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Abstract

A 4exible method for modelling capture–recapture data with continuous covariates that de-
scribe heterogeneous catchability is developed. The well established generalized additive mod-
elling framework is used. An estimator of population size is developed using this method. The
performance of the method is demonstrated using neural tube defect capture–recapture data from
the Netherlands, with the birth weight of a child as a covariate. The parametric bootstrap is used
for variance estimation.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The estimation of the population size in the presence of covariates is currently dom-
inated by parametric approaches. These approaches assume a logistic function for the
inclusion probabilities (see, for example, Alho, 1990; Huggins, 1989). The logistic
functional form has been criticized as having an implicit shape unsuitable for mark
recapture line transect analysis (see Borchers et al., 1998a). Chen and Lloyd (2002,
p. 506) also state that plausible parametric models for the inclusion probabilities are
seldom available in wildlife or public health contexts, and that the functions for the
inclusion probabilities are not identi?able, thus assuming parametric models leads to
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highly model sensitive results. The nonparametric approach of Chen and Lloyd (2000,
2002) goes a long way in answering these concerns.

Both the current approaches, that is, the parametric and nonparametric approaches,
have the implicit assumption that given the covariates the lists are independent, or
alternatively, that the lists operate independently at the individual level. Chen and
Lloyd (2000, pp. 645–646) recently noted that when there are unmeasured sources of
heterogeneity, accounting only for the measured ones will not eliminate all sources
of bias. In support, Pollock (2002, p. 88) comments that “although using individual
covariates has the purpose of accounting for heterogeneity, some inherent heterogeneity
may still remain due to other unobserved variables”. This remaining heterogeneity may
result in some registrations to be dependent even after controlling for the observed
covariates.

This work is motivated by data gathered routinely on children born with a neu-
ral tube defects (NTDs) in the Netherlands. The data consist of three incomplete but
overlapping registrations with delivery weight of a child as a covariate. In a previous
analysis we introduced a quadratic term to capture the nonlinear relationship between
the logits of the inclusion probabilities and the birth weight of a child (see Zwane and
Van der Heijden, 2002). In the said analysis some of the registrations were depen-
dent even after controlling for the delivery weight. The data are presented in detail in
Section 2.

In this article, we present a semiparametric approach which relaxes the linear-in-
parameters assumption of the standard approaches using the vector generalized additive
model (VGAM) framework proposed by Yee and Wild (1996). VGAMs are an exten-
sion of generalized additive models (Hastie and Tibshirani, 1990) to include a class
multivariate regression models. In this approach the logits of the inclusion probabilities
are speci?ed as sums of nonparametric functions for speci9c covariates. Furthermore,
any dependence between the registrations after controlling for the covariates is mod-
elled. Kim and Cohen (2003) and Peng (2003) present similar approaches for matched
case–control studies and cure models, respectively.

The paper is structured as follows. In Section 2 we present the data set on neural tube
defects from the Netherlands which will be used to illustrate the approach developed in
the paper. For completeness we present the triple list capture–recapture problem without
covariates in Section 3. In Section 4 we show how the AMNL model can be used in
the triple list capture–recapture problem with continuous covariates. A novel graphical
technique for evaluating the ?t in capture–recapture studies with continuous covariates
is presented in Section 5. We present this technique mainly because it has been stated
that assessing the goodness of ?t in using auxiliary covariates is an Achilles heel
(White, 2002). In Section 6 we apply the method to the data set presented in Section
2. We conclude with a discussion in Section 7.

2. Data

In the Netherlands data on NTDs can be obtained from various national and regional
databases. For this analysis, we will use data collected in 1995 by three national
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databases, namely the:

• Dutch perinatal database I (LVR1): This is a pregnancy and birth registry of low
risk pregnancies and births, even if care only relates to a part pregnancy or deliv-
ery. In the Netherlands the midwife is responsible for low risk pregnancies and
births (primary care).

• Dutch perinatal database II (LVR2): This list registers anonymous data concern-
ing the birth of a child in obstetrics departments (secondary care). If a woman is
referred from primary care to secondary care (mostly high risk pregnancies) she
can be registered in both LVR1 and LVR2.

• National neonate database (LNR): This list contains anonymous information about
all admissions and re-admissions of newborns to paediatric departments within the
?rst 28 days of life.

