
CHAPTER 4

Enriched operads and dendroidal sets

This chapter explores how dendroidal sets and their theory fit in with the
theory of E-enriched operads. Enriched operads are used to study deformations of
algebraic structures. The idea is that if certain algebraic structures are algebras
for a given enriched operad P , then by resolving that operad one obtains a new
enriched operad whose algebras are P-algebras up-to-homotopy. The cradle of such
constructions is in topology, notably the W -construction of Boardman and Vogt
[7] which is recalled below, May’s work on loop spaces [36], and Stasheff’s work
on H-spaces [43] (where, even though operads were not yet invented, the author
essentially provided an example of an operad enriched in Top). The Boardman-
Vogt W -construction can be generalized to monoidal model categories more general
than the category of topological spaces, as long as these categories have a suitable
notion of an interval. Berger and Moerdijk in a series of papers [4, 5, 6] establish
a Quillen model structure on enriched operads with a fixed set of objects and give
a detailed construction of the Boardman-Vogt W -construction in this more general
setting, as well as proving that this Boardman-Vogt construction, when applied to
an enriched operad P , yields a cofibrant replacement for P . Specifically for operads
enriched in chain complexes, the cobar resolution is a well-known method to resolve
operads (e.g.,[18, 27, 35]).

Below, the generalized W -construction is used in order to establish the connec-
tion between enriched operads and dendroidal sets. As motivation, A∞-spaces are
considered in order to illustrate the general problem of up-to-homotopy algebras
of operads. Next, the original Boardman-Vogt W -construction is presented as well
as its generalized form. That construction is then utilized to construct the homo-
topy coherent dendroidal nerve of a given enriched operad thus establishing the
relation between enriched operads and dendroidal sets. Following is an extension
of the Grothendieck construction from operads to dendroidal sets which is needed
in order to apply the general theory to define categories enriched in a dendroidal
set. The chapter ends by introducing weak n-categories and some basic properties
of them.

4.1. Case study: A∞-spaces

In this section we look at A∞-spaces in order to exemplify the kind of problems
occurring in the general theory of up-to-homotopy algebras. We do not intend this
to be an accurate account of the theory of A∞-spaces, but rather use it to illustrate
a point. For more details and a very precise account of the evolution of ideas and
notions, see the introduction in [35]. We thus allow ourselves to be somewhat
less precise for the sake of greater clarity of the general presentation of the ideas
involved.
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Consider the following situation. Let X be a topological monoid, i.e., X is
a topological space together with a continuous binary operation · : X × X → X
which makes the set underlying X into a monoid (X, e). If we are now given a
homeomorphism f : X → Y then one can (obviously) transfer the monoid structure
from X to Y , in the sense that the function

Y × Y
f−1×f−1

// X ×X
· // X

f // Y

is (of course) continuous and makes (Y, f−1(e)) into a monoid. Assume now that we
are given a weak equivalence g : X → Y , can we still transfer the monoid structure
from X to Y ?

We can attempt to proceed as follows. Assume g has a homotopy inverse
h : Y → X and choose homotopies

H1 : hg → idX

and
H2 : gh→ idY .

We can now define a binary operation on Y , namely

Y × Y
h×h// X ×X

· // X
g // Y.

Let us check whether this operation on Y is associative. Let then a, b, c ∈ Y . On
the one hand

(ab)c = g(h(a)h(b))c = g(h(g(h(a) · h(b))) · h(c))

and on the other hand

a(bc) = ag(h(b)h(c)) = g(h(a) · h(g(h(b) · h(c))))

so that if gh 6= id or hg 6= id then, in general, equality will not hold. However, the
homotopy H2 : gh → id specifies for each y ∈ Y a path γ : [0, 1] → Y from gh(y)
to y. For y = h(a)h(b) we thus obtain the path γ′ : [0, 1]→ Y defined by

γ′(t) = g(γ(t) · h(c))

which is thus a path from (ab)c to g(h(a) · h(b) · h(c)). Similarly we can obtain
another path from a(bc) to g(h(a) · h(b) · h(c)) which together with the first path
implies the existence of a path from a(bc) to (ab)c. We see thus that the operation
need not be associative but it is associative up to homotopy, in the sense that the
paths just constructed fit together to form a homotopy between the two functions
from Y ×Y ×Y to Y obtained from the binary operation. This observation begins to
unfold the kind of structure that can be induced on Y , given a monoid structure on
X and a chosen homotopy inverse h of g and the chosen homotopies realising that
homotopy inverse. To fully describe this structure on Y one needs to also consider
the various ways to use the binary operation to form functions from Y ×Y ×Y ×Y
into Y . These functions can be related to each-other using the given homotopies and
the newly created associativity homotopies, and furthermore there is then a natural
choice of a homotopy between these homotopies (a so called higher associativity
condition). In general, one must consider all possible maps Y n → Y for all k ≥ 0
obtained by the binary operation, and at each stage some new higher associativity
relation will emerge.

Evidently, the resulting structure is quite complicated and some way to manage
that complexity is needed. In [43] Stasheff gives a description of the structure on
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Y by means of certain spaces which parametrize all of the various n-ary operations
(obtained by repeatedly using the binary operation) as well as homotopies be-
tween such operations and homotopies between such homotopies and so on. These
parametrizing spaces, {Kn}∞n=0, were later named associahedra (see [35] for a short
history of these spaces and their name) and were redefined such that each Kn, with
n ≥ 2, is a convex set in Rn−2.

We describe now the first few associahedra. The first space, K0, is just a point.
SinceK0 parametrizes the 0-ary operations, i.e., constants, it implies that Y has one
single constant. The next space isK1 which is also a point, implying there is just one
1-ary operation on Y , namely the identity. The space K2 is still just a point, which
corresponds to the binary operation present on Y . Things get more complicated in
the next stage since this is where homotopies start playing a role. The space K3 is
the space [−1, 1]. The two endpoints represent the two ternary operations obtained
from the binary operation. The entire space K3 thus parametrizes a homotopy
between these two ternary operations. The next space, K4, is a pentagon. Each of
its five vertices corresponds to each of the five 4-ary operations Y 4 → T obtainable
from the binary operation, and each of the sides corresponds to a homotopy between
the two operations at the endpoints. The whole pentagon thus corresponds to a
higher homotopy relation between the homotopies on its boundary. Things get
more and more complicated as we move up in dimensions, yet a concrete definition
of all the spaces Kn is possible.

4.2. The Boardman-Vogt W-construction

We now address a much more general question, motivated by the above dis-
cussion. Let P be a topological operad. Given a functor F : P → Top, which we
think of as an algebraic structure, and for each p ∈ ob(P) a homotopy equivalence
Fp→ Gp to some space Gp, what is the algebraic structure present on the spaces
{Gp}p∈ob(P)?

