
9. SOME ASPECTS OF MODEL FITTING

9.1 INTRODUCTION

The previous chapter concerned Mayer’s work of model fitting, as we would call it
nowadays. Mayer had to deal with errors in his model, in its coefficients, and in the
observations that he employed to fit it. In fact, Mayer’s work abundantly shows his
ambition to take control over errors, and to increase accuracy and precision: be it in
cartography, the mapping of the moon’s surface, or the lunar orbit, or the consistent
description of colours. It is evident in his design of instruments, in the ‘repeating
principle’ that he introduced in angle measurements, in the Mappa Critica; it is
the unifying theme in his work, as Forbes has already pointed out. ‘The science of
practical errors is so far not yet sufficiently developed,’ wrote Mayer when setting
out on an investigation into the limits of the human visual acuity under various light
conditions, in order to ascertain the accuracy of angular measurements.1

We continue now with other aspects of Mayer’s work where his commitment
to getting the best possible result out of the available data shows through. We will
gain some insight into the statistical aspects of his work. Mayer developed ad-hoc
procedures in each case; the statistical tools of today had not yet been developed.

First, we investigate the quality of the observations at Mayer’s disposal, particu-
larly those which he used in the spreadsheets. This leads us to the realization that the
result of his fit is almost optimal, but that the precision to which he worked was not
matched by the accuracy of the data. Next, we briefly discuss a memoir of Mayer’s
in which he proposes a mathematical model of world temperature distribution. I ar-
gue that this memoir bears testimony to Mayer’s trust in his spreadsheet tool. Then
we turn to older work of Mayer’s. We investigate his use of the arithmetic mean
and his awareness of the cancelling property of random errors. Section 9.5 details
another of Mayer’s attempts to fit a model to observations: he fits a model of lunar
libration to data via a redundant system of linear equations. Section 9.6 is devoted
to Mayer’s further use of redundant systems of linear equations and their role in the
success of his lunar tables.

9.2 THE QUALITY OF OBSERVATIONS

As we have seen (particularly in the previous chapter), Mayer went to great lengths
in fitting the lunar tables to observations. An interesting question concerns the
quality of the observational data on which the fit was based, more specifically: how
1 ‘Scientia errorum practicorum nondum satis hactenus exculta’ [Mayer, 1755, p. 120].
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much random error is present in the data, and to what extent is Mayer aware of
that. In order to investigate these questions, I sampled the position calculations in
Cod. µ

]
41 between fol. 31r and 72v, which are all related to occultations of Alde-

baran. Mayer used almost all of these in his spreadsheets, rejecting only those that
seemed to yield very unlikely results to him. These occultations allow us to obtain a
unique impression of the quality of data at Mayer’s disposal, as I will explain next.
The result enables us to see Mayer’s fitted tables in a new quantitative perspective.

An occultation of a star by the moon provides two sharply defined observable
phenomena: the disappearance of a star behind the disc of the moon (called its im-
mersion), and its subsequent reappearance (or emersion). The observation of an
occultation consists mainly of the recording of the (local) times of these phenom-
ena. When due consideration is given to the lunar parallax and diameter, and to the
location of the point of contact on the lunar disc relative to its direction of motion,
the observations provide very accurate positions of the moon relative to the star.
This property makes occultations particularly suitable for Mayer’s purpose.

The temporal separation between the two phenomena can never be much longer
than an hour, because in that time interval the moon appears to move approximately
its own diameter relative to the stars. Such a time-span is very short compared to the
periods of the lunar inequAlities. Therefore the errors of the periodic equAtions in
the lunar tables before and after an occultation are equal for all practical purposes.
Mayer already had the mean motions approximately right, so these too will produce
equal errors before and after the occultation. In conclusion, the predicted lunar po-
sition will differ from its true position just as much at immersion as at the emersion.
This property makes pairs of occultations particularly suitable for our purpose as
stated in the introduction to this section. Of course, they are convenient for Mayer’s
purpose, too.

Mayer had a collection of occultation observations from his century and the
previous one, by several observers, and from various locations. These were the
most important data that he applied in the spreadsheets to improve the coefficients
of his tables. The position calculations that Mayer made to that end, or rather the
immersion-emersion pairs among them, enable us to pursue our current aim. I refer
to the example calculation in figure 8.1 on page 143, showing an Aldebaran occul-
tation of 2 January 1738 observed from Paris. The calculation occupies two facing
folios, the left side for the immersion, and the right side for its emersion.

In that example, Mayer computes the lunar position from the kil tables, follow-
ing the general scheme set out in section 4.1. This computation occupies approxi-
mately the top one third of both folios. Below that, Mayer reduces the observations,
allowing for aberration and parallax (but not for nutation).2 Apparently he has two

2 The fast change of parallax in right ascension provides the reason why it is not possible to
average the times of immersion and emersion and make a position calculation for the middle of
the occultation only, thus saving half the work. The effects of aberration and nutation can add
about 20′′ and 17′′ respectively to lunar longitude; however, since they are slow-changing, they
have no impact on the sequel of this paragraph. (Aberration is an apparent deflection of light
rays, resulting from the finite speeds of light and of the earth.)
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different observations of immersion and also two of emersion.3 Consequently he
derives four errors, i.e., differences between computed and observed positions of
the moon: for immersion, they are −33′′ and −21′′, and for emersion, he finds
−20′′ and −28′′. He concludes that the average error is −25′′.4

This averaged result is a measure of agreement between observations and the-
ory for the specified instance, which of course is precisely why Mayer had made
these calculations. But to investigate the data quality, our attention is now drawn to
the dispersion around the average: it shows us the relative quality of two different
observers, each observing one immersion and one emersion. Observer number one
obtained a dispersion of |33′′− 20′′| = 13′′, but number two had a sharper result
of |21′′− 28′′| = 7′′. These dispersions are independent of the quality of the lunar
tables, because the error of the tables is the same at the beginning and end of the
occultations. But they do reflect errors in the observations and their reduction.

