihood) of the two models with the chi-squared distribution for a
given the number of degrees of freedom (di�erence in number of parameters). For this the
observed-data likelihood should be used. The researcher can also use the AIC or BIC statistics,
which penalize the maximized likelihood for a model by number of parameters. Thus models
with more parameters receive a high penalty. The model with the lowest AIC or BIC is pre-
ferred. The AIC is the usually preferred model selection method in capture–recapture studies
[13, p. 776].
When there are several adequate models which result in di�erent estimates of the population

size, basing inferences on one selected model alone is risky [14]. This is because selecting
one model ignores the uncertainty in model selection, leading to overcon�dent inferences. A
striking example in the capture–recapture problem is given in Reference [15]. In this instance
it is important to take model uncertainty into account when making inferences [14]. The
simplest way to incorporate the uncertainty of the model selection process is to use model
averaging. If model selection uses the AIC, one can use AIC weights in the model averaging
process [16, 17].
The main advantages of model averaging are that it improves predictive performance and

coverage [14]. Model averaging avoids the problem of having to defend model choice and thus
simpli�es presentation. This is because model averaging allows users to incorporate several
competing models in the estimation process. Furthermore, model averaging is more correct
in that it takes into account a source of uncertainty that analysis based on model selection
ignore. In general, this leads to higher estimates of variance than do estimates that ignore
model uncertainty [14, p. 398–399].

4.4. Variance estimation

We propose to use the parametric bootstrap [18, 19] to calculate con�dence intervals for
the point estimates (of the population size). The advantage of the bootstrap method over
asymptotic methods is that it is simple. Also, formulae for asymptotic standard errors are
available only for the usual approach of multiple-record systems estimation, but not for the
situation where some of the registrations are not operating in some strata.
To illustrate the parametric bootstrap we use the example in Section 3.2, where there are

two lists and 2 years. The initial step in the bootstrap is to use the EM algorithm to compute
p̂00|1, p̂10|1, p̂01|1, p̂11|1, p̂00|2, p̂10|2, p̂01|2, p̂11|2, N̂ 1, and N̂ 2, where

p̂00|1 =
n̂00|1
N̂ 1

; p̂10|1 =
n10|1
N̂ 1

; p̂01|1 =
n01|1
N̂ 1

; p̂11|1 =
n11|1
N̂ 1

(8a)
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p̂00|2 =
n̂00|2
N̂ 2

; p̂10|2 =
n̂10|2
N̂ 2

; p̂01|2 =
n̂01|2
N̂ 2

; p̂11|2 =
n̂11|2
N̂ 2

(8b)

To compute the con�dence intervals (or variances) the following steps have to be used.

• Sample from a multinomial distribution with index N̂ 1 and probability vector (p̂00|1; p̂10|1;
p̂01|1; p̂11|1). Do the same for the second year. If N̂ 1 and N̂ 2 are not integers it is simplest
to round to the nearest integer [18].

• Remove cells corresponding to cells not observed in the original data table. That is,
delete the observations for n00|1, n00|2, and n01|2. Finally, add n10|2 + n11|2 such that the
form of the resulting table is identical to the form of the observed table.

• Use the EM algorithm to get the estimated population sizes for both years.
• Repeat the above steps B times, to get estimates of N̂ 1( j) and N̂ 2( j) ( j=1; : : : ; B).

The variance of N̂ 1 and N̂ 2 is simply the variance of N̂ 1( j) and N̂ 2( j) [18]. Using the parametric
bootstrap results in standard errors which are not conditional on the observed sample size.