We will answer that question in the form of the Boardman-Vogt W-construction.
A detailed account (albeit in a slightly different language than that of operads) of
that construction can be found in [7] so we allow ourselves a more expository pre-
sentation aiming at explaining the ideas important for us. The W construction is a
functor W : Operad(Top)→ Operad(Top) equipped with a natural transformation
(an augmentation) W → id. So, with each topological operad P there is associated
a topological operad WP and a map of operads WP → P . Functors WP → Top
are then regarded as up-to-homotopy functors from P to E and are said to describe
up-to-homotopy P-algebras (or simply weak algebras). In that context, a functor
P → Top is referred to as a strict functor and an ordinary P-algebra as a strict
one. The augmentation implies the existence of a functor

Operad(Top)(P , T op)→ Operad(Top)(WP , T op)

which views any strict algebra P → Top as a weak one.
For a topological operad P we now describe the operad WP . This is essentially

the construction presented in [7]. For simplicity let us assume that the operads are
planar, that is we describe a functor taking a planar operad enriched in Top to
another such planar operad. The objects of WP are the same as those of P .
To describe the arrows spaces we consider standard planar trees whose edges are
labelled by objects of P and whose vertices are labelled by operations of P according
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to the rule that the objects labelling the input edges of a vertex are equal (in their
natural order) to the input of the operation labelling that vertex and similarly the
object labelling the output of the vertex is the output object of the operation at the
vertex. Moreover, each inner edge in such a tree is given a length 0 ≤ t ≤ 1. For
objects p0, · · · , pn ∈ ob(WP) let A(p1, · · · , pn; p0) be the topological space whose
underlying set is the set of all such standard planar labelled trees T̄ for which the
leaves of T̄ are labelled by p1, · · · , pn (in that order) and the root of T̄ is labelled by
p0. The topology on A(p1, · · · , pn; p0) is the evident one induced by the topology
of the arrows spaces in P and the standard topology on the unit interval [0, 1].
The space WP(p1, · · · , pn; p0) is the quotient of A(p1, · · · , pn; p0) obtained by the
following identifications. If T̄ ∈ A(p1, · · · , pn; p0) has an inner edge e whose length
is 0 then we identify it with the tree T̄ /e obtained from T̄ by contracting the edge
e and labelling the newly formed vertex by the corresponding ◦i-composition of the
operations labelling the vertices at the two sides of e (the other labels are as in T̄ ).
Thus pictorially we have that locally in the tree a configuration:
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where the labels of the edges were neglected. Another identification is for a tree
S̄ with a unary vertex v labelled by an identity. We identify such a tree with the
tree R̄ obtained by removing the vertex v and identifying its input edge x with its
output edge y. The length assigned to the new edge is determined as follows. If it
is an outer edge then it has no length. If it is an inner edge then it is assigned the
maximum of the lengths of x and y (where if either x or y does not have a length,
i.e., it is an outer edge, then its length is considered to be 0). The labelling is as
in S̄ (notice that the label of the newly formed edge is unique since v was labelled
by an identity which means that its input and output were labelled by the same



4.2. THE BOARDMAN-VOGT W-CONSTRUCTION 105

object). Pictorially, this identification identifies the labelled tree
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where we neglected the labels of the edges. The composition in WP is given by
grafting such labelled trees, giving the newly formed inner edge length 1.

Example 4.2.1. Let P be the planar operad with a single object and a single
n-ary operation in each arity. We consider P to be a discrete operad in Top. It
is easily seen that a functor P → Top corresponds to a topological monoid. Let
us now calculate the first few arrows spaces in WP . Firstly, WP has too just one
object. We thus use the notation of classical operads, namely WP(n) for the space
of operations of arity n. ClearlyWP(0) is just a one-point space. The space WP(1)
consists of labelled trees with one input. Since in such a tree the only possible label
at a vertex is the identify, the identification regarding identities implies that WP(1)
is again just a one-point space. In general, since every unary vertex in a labelled
tree in WP(n) can only be labelled by the identity, and those are then identified
with trees not containing unary vertices, it suffices to only consider trees with no
unary vertices at all. We call such trees regular. To calculate WP(2) we need
to consider all regular trees with two inputs, but there is just one such tree, the
2-corolla, and it has no inner edges, thus WP(2) is also a one-point space. Things
become more interesting when we calculate WP(3). We need to consider regular
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trees with three inputs. There are three such trees, namely
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The middle tree contributes a point to the space WP(3). Each of the other trees
has one inner edge and thus contributes the interval [0, 1] to the space. The only
identification to be made is when the length of one of those inner edges is 0, in
which case it is identified with the point corresponding to the middle tree. The
space WP(3) is thus the gluing of two copies of the interval [0, 1] where we identify
both ends named 0 to a single point. The result is then just a closed interval,
[−1, 1]. However, it is convenient to keep in mind the trees corresponding to each
point of this interval. Namely, the tree corresponding to the middle point, 0, is the
middle tree. With a point 0 < t ≤ 1 corresponds the tree on the right where the
length of the inner edge is t, and with a point −1 ≤ −t < 0 corresponds the tree
on the left where its inner edge is given the length t. In this way one can calculate
the entire operad WP . It can then be shown that the spaces {WP(n)}∞n=0 are all
homeomorphic to the Stasheff associahedra. An A∞-space is then an algebra of
WP .

An important observation in the W construction given above is the following.
In order to construct the space WP(p1, · · · , pn; p0) one can proceed as follows. For

each labelled standard planar tree T̄ as above let H T̄ be H⊗k where k is the number
of inner edges in T̄ and H = [0, 1], the unit interval. The space A(p1, · · · , pn; p0) is
homeomorphic to ∐

T̄

H T̄

where T̄ varies over all labelled standard planar trees T̄ whose leaves are labelled
by p1, · · · , pn and whose root is labelled by p0. The identifications that are then
made to construct the space WP(p1, · · · , pn; p0) are completely determined by the
combinatorics of the various trees T̄ . This observation is the key to generalizing the
W -construction to operads in more general monoidal categories E . What we need
is a suitable replacement for the unit interval [0, 1] used above to give lengths to
the inner edges of the trees. This is done in [4, 5, 6] with the notion of an interval
in a monoidal model category E . In more detail, assume E is a monoidal model
category with a cofibrant unit I. An interval in E is then an object H together
with maps

I
0 //
1
// H

ǫ // I

and

H ⊗H
∨ // H

satisfying certain conditions (see [5]). In particular, H is an interval in Quillen’s
sense (see [40]), so 0 and 1 together define a cofibration I

∐
I → H , and ǫ is a
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weak equivalence. In such a setting the W -construction above can be mimicked by
gluing together objects of the from H⊗k rather then cubes [0, 1]k. We thus obtain
a functor WH : Operad(E) → Operad(E), which specializes to the topological case
in the sense that W[0,1] = W . Usually we will just write W instead of WH . We
illustrate this more general construction by an example, referring the reader to [5]
for more details.

Example 4.2.2. Consider the category Cat with the folk model structure. In
this monoidal model category we can choose the category H with ob(H) = {0, 1}
and a single isomorphism 0 → 1 to be an interval, with the obvious structure
maps. Let us consider again (compare Example 4.2.1) the operad P having one
object and one n-ary operation for each n ≥ 0, this time as a discrete operad in
Cat. To calculate WP(n) we should again consider labelled standard planar trees
with lengths. The same argument as above implies that we should only consider
regular trees, and a similar calculation shows that WP(n) is a contractible one-
point category for n = 0, 1, 2. Now, to calculate WP(3) we again consider the
three trees as given above. This time the middle tree contributes the category
H0 = I. Each of the other trees contributes the category H . The identifications
identify the object named 0 in each copy of H to the unique object of I. The result
is a contractible category with three objects. In general, the category WP(n) is a
contractible category with tr(n) objects, where tr(n) denotes the number of regular
standard planar trees with n leaves. The composition in WP is given by grafting
of such trees.

The generalized Boardman-Vogt W -construction thus provides a definition of
up-to-homotopy P-algebras for a wide variety of operads P enriched in a suitable
monoidal model category with a chosen interval. A natural question that arises is,
of course, what is the appropriate notion of maps between such weak P-algebras.
Luckily, no extra work is needed in order to produce such a notion since we can
again use the W -construction to come up with one. The idea is very simple. If,
given an operad P , we can find an operad P1 such that a P1-algebra consists of
two P-algebras and a map of P algebras between them then it is sensible to define
an up-to-homotopy map between weak P-algebras to be a W (P1)-algebra.

If P is an operad in Set then we can take P1 to be P ⊗BV Ω[L1] where L1 is
a linear tree with one vertex. We thus make the following definition:

Definition 4.2.3. Let P be an operad in Set and E a symmetric monoidal
model category with an interval. An up-to-homotopy P-algebra in E is an algebra
for the operadW (P). An up-to-homotopy map between up-to-homotopy P-algebras
is an algebra for the operad W (P⊗BV Ω[L1]). We will sometimes use the term weak
instead of up-to-homotopy.