In this way I investigated 34 position calculations of occultations where I could
distinguish both immersion and emersion, skipping those that Mayer rejected. The
data spanned the period from 1680 to 1750. I found a dispersion of 10′′ or less
in 20 cases, 10′′ to 20′′ in 5 cases, and the remaining 9 cases showed a dispersion
between 30′′ and 69′′.5 It is illustrative to compare these numbers to the standard
deviations that I computed for Mayer’s spreadsheet results as summarized in ap-
pendix B. Mayer accomplished to bring the standard deviation down to 16′′, very
close to the least-squares fit of 14.5′′. Our current investigation shows that the qual-
ity of his fitted tables matches the quality of his data. This means that Mayer could
not have achieved a significantly better result than he did.
3 In Cod. µ12, where Mayer collected his data, there are two references to this occultation: on

fol. 63v, copied from the Mémoires for 1739, and on fol. 80v referring to correspondence
between Lowitz and P.C. Maire. He attributed the second observation to Lemonnier.

4 The arithmetic mean of all four results is −25 1
2
′′.

5 These data lead to the following observation. Taking half of the stated dispersion as the ob-
servation error (which is admittedly a best-case scenario), we see that Mayer’s own estimate
of 5′′ to 10′′ for these observations is slightly optimistic (‘We have a considerable number of
observed occultations of Aldebaran; out of these I have calculated the positions of the Moon
with the help of the parallax, so that there can be no error of 5′′ or 10′′ in them’ [Forbes, 1971a,
p. 81]). The argument that the errors in the lunar tables are equal before and after the occulta-
tion, can here be repeated for the clock error. The quality of the observations, which I have just
related to the difference of errors before and after the occultation, depends mostly on the ability
of the observer to trap the exact instance of the star’s disappearance and reappearance at the
limb of the moon: a longitude error of 10′′ is equivalent to a clock error of about 20 seconds.
Before immersion, the observer can see the star approaching the limb, whereas the emergence is
sudden; this makes the immersion (in principle) easier to observe. Other factors that play a role
include the observer’s experience, the meteorological circumstances, and whether the moon is
waxing or waning (i.e., which of the moon’s limbs is illuminated).
Incidentally, the quality of the data at Mayer’s disposal (as here investigated from pairs of ob-
servations) matches the quality that Tycho Brahe achieved in his determination of the longitude
of α Arietis, after the latter had combined his data in pairs to eliminate certain systematic errors.
This conclusion shows clearly the unprecedented accuracy attained by Tycho, a conclusion that
is only slightly moderated when it is taken into account that Tycho built his data set personally
and for the specific purpose of fixing the longitude of α Arietis as a reference star. For details
on Tycho’s determination, see [Hald, 1990, pp. 145–6] and [Plackett, 1958].
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Page after page, occultation after occultation, Mayer must have noted the dis-
persion in individual observations. Seeing such a dispersion did not restrain him
from filling in his spreadsheets to a precision of half a second. For us, this is
hard to understand. ‘Unwarranted number of significant digits,’ we tend to remark.
We encountered another example of this when we studied the relation between the
single-step and multistep equAtions in Theoria Lunae, on page 128. Donald Sadler
observed the same phenomenon in the Nautical Almanac and in Nevil Maskelyne’s
procedures for the computation of (geographical) longitude by lunar distances, and
the accompanying tables. With one significant digit less (i.e., replacing minutes and
seconds by minutes and tenths of minutes), the resulting longitude would have suf-
fered inappreciably, but the burden on the human computer would have decreased
considerably, mainly because a number of corrections could be skipped on account
of their small size.6 Certainly numerous other examples exist of this phenomenon
of over-precision in the 18th century. It seems to me that an attitude towards data
prevailed in which a lack of accuracy (such as the dispersion in the input data at
Mayer’s disposal) was accepted, by many even recognized as partly inevitable; the
self-cancelling property of random errors was recognized by many. But at the same
time we see both Maskelyne and Mayer on their guard against any loss of precision
without realizing the futile part of their effort in view of the limited accuracy of the
data.

9.3 WORLD TEMPERATURE DISTRIBUTION

In the memoir A More Accurate Definition of the Variations of a Thermometer,7

Mayer expounds a mathematical model for computing the temperature of places
on earth, as a function of various geographical data. He specifies a formula for
the average annual temperature of a place as a function of the latitude. Then he
provides several refinements in the form of: a correction term for the altitude, a
term for annual (seasonal) variation, and a term for diurnal variation. Mayer asserts
that particular attention must be given to the period, phase, and amplitude of the last
two variations. These are governed by certain coefficients in the formulae, whose
values are quite easily obtained with the help of observations. Mayer gives only a
few simplified examples, but no thorough treatment, of the determination of those
coefficients. He does not claim any predictive power for his model. Rather, his main
goal is to propose a method to investigate the actual temperature data: ‘I think that
it is impossible to define the causes and quantities of the remaining, more involved,
variations, unless the effects of the different causes are analysed in the way which I
have roughly sketched out here.’8

6 [Sadler, 1977, pp. 115–119].
7 Translated and republished in [Forbes, 1971c], original Latin text posthumously published in

[Mayer, 1775].
8 [Forbes, 1971c, p. 61].
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Forbes and Delambre have commented that the interest of this memoir by Mayer
lies more in the method than in the results.9 Mayer himself had put forward that as-
tronomers have good methods to investigate the movements of the luminaries, and
that meteorologists have something to learn from astronomers:

Therefore, at this point, we may transfer the example of that astronomical method to variations
in the atmosphere, applying it in particular to the ratio of heat and cold: it will thereby be
possible to show how I deem that meteorological observations ought to be treated, so that richer
fruits can be expected from them.10

The relation between Mayer’s memoir and his interest in correcting raw astronomi-
cal observations for atmospheric refraction, which depends on the temperature, has
already been noted by Forbes.11 Forbes summarizes Mayer’s proposed method (in
the Thermometer treatise) as ‘isolating a major periodicity, examining the residuals
for a second-order periodicity, etc., until the observations had been analysed into
a series of independent periodic functions each characterized by a mean value and
its variation about the mean’12 and concludes that the relationship to Mayer’s lu-
nar investigations is obvious, aiming at the analogy of periodic fluctuations, and
the customary way among astronomers to investigate orbital motions. However, a
major difference between the models, not pointed out by Forbes, is that the lunar
theory was already able to supply a priori approximate values for the amplitudes of
the anticipated periodicities, a feat which was (in Mayer’s era certainly) unmatched
by the theory of heat.