In each of these registrations the covariates pregnancy duration and delivery weight in
kilograms (DW ) are recorded. LVR1 and LVR2 also have information on the age of
the mother and parity of the child which are not used in this analysis. In this analysis
only delivery weight of the child will be used. It should be noted that abortions due
to an NTD cannot be reported to LNR thus we only utilize births with a pregnancy
duration from 24 weeks (the legal limit for pregnancy termination in the Netherlands).
For other details on these registrations, see Van der Pal et al. (2003).

In LNR the child has to be taken to a paediatric department to be registered. Given
that children with a very low birth weight and pregnancy duration are more likely
to die, they are less likely to be taken to paediatric departments during the ?rst 28
days of life. As a result, these children have a low probability of being included in
LNR; we expect the probability to rise rapidly as it approaches the normal range of
birth weight and pregnancy duration and then level oL. The midwife is more likely to
perform deliveries of children with normal birth weight, whilst it is the opposite for
the obstetrician. Subsequently, children with very low birth weight are more likely to
be referred by the midwife to obstetric departments resulting in these children having
a higher probability of being included in both lists (i.e. LVR1 and LVR2) than children
with a normal birth weight.

Table 1 shows the cases ascertained and mean delivery weight in kilograms by
capture pro?le. An ascertainment pro?le of [0,1,0] implies that the delivery is listed in
LVR2 only. As expected most of the children are listed in LVR1 (the midwife level)
and LVR2 (obstetric departments). A few children are listed in the paediatric registry
(LNR) which might be due to high mortality for children with NTDs. Table 1 also
shows that deliveries listed in LNR tend to have normal delivery weight whilst cases
with low delivery weight (DW less than 2:5 kg) are frequently listed in both LVR1 and
LVR2, mainly due to that these deliveries are likely to be referred from LVR1 to LVR2.
Cases listed in LVR1 only seem to have a normal delivery weight, due to less referrals
of these cases to obstetric departments.

A common feature of most epidemiological registrations is that of missing values.
These data were not diLerent as there were some missing values in pregnancy duration
and delivery weight which had to be imputed before selecting the above data set
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Table 1
Overlap information in data set of delivered children, 1995

Ascertainment pro?lea Total

[1,0,0] [0,1,0] [0,0,1] [1,1,0] [1,0,1] [0,1,1] [1,1,1]

Observed 52 51 12 20 2 15 6 158

Delivery weight
Mean 3.083 2.587 3.013 2.233 2.953 3.321 2.573 2.812
s.e. 0.118 0.150 0.196 0.255 0.897 0.108 0.318 0.078

aThe ?rst element of the ascertainment pro?le refers to LVR1, the second to LVR2, and the third to
LNR (1 is present, 0 is absent).

in Table 1. There were two cases with missing values on both variables, only two
missings for “pregnancy duration only” and ?ve for “birth weight only” out of 202
cases of which 158 were cases with pregnancy duration from 24 weeks (see Table 1).
The imputation was performed in the statistical package SPSS (SPSS, 1997). Other
imputation methods could have been used, but as the proportion missing is less than
0.05, the method of imputation is not very important (see Harrell, 2001, p. 49).

3. Triple records system estimation without covariates

The notation for three lists can be speci?ed as shown in Table 2. Without co-
variates log-linear models can be used for the estimation of the numbers missed and
corresponding estimate of the population size. For example, under independence the
log-linear model can be speci?ed as,

log (mabc) =M × �; (1a)

log
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; (1b)

where the mabc denote the expected frequencies for the cell probabilities. Columns
2–4 of M relate to list eLects. The estimate of the numbers missed can be computed as
m̂000 =exp [�0]. Interaction between lists can be added by multiplying the corresponding
list eLects. The maximal model does not have all the list interaction.
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Table 2
Three list problem without covariates

List 1 List 3

Not included Included

List 2

Not included Included Not included Included

Not included n000=? n010 n001 n011
Included n100 n110 n101 n111

Alternatively, one can use the fact that Table 2 can be divided into one complete
2 × 2 table and one incomplete 2 × 2 table, and assume that the cross product ratio of
the complete table, that is, [m001m111]=[m101m011] is the same as in the table involving
the missing cell, that is, [m100m010]=[m000m110] (see Darroch et al., 1993, p. 1139). In
this instance the estimate of the numbers missed is given by

m̂000 =
m̂100m̂010m̂001m̂111

m̂110m̂101m̂011
= n× �̂100�̂010�̂001�̂111

�̂110�̂101�̂011
; (2)

where �̂abc denotes the estimated probability of [a; b; c] conditional on being observed
and n is the observed number of cases. Using (2) simply implies that there is no three
factor interaction, because if it was present the cross product ratios for the subtables
would be diLerent.