Recall that L1 has two edges named 0 and 1. We obtain thus two induced
maps P ∼= P ⊗BV Ω[ηi] → P ⊗BV Ω[L1], for i = 0, 1. Given an algebra W (P ⊗BV
Ω[L1])→ E , i.e., a weak map between weak algebras, there are associated two maps
di : W (P)→ E , which by definition are weak P-algebras. We agree by convention
that d0 is the domain and d1 is the codomain of the given map.

An obvious question now is whether the collection of all weak P-algebras and
all weak P-maps form a category. The answer is that they usually do not. A
simple example is provided by A∞-spaces where it is known that weak A∞-maps
do not compose associatively. The theory so far already suggests a solution to that
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problem. For an operad P in Set consider the operad P ⊗BV Ω[Ln]. An algebra
for such an operad is easily seen to be a sequence of n+ 1 P-algebras X0, · · · , Xn

together with P-algebra maps:

X0 → X1 → · · · → Xn.

We proceed as follows:

Proposition 4.2.4. Let P be an operad in Set. For each n ≥ 0 let Xn be the
set

Alg(W (P ⊗BV Ω[Ln]), E).

The collection X = {Xn}∞n=0 is a simplicial set.

Proof. The proof follows easily by noting that the sequence {P⊗BVΩ[Ln]}∞n=0

forms a cosimplicial object in Operad. See [6] for more details. �

Remark 4.2.5. In [7] the authors make essentially the same definition for the
case where E = Top with the usual interval. They subsequently prove that the
resulting simplicial set is a quasi-category.

Definition 4.2.6. We refer to the simplicial set constructed above as the sim-
plicial set of up-to-homotopy P-algebras.

4.3. The homotopy coherent nerve

We now use the generalized W -construction in order to define, for an operad
P enriched in a suitable symmetric monoidal model category E , its homotopy co-
herent dendroidal nerve. This is a dendroidal set which is like the dendroidal nerve
construction with homotopies built into it. The main result proved in this section
is one identifying a condition on an operad P in E that ensures that its homotopy
coherent dendroidal nerve is an inner Kan complex. This provides a large family of
inner Kan complexes that are rarely ever strict.

Definition 4.3.1. Let E be a symmetric monoidal model category with an
interval H . For each tree T ∈ ob(Ω) we may consider the operad Ω(T ) as a discrete
operad in Operad(E). Doing so we obtain the probe Ω→ Operad(E) that sends T
to W (Ω(T )). Let

dSet
hcτd // Operad(E)
hcNd

oo

be the associated adjunction. The functor hcNd is called the homotopy coherent
dendroidal nerve functor.

Explicitly, given an operad P in E , its homotopy coherent dendroidal nerve is
the dendroidal set given by

hcNd(P)T = Operad(E)(W (Ω(T )),P)

To better understand this construction let us look more closely at the operads
W (Ω(T )). It is convenient to use the functor

Symm : Operad(E)π → Operad(E)
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which is left adjoint to the obvious forgetful functor from symmetric operads in E
to planar ones. Recall that if T is an object in Ω and T̄ is a chosen planar repre-
sentative of T , then Ω(T ) = Symm(Ωπ(T̄ )). Since the W -construction commutes
with symmetrization (as one easily verifies), it follows that

W (T ) = Symm(WΩπ(T̄ )).

Remark 4.3.2. The operad WΩπ(T̄ ) is easily described explicitly. The objects
of W (Ωπ(T̄ )) are the objects of Ωπ(T̄ ), i.e., the edges of T . Recall that by a
signature in W (Ωπ(T̄ )), we mean a sequence e1, · · · , en; e0 of objects, i.e., edges of
T̄ . Given a signature σ = (e1, · · · , en; e0), we have that W (Ωπ(T̄ ))(σ) = φ (the
initial object in E) whenever Ωπ(T̄ )(σ) is empty. If Ωπ(T̄ )(σ) 6= φ then there is a
sub-tree Tσ of T (and a corresponding planar sub-tree T̄σ of T̄ ) whose leaves are
e1, · · · , en, and whose root is e0. We then have that

WΩπ(T̄ )(e1, · · · , en; e0) =
⊗

f∈i(σ)

H,

where i(σ) is the set of inner edges of Tσ (or of T̄σ). (This last tensor product is
to be thought of as the ”space” of assignments of lengths to inner edges in T̄σ; it is
the unit if i(σ) is empty.)

The composition operations in the operad WΩπ(T̄ ) are given in terms of the ◦i-
operations as follows. For signatures σ = (e1, · · · , en; e0) and ρ = (f1, · · · , fm; ei),
the composition map

WΩπ(T̄ )(e1, · · · , en; e0)⊗WΩπ(T̄ )(f1, · · · , fm; ei)

◦i

��
WΩπ(T̄ )(e1, · · · , ei−1, f1, · · · , fm, ei+1, · · · , en; e0)

is the following one. The trees T̄σ and T̄ρ can be grafted along ei to form T̄σ ◦ei
T̄ρ,

again a planar sub-tree of T̄ . In fact

T̄σ ◦ei
T̄ρ = T̄σ◦iρ

where σ ◦i ρ is the signature (e1, · · · , ei−1, f1, · · · , fm, ei+1, · · · , en; e0), and for the
sets of inner edges we have

i(σ ◦i ρ) = i(σ) ∪ i(ρ) ∪ {ei}.

The required composition is then

H⊗i(σ) ⊗H⊗i(ρ) //

∼=

��

H⊗i(σ◦iρ)

∼=

��
H⊗i(σ)∪i(ρ) ⊗ I

id⊗1 // H⊗i(σ)∪i(ρ) ⊗H

where 1 : I → H is one of the ”endpoints” of the interval H , as above.
This description of the operad WΩπ(T̄ ) is functorial in the planar tree T . In

particular, we note that for an inner edge e of T , the tree T/e inherits a planar
structure ¯T/e from T̄ , and WΩπ( ¯T/e) → WΩπ(T̄ ) is the natural map assigning
length 0 to the edge e whenever it occurs (in a sub-tree given by a signature).

The following will result will be useful.
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Lemma 4.3.3. Let P be an operad in Set. For any tree T ∈ ob(Ω) the equality

NdP ⊗ Ω[T ] ∼= Nd(P ⊗BV Ω(T ))

holds.

Proof. The dendroidal set NdP ⊗ Ω[T ] is the following colimit:

lim
−→

Ω(S)→P

Nd(Ω(S)⊗BV Ω(T )) = lim
−→

Ω(S)→P

Ω[S]⊗ Ω[T ].

We show that Nd(P ⊗ Ω(T )) has the required universal property with respect to
that diagram. To obtain a cone from the diagram we need an arrow Nd(Ω(S)⊗BV
Ω(T )) → Nd(P ⊗BV Ω(T )) for each arrow Ω(S) → P . Since τdNd = id, such an
arrow is the same as an arrow Ω(S)⊗BV Ω(T )→ P⊗BV Ω(T ) and the choice for such
an arrow is obvious. Assume now that we are given a cone to some other dendroidal
set X . Let t ∈ Nd(P ⊗BV Ω(T ))T be a non-degenerate dendrex. Since Ω(T ) is the
nerve of the dendroidally ordered set [T ] (thus there is at most one arrow for each
signature and the domain of each arrow does not contain repeated objects) it follows
that there is a unique (up-to-isomorphism) maximal dendrex s ∈ Nd(P)S such that
t is a dendrex in the dendroidal sub-set Ω[S]⊗Ω[T ]→ Nd(P⊗BV Ω(T )) given by the
map s. This dendrex s corresponds to a map Ω(S)→ P . If f : Ω[S]⊗Ω[T ]→ X is a
map in the given cone then g(t) = f(t) defines a unique map Nd(P⊗BV Ω(T ))→ X
such that the cones commute, as required for the universal property. �

Theorem 4.3.4. Let E be a symmetric monoidal model category with an interval
and P an operad in Set. We have the following isomorphism of operads

hcτd(NdP) ∼= W (disc(P)).