It should also be noted that Mayer had such a strong confidence in his astronom-
ical perturbation analysis techniques, that he did not hesitate to export them to other
disciplines. Certainly Mayer’s approach in the Thermometer treatise bears witness
to both his interest and his confidence in fitting models with many periodic terms.
Significantly, he read the Temperature memoir to the Göttingen Scientific Society
on the 13 September 1755, when he had already developed the spreadsheet tool and
when his Theoria Lunae was just about finished. It is, in short, an attempt to export
the tools of his astronomical work to another domain. With some imagination, we
can picture Mayer studying spreadsheets of temperature data.

9.4 AVERAGING AND CANCELLING

The rest of this chapter is concerned with aspects of data use and model fitting
present in Mayer’s work before 1751, i.e., when he was still working with the
Homann heirs in Nuremberg. Currently, we will investigate two related aspects
of working with data: the fact that averaging over several data usually leads to a
better result, and the property of random errors to cancel each other. A probabilistic

9 [Forbes, 1971c, p. 21], [Delambre, 1827, p. 447].
10 [Forbes, 1971c, p. 54].
11 [Forbes, 1980, pp. 178–181].
12 [Forbes, 1971a, pp. 15–16].
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proof that the arithmetic mean of a series of observations is more reliable than an
individual observation was first given in 1755, by Thomas Simpson.13

In a memoir Untersuchungen über die geographische Länge und Breite der
Stadt Nürnberg, Mayer evaluated older observations made by Wurzelbau in Nurem-
berg in order to determine the latitude of his habitat.14 As Forbes mentioned,15

Mayer’s intention was to warn against the use of results (in this case, the latitude
of Nuremberg) without a proper investigation into their origin (here, Wurzelbau’s
observations). I regard Mayer’s memoir as illustrative of his use of data from other
astronomers, and he may even have started to work on it to show his skill.

First, Mayer gave four series of Wurzelbau’s observations: two series of supe-
rior culminations of Polaris, and two series of inferior culminations. He rejected the
inferior culminations because the individual observations in them deviated consid-
erably more from the mean than those in the superior culminations. This shows that
he considered the reliability of his data, and that he was prepared to keep only the
most reliable ones.

Next, Mayer averaged the remaining series, as was not uncommon among as-
tronomers, and then computed Wurzelbau’s latitude from the mean altitude of Po-
laris at upper culmination (he also used an independent determination of the polar
distance of that star, which he could otherwise have derived from the combination
of the superior and inferior conjunctions).

Mayer also explored two other series of observations made by Wurzelbau by
means of different instruments, of culminations and solstices, but these comprised
much shorter data series. Mayer used each of those other data series for a separate
computation of the latitude of Nuremberg. These several different latitude determi-
nations were apparently in reasonable agreement, at least after Mayer had corrected
the results for errors in Wurzelbau’s instruments which he had detected through his
careful analysis of the observations. Two of the three results differed by less than
2′′; the third differed from both by almost 20′′. Mayer felt justified to average over
all three results, and then to round off towards the ‘outlier’, thereby implicitly giv-
ing it a slightly larger weight. We see that he was careful to cross-check results
before he relied on them.

There are certain differences between his procedure and modern ways of data
handling. Mayer averages his computed latitudes without weighing them, although
the data series from which the results were obtained are of unequal length and of
unequal quality. So Mayer’s end result is an average of several averages of un-
equal reliability. Instead, a modern statistician would prefer to compute latitudes
from Wurzelbau’s observations individually, and average only one time over the
complete corpus, perhaps with weights assigned if the latitudes are of unequal reli-

13 [Plackett, 1958, p. 124].
14 It was published posthumously in [Forbes, 1972, I, pp. 33–44]. The memoir deals only with the

latitude of Nuremberg, and the title concedes that the memoir remained unfinished. An article
in the Göttingen Commentarii [Mayer, 1752], also on the latitude of Nuremberg, is mostly
concerned with Mayer’s own observations.

15 [Forbes, 1972, I, p. 9].
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ability. Stigler points out that until the second half of the 18th century, astronomers
were willing to average only among observations that were taken under comparable
circumstances (same observer, same instrument, same object, etc.).16 A procedure
of taking weighted averages had already been outlined by Roger Cotes.17 Mayer
was evidently willing to average results obtained under unequal circumstances. Yet,
he did not give these results unequal weights.

We now turn to the cancelling property of random errors. While in Nurem-
berg, Mayer had started to write a treatise on map making, Von der Construction
der Land-Karten, which was to remain unfinished. One of its topics was a discus-
sion of the value of Roman itineraria for map making. Mayer remarked that those
works usually specified distances in rounded Roman miles of 1000 feet, without a
fractional part, so the distances were not exact. But he added that sometimes these
distances would be too large, and sometimes too small, and he recognized that gen-
erally the rounding would have no appreciable effect on the end result. Thus, Mayer
showed that he understood a basic property of random errors.18

The property that random errors tend to cancel each other is also present in
Mayer’s design of two angle measuring instruments, the repeating circle and a mod-
ified recipiangle. These instruments are designed to accumulate a series of angle
measurements for the observer. The repeating circle, for instance, allows the ob-
server to measure an arc not only once but several times in succession, without
intermediate readings of the instrument. The individual measurements are automat-
ically summed on the circular scale of the instrument, and the observer has only to
read the accumulated sum. After division by the number of observations, he obtains
the average of his individual arc measurements. In this way several errors are av-
eraged out, including the (fixed, and therefore systematic) errors in scale division,
and collimation error. However, the observer can no longer recognize and discard
outliers.19

Buchwald points out that Mayer (and Borda, who developed the instrument
further) had in mind to reduce what we now call the systematic errors in their in-
struments, not the random errors caused by the observer. Buchwald goes on to show
that the instrument accomplishes just the opposite: that it fails to average out in par-
ticular the errors in scale division.20 That would be true if the scale had not been
circular—but since it is, the scale divisions are necessarily correct on average, so
that as long as the repeated measurements cover all parts of the circle, this kind
of error is indeed averaged out. Also in his design of another instrument, a new
astrolabe for surveying, Mayer explicitly tried to control random operator error.21