4. Triple records system estimation in the presence of continuous covariates

Below we present the additive multinomial logit model that we have adopted for
the capture–recapture problem. This enables us to use the multinomial logit model
(MNL) in the capture–recapture setting without the assumption of linearity, and further
model any residual and/or inherent dependencies between lists. We will ?rst present
some notation that we will use for the theoretical development, before proceeding
to the parametric MNL model and how it can be generalized to have an additive
speci?cation.

4.1. Issues of notation

In the capture–recapture problem the cell probabilities and cell counts are usually
denoted by subscripts, for example, in a capture–recapture problem with three lists the
capture pro?les are denoted by [a; b; c] (where a; b; c= 0; 1) with the cell probabilities
denoted by �abc (see Section 3). Rather than use this notation we use an alternative for
the theoretical development, that is, for a capture pro?le we will simply use one index
denoted by k, but will return to the conventional notation for speci?c problems. The
notation used for the theoretical development is adapted from Yee and Wild (1996).
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Table 3
Three list problem with covariates

List 1 List 3

Not included Included

List 2

Not included Included Not included Included

Not included n0|i=? n2|i n3|i n6|i
Included n1|i n4|i n5|i n7|i

The application of the AMNL to the capture–recapture problem is similar to using
the MNL model. This is mainly due to that the only diLerence is that the covariates
are no longer linear in the logits, but are now smooth functions. The triple list capture–
recapture problem with covariates can be set out as illustrated in Table 3. Note that
instead of using the inclusion pro?le as an index we are now using k = 1; 2; : : : ; 7
as an index, but there is a direct relation between the two (cf. Tables 2 and 3). For
each individual there is a vector yi with elements [n1|i ; n2|i ; n3|i ; n4|i ; n5|i ; n6|i ; n7|i], where
nk|i = 1 if individual i falls in cell k of Table 3 and zero otherwise.

4.2. Multinomial logit model

Assume that an individual indexed by i (i = 1; 2; : : : ; n) is classi?ed into one of K
nominal categories, indexed by k (k = 1; 2; : : : ; K), such that ni|k = 1 if individual i
falls in category k and 0 otherwise. For the capture–recapture problem if there are S
lists/registrations then K=2S−1. Further assume that for individual i there is a covariate
vector xi of length H + 1 consisting of continuous and/or categorical variables indexed
by h (h= 0; 1; 2; : : : ; H) with the ?rst element being 1. Denoting the multinomial logit
for individual i as �′

i = [�1(xi); �2(xi); : : : ; �K (xi)], the category probabilities are then
given by,

�k|i = exp [�k(xi)]
/ K∑
r=1

exp [�r(xi)]; (3)

where �k(xi) =
∑H

h=0 xih�hk (where the �hk ’s denote the parameters of the model). For
the model to be identi?ed usually �1(xi) = 0, and the resulting model is called the
baseline category logit model (with category 1 being the baseline).

In the two lists problem, Tilling and Sterne (1999) showed that the baseline category
logit model is simply a diLerent parameterization of the Alho/Huggins model. Recently
Tilling et al. (2001) used the baseline category logit model to estimate the incidence of
stroke for data with three registrations and several continuous covariates. They assumed
dependence between all pairs of sources. The baseline category logit model is readily



E.N. Zwane, P.G.M. van der Heijden /Computational Statistics & Data Analysis 47 (2004) 729–743 735

available in standard software, but it is not directly suitable for the capture–recapture
problem. For example, in the data set collected by V. Reid and distributed with the
CAPTURE program (see Otis et al., 1978), there are six capture periods (K=26−1=63)
and only 38 observations captured at least once, implying the model is not necessarily
identi?ed. Thus some restrictions have to be imposed to this model. For this we use
the conditional logit model (McFadden, 1973).