Proof. The operad hcτd(NdP) is given as the colimit

lim
−→

Ω(T )→P

WΩ(T ).

A straightforward inspection of that colimit and the generalized W -construction
presented in [5] for the special case of a discrete operad show that both colimits
are the same. �

An immediate result is that, in the same setting as above, the set

dSet(NdP , hcNd(E))η

is isomorphic to the set Operad(E)(W (disc(P)), E) of up-to-homotopy P-algebras.
More generally we have the following:

Proposition 4.3.5. Let E be a symmetric monoidal model category with an
interval and P a discrete operad in E. We then have the following isomorphism:

dSet(NdP , hcNd(E))T ∼= Operad(E)(W (P ⊗BV Ω[T ]), E).

Corollary 4.3.6. With E as above we obtain that the simplicial set

i∗(dSet(Nd(P), hcNd(E)))

is isomorphic to the simplicial set of weak P-algebras from Definition 4.2.6 above.

Our aim for the rest of this section is to present a sufficient condition on an
operad P in E that guarantees that the homotopy coherent dendroidal nerve of P
is an inner Kan complex.
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Definition 4.3.7. An operad P in a symmetric monoidal model category E
is called locally fibrant if for each sequence c1, · · · , cn, c of objects of P , the object
P(c1, · · · , cn; c) in E is fibrant.

Theorem 4.3.8. Let P be a locally fibrant operad in E, where E is a symmetric
monoidal model category with an interval. Then hcNd(P) is an inner Kan complex.

Proof. Consider a tree T and an inner edge e in T . We want to solve the
extension problem

Λe[T ]
ϕ //

��

��

hcNd(P)

Ω[T ]

::

Fix a planar representative T̄ of T . Then the derived map ψ : Ω[T ]→ hcNd(P)
corresponds to a map of planar operads

ψ̂ : WΩπ(T̄ )→ P .

Each face S of T inherits a planar structure S̄ from T̄ , and the given map ϕ :
Λe[T ]→ hcNd(P) corresponds to a map of operads in E ,

ϕ̂ : W (Λe[T ])→ P ,

where W (Λe[T ]) denotes the colimit of operads in E ,

W (Λe[T ]) = lim
−→

W (Ωπ(S̄)) (1)

over all but one of the faces of T . In other words, ϕ corresponds to a compatible
family of maps

ϕ̂S : W (Ωπ(S̄))→ P .

Let us now show the existence of an operad map ψ̂ extending the ϕ̂S for all faces
S 6= T/e. First, the objects of Ωπ(T̄ ) are the same as those of the colimit in (1), so
we already have a map ψ0 = ϕ0 on objects:

ψ0 : E(T )→ ob(P).

Next, if σ = (e1, · · · , en; e0) is a signature of T for which W (Ωπ(T̄ )) 6= φ, if Tσ ⊆ T
is not all of T , then Tσ is contained in an outer face S of T . So W (Ωπ(T̄ ))(σ) =
W (Ωπ(T̄σ))(σ) = W (Ωπ(S̄))(σ), and we already have a map

ϕ̂ρ(σ) : W (Ωπ(T̄ ))(σ)→ P(σ),

given by ϕ̂S : W (Ωπ(S̄)) → P . Thus, the only part of the operad map ψ̂ :
W (Ωπ(T̄ ))→ P not determined by ϕ is the one for the signature τ where Tτ = T ;
i.e., τ = (e1, · · · , en; e0) where e1, · · · , en are all the input edges of T̄ (in the planar

order) and e0 is the output edge. For this signature, ψ̂(τ) is to be a map

ψ̂ : W (Ωπ(T̄ )(τ) = H⊗i(τ) → P(τ)

which (i) is compatible with the ψ̂(σ) = ϕ̂S(σ) for other signatures σ; and (ii)

together with these ψ̂(σ) respects operad composition. The first condition deter-

mines ψ̂(τ) on the sub-object of H⊗i(τ) which is given by a value 1 on one of

the factors. Thus, if we write 1 for the map I // 1 // H and ∂H // // H
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for the map I
∐
I → H , and define ∂H⊗k // // H⊗k by the Leibniz rule (i.e.,

∂(A⊗B) = ∂(A)⊗B ∪A⊗ ∂(b)), then the problem of finding ψ̂(τ) comes down to
an extension problem of the form

∂(H⊗(i(τ)−{e}) ⊗H ∪H⊗(i(τ)−{e}) ⊗ I //

��

��

P(τ)

H⊗i(τ)−{e} ⊗H
∼= // H⊗i(τ)

ψ̂(σ)

OO

This extension problem has a solution, because P(τ) is fibrant by assumption, and
because the left hand map is a trivial cofibration (by repeated use of the push-out
product axiom for monoidal model categories). This concludes the proof of the
theorem. �

Remark 4.3.9. This result generalizes a result of Cordier and Porter [10],
namely that the homotopy coherent nerve of a simplicially enriched category with
fibrant Hom objects is an inner Kan complex. Indeed, taking E to be the category of
simplicial sets with its usual monoidal model category and the obvious interval we
know that any locally fibrant operad in sSet admits a homotopy coherent dendroidal
nerve which is an inner Kan complex. Viewing a simplicial category as an operad
in sSet in the obvious way gives the desires result.

Recall (Example 1.8.4) that given a set M of object in a symmetric monoidal
category E we can construct the E-enriched operad PM .

Lemma 4.3.10. Let E be a symmetric monoidal model category with an interval.
If M ⊆ ob(E) consists of fibrant-cofibrant objects then hcNd(PM ) is an inner Kan
complex.

Proof. It is sufficient to show that PM is locally fibrant. In a monoidal model
category the tensor product of cofibrant objects is again cofibrant and E(X,Y ) is
fibrant whenever X is cofibrant and Y is fibrant. It now follows that each Hom
object in PM is fibrant, as needed. �

Remark 4.3.11. Given a symmetric monoidal model category E with an inter-
val, let Ecf be the full sub-category of E spanned by the fibrant-cofibrant objects.
A fundamental construction in the theory of model categories is the homotopy cat-
egory Ho(E), which is again a monoidal category and we may thus consider it as an
operad. Recall the theory of homotopy within an inner Kan complex from Section
3.5 and in particular the construction of the homotopy operad Ho(X) of an inner
Kan complex X . It is rather simple to verify that the operad Ho(hcNd(Ecf)) is
equivalent to Ho(E) and is actually equal to Ho(Ecf). In that sense, the theory of
homotopy inside a weak Kan complex extends the homotopy theory inside a sym-
metric monoidal model category with an interval. Notice that the dendroidal nerve
hcNd(Ecf ) stores much more information than the homotopy category, namely all
of the higher homotopies.

4.4. Algebras and the Grothendieck construction

Recall that an operad P can be used to define an algebraic structure on objects
of another operad E . In this section we extend the notion of algebras to dendroidal
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sets and present a Grothendieck construction for diagrams of dendroidal sets which
extends the Grothendieck construction for diagrams of operads (Section 1.7).

Definition 4.4.1. Let E and X be dendroidal sets. The dendroidal set

dSet(X,E)

is called the dendroidal set of X-algebras in E and is denoted by Alg(X,E). An
element in Alg(X,E)η is called an X-algebra in E. An element of Alg(X,E)L1

is
called a map of X-algebras in E. We will also refer to an X-algebra in E as an
(X,E)-algebra.

Let us first show that this definition extends the notion of P-algebras in E for
operads.