16 [Stigler, 1986, p. 30].
17 See [Gowing, 1983, pp. 107–9].
18 [Forbes, 1972, I, p. 49].
19 The recipiangle is an other angle measuring instrument, used in surveying, which will not be

further discussed here. See [Forbes, 1980, pp. 153–154, 158–164].
20 [Buchwald, 2006, p. 568].
21 [Forbes, 1971b, p. 114].
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9.5 LIBRATION: A CASE OF MODEL FITTING

An investigation of Mayer’s work and model fitting has to take Mayer’s lucidly writ-
ten tract on the rotation of the moon Abhandlung über die Umwalzung des Monds22

into account. Whereas Mayer himself was perhaps more interested in the direct
results that he had obtained there, his work attracted the attention of many for his
original approach to the much more general topic of the combination of observa-
tions, which in his particular case resulted in an overdetermined system of equations
for three parameters.

This work of Mayer’s, which we will now discuss, was reviewed by Lalande23

and generalized into a method by Laplace; the latter’s generalization was widely
known as ‘Mayer’s method’ and as such it was used until the first half of the nine-
teenth century, among others by Laplace’s assistant Delambre.24 It is quite likely
that Mayer obtained his ideas from a memoir by Euler.25 Later researchers have
assigned at least two other names to it: Method of Equations of Condition, and
Method of Averages.26 The first is rather nondescript, and that is why I prefer the
second name—it catches the essence of the procedure, even though it is factually
wrong because Mayer did not take averages. Neither of these names were used by
Mayer; indeed we may well ask whether he regarded the method really as a method
or rather as an ad-hoc procedure. He seems to have made little or no use of it in
other places, and in his hands it is less general than is perhaps apparent at first sight.
Although I prefer not to regard it as a method, I will adhere to the conventional
naming of method of averages.

After an introduction to the topic of Mayer’s tract, and a technical exposition of
the geometry of the problem he endeavoured to resolve, we discuss his method of
averages in section 9.5.2. Quite naturally, the question arises whether Mayer used
this same method to adjust the coefficients of the tables of lunar motion.27 Above,
I showed that he had a different procedure for that purpose around 1752 and later,
but the two methods are not mutually exclusive. To find a more definitive answer, I
looked specifically for places where Mayer uses similar systems of equations. Some
of these I discuss in section 9.6.

The goal of Mayer’s research on lunar libration was to improve the mapping
of the visible lunar surface. This was important partly because of its relation to
the determination of geographical longitudes via the timing of lunar eclipses, and

22 [Mayer, 1750a].
23 [Lalande, 1764, 1st ed., pp. 1234–43].
24 [Stigler, 1986, p. 31].
25 1st ed., [Lalande, 1764, p. 1241]; the Euler memoir is [Euler, 1749a]. Also see the final section

of this chapter.
26 The first of these names is used for instance by Forbes and Wilson [Forbes and Wilson, 1995,

p. 66], cited below. In a different place in the same book, Schmeidler uses the lat-
ter name, reserving the former for the equations that make up the overdetermined system
[Schmeidler, 1995, p. 201].

27 See the quote from Forbes and Wilson on page 137.
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partly because Mayer had set himself and the Homann cartographic office annex
Cosmographical Society where he was then working, the prestigious task of pro-
ducing accurate lunar globes.28 Although Hevelius and Riccioli had mapped the
visible part of the surface of the moon, and Jean-Dominique Cassini had initiated
an investigation of the libration (discovered by Galilei and explained below), Mayer
complained that the current state of selenography was rather poor: there was no con-
sensus in the nomenclature of lunar features, and Cassini’s research was not up to
the attainable standards of accuracy.

It is well known that the moon always turns the same side of its surface towards
the earth. Upon closer inspection this turns out to be only approximately true. For
several reasons the moon is subject to a slight apparent wiggling, called libration.
The reasons for this wiggling are as follows. First, due to the diurnal motion of the
terrestrial observer, his aspect of the moon varies between moonrise and moonset.
Second, the moon rotates (practically) uniformly around its axis while its velocity
of revolution around the earth varies: consequently, a terrestrial observer sees some-
times a bit more of the leading half of the moon’s surface, and sometimes a bit more
of the trailing half. Third, the rotational axis of the moon is not perpendicular to
its orbital plane. As a consequence, we look upon the moon’s north pole for half a
month, and on its south pole during the other half. The fourth effect is the slightly
perturbed rotation of the moon due to its deviation from perfect sphericity. This
effect is much smaller than the other librations.

An accurate mapping of the lunar surface can only be arrived at when these
librations are taken into account. The first two librations depend mainly on the
parallax, longitude, and latitude of the moon, which are more or less observable.
The third libration depends on the orientation of the lunar axis of rotation. It is this
orientation, and Mayer’s investigations of it, that will concern us here. The fourth
libration is too small to be observable for Mayer: this so-called physical libration
was first hypothesized by Newton, but only in the 1840’s were sufficiently accurate
measurements available to prove its real existence.29

9.5.1 Locating the rotational axis

In section 13 of his libration tract, Mayer sets out to determine the orientation of
the lunar polar (or rotational) axis. I will now first show how Mayer derives equa-
tion (9.2). Subsequently, I will show how he uses observations to determine the
unknown quantities in that equation, and how he establishes an error estimate as
well. Readers uninterested in the derivation may skip to equation (9.2).

28 See fn. 4 on p. 25.
29 A non-spherical moon had entered celestial mechanics in a different way, too. D’Alembert and

Euler had tested, independently of each other, whether a non-spherical mass distribution of the
moon could be held responsible for the missing part of the motion of the lunar apse line. They
concluded that it could—but only if the moon were extremely dumb-bell shaped [Waff, 1995,
p. 40].
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Figure 9.1: Determination of the position of the moon’s polar axis. Image from the digital
copy of [Mayer, 1750a] available on-line from Universitätsbibiothek Augsburg, www.
bibliothek.uni-augsburg.de.