To use the conditional logit model for capture–recapture estimation the data have to
be rearranged to a suitable format. The responses for all individuals have to be collected
in a vector of length [n:K], y= [y1|y2| · · · |yn] and a covariate matrix speci?ed as,

C= M ⊗ X; (4)

where M is the design matrix M (which denotes dependencies between the lists, see
Section 3) without the columns of ones (or intercept) and ⊗ denotes the Kronecker
product. If we let j = 1; 2; : : : ; J index the columns of M, the dimension of C is
[n:K] × [J:H ]. Note that S6 J6K . To implement the approach of Alho (1990) and
Huggins (1989), M will be given by the design matrix in Eq. (1b) without the ?rst
column. Dependencies in lists can also be coded into M.

4.3. Additive multinomial logit model

The additive multinomial logit model we will use was developed by Yee and Wild
(1996) as part of vector generalized additive models. In the vector generalized additive
model the linear speci?cation of the MNL is replaced with an additive speci?cation,
resulting in

�k(xi) = �j(0) +
J∑
j=1

H∑
h=1

fj(h)(xi); (5)

where fj(h)’s are smooth functions of the predictors and �j(0) denotes an intercept term
for list eLect j. The smooth functions are unknown and usually estimated using some
form of scatterplot smoother. In Eq. (5) only the intercept is modelled parametrically
and the (continuous) covariates are modelled nonparametrically. In a general formula-
tion, some covariates can be modelled parametrically and others nonparametrically.

Let the coeUcients of the parametrically modelled covariates be denoted by �. To
estimate the unknowns f and � it is common to use the penalized log-likelihood,

pl(f ; �) =
n∑
i=1

K∑
k=1

nk|ilog [�k|i] +
1
2

J∑
j=1

H∑
h=1

"j(h)

∫
[f′′

j(h)(x)]
2 dx: (6)

The quantity [f′′
j(h)(x)]

2 is the roughness penalty function which increases roughness
in fj(h) and "j(h) is the smoothing parameter which regulates the smoothness of fj(h).
Formal approaches for selecting the smoothing parameter "j(h) include the general-
ized cross validation (GCV) statistic (see Green and Silverman, 1994, Chapter 3), the
Aikake information criterion (see Aikake, 1973). In this analysis we will use both
the AIC and the informal/adhoc methods. The AMNL is implemented in the VGAM
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library, available from http://www.stat.auckland.ac.nz/∼yee/. This library will
be used for the analysis.

4.4. Estimation of the population size

Given the parameters above the vector generalized additive model can be used to
estimate the population size N̂ . Let �̂abc|i denote the ?tted probabilities for individual
i conditional on being observed. We can estimate an individual speci?c unobserved
count m̂000|i as,

m̂000|i =
�̂100|i�̂010|i�̂001|i�̂111|i
�̂110|i�̂101|i�̂011|i

; (7)

and ?nally use,

N̂ =
n∑
i=1

(1 + m̂000|i);

to obtain an estimate of total population. Eq. (7) is the same as (2) except for the
fact that (7) is strati?ed by individual. Zwane and Van der Heijden (2002) explicitly
showed that in the two list case, using Eq. (7) results in the same estimator of the
population size and its corresponding asymptotic variance estimator as in Alho (1990).
In this analysis we will use the parametric bootstrap (Buckland and Garthwaite, 1991;
Zwane and Van der Heijden, 2003) to compute the variance of the estimate of the
population size.

5. Graphical exploration

Hosmer and Lemeshow (1989, Chapter 8) give some guidelines for checking whether
the linear-in-the-logit assumption is suitable for the analysis of data using the multi-
nomial logit model. These guidelines are based on performing a series of logistic
regressions on the data. In our previous analysis (see Zwane and Van der Heijden,
2002) we checked whether the linear-in-the-logit assumption was suitable for each list
separately, and we noted that the logit for LNR was nonlinear in delivery weight.
This process involves a lot of trial and error and it is a bit cumbersome. Furthermore,
if the logit of the probability of being included in a list is nonlinear in a univari-
ate analysis, it does not necessarily imply that it will be nonlinear in a multivariate
analysis.