Proposition 4.4.2. For operads P and E

Alg(NdP , NdE) ∼= Nd(Alg(P , E)).

Proof. This is just the statement that Nd commutes with internal Homs. �

Suppose that Alg(X,E) is an inner Kan complex. The existence of composition
of dendrices then provides for a notion of composition of maps of (X,E)-algebras,
which extends the composition of maps of (P , E)-algebras. Furthermore, the theory
of homotopy in a dendroidal set automatically provides a notion of homotopy for
(X,E)-algebras, which is particularly well behaved when Alg(X,E) is an inner Kan
complex. The exponential property of dendroidal sets can be restated by saying
that if E is an inner Kan complex and X is normal then Alg(X,E) is an inner
Kan complex and thus enjoys a built-in theory of composition and homotopy. We
see thus that by replacing an operad by an inner Kan complex, a much greater
generality is obtained (to define algebraic structures in, not necessarily, operads)
and still one retains a suitable notion of composition of maps of such algebras and
gains immediately a pleasant theory of homotopy.

Later on we will use the theory to obtain a definition for weak n-categories. To
that end we will have to use a suitable Grothendieck construction for diagrams of
dendroidal sets, which we now turn to.

Let S be a cartesian category. A functor X : Sop → dSet is called a diagram of
dendroidal sets. Our aim is to define a dendroidal set∫

S

X

obtained by suitably ’gluing’ the dendroidal sets X(S) for the various S ∈ ob(S). It
will be convenient to introduce the notion of dendroidal collections. A dendroidal
collection is a collection of sets X = {XT }T∈ob(Ω). Each dendroidal set has an
obvious underlying dendroidal collection. A map of dendroidal collections X → Y
is a collection of functions {XT → YT }T∈ob(Ω). There is a natural way of associating
an object of S with each dendrex of Nd(S). For a tree T in Ω, let leaves(T ) be the
set of leaves of T , and for a leaf l, write l : η → T also for the map sending the
unique edge in η to l in T . Then, since S is assumed to have finite products, each
dendrex t ∈ Nd(S)T defines an object

in(t) =
∏

l∈leaves(T )

l∗(t)
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in S. Notice that if α : S → T is a face map, then by using the canonical symmetries
and the projections in S, there is a canonical arrow in(α) : in(t) → in(α∗t) for
any t ∈ XT . Similarly, if α is a degeneracy map or an isomorphism then one
obtains a map in(α), and in fact for any α : S → T one naturally obtains a map
in(α) : in(t)→ in(α∗t) for each t ∈ XT .

Definition 4.4.3. Let X : Sop → dSet be a diagram of dendroidal sets where
S is a cartesian category which is thus also an operad. The dendroidal set

∫
S
X is

defined as follows. A dendrex Ω[T ] →
∫

S
X is a pair (t, x) such that t ∈ Nd(S)T

and x is a map of dendroidal collections

x : Ω[T ]→
∐

S∈ob(S)

X(S)

satisfying the following conditions. For each r ∈ Ω[T ]R (that is an arrow r : R →
T ), we demand that x(r) ∈ X(in(r∗t)). Furthermore we demand the following

compatibility condition to hold. For any r ∈ Ω[T ]R and any map α : U // // R

in Ω

α∗(x(r)) = X(in(α))x(α∗(r)).

Remark 4.4.4. A straightforward verification shows that the Grothendieck
construction for diagrams of dendroidal sets extends the one for operads (given in
Section 1.7) in the following sense. If we have a diagram of operads X : Sop →
Operad and if we write Nd(X) for the diagram of dendroidal sets Sop → Operad→
dSet obtained by composition with Nd : Operad→ dSet, then we have:

Nd(

∫

S

X) ∼=

∫

S

Nd(X).

Theorem 4.4.5. Let X : Sop → dSet be a diagram of dendroidal sets. If for
every S ∈ ob(S) every X(S) is an inner Kan complex then so is

∫
S
X.

Proof. Let T be a tree and e an inner edge. We consider the extension
problem

Λe[T ] //
��

��

∫
S
X

Ω[T ]

<<

The horn Λe[T ] →
∫

S
X is given by a compatible collection {(r, xR) : Ω[R] →∫

S
X}R6=T/e. We wish to construct a dendrex (t, xT ) : Ω[T ]→

∫
S
X extending this

family. First notice that the collection {r}R6=T/e is an inner horn Λe[T ]→ hcNd(S)

(actually this horn is obtained by composition with the obvious projection
∫

S
X →

hcNd(S) sending a dendrex (t, x) to t). We are given that hcNd(S) is an inner Kan
complex and thus there is a filler t ∈ hcNd(S)T for the horn {r}R6=T/e. We now
wish to define a map of dendroidal collections xT : Ω[T ]→

∐
S∈ob(S)X(S) that will

extend the given maps xR for R 6= T/e. This condition already determines the
value of xT for any dendrex r : U → T other then id : T → T and ∂e : T/e → T ,
since for each such r, the tree U factors through one of the faces R 6= T/e. To
determine xT (idT ) and xT (∂e) consider the family {yR = xR(id : R → R)}R6=T/e.
By definition we have that yR ∈ X(in(r))R. For each such R let αR : R → T be
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the corresponding face map in Ω. Since ∂∗e (t) = r we obtain the map in(αR) :
in(r) → in(t). We can now pull back the collection {yR}R6=T/e using X(in(αR))
to obtain a collection {zR = X(in(αR))(yR)}R6=T/e. This collection is now a horn
Λe[T ]→ X(in(T )) (this follows from the compatibility conditions in the definition
of

∫
S
X). Since X(in(t)) is an inner Kan complex there is a filler u ∈ X(in(t))T

for that horn. We now define xT (id : T → T ) = u and xT (∂e : T/e→ T ) = ∂∗e (u).
Notice that since e is inner we have that in(t) = in(∂e) and thus the images of
these dendrices are in the correct dendroidal set, namely X(in(t)). It follows from
our construction that this makes (t, xT ) a dendrex Ω[T ]→

∫
S
X which extends the

given horn. This concludes the proof. �

4.5. Categories enriched in a dendroidal set

Recall that in Section 1.7 we defined for each set A an operad CA such that
a CA-algebra in the operad associated to a symmetric monoidal category E is the
same thing as a category enriched in E , having A as set of objects, that is

Alg(CA, E) = Cat(E)A.

Using the dendroidal nerve functor we obtain that

Nd(Cat(E)A) = Nd(Alg(CA, E)) ∼= Alg(Nd(CA), Nd(E)).

Based on this, we make the following definition.

Definition 4.5.1. Let X be an arbitrary dendroidal set and CA as above. The
dendroidal set Alg(Nd(CA), X) is called the dendroidal set of categories enriched in
X having A as set objects and is denoted by Cat(X)A.

We now use the Grothendieck construction in order to obtain the dendroidal set
of all categories enriched in X . We already have the obvious functor Setop → dSet
that sends a set A to Cat(X)A.

Definition 4.5.2. Let X be a dendroidal set and let CA, for each set A, be the
operad discussed above. Let Cat(X)− : Setop → dSet be the functor that sends
a set A to the dendroidal set Cat(X)A = Alg(Nd(CA), X). The dendroidal set of
categories enriched in the dendroidal set X is

Cat(X) =

∫

Set

Cat(X)−.

This construction can be repeated as follows.

Definition 4.5.3. Let X be a dendroidal set. Let Cat(X)0 = X and define
recursively

Cat(X)n+1 = Cat(Cat(X)n)

for each n ≥ 1. We call Cat(X)n the dendroidal set of n-categories enriched in X.

Theorem 4.5.4. If X is an inner Kan complex then for each n ≥ 0 the den-
droidal set Cat(X)n is an inner Kan complex.

