
Preliminaries

0.1. Category theory

Throughout this work we will largely ignore size issues regarding such problems
as the existence of the category of all categories and similar questions. We will
assume a suitable setting of universes and content ourselves with the construction of
the category of all small sets, all small categories, all small spaces and so on, where
’small’ is meant with respect to some universe of discourse. We will not always
explicitly mention the word ’small’, always assuming it is meant when necessary.

We start by setting the notation of category theory used in this work. Most
of the category theory used herein is rather elementary and almost all of it can be
found in [34], to which the reader is referred to for more details if needed. Our
choice of notation is somewhat different than the one presented in [34] but is still
(largely) the standard one. Given a category C we denote its set of objects by
ob(C). For every two objects a, b ∈ ob(C) we denote by C(a, b) the set of arrows with
domain a and codomain b.

Given a symmetric monoidal category C, it is said to be a closed monoidal
category if for each b ∈ ob(C) the functor − ⊗ b : C → C, that sends an object a to
a⊗ b, has a right adjoint. Usually this right adjoint is called the internal Hom in
C and is denoted by HomC(b,−). We deviate from this notation and introduce the
notation C(b,−) instead. By definition then, there is an isomorphism

C(a⊗ b, c) ∼= C(a, C(b, c))

natural in a, b, and c.
The monoidal functors that would interest us would always be the strong

monoidal ones, i.e., those in which the components of the coherence natural trans-
formations are isomorphisms. If the monoidal structure on a category is given by
categorical products then we will call it a cartesian category. If that monoidal
category is closed we will call it a cartesian closed.

Example 0.1.1. There are many examples of closed monoidal categories such
as Cat with the cartesian product of categories, V ect with the usual tensor product
of vector spaces, etc. With our notation, given two categories C and D in ob(Cat),
the set Cat(C,D) is the set of all functors F : C → D while Cat(C,D) is the
category whose objects are all functors F : C → D and whose arrows are natural
transformations between such functors.

0.1.1. Presheaf categories. We now introduce presheaf categories and men-
tion some of their basic properties. Given a category Γ, the presheaf category on
Γ is the category SetΓ

op

of contravariant functors Γop → Set and their natural
transformations. Given such a presheaf X : Γop → Set we write, for each object

12

0.1. CATEGORY THEORY 13

γ ∈ ob(Γ),

Xγ = X(γ).

For our purposes it will be convenient to think of presheaf categories as follows.
Consider the category Γ as a category whose objects are shapes and the arrows
express the way different shapes relate to one another. A presheaf on Γ should
then be thought of as a set each of whose elements has a shape. In more detail, the
presheaf X : Γop → Set should be thought of as a set where an element x ∈ Xγ has
shape γ. The contravariance of X as a functor means that an element x ∈ Xγ of
shape γ has other elements of other shapes associated to it. For example, if γ′ → γ
is a monomorphism in Γ (which can be interpreted as saying that γ′ is a sub-shape
of γ) then there is a function Xγ → Xγ′ (which can be interpreted as mapping
x ∈ Xγ to an element x′ ∈ Xγ′ where x′ is the ’part’ of x ’shaped’ like γ′).

A fundamental property of presheaf categories is that every presheaf is the
canonical colimit of representable presheaves. In more detail, given a category Γ,
each γ ∈ ob(Γ) induces a representable presheaf denoted by Γ[γ] = Γ(−, γ) and
defined by

Γ[γ]γ′ = Γ(γ′, γ).

Given an arbitrary presheaf X : Γop → Set, consider all maps Γ[γ] → X for all
possible γ ∈ ob(Γ). By the Yoneda Lemma these correspond exactly to all x ∈ Xγ .

Assigning Γ[γ] to each Γ[γ] → X we obtain a diagram in SetΓ
op

. The colimit of
this diagram is the original presheaf X . We write this shortly as

X = lim
−→

Γ[γ]→X

Γ[γ].

Lastly we introduce a categorical construction (a special case of a Kan extension)
which will repeatedly be used in this work. Given two categories C and D we denote
by adj(D, C) the category of adjunctions between D and C.

Proposition 0.1.2. Let C be a cocomplete category and Γ an arbitrary category.
There is an equivalence of categories between the category of functors from Γ to C
and the category of adjunctions between the categories SetΓ

op

and C, i.e,

Cat(Γ, C) ≃ adj(SetΓ
op

, C).

Proof. We describe the effect on objects of two functors

Cat(Γ, C) //
adj(SetΓ

op

, C)oo

which together constitute the desired equivalence. We omit most of the details,
which are just simple verifications.