The advantage of the AMNL approach is that it makes it possible to visualize the
?ts of several models. For the capture–recapture problem we can compare the plot
of the ?tted probabilities against the covariate under the model and the “empirical”
probabilities against the same covariate. Let #1|i, #2|i, and #3|i denote the inclusion
probabilities for individual i to list 1, list 2, and list 3, respectively. These inclusion

http://www.stat.auckland.ac.nz/~yee/


E.N. Zwane, P.G.M. van der Heijden /Computational Statistics & Data Analysis 47 (2004) 729–743 737

probabilities can be computed as

#1|i =
�110|i

�010|i + �110|i
;

�101|i
�001|i + �101|i

;
�111|i

�011|i + �111|i
; (8a)

#2|i =
�110|i

�100|i + �110|i
;

�011|i
�001|i + �011|i

;
�111|i

�101|i + �111|i
; (8b)

#3|i =
�011|i

�010|i + �011|i
;

�101|i
�100|i + �101|i

;
�111|i

�110|i + �111|i
: (8c)

If the probability of being listed in any of the lists does not depend on whether the
individual is listed in another list, the quantities for #1|i, #2|i, and #3|i will be equal.
For example,

#1|i =
�110|i

�010|i + �110|i
=

�101|i
�001|i + �101|i

=
�111|i

�011|i + �111|i
;

and this result hold for the other inclusion probabilities.
When the lists are dependent these quantities are not the same but a plot of, for

example, �̂110|i=(�̂010|i + �̂110|i) under the model plotted against the covariate (in our
case delivery weight) and compared with the corresponding empirical (or LOWESS
?t of the) probability of being captured by list 1 given that individual is captured by
list 2 is informative. A formal goodness of ?t test can be the Kolmogorov–Smirnov
two sample test. When all two factor interactions are in the model, the probabilities of
being ascertained depends on whether the individual is ascertained in other lists, but the
plots are still useful. Note that, the probability of being listed in one list given that the
individual is not listed in any other list can also be computed. This probability involves
the estimated (or missing) cell, and thus does not have a corresponding empirical
probability.

Problems with using the LOWESS ?t or the empirical probability of being captured
is that for each probability in (8a)–(8c) there are likely to be a few observations used
and that the range of the covariate for the selected probability might not cover the
full range of the covariate distribution. Furthermore, the LOWESS ?t does not use
information in the other categories and thus it might be more preferable to com-
pare ?tted models against the most complex model that the investigator can entertain.
The most complex model that we will consider in our analysis will be the default model
in the VGAM library, that is the model incorporating all dependencies between lists
with 4 eLective degrees of freedom for birth weight (AIC=505.1). We compared this
model to the LOWESS ?t (using the plsor function in the HMISC library available
from http://www.cran.r-project.org/) and the results are shown in Fig. 1. In
Fig. 1, for some panels the LOWESS ?t does not cover the whole covariate range,
which is the contrary for the most complex model, otherwise the two lines are basically
identical.

It is clear that some panels in Fig. 1 need further smoothing and this will be done in
the next section. What is evident though is that, the probability of being in a list seems
to be related to the delivery weight. This shows that models excluding the covariate,
for example, log-linear models, will ?t the data poorly. Another observation is that

http://www.cran.r-project.org/
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Fig. 1. Inclusion probabilities for LOWESS ?t (solid line) and most complex model (dotted line).

the probability that a child is listed depends on whether the child has been listed in
another list. This implies that the lists are dependent; as a result the standard method
in the presence of covariates will be biased.
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6. Application

In this section we will apply the method to the data presented in Section 2. Given
that the eLect of heterogeneity (which produces apparent dependence) can be reduced
by strati?cation (International Working Group for Disease Monitoring and Forecasting,
1995) or by including continuous covariates, this has to be taken into account in the
model search. Thus, we propose to ?rst introduce the covariate in the model, and select
the best smoothing before introducing dependencies.

In our model search we ?rst considered log-linear models, and the independence
model and best-?tting log-linear model are shown in Table 4. We then ?tted parametric
models incorporating delivery weight as a covariates, and afterwards the semiparametric
models and the results are also shown in Table 4. To compute the con?dence intervals
we used the parametric bootstrap with 2000 replications. The results clearly show that
there is a dependence between LVR2 and LNR, that is, the secondary sources, and
that the models without the covariate underestimate the population size. Among the
models incorporating the covariate, the model assuming independence after controlling
for the covariate (Alho/Huggins type model) also underestimates the population size.
The other models (i.e., models M4, M5, and M6) basically result in similar estimates
of the population size.