Proof. For any planar operad P in Set the dendroidal nerve Nd(Symm(P))
is clearly normal (see Definition 2.6.6) and thus Nd(CA) is normal for each set A.
From the fact that the the inner Kan complexes form an exponential ideal in dSet
with respect to the normal dendroidal sets (Theorem 3.6.3) it follows that each
dendroidal set Cat(X)A is an inner Kan complex and Theorem 4.4.5 then proves
that so is Cat(X). �
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Thus, for an inner Kan complex X , our definition of the dendroidal set of
n-categories enriched in X provides us with a definition of what an n-category
enriched in X is, what are functors for such n-categories, a notion of homotopy for
such functors together with a composition rule for such functors which is associative
up to homotopy.

Example 4.5.5. It is rather straightforward to verify that

Cat(Nd(Set))
n ∼= Nd(Cat

n)

for each n ≥ 0 where Catn is the category of strict n-categories with the tensor
product of n-categories, viewed as an operad (by Cat0 we mean just Set). Unfolding
this definition one sees that this is just the common definition of strict (n + 1)-
categories as categories enriched in the category of n-categories. More generally,
we have that

Cat(Nd(Cat
m))n ∼= Nd(Cat

n+m).

Of course we also have that for a symmetric monoidal category E

Cat(Nd(E)) ∼= Nd(Cat(E)).

We see thus that our notion of a category enriched in a dendroidal set X extends
the usual definition of categories enriched in a symmetric monoidal category. We
see also that our notion of n-category in X , for X = Nd(Set), captures the notion
of strict n-categories.

Remark 4.5.6. Consider the category Top of compactly generated spaces. This
category is a closed monoidal category with weak equivalences the weak homo-
topy equivalences and fibrations the Serre fibrations ([40]). The unit interval [0, 1]
with the minimum operation acts as an interval for this category in the above
sense, so that the homotopy coherent nerve of Top is well defined. We now have
the dendroidal set Cat(hcNd(Top)). The dendrices of shape η are then categories
weakly enriched in topological spaces in the sense that the composition maps are
associative up to specified higher homotopies. In particular, the dendroidal set
A1 = dSet(Nd(C∗), hcNd(Top)) is the dendroidal set of A∞-spaces (C∗ being CB
where B is a one-point set). It is now natural to consider the sequence {An}∞n=1

where An+1 = dSet(Nd(C∗), An). It should be interesting to study the relation
between n-fold loop spaces and An and compare it to the work of Dunn [12] and
the recent approach of Batanin [2] via n-operads.

Given a commutative ring R, the category Ch(R) of graded chain complexes
of R-modules is a monoidal model category where the equivalences are the quasi-
equivalences and the fibrations are the epimorphisms ([21]). An interval in this
category is given by NR

∗ (∆[1]) where NR
∗ is the normalized chain complex functor.

We now have the dendroidal set Cat(hcNd(Ch(R))) whose dendrices of shape η are
essentially A∞-categories (see [25] for a definition and [6] for a related discussion).

4.6. Weak n-categories

The definition of strict (n + 1)-categories as categories enriched in strict n-
categories is very appealing and a suitable analogous definition for weak n-categories
is desirable. A naive approach to an analogous definition of weak n-categories would
proceed along these lines: A weak (n + 1)-category should be a category weakly
enriched in the category of weak n-categories. There are two problems with such a
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definition. The first is that it is not clear how one should weakly enrich a category
and the second, and far more devastating for such an approach, is that while in
order to enrich in a category E , that category has to have certain extra structure
(mostly that of a symmetric monoidal category, but braided monoidal categories or
fc-multicategories are also adequate structures in which to enrich categories [30]).
The problem becomes apparent when one realizes that for n > 2 the collection of
weak n-categories and their weak functors should not be expected to even form a
category but rather a weak n-category. To proceed we must then consider the extra
structure needed to be present on a weak n-category in order to weakly enrich in it
and then say what is meant by weakly enriching in it. Hope for a uniform recursive
definition of such notions seems remote and the naive approach would appear to
fail.

There are of course other approaches to be taken which resulted in a plethora
of definitions of weak n-categories (See [29] for a survey of ten such definitions).
Some of the approaches to a definition can be said to improve on the naive approach
dictated above. Using the general theory of dendroidal sets we obtain another such
definition, as we now show.

Definition 4.6.1. Let Cat be the category of categories with the folk model
structure (see Theorem 1.6.1 for the definition) and the interval H the free-living
isomorphism (a two object category with a single isomorphism between them). We
define the dendroidal set of weak n-categories wCatn for 0 ≤ n < ∞ as follows.
wCat0 = Nd(Set) and for n > 0:

wCatn = Catn−1(hcNd(Cat)).

Since every object in Cat is fibrant and cofibrant it follows that hcNd(Cat) is
an inner Kan complex (Lemma 4.3.10) and thus that our definition provides notions
of weak n-categories, their maps, homotopy, and compositions.

Let us look more closely at weak n-categories for small n. For n = 1 we have
wCat1 = hcNd(Cat). Recall that a dendrex of shape T in wCat1 is a functor of
Cat-enriched operads W (Ω(T )) → Cat. It is easily seen that wCat1η is the set of

all small categories. A dendrex F ∈ wCat1L1
is then just a functor between two

categories, while a dendrex in wCat1L2
corresponds to a choice of three functors

F1 : A → B, F2 : B → C, and F3 : A → C together with a natural isomorphism
α : F2F1 → F3. It thus follows that two dendrices F, F ′ ∈ wCat1L1

are homotopic if,

and only if, they are naturally isomorphic. We now show that a dendrex t ∈ wCat1T ,
with |T | ≥ 3 is completely determined by its boundary. We use the following
notation. Given a dendrex t : Ω[T ]→ X in a dendroidal set X we denote the map
Skk(Ω[T ])→ Ω[T ]→ X by Skk(t).

Proposition 4.6.2. Let T be a tree with |T | ≥ 3 and t and s two dendrices in
wCat1T . If Sk2(t) = Sk2(s) then t = s.

Proof. Consider a functor F : Hm → C for some m ≥ 0. The category
Hm is a contractible category with ob(Hm) = {0, 1}m and thus the functor F is
completely determined by its value on each of the arrows from the object (0, · · · , 0)
to all other objects. Now, a dendrex x ∈ XT is a functor W (Ω(T )) → Cat which
can be given as a sequence of compatible functors {Hmi → Ci}ni=1 (see the proof
of Theorem 4.3.8 above). Each such functor is determined thus by its image on
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the special arrows just mentioned. Since these arrows are clearly contained in the

image of Sk2(Ω[T ]) // Ω[T ]
x // X , the result follows. �

We can now deduce the following:

Lemma 4.6.3. The dendroidal set wCat1 = hcNd(Cat) is 3-coskeletal.

Proof. If we can show that wCat1 satisfies the strict inner Kan condition for
all trees T with |T | ≥ 3 then it would follow from Proposition 3.2.5 that wCat1

is 3-coskeletal. Let thus T be such a tree. Since we already know that wCat1

is an inner Kan complex we know that every inner horn Λe[T ] → wCat1 has a
filler t. Suppose that s is also a filler for the same horn. Since |T | ≥ 3 it follows
that Sk2(Ω[T ]) factors through Λe[T ] and thus that Sk2(t) = Sk2(s). The above
proposition then implies that t = s, as needed. �

It is now a straightforward (and somewhat tedious) matter to unpack the def-
inition of a weak 2-category. To identify the relevant dendrices in wCat1 it will
be convenient to use the following notation. Given categories X1, · · · , Xn and two
integers 1 ≤ i ≤ j ≤ n we denote by (X)ji the category Xi × · · · ×Xj . A dendrex
of wCat1 of shape η is just a category. A dendrex of the shape of a corolla Cn is
the same as a choice of n+ 1 categories X0, · · · , Xn and a functor F : (X)n1 → X .
Any dendrex of degree 2 is of shape Cn ◦i Cm and such a dendrex is equivalent to
the following data:

(1) A choice of n+ 1 categories X0, · · · , Xn and a functor F : (X)n1 → X0.
(2) A choice of m categories Y0, · · · , Ym and a functor G : (Y )m1 → Xi.
(3) A functor H : (X)i−1

1 × (Y )m1 × (X)ni+1 → X0.
(4) A natural isomorphism α between H and F ◦i G.

with F ◦i G being the obvious functor. A dendrex of degree three can have one of
two shapes. Either it is of the shape Cn◦i,j (Cm, Ck) or of the shape Cn◦i(Cm◦jCk).
A dendrex of the first shape consists of the following data:

(1) A choice of n+ 1 categories X0, · · · , Xn and a functor F1 : (X)n1 → X0.
(2) A choice of m categories Y1, · · · , Ym and a functor F2 : (Y )m1 → Xi.
(3) A choice of k categories Z1, · · · , Zk and a functor F3 : (Z)k1 → Xj.