5. APPLICATION

To apply the EM algorithm to the data presented in Section 2 we note that for 1992 the
observed array is 2× 2× 2× 2, and in the E-step it is spread out into a �ve-dimensional array
of 2× 2× 2× 2× 2 using the �ve-dimensional arrays for years 1993–1998. In 1993–1998 we
have one structural zero cell in a year, namely the cell corresponding to observations missed
by all lists. For 1992 we have two structural zeros, one corresponding to the observations
missed by all lists and one corresponding to the observations which are only contained in
the registration not operating in 1992. The inclusion pro�les for these observations are 00000
and 00010 (corresponds to observations that would have been observed in R4 only if the
registration was active). In 1988–1991 there are four structural zero cells corresponding to
the following inclusion pro�les, 00000, 00100, 00110, and 00010. The last 3 inclusion pro�les
correspond to cells that could have been observed if R3 and R4 were operational.
This problem can be related to the general procedure described in Section 4 as follows. In

1993–1998 all lists are active, so these years belong to S1. All observations in other years
are in S2. For this problem, S2 can be classi�ed into J =[23 − 1] + [24 − 1]=22 cells as
from 1988 to 1991 the observations for each inclusion pro�le have the same set of possible
cells, and in 1992 the observations have their own set of possible cells. Rather than using
i, j, and k, for the illustration we will use the corresponding capture pro�le and year. For
example, the partially classi�ed observation r010|1989 = n01++0|1989 = 114 has four possible cells,
S010|1989 = {c01000|1989; c01100|1989; c01010|1989; c01110|1989}, that is if all registrations were active, the
frequency n01000|1989 would have been distributed over these cells.
Table V presents a summary of the models �tted to the data. Year (Ycat) is used as a

stratifying variable in the table. The main e�ects only model has a poor �t. The approach
we followed was to �rst explore heterogeneity followed by dependence [2]. Thus we begin
by adding heterogeneity terms (that is H1 and H2). First-order heterogeneity (H1) results in
a big improvement of the �t, but second-order heterogeneity (H2) does not signi�cantly �t
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Table V. Selected models with deviance and AIC.

Number of Degree of
Model Design matrix parameters freedom∗ Deviance AIC N̂

†

1 R1+R2+R3+R4+R5+Ycat 16 213 409‡ 441 2229
2 1 + H1 17 212 359‡ 393 3009
3 2 + H2 18 211 359‡ 395 2822
4 2 + (R1+ R2+R3+R4+R5)Ycat 67 162 191 325 2702
5 2 + (R1+ R2+R3+R5)Ycat 57 172 193 307 2708
6 2 + (R1+ R2+R3)Ycat 47 182 203 297 2697
7 2 + (R1+ R2)Ycat 37 192 213 287 2697
8 2 + R1Ycat 27 202 280‡ 334 3212
9 2 + R2Ycat 27 202 256‡ 310 2683
10 7 + R1(R2+R3+R4+R5)+R2 46 183 156 248§ 2777

(R3+R4+R5)+ R3(R4+R5)
11 7+R1(R2+R3+R4+R5)+R2 45 184 156 246§ 2778

(R3+R4+R5)+ R3R5
12 11+(R1(R2+R3+R4+R5)+R2 135 94 102 372 3034

(R3+R4+R5)+ R3R5)Ycat
13 11+(R1(R2+R3+R5))Ycat 85 144 118 288 2988
14 11+R1R2Ycat 55 174 140 250 2990

∗NB: There are 229 observed cells (see Table I).
†There are 1783 cases observed at least once (see Table I).
‡Signi�cant at the 5 per cent level of signi�cance.
§Model has substantial support from the data [17, p. 70–71,170].

better than model 2. We then allow the inclusion probabilities to vary by year, and it turns
out that only the inclusion probabilities for R1 and R2 vary over time (model 7) but the other
registrations do not (models 4–6). Model 11 shows that the registrations are pairwise related
except for R3 and R4 (as the R4 and R5 interaction is set to zero in order to estimate H1).
Models 12–14 allow the interactions to vary over time but none of these models lead to an
improvement in �t.
The models with substantial support from the data, that is models with an AIC less than or

equal to 2 from the AIC of the model with the lowest AIC [17, p. 70–71,170], are models
10 and 11. The yearly estimates of the population size for these two models is basically the
same. If this was not the case, model uncertainty has to be incorporated in the estimates of
the population size and their variances [16]. This implies using one of these two models does
not lead to overcon�dent inferences. The model with the lowest AIC is model 11 (see Table
V) and this model will be used for the estimation of the yearly estimated population sizes
and con�dence intervals.
To compute the con�dence intervals for the yearly estimates of population size the para-

metric bootstrap with 500 replications is used (see Table VI). The con�dence intervals show
that, most often, the distribution of the estimates by year is skewed. Furthermore, years with
a higher number of structurally zero cells (1988–1992) have somewhat wider con�dence
intervals.
The table also shows estimates from the standard capture–recapture methods, that is log-

linear models [6–8] and the sampling coverage approach [3, 20]. These models were �tted to
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Table VI. Estimates of population size and 95 per cent con�dence intervals by year.