The geometry of the problem is illustrated in figure 9.1, which is taken from the
original source. The figure represents the moon with its centre in C. Let the moon
rotate around an axis through CP, with P its north pole. Let the equator of the moon
be the great circle NLZnz. Draw the great circle YWNBXn parallel to the ecliptic;
Mayer calls it the lunar ecliptic. Let point A be a pole of it.

The rotational axis of the moon is not perpendicular to the ecliptic. Therefore
the planes of the lunar ecliptic and equator intersect in the line NCn. The points N
and n on the lunar surface are called the equinoctial points. These points are not
fixed relative to the surface of the moon; instead they both traverse the complete
equator NLZnz during one revolution of the moon about its axis.

The circle EFbG is the lunar ecliptic projected onto the celestial sphere from
the centre C. Mayer chooses, in accord with common practice, the direction of the
vernal equinox CE as the zero point of ecliptic longitude. A little less common is his
use of the symbol F, as I will now explain. Cassini (I) had found in earlier research
that the longitude of the equinoctial point N coincides with the longitude of the
ascending node of the lunar orbit. Mayer comments that such is unlikely to be true
all the time, because the motion of the orbital nodes is perturbed by the attraction
of the sun while the lunar rotation is uniform.30 Still, Mayer chooses the symbol
F (normally associated with the ascending node of the lunar orbit) to represent the
point on the celestial sphere that corresponds with the equinoctial point N.

In the previous sections of his tract, Mayer had described how he had observed,
between April 1748 and March 1749, 37 positions of Manilius, a distinct crater on
30 Mayer did not consider perturbations in the rotation of the moon due to its deviation from

perfect spherical shape. This is the fourth form of libration mentioned in the introduction to this
section. In a memoir of 1780, Lagrange concluded that the phenomenon discovered by Cassini,
when taken in the mean sense, was a consequence of this physical libration [Wilson, 1995c,
p. 112].



9.5. Libration: a case of model fitting 175

the moon not far from the equator, represented by M in the figure. Of the 37 ob-
servations, Mayer had made a selection of the 27 most appropriate ones.31 After
extensive reduction, he deduced from these 27 observations equally many values
for the following quantities: Manilius’ ecliptic polar distance h = AM; Manilius’
ecliptic longitude g =Eb; and the mean longitude of the orbital ascending node k,
which is approximately the arc EF in the figure (remember that Mayer’s F here
corresponds with the equinoctial point N). Actually Mayer took the value of k from
existing lunar tables for the time of observation.32

Mayer’s goal of finding the orientation of the lunar axis entails the determina-
tion of the angle α = AP between the ecliptic poles and rotational poles, and the
precise longitude EF of the equinoctial point N. He represents the latter angle by
k +θ , with k (already determined as explained above) the longitude of the ascend-
ing node, and θ (which is not in the figure) the unknown and constant small arc
separating the ascending node from the equinoctial point. As we will see, he will
also have to determine the latitude of Manilius β = LM. Mayer presents evidence
(which I omit here) that the orientation of the lunar axis is fixed or, in the worst
case, changing so slowly that it can be regarded as fixed over a time span of a year
or so.

To derive a relation between the known quantities g, h and k, and the unknown
parameters α , β and θ , Mayer considers the spherical triangle APM. The cosine
rule of spherical trigonometry, applied to this triangle, is

cosPM = cosAPcosAM + sinAPsinAM cosPAM.

Substituting PM = 90◦−β , α = AP, and h = AM, and noting that ∠PAM =∠NAP−
∠NAM = 90◦− (g− (k +θ)), yields

sinβ = cosα cosh+ sinα sinhsin(g− k−θ). (9.1)

Mayer says that, in principle, three observations suffice to solve for the three pa-
rameters α , β , θ , but that in practice this proves to be very difficult. Therefore he
approximates the last equation as follows.

In triangle APM, we have MP−PA < AM < MP + PA, or equivalently 90−
β −α < h < 90− β + α . By inspecting his data set, Mayer could deduce from
the difference of the minimum and maximum values of h therein, that α ≈ 1◦40′.
31 ‘But to that end I have selected only those observations that are more correct than others and,

because of the circumstance the moon was in at that time, more fit to the examination of the
orientation of the lunar axis.’ („Ich habe aber dazu nur diejenigen Beobachtungen ausgelesen,
welche vor andern richtig und wegen der Umstände, in welchen sich der Mond damals befun-
den hat, zur Untersuchung über die Lage der Mondaxe tauglicher sind, als die übrigen.“)
[Mayer, 1750a, p. 122].

32 These tables do not have to be of very high accuracy, since they here serve only to supply the
mean longitude of the ascending node. The coefficients of its mean motion are computed easily
and accurately from observations of eclipses one or more Saros periods apart. To find Manilius’
longitude g, Mayer also needed the true ecliptic longitude of the moon, which he had to take
from observations because the tables at his disposal were not accurate enough for that.
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With this preliminary value for α , he could estimate β ≈ 14◦42′ and θ ≈ 10◦ or
so. Therefore he felt justified to take sinα = α , cosα = 1, and sinα cosθ = α .
Expanding sin(g− k−θ) and making approximations, the right hand side of (9.1)
yields cosh+α sinh(sin(g− k)− cos(g− k)sinθ). On the other hand, introducing
n such that 90◦−β = h−n, and consequently |n|< |α|, he obtained sinβ = cos(h−
n)≈ cosh+nsinh. Together with the approximated right hand side, this gives, after
division by sinh 6= 0,

n = β − (90◦−h) = α sin(g− k)−α sinθ cos(g− k). (9.2)

This is a linear relation between the unknown parameters α , β , and sinθ , with nu-
merical coefficients computed from the known angles g, h, and k. Values can still
be expressed in degrees, the linearization of sinα and sinn not withstanding, be-
cause the linearization introduces the same factor 180

π
on both sides of the equation.

The neglected second-order terms are of the order of 10−4. Modern least-squares
solution of the system of equations (9.1) with Mayer’s data differs from the solution
of the linearized system (9.2) by only a few seconds in α and β , and about 4′ in θ .
This is too small to affect Mayer’s conclusions presented below; we will see that
the estimated standard deviations of the three parameters are considerably larger.