(4) A functor G1 : (X)i−1
1 × (Y )m1 × (X)ni+1 → X0 and a natural isomorphism

α1 between G1 and the obvious functor F1 ◦i F2.
(5) A functor G2 : (X)j−1

1 × (Z)k1 × (X)nj+1 → X0 and a natural isomorphism
α2 between G2 and the obvious functor F1 ◦j F3.

(6) A functorH : (X)i−1
1 ×(Y )m1 ×(X)j−1

i+1×(Z)k1×(X)nj+1 → X0 and a natural

isomorphism β between H and the obvious functor F1 ◦i,j (F2, F3).

Similarly, a dendrex of shape Cn ◦i (Cm ◦j Ck) consists of the following data:

(1) A choice of n+ 1 categories X0, · · · , Xn and a functor F1 : (X)n1 → X0.
(2) A choice of m categories Y1, · · · , Yn and a functor F2 : (Y )m1 → Xi.
(3) A choice of k categories Z1, · · · , Zk and a functor F3 : (Z)k1 → Yj .

(4) A functor G1 : (X)i−1
1 × (Y )m1 × (X)ni+1 → X0 and a natural isomorphism

α1 between G1 and the obvious functor F1 ◦i (F2).

(5) A functor G2 : (Y )j−1
1 × (Z)k1 × (Y )mj+1 → Y0 and a natural isomorphism

α2 between G2 and the obvious functor F2 ◦j F3.

(6) A functor H : (X)i−1
1 × (Y )j−1

1 × (Z)k1 × (Y )mj+1 × (X)ni+1 → X0 and a

natural isomorphism β between H and the obvious functor F1◦i (F2◦jF3).
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Let us now examine what is a weak 2-category B that has just one object (this
is expected to be some kind of a monoidal category). By definition B is a map
B : Nd(CB)→ wCat1 where B is a one-point category. The map Sk0(B) is just the
choice of a category for every dendrex in Nd(CB)η (for a fixed η), i.e., it is simply
a category M . The map Sk1(B) amounts to a choice of a functor

γ : Mn →M

for all n ≥ 0. We call this functor the unbiased tensor product of n-elements and
write (a1 ⊗ · · · ⊗ an) instead of γ(a1, · · · , an). As a special case we include n = 0
which amounts to a map I →M , that is the same as choosing an object in M which
is called the unit. The map Sk2(B) amounts to specifying certain isomorphisms as
follows. Given objects a1, · · · , an, an integer 0 ≤ i ≤ n, and an integer i ≤ j ≤ n
there is an isomorphism

(a1 ⊗ · · · ⊗ ai−1 ⊗ (ai ⊗ · · · ⊗ aj)⊗ aj+1 ⊗ · · · ⊗ an)

��
(a1 ⊗ · · · ⊗ an)

which is natural in each ak (Recall that we interpret the tensor product of 0 elements
to be the chosen unit and so these diagrams include unit laws). The map Sk3(B)
provides two types of coherence constraints for these isomorphisms. To state these
constraints we use a similar convention as above; for objects ai, · · · , aj we denote

the formal sequence ai ⊗ · · · ⊗ aj by aji . The first coherence constraint states the
commutativity of diagrams of the sort

(ai1 ⊗ (aji+1)⊗ a
k
j+1 ⊗ (amk+1)⊗ a

t
m+1)

//

��

(ai1 ⊗ (aji+1)⊗ a
t
j+1)

��
(ak1 ⊗ (amk+1)⊗ a

t
m+1) // (at1)

where the arrows are obtained from the given unbiased compositions. The second
type of coherence constraints state the commutativity of diagrams of the sort

(ai1 ⊗ (aji+1 ⊗ (akj+1)⊗ a
m
k+1)⊗ a

t
m+1)

��

// (ai1 ⊗ (ami+1)⊗ a
t
m+1)

��
(aj1 ⊗ (akj+1)⊗ a

t
k+1)

// (at1)

where the arrows are again given by the unbiased tensor products. Lemma 4.6.3
shows that this is precisely the information present in the weak 2-category B.

Remark 4.6.4. The terminology ’unbiased’ is taken from [31]. Leinster intro-
duces there the notion of an unbiased monoidal category which is almost identical
(and is equivalent) to the notion we arrived at here. The term unbiased refers to the
explicitly given tensor products of n objects for all n ≥ 0 rather than the more usual
bias towards a 0-ary tensor product (i.e. a unit) and a binary tensor product. We
note also that if one unpacks the notion of a map between weak 2-categories with
one object one obtains essentially the same definition as that of a weak monoidal
functor between unbiased monoidal categories [31].
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One can similarly unpack the definition of an arbitrary weak 2-category. Of
course the resulting notion will not be identical with that of bicategories (see [3] for a
definition) but would rather be an unbiased version similar to the situation above.
However, we still expect that our notion of weak 2-categories is essentially the
same as bicategories in some sense to be made precise. Speculating about possible
comparisons between our notion of weak n-categories and other such definitions is
very difficult at best and we do not attempt one here.

We end this section by conjecturing about the Baez-Dolan stabilization hy-
pothesis for the notion of weak n-categories just introduced. The Baez-Dolan
stabilization hypothesis (see [1]) is a general conjecture about weak n-categories
that before it can be proved for a specific definition of weak n-categories must first
be interpreted and made precise for that definition. For example, Simpson [42]
states and proves the stabilization hypothesis for Tamsamani’s definition of weak
n-categories. Let us first explain what the stabilization hypothesis is. Assume for
the discussion that some notion of weak n-categories is fixed. A weak n-category
typically consists of j dimensional cells for all 0 ≤ j ≤ n, such that the 0-cells are
the objects, the 1-cells are the arrows, the 2-cells are arrows between arrows and so
on. For an integer k ≥ 0, a k-monoidal n-category is a weak (n+ k)-category that
has just one j-cell for each 0 ≤ j < k. For low dimensions we have the following
table of k-monoidal n-categories:

n=0 n=1 n=2
k=0 sets categories 2-categories
k=1 monoids monoidal categories monoidal 2-categories
k=2 commutative braided monoidal braided monoidal

monoids monoidal 2-categories
k=3 ” symmetric monoidal weakly involutory

categories 2-categories
k=4 ” ” strongly involutory

2-categories
k=5 ” ” ”

and it would appear that each column becomes more and more commutative as
k increases and stabilizes at k = n + 2. The Baez-Dolan hypothesis is that in-
deed for any reasonable definition of weak n-categories, each column in the table
of k-monoidal n-categories stabilizes at k = n+ 2.