A plot of models M4 and M6 using the approach in Section 5 is shown in Fig. 2.
Fig. 2 shows that the curves for models M4 and M6 are similar, although the semi-
parametric models tend to be closer to the complex model than the linear ?t. For
M4 and M6, LVR1 has no interaction for these models and thus the curves for LVR1

are the same. As expected M4 and M6 tend to match the most complex model in
places where there are more observations (as shown by rug plots in panels) and do
not match in places with a few observations, due to oversmoothing by the complex
model.

Fig. 2 shows that the probability of being listed in both LVR2 when already listed
in LVR1 decreases rapidly with increasing delivery weight. This implies that there are
more referrals of children delivered with a low delivery weight but these numbers
reduce dramatically as the delivery weight becomes normal. The plot also shows that
the inclusion probability to LVR2 if listed in LNR is about 50% irregardless of whether
the child is listed in LVR1. Another important observation from Fig. 2 is that the

Table 4
Estimates of population size for diLerent models

Model Design matrix Number of parameters AIC Point estimate 95% interval

M1 [1,2,3] 4 521.9 252 [237,267]
M2 [1,23] 5 512.2 303 [285,320]
M3 [1; 2; 3] ⊗ DW 6 517.7 254 [190,407]
M4 [1; 23] ⊗ DW 8 501.5 346 [193,397]
M5 [1; 23] ⊗ s(DW; df = 2) 11.33 500.9 347 [194,394]
M6 [1; 23] ⊗ s(DW; df = 3) 14.99 501.4 349 [195,424]
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Fig. 2. Inclusion probabilities for diLerent models, M4 (dotted line), M6 (solid line), and most complex
model (dashed line).

inclusion probability to LNR if listed in LVR1 is very low, around 5%, but inclusion to
LNR if listed in LVR2 increases with increasing delivery weight due to less deaths these
children. At primary care (LVR1) the inclusion probability is the same irregardless of
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which lists the child is already listed in. This is sort of expected as the midwife is the
main entry point for pregnancy related issues. One obvious de?ciency of the parametric
model is that it is rigid, for example the probability of being listed in LNR given that
the child is listed in LVR2 continues to increase even after the normal delivery weight
range, whilst in the additive model it then decreases.

From the AICs and estimates of the population size in Table 4 and the plots in Fig. 2
it is clear that there is not much diLerence between the parametric model (M4) and
semiparametric models (M5 and M6). Thus we can conclude that in 1995 the true value
of children born with an NTD in the Netherlands was not less than 190 and unlikely
to have been more than 400 children.

7. Conclusions

We have shown how the additive multinomial logit model can be used in the capture–
recapture problem. This model allows for modelling the covariates as smooth terms of
the capture probabilities and also allows for dependencies in lists after controlling
for the covariates. We also presented a graphical technique for evaluating the ?t of
multinomial logit models applied to the capture–recapture problem, though the graphs
can be used in any multinomial logit model which has a structure (or structure can be
devised). The plots we made are in the probability scale but using the logit scale will
lead to the same conclusions.

In our example, the AMNL did not perform any better than a simple MNL model,
but we envisage that in most other practical problems the AMNL will tend to ?t
much better than the MNL model. Thus our methods can be viewed as competitors to
both the methods of Alho (1990) and Huggins (1989), and those of Chen and Lloyd
(2000). Our methods are attractive because they allow for the modelling of residual
dependence between lists whilst the other methods assume independence between lists
given the covariates. We envisage that the approach can easily be incorporated to the
full likelihood method of Borchers et al. (1998b). It would be interesting to compare
the approach using the AMNL to the fully nonparametric approach of Chen and Lloyd
(2000).

We did not concentrate on the model selection problem but we refer the reader
to Stanley and Burnham (1998) for a comprehensive introduction speci?c to closed
population capture–recapture models. If there is one disadvantage of our approach it
will be the fact that model selection becomes a cumbersome task. On top of the
selection of covariates and dependencies between lists, the value of the smoothing
parameter has to be selected, though this can be circumvented by using an integrated
smoothing parameter estimation (see Wood, 2000) which currently is not implemented
for the AMNL. Chen and Lloyd (2002) stated that, “because the estimate of population
size is an integrated quantity, we expect results to be quite insensitive to (a sensible)
choice of the bandwidth”. Within this GAM framework we also expect the smoothing
parameter to also have little eLect (if the choice is sensible), but it might have more
eLect on variability.
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