Given a functor F : Γ→ C we need to construct an adjunction

SetΓ
op

|−|F //
C

NF

oo .

The functor NF : C → SetΓ
op

is defined for an object C ∈ ob(C) to be the presheaf
NF (C) whose elements of shape γ form the set NF (C)γ = C(F (γ), C). To define
the functor | − |F for an arbitrary presheaf X : Γop → Set, recall the canonical
presentation of X as a colimit of representables

X = lim
−→

Γ[γ]→X

Γ[γ].

0.2. A FORMALISM OF TREES 14

We then define

|X |F = lim
−→

Γ[γ]→X

F (γ),

which exists since C was assumed cocomplete. We now prove that | − |F is indeed
the left adjoint of NF . Given X ∈ ob(SetΓ

op

) and C ∈ ob(C) we need to establish
a natural isomorphism

SetΓ
op

(X,NF (C)) ∼= C(|X |F , C).

To simplify the notation we neglect the subscript F . We now obtain the desired
natural isomorphism by the following calculation (all colimits and limits are taken
over the same diagram as above):

SetΓ
op

(X,N(C)) ∼=

SetΓ
op

(lim
−→

Γ[γ], N(C)) ∼=

lim
←−

SetΓ
op

(Γ[γ], N(C)) ∼=

lim
←−

N(C)γ ∼=

lim
←−
C(Fγ,C) ∼=

C(lim
−→

Fγ,C) ∼=

C(|X |, C).

To construct a functor Γ → C from a given adjunction SetΓ
op

G //
C

U
oo we

simply define F (γ) = G(Γ[γ]). This completes the (sketch of the) proof. �

In the setting of the above construction we will refer to a functor F : Γ → C
as a probe. This is to be thought of as mapping each shape γ ∈ ob(Γ) to an object
F (γ) ∈ ob(C) in a functorial way, thus specifying certain objects in C which behave
somewhat like the shapes γ. By ’probing’ an object C ∈ ob(C), by mapping into
it from the various objects F (γ), we then obtain the presheaf NF (C). We call NF
the nerve functor induced by the probe F and the left adjoint | − |F the realisation
in C of a presheaf X : Γop → Set induced by F . The realisation process uses the
information in the presheaf X as instructions on how to ’glue’ the various objects
F (γ) in C.

0.2. A formalism of trees

Trees play a fundamental role in the theory of operads in general and in this
work as well. We present here a formalism of trees which is somewhat different
from the standard ones (see [18, 35] for two approaches to trees). Our trees are
based on the notion of a graph. However, usually a graph is given by specifying a
set of vertices V , and the edges are then a certain subset of V × V . We will find
it more convenient to have a definition of a graph where the basic ingredient is the
set of edges, and the vertices are then defined in terms of those.

Definition 0.2.1. A graph G consists of a non-empty set E of edges and a set
V ⊆ P (E) of vertices such that every edge belongs to at most two different vertices.
Those edges that belong to two distinct vertices are called inner while those that
belong to less then two vertices are called outer.

0.2. A FORMALISM OF TREES 15

We will draw graphs in the usual way. For example, the picture

•

bc
��

��
��

�� d

??
??

??
?? •

e

•
a
• •

denotes the graph whose set of edges is {a, b, c, d, e} with the following vertices

{{a, c}, {a, b}, {c, b, d}, {d, e}, {e}}.

Notice that our definition excludes graphs with edges from a vertex to itself and
also graphs with two vertices and several parallel edges between these two vertices,
and similar graphs. This will not concern us since our main interest is trees, in
which such graphs do not occur.

If two distinct edges e, e′ in a graph belong to the same vertex we say that e
and e′ are linked . For a given edge e, if e belongs to two distinct vertices u and v
then we say that u and v are adjacent and that e connects u and v.

Definition 0.2.2. A path of length n ≥ 1 in a graph is a sequence of edges

e1, · · · , en

such that ei is linked to ei+1 for each 1 ≤ i < n. We say that two edges e, e′ are
connected if there is a path as above with e1 = e and en = e′. A loop is then a path
e1, · · · , en of length of at least 2 such that e1 = en. A graph is said to be connected
if any two edges in it are connected.

In a connected graph G we distinguish two kinds of vertices:

Definition 0.2.3. Let G be a connected graph. A vertex v that consists of
just one edge is called an outer vertex. The other vertices are called inner vertices.

0.2.1. Trees.

Definition 0.2.4. A tree is a finite connected graph with no loops and a chosen
outer edge called the root . The rest (if any) of the outer edges are called leaves .