9.5.2 The ‘method’ of averages

Now that we have this relation (9.2) between the observed and the unknown quan-
tities, we will discuss Mayer’s use of observations to find the unknowns. Mayer
selected three observations with respectively a large, medium, and small value for
h, to obtain three well separated equations in the unknowns α , β , θ :

β −13◦ 5′ = +0.9097α −0.4152α sinθ ,

β −14◦14′ = +0.1302α +0.9915α sinθ ,

β −15◦56′ =−0.8560α +0.5170α sinθ .

Solving, he obtained α = 1◦40′, β = 14◦33′, and θ = 3◦36′.
While in previous decades an astronomer would have been perfectly satisfied

with this result and moved on to other business, Mayer remarked:

But because errors are often to be supposed in the values of g and h that are deduced from
observations, which [errors] are impossible to avoid, yet they have an influence on the values of
α , β and θ : so also must we not completely trust the present determination, which is deduced
from only three observations. One must only try three other observations to get convinced of
this.33

33 „Weil aber in den aus den Beobachtungen geschlossenen Größen von g und h manchmal auch
Fehler zu vermuthen sind, die sich unmöglich vermeiden lassen, gleichwol aber in die Größen
von α , β und θ einen Einfluß haben können: So dörfen wir auch der gegenwärtigen Bestim-
mung, die nur aus dreyen Beobachtungen hergeleitet worden, nicht völlig trauen. Man darf nur
eine Probe mit dreyen andern Beobachtungen anstellen, um hievon überzeugt zu werden“
[Mayer, 1750a, p. 151].
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To reduce the influence of the observational errors on the solution, Mayer’s rem-
edy is to take all his 27 observations simultaneously (‘zugleich’) into account, each
yielding one of 27 near-linearized equations. To solve the resulting overdetermined
system, he divided the equations in three classes of nine each. The first class held the
nine equations with the largest positive values for cos(g−k), the second class those
with the largest negative values for cos(g− k), and the remaining equations (i.e.,
those with large values for sin(g− k)) went into the third class. Then he summed
the nine equations in each class to obtain again three equations in three unknowns,
with deliberately large differences between the coefficients:

9β −118◦ 8′ = +8.4987α −0.7932α sinθ ,

9β −140◦17′ =−6.1404α +1.7443α sinθ ,

9β −127◦32′ = +2.7977α +7.9649α sinθ .

He obtained the solution α = 1◦30′, β = 14◦33′, and θ =−3◦45′.
The key idea of the method of averages is as follows. Divide the total corpus of

equations in as many classes as there are unknowns, then sum the equations in each
class. Solve the resulting system of equations. The solution is believed to be more
accurate if more observations are employed, and if the division in classes is aimed
at maximizing the differences between the coefficients of the final equations:

But the advantage consists therein, that through the above division in three classes, the differ-
ences between the three sums become as large as possible. And the larger these differences are,
the more correct are these unknown quantities α , β , θ to be found from them.34

In the case of this particular model, division in classes works surprisingly well to
maximize the differences between the coefficients of the three summed equations.
We will return to the reasons behind this later in the section. Mayer does not supply
a reasoning why all classes should contain an equal number of equations.

Next, Mayer comes to a very interesting error estimation, based on the two dif-
ferent solutions just quoted. Comparing the two values found for α , he remarks
that one is derived from nine times as many data as the other, which makes it ‘nine
times as good’ and its (probable) error nine times less. He introduces x for the error
in α , and writes α = 1◦30′±x; the first determination from only three observations
yielded α = 1◦40′ so the error therein was then 10′±x. Mayer expresses his suppo-
sition that the error behaves inversely proportional to the number of observations as
±x : 1

27 = (10± x) : 1
3 , for which he gives a solution35 x = 1′ 14 . The other solution,

x = 1′, he does not mention; but he concludes that the true value of α might differ
1′ or 2′ from 1◦30′. Likewise, β must be about right and an error of 1◦ may exist in
θ . Using a bootstrap technique36 I established standard deviations for α , β , and θ

34 „Der Vortheil aber bestehet darinn, daß durch die obige Absonderung in drey Classen die
Unterschiede unter den dreyen Summen so groß geworden, als es möglich war. Denn je größer
diese Unterschiede sind, je richtiger lassen sich die unbekannten Größen von α , β und θ daraus
finden“ [Mayer, 1750a, p. 154].

35 The solution was erroneously printed as 1′′ 1
4 [Mayer, 1750a, p. 155].

36 [Press et.al., 1995, pp. 291–292].
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of respectively 2.9′, 2.6′, and 2◦7′. Mayer recognized that the determination of θ is
not very reliable because the angle formed by the lunar equator and ecliptic (i.e., α)
is so small. I am not aware whether Mayer made any other error estimates of this
kind.

Stigler37 highlights the novelty of Mayer’s data handling, and its influence on
contemporary and later mathematicians (notably Lalande and Laplace). He stresses
that Mayer’s treatise is remarkable for its time, because Mayer found it useful to
combine so many observations, and because he attempted a quantitative error esti-
mate. Mayer was too optimistic, in our modern view, when he supposed that the
error in his determination of α behaved inversely proportional to the number of ob-
servations; yet (as Farebrother pointed out) the exploitation of the fact that a relation
between the two exists at all was an important step in the theory of errors.38

Stigler’s investigation into the intellectual climate in which the method of least
squares was conceived, leads him to a comparison of this work of Mayer’s, with
slightly earlier work of Euler’s on the perturbations of Jupiter and Saturn, and with
later work of Boscovich and Laplace. All these people were involved in the fitting
of model parameters to observations, and they did so in more or less innovative
ways. Stigler concludes that Euler, as a mathematician, was wary of the accumu-
lation of maximum error when observations are combined. Mayer as a practising
astronomer was aware (more than Euler) of the cancelling properties of random er-
ror. But, as Stigler stresses, Mayer did not go so far that he applied the property
of cancellation in all cases; he allowed it only when similar data were taken under
similar circumstances (i.e., same observer, same instrument, etc.). Stigler looked
upon Mayer’s division into three disjoint classes as a division among different ob-
servational circumstances, reflected in the coefficients, that Mayer preferred to keep
separate. Later, Laplace would go further than Mayer by treating the set of observa-
tions as a whole. He devised a general method of combining observations, which,
when applied to the Manilius data of Mayer, would combine the entire corpus of
27 equations by addition or subtraction in three different ways, to arrive at a sys-
tem of three equations, each depending on all 27. In Laplace’s method each of the
three combined equations depended on all of the original equations instead of on a
subset. From Euler, via Mayer, to Laplace, Stigler signals a steady increase of the
willingness to let random observational errors cancel each other.