EM algorithm Log-linear Sample coverage

Year Observed N̂ 95 per cent C.I. Model∗ N̂ 95 per cent C.I.† N̂ 95 per cent C.I.

1988 145 238 [161, 290] [12,5] 311 [200, 648] 231‡ [188, 318]
1989 163 204 [163, 243] [1,25] 174 [161, 192] 181 [164, 606]
1990 170 231 [185, 269] [1,25] 177 [168, 189] 190 [171, 581]
1991 150 187 [152, 227] [12,15] 191 [149, 282] 185 [156, 360]
1992 172 286 [211, 319] [12,23,5,H1] 782 [326, 2687] 303‡ [249, 395]
1993 160 220 [193, 264] [12,15,24,34,45] 320 [207, 957] 233 [187, 356]
1994 162 275 [235, 355] [14,15,24,34,35] 232 [197, 293] 265 [197, 464]
1995 174 307 [263, 396] [12,13,23,34,35,45] 206 [188, 231] 200 [182, 257]
1996 153 269 [233, 345] [12,13,24,25,34,45] 317 [220, 583] 255 [181, 527]
1997 180 306 [268, 380] [12,14,15,24,34,35,45] 351 [259, 595] 340 [213, 952]
1998 154 254 [220, 319] [14,23,24,25,34,45] 212 [179, 266] 248 [200, 346]

∗1,2,3,4, and 5 refer to R1, R2, R3, R4 and R5, respectively. H1 refers to �rst-order heterogeneity [2].
†C.I. computed using parametric bootstrap with 500 replications.
‡One step estimator used. In 1988 the coverage is low, i.e. less than 55 per cent [3, p. 3137], and in 1992
the s.e. is very large rendering the estimate useless.

each year separately using the program CARE-1 (which is downloadable from http://chao.stat.
nthu.edu.tw/). Most of the yearly estimates from the sampling coverage approach are consistent
with the estimates from the EM algorithm, except for a couple of years. This is not true for
the log-linear models. As the estimates from the traditional approaches do not use information
from the other years they tend to be more variable.
In conclusion, we stress that although in our example it is possible to use traditional ap-

proaches within each year, this is not possible where in one or more strata only one list is
operating (compare Section 3). If a stratum has only two active lists, traditional approaches
assume independence between the lists, whereas the EM algorithm utilizes the dependence
between the lists in other strata. A joint model also decreases the possibility of chance cap-
italization. Fitting a joint model is also more e�cient and the resulting estimates are more
stable.

6. CONCLUSIONS AND DISCUSSION

We have show how the population size can be estimated using the multiple system estimator
when the registrations emanate from partially overlapping populations. In epidemiology, there
is a tendency for di�erent institutions to collect data on the same diseased population, and in
most cases not all cases are ascertained. Furthermore, some registrations might concentrate on
special subgroups of the population, for example children or the elderly, such that the usual
multiple system estimator cannot be used. The approach we presented can be useful in such
situations.
This method will also be attractive to ecologists in cases where due to the nature of their

surveys, certain groups of animals are excluded a priori from the surveys. For instance in
the two sample case: both large and small animals are captured and attached tags in the �rst
sample, whereas only large animals are permitted to be caught in the second sample, the
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Peterson–Lincoln estimator is still valid because sample one is a random sample under the
assumption that the samples observed in both strata have homogeneous capture probabilities.
Similar statements can be said for cases where large, medium and small animals denote a
strata.
In the two list case the traditional multiple system estimator does not account for any

possible dependence between the lists. If there is dependence, this approach also does not
provide a correct estimate of the population size. This problem though can be minimized by
the inclusion of (categorical) covariates, such that independence is assumed at each level of
the covariates.
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