We will draw trees with their root at the bottom and directed from the leaves
to the root. We will use a • for vertices. The direction in the tree defines for each
vertex v a unique outgoing edge denoted by out(v) (called the output of the vertex)
and a (possibly empty) set of incoming edges denoted by in(v) (called the input of
the vertex). The number of incoming edges into v is called the valence of v. For
example in the tree:

e @@
@@

@@
@@

f
��

��
��

��

v•

b ??
??

??
??

c

~~
~~

~~
~~

w •

d
ooooooooooooo

•

a

r

there are three vertices of valence 2,3, and 0 and three leaves (at the outer sides of
the edges e, f and c). The outer edges are e, f, c, and a, where a is the root. The
inner edges are then b and d.

0.2. A FORMALISM OF TREES 16

Thus a tree T is given by (E(T), V (T), out(T)) where (E(T), V (T)) is a finite,
connected, loop-free graph and out(T) is the chosen root. We will use the notation
in(T) to refer to the set of leaves of the tree.

The tree

consisting of just one edge and no vertices is called the unit tree We denote this
tree by η, or ηe if we wish to explicitly name the unique edge. In this tree, its only
edge is both the root and a leaf.

Definition 0.2.5. Let T and S be two trees whose only common edge is the
root r of S which is also one of the leaves of T . The grafting, T ◦S, of S on T along
r is the graph

(E(T) ∪ E(S), V (T) ∪ V (S), out(T)).

That this indeed defines a tree is easily checked. Pictorially the grafted tree
T ◦ S is obtained by putting the tree S on top of the tree T by identifying the
output edge of S with the input edge r of T . By repeatedly grafting, one can define
a full grafting operation T ◦ (S1, · · · , Sn) whenever the set of the roots of the trees
Si is equal to the set of leaves of T , the sets E(Si) are pairwise disjoint, and E(Si)
meets E(T) at a leaf of T which is also the root of Si (for each 1 ≤ i ≤ n).

We now state a useful decomposition of trees that allows for inductive proofs
on trees. The proof is trivial.

Proposition 0.2.6. (Fundamental decomposition of trees) Let T be a tree.
Suppose T has root r and {r, e1, · · · , en} is the vertex containing r. Let Tei

be the
tree that contains the edge ei as root and everything above it in T . Then

T = Troot ◦ (Te1 , · · · , Ten
)

where Troot is the tree consisting of r as root and {e1, · · · , en} as the set of leaves.

Below, certain trees will appear often. For easy reference we define them here.

Definition 0.2.7. A tree Cn of the form:

BB
BB

BB
BB

···

��
��

��
�

•

0.2. A FORMALISM OF TREES 17

that has just one vertex and n leaves will be called an n-corolla (or a corolla if we
do not wish to specify the number of leaves). A tree of the form

•

•

•

with one leaf and only unary vertices will be called a linear tree. If the edges are
numbered 0, · · · , n from the root up, we denote it by Ln.

0.2.2. Planar trees.

Definition 0.2.8. A planar tree T̄ , is a tree T together with a linear ordering
of in(v) for each vertex v.

The ordering of in(v) for each vertex is equivalent to drawing the graph on the
plane. It is evident that a single tree can become a planar tree in (usually) many
different ways.

Definition 0.2.9. Let T be a planar tree with n edges. We call T a standard
planar tree if its set of edges is E = {0, 1, 2, · · · , n} and if when the tree is traversed
left-first from the root up then the edges appear in the natural order on E.

Example 0.2.10. The following is a standard planar tree:

2 ??
??

??
??

3
��

��
��

��

5 ??
??

??
??

6
��

��
��

��

•

1

??
??

??
??

??
??

??
?? •

4

��
��

��
��

��
��

��
��

•

0

It is obvious that any planar rooted tree is, up to a renaming of the edges, the
same as precisely one of the standard planar trees.

The grafting of planar trees is defined just as that of non-planar ones and it
is evident that the same fundamental decomposition property still holds for planar
trees. We now define the grafting of standard planar trees. Let T and S be two
standard planar trees. The leaves of T can be numbered from left to right. Let i be
the i-th leaf. The grafting T ◦i S is given as follows. Rename the edges of S such
that the root of S is equal to l, the i-th leaf of T , and such that E(S′)∩E(T) = {l}.
Call the new tree S′. With this notation we have the following definition.

0.2. A FORMALISM OF TREES 18

Definition 0.2.11. The grafting of the standard planar trees S and T along
the i-th leaf is denoted by T ◦i S and is the standard planar tree that has the same
shape as the tree T ◦l S′, obtained by ordinary grafting.