On the other hand, Stigler signals a lack of generality in Mayer’s procedure.
Mayer obtained good results because of his design of the experiment and because
of the geometry of the problem (and, I would add, also because of his skill as an
observer). One particular circumstance in Mayer’s formulation of the libration prob-
lem was the appearance of both sin(g−k) and cos(g−k) as coefficients in the equa-
tions. Upon putting those with extreme values for the former in the first and second

37 I discuss Stigler’s work [Stigler, 1986, Ch. 1]. Other commentaries on Mayer’s Umwälzung
tract are in [Forbes, 1980, pp. 48–52], [Wolf, 92, II, pp. 506–509], [Lalande, 1764, Vol. II,
pp. 1234–43], [Farebrother, 1998, pp. 11–15], among other places.

38 [Farebrother, 1998, p. 15].
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classes, those with extreme values for the latter are necessarily left for the third
class. This is a particularly helpful relation between two of the three coefficients
in the equation. It is not at all obvious how Mayer’s procedure would generalize in
the case of more unknowns or when the relations between the coefficients are less
favourable. The special circumstances of the current application rendered the crite-
rion for class allocation quite obvious. But how would he apply this procedure to the
problem of adjusting two dozen lunar equAtions to over a hundred observations? As
the number of unrelated coefficients grows, the allocation of the observations over
just as many classes gets increasingly arbitrary. At the least it would be required to
investigate the effect of the chosen allocation on the fitted parameters.

To understand why the division in classes is so effective in maximizing the
differences between the coefficients of the three summed equations, we return to
equation (9.2). It contains the three unknown quantities α , β , θ , which need to
be determined. It also contains three known quantities g, h, k which depend on
the time of observation. These three quantities yield the numerical coefficients of
the equations, in the form of 90◦−h, sin(g− k), and cos(g− k). It is immediately
apparent that these three coefficients are not independent. In fact, Mayer’s choice
to fill classes I and II with those equations that have extreme values of sin(g− k),
leaves equations with extreme values for cos(g− k) to constitute class III. These
class III values all happen to have the same sign, for reasons that we will explore
further down. If they had mixed signs, the equations in the third class would not sum
to an equation with a large last coefficient. The situation is depicted in figure 9.2.
But at the same time, figure 9.1 shows that the arc 90◦− h = MB is also governed
by g− k = NB. It can be seen that MB is least when P is on the arc AMB and in
between A and M; it is largest when P is on AMB but on the far side of A. Thus, the
three numerical coefficients are not particularly independent.

Why do all class III equations have a positive coefficient in their last term?
Stigler points out that this property is to an extent responsible for Mayer’s success,
but I disagree with Stigler when he suggests (pp. 22–23) that they turn out to be
positive because of Mayer’s choice of crater. In contrast, I will argue that they turn
out positive because of the dates at which Mayer observed. In passing, however,
we note that equations in class III with negative values for these terms could have
been easily handled if Mayer were prepared to subtract them from the others in
their class, instead of adding them.

Mayer’s choice of the crater Manilius was governed by the necessity to select a
distinctive feature close to the centre of the visible lunar disc, otherwise he would
be unable to make accurate measurements of its position. Thus, from the vantage
point of the moon’s centre, the direction of the feature should not differ more than,
say, 20◦ from the direction of the earth. As a consequence, the ecliptic longitude g
of the feature is predominantly dependent on the ecliptic longitude of the earth, as
seen from the moon; or conversely, on the longitude of the moon as seen from the
earth. This quantity is periodic with period a (tropical) month.

The longitude of the ascending node changes approximately 20◦ during the full
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year of Mayer’s Manilius observations, which makes it nearly constant with respect
to g. We see that g− k completes a circuit of the ecliptic in approximately one
month.

Classes I and II have devoured those observations where g− k is near 90◦ or
270◦, leaving for class III the cases where g− k is closer to 0◦ or 180◦. When we
realize that g− k is approximately the arc Fb in figure 9.1, it follows that class
III holds those cases where the earth-moon direction is more or less along the axis
FNCnG, and the sign of cos(g−k) is positive or negative as an earth-bound observer
views the moon in the direction of the descending or ascending node, respectively.
We conclude that the coefficients cos(g−k) in the class III observations are negative
(thus giving a positive last term in the equations, taking note of the minus sign in
equation (9.2)) because Mayer observed them on dates when the moon was nearer
its ascending node.

It would be illustrative to know whether Mayer planned these observing days in
advance, or whether he selected a convenient set of observations a posteriori. Mayer
mentioned ten extra observations of Manilius in his text, which he did not include
in his working data set for various reasons: either they seemed to be less accurate,
or they were inappropriate for the determination of the orientation of the lunar axis.
I calculated the value of g− k for those observations, whereafter it appeared that
one or two might have ended up in class III with the wrong sign. Perhaps that was
the reason why Mayer rejected them. The scatter of the values of g− k (figure 9.2)
suggests that Mayer might have put some planning in his observation schedule.
However, a large proportion of the observations was made in July of 1748, during
a lunation that ended in a solar eclipse, whereafter the next lunation incidentally
offered a lunar eclipse. Mayer gave ample evidence that these eclipses had his full
attention, in order to squeeze every possible bit of information from them.39 That
is why he was making more than casual observations of sun and moon around that
time. And it just so happened that the solar eclipse occurred near the descending
node, implying that most of his Manilius observations before and after the event
were nearer the ascending node, when the crater was sunlit. Therefore, the values
of g− k populate predominantly the left half of figure 9.2, and Mayer had to wait
half a year before he could make the rightmost observations in the figure, with the
sun illuminating Manilius near the descending node. The unequal spread suggests
seized opportunities rather than advance planning.

9.6 EULER’S LUNAR TABLES OF 1746

Did Mayer apply the method of averages to correct the coefficients of the lunar
motion tables? It is unlikely that he did so after the advent of his spreadsheet tool

39 The same (and, unfortunately, only) volume of the Kosmographische Nachrichten contains
an article where Mayer expounds his results [Mayer, 1750b]; see also the charts that Mayer
and Lowitz drew in preparation of the events, probably working together, [Mayer, 1748] and
[Lowitz, 1747].
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Figure 9.2: The values of g− k plotted along the unit circle. The plot symbols are: 4 for
Mayer’s class I, � for class II, ♦ for class III, and ? for the rejected data.

during 1753. The development of the spreadsheets begins in Cod. µ
]
41, a manu-

script characterized in section 8.3 as extremely relevant to the various researches
surrounding the publication of the kil tables. If Mayer had applied the method of
averages before the spreadsheet tool, this manuscript would be the most likely place
to find its traces. A search in Cod. µ

]
41 for systems of linear equations makes one

halt at folios 273r–286v. Those folios form the object of study of the present sec-
tion. These folios make up a complete quire, which I have already briefly alluded
to on page 139.

The first few folios of the quire are clearly connected to Mayer’s libration
research: they contain calculations related to lunar craters (Manilius, Dionysius,
and Menelaos) using observations taken in 1748, which Mayer included in the
Umwalzung tract that we studied above. The following folios bear 37 lunar po-
sition calculations that employ the lunar tables of Euler, Tabulae astronomicae solis
et lunae.40 Mayer had prepared his own manuscript copy of Euler’s tables; it is now
in Cod. µ

]
14, fol. 1–13. Although Mayer copied the equAtions out of Euler’s tables,

he adjusted the mean motions from the Julian calendar and mean time on the Berlin
meridian, to the Gregorian calendar and mean time on the Paris meridian. In some
of his articles for Kosmographische Nachrichten he referred to these tables as the
best available at the time.41

Clearly, these folios are out-of-sequence from a chronological point of view.
Whereas the surrounding quires contain lunar position calculations based on the
1753 kil tables, this one was written perhaps four years earlier, when Euler’s lunar
tables were still the best available.

The 37 position calculations serve to compare the tables to observations of lunar
meridian passages.42 For each observation, Mayer deduces a linear equation in
variables t, u, v, w, x, y, and z. For example for the observation of 12th February
40 [Euler, 1746].
41 See for instance [Mayer, 1750b, §12].
42 These observations are not related to the crater measurements above. Mayer copied most of the

observations out of the Mémoires of the Paris Academy for the year 1739. In Cod. µ12 are his
extracts for two-thirds of the data; I was unable to trace 12 observations of 1742 there.
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1739 he derived:

1000t−58u+920z−700v+847w+62x−962y−328000 = 0.

The constant term in all these equations is 1000 times the difference of computed
and observed lunar longitude (here, 328′′). All equations have a term 1000t, where
t presumably represents a number of arc-seconds by which the epoch longitude
of the moon should be adjusted. The variables t through z stand for changes to
the coefficients of the tables. The coefficients of v . . .z in the linear equations are
the sines of the arguments of those tables, multiplied by 1000. t and u express
adjustments to the mean motion of the moon’s longitude and apogee, respectively.

So here we have Mayer deriving 37 equations in 7 unknowns, approximately
in the same period when he worked out the orientation of the lunar axis with the
method of averages. A solution (in an approximative sense) of the overdetermined
system would provide a correction of Euler’s lunar tables. Interestingly, in Mayer’s
manuscript copy of those tables, I found the following notes written at a later in-
stance next to the table headings: mean motion table, t = −40′′ and u = −12′;
table I, z = +6′40′′; table II, v = +2′10′′; table III, w = −57′′. That looks like a
partial solution of the overdetermined system. Unfortunately I have not been able
to locate the papers where Mayer calculated this partial solution. Numerical exper-
iments on a computer showed that a least-squares solution is unstable and liable to
drastic changes when one or more observations are discarded.

With so little evidence we can only speculate. We are not sure if Mayer cor-
rected Euler’s tables before or after he successfully applied the method of averages
in his libration research, although the time interval between the two events is un-
likely to be more than about a year. Around that time, Mayer remarked that he
had made several adjustments to Euler’s lunar tables, which supports this inter-
pretation.43 I hypothesize that Mayer endeavoured to apply the same method of
averages, but that he immediately became aware of its limitations. With more than
just a few variables, it is no longer a trivial matter to decide on the distribution
of equations over classes. This limitation seems to be less prevalent in Laplace’s
generalization of the method of averages.

Mayer’s interest in Euler’s tables had disappeared before the end of 1750 (see
page 27). Apparently, his attempts at a systematic improvement of the Euler tables
had a longer lasting value to him. Mayer inspected his earlier work in connection
with fresh position calculations made during 1753: after the publication of the kil
tables, therefore even after the development of the spreadsheet technique. The dis-
location of these older folios shows us that the method of averages was still on his
mind when he had already invented the spreadsheet tool.

Interestingly, similar sets of linear equations as were presented above, in up to
eight unknowns, figure in the final chapters of Euler’s treatise on the great inequA-

43 ‘. . . but that I made some improvements [to Euler’s tables] guided by many observations. . . ’
(„. . . daß ich aber aus Anleitung vieler Beobachtungen einige Verbesserungen gemacht ha-

be. . . “) [Mayer, 1750b, §12].
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lity of Jupiter and Saturn.44 There, Euler attempts to adjust his equAtions of the
Saturn orbit to observations, and the linear equations play exactly the same role as
in Mayer’s work to improve on Euler’s tables. Moreover, Euler and Mayer both
apply themselves to the same kind of ad-hoc strategies to get an impression of the
magnitudes of the unknowns. They concentrate on the unknowns with the largest
coefficients first and neglect those with the smallest coefficients, altogether in a
much more haphazard way than in Mayer’s later method of averages. After having
fixed some of the unknowns, Euler finally tabulates what happens to the differences
between observed and computed positions of Saturn when he assumes values for
one and then another one of the remaining unknowns. This makes one think of
Mayer’s spreadsheets, and it may indeed well be that he obtained the basic idea
from this influential treatise of Euler.

44 [Euler, 1749a], pp. 123–141 of the reprint edition.