As for our definition of weak n-categories, we now give an interpretation of
the stabilization hypothesis and take a small step towards proving it. For each
set B we have the operad CB such that the dendroidal set dSet(Nd(CB), wCatn)
is, by definition, the dendroidal set of weak n + 1 categories whose set of objects
is equal to the set B. Let us denote A = Nd(C∗), where C∗ is CB and B is a
one-point set. That means that a 1-monoidal n-category is a dendrex of shape η
in dSet(A,wCatn). Now, a 2-monoidal n-category should be an (n + 2)-category
with just one object and one arrow, that means that it is a category enriched in
1-monoidal n-categories that has itself just one object. In other words a 2-monoidal
n-category is a dendrex of shape η in dSet(A, dSet(A,wCatn)). Motivated by this,
it makes sense to define a (k + 1)-monoidal n-category to be a category with one
object enriched in k-monoidal n-categories. We make this precise in the following
definition:
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Definition 4.6.5. Let n ≥ 0 be fixed. For k ≥ 0 We define recursively the
dendroidal set wCatnk of k-monoidal n-categories as follows. For k = 0 we set

wCatn0 = wCatn

and for k > 0

wCatnk = dSet(A,wCatnk−1).

A dendrex of shape η in wCatnk is then called a k-monoidal n-category.

Remark 4.6.6. Notice that

wCatnk = dSet(A⊗k , wCatn).

Conjecture 4.6.7. (The Baez-Dolan stabilization hypothesis for our notion
of n-categories) For a fixed n ≥ 0, we have the equality

wCatnk
∼= wCatnn+2

for any k ≥ n+ 2.

As a step towards a proof we make the following conjecture:

Conjecture 4.6.8. For any n ≥ 0 the dendroidal set wCatnn is a strict inner
Kan complex.

Remark 4.6.9. Note that we already know from the general theory that wCatnn
is an inner Kan complex.

Proposition 4.6.10. The conjecture just stated implies the Baez-Dolan stabi-
lization conjecture.

Proof. Fix j > 2. Using Remark 4.6.6 we proceed as follows. We have
to prove that dSet(A⊗n+j , wCatn) = dSet(A⊗n+2 , wCatn) where we assume that
dSet(A⊗n , wCatn) is a strict inner Kan complex. By Theorem 3.5.12 there is thus
an operad P such that dSet(A⊗n , wCatn) = Nd(P). We now have:

dSet(A⊗n+j , wCatn) = dSet(A⊗j , dSet(A⊗n , wCatn)) = dSet(A⊗j , Nd(P))

which by adjunction is

Operad(τd(A
⊗j ),P).

However, A is actually the dendroidal nerve of the symmetric operad As describing
associative monoids. By Lemma 3.1.2 we have:

τd(A
⊗j ) = τd(Nd(As)

⊗j ) ∼= As⊗BV As⊗BV · · · ⊗BV As = As⊗j .

It is known ([8]) that for j ≥ 2

As⊗j = Comm,

the operad describing commutative monoids and the result now follows. �
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4.7. Quillen model structure on dSet

We end this chapter and the thesis by giving a conjecture about the existence
of a Quillen model structure on dSet. We show that if this conjecture is true then
X algebras in E for a normal X and an inner Kan complex E have a nice homotopy
invariance property. We expect this model structure to be very important in the
general future theory of dendroidal sets as well as for the theory of A∞-spaces,
A∞-categories, weak n-categories, and general up-to-homotopy structures.

To formulate the conjecture about the existence of such a Quillen model struc-
ture let us first recall the Joyal model structure on the category of simplicial sets.

First, recall the nerve-realisation adjunction sSet
τ //

Cat
N

oo . For a given sim-

plicial set X , the category τ(X) is commonly called the fundamental category of
X and is denoted by τ1(X) (terminology taken from [23]). We can now define the
functor τ0 : sSet→ Set where τ0(X) is the set of isomorphism classes of objects of
the category τ1(X). Given two simplicial sets X and Y we write

τ0(X,Y ) = τ0(sSet(X,Y )).

Definition 4.7.1. A weak categorical equivalence is a map f : X → Y of
simplicial sets with the property that for any inner Kan simplicial set K (a quasi-
category in the terminology of [24]) the induced map

τ0(Y,K)→ τ0(X,K)

is an isomorphism of sets.

Theorem 4.7.2. The category sSet of simplicial sets admits a cartesian Quillen
model structure where the weak equivalences are the weak categorical equivalences
and the cofibrations are the monomorphisms. Under this model structure the fibrant
objects are precisely the inner Kan simplicial sets.

The proof, and much more theory related to this model structure, which we
call the Joyal model structure on simplicial sets, will appear in Joyal’s book [24].

Mimicking the definition of weak categorical equivalences we proceed as follows.
The functor τd : dSet→ Operad gives rise to a functor τ0d

: dSet→ Set defined for
a dendroidal set X by τ0d

(X) = τ0(i
∗(X)). For dendroidal sets X and Y we define

τ0d
(X,Y ) = τ0d

(dSet(X,Y )).

Definition 4.7.3. Given two dendroidal sets X and Y , we call a map f : X →
Y a weak operadic equivalence if for any inner Kan dendroidal set K the induced
map

τ0(Y,K)→ τ0(X,K)

is an isomorphism of sets.

Following [9] (page 320) we make the following definition:

Definition 4.7.4. Let f : X → Y be a monomorphism between dendroidal
sets. We call f normal if for every dendrex t ∈ YT that does not factor through f
the only isomorphism of T that fixes t is the identity.

This definition extends Definition 2.6.6 in the sense that a dendroidal set is
normal if, and only if, the inclusion φ→ X is normal.
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Remark 4.7.5. Clearly any map between normal dendroidal sets is normal. In
particular, if X is normal then the inclusion Skk(X)→ X is normal for all k ≥ 0.

Conjecture 4.7.6. The category dSet of dendroidal sets admits a Quillen
model structure where the weak equivalences are the weak operadic equivalences
and the cofibrations are the normal monomorphisms. Furthermore, with the tensor
product of dendroidal sets, this model structure is a monoidal model category. Under
this model structure the fibrant objects are the inner Kan complexes and the cofibrant
objects are the normal dendroidal sets. Moreover, in the diagram

Cat
j! //

N
��

Operad
j∗

oo

Nd

��
sSet

i! //

τ

OO

dSet
i∗

oo

τd

OO

from Theorem 3.1.4 we expect all of the adjunctions to be Quillen adjunctions.

Remark 4.7.7. We expect the fact that the inner Kan complexes form an
exponential ideal in dSet (Corollary 3.6.4) to play a fundamental role in proving
the conjecture. We also expect that the functor K : dSet→ dSet given in Lemma
3.7.4, is actually a fibrant replacement functor in this conjectured model structure.
Note that we have already shown that j! and j∗ form a Quillen adjunction (Lemma
1.6.5. In [24] it is shown that τ and N also form a Quillen adjunction. The fact
that i! preserves cofibrations is obvious and in fact it is quite simple to show that
it preserves weak equivalences too, so that i! and i∗ also form a Quillen adjunction.
The difficult part is thus proving that τd and Nd form a Quillen adjunction.

Assuming the conjecture above holds, we can prove a homotopy invariance
property for algebras in an inner Kan complex. Let us first clarify what we mean
by such an invariance property. First, recall some terminology from [23]. If S is
a quasi-category (i.e., an inner Kan simplicial set) a 1-simplex s is called a weak
equivalence if its image under τ : sSet → Cat is invertible. Now, given any 1-
simplex s : ∆[1]→ S, we have that s is a weak equivalence if, and only if, it can be
extended to a map from S∞:

∆[1]
s //

��

S

S∞

==

where S∞ is the infinite dimensional sphere, i.e., the nerve of the category H which
is the interval in the folk model structure on Cat. The vertical map ∆[1] → S∞

is a trivial cofibration in the Joyal model structure. Extending this to dendroidal
sets we have:

Definition 4.7.8. Let X be an inner Kan complex. A dendrex x ∈ XL1
is

called a weak equivalence if i∗(x) is a weak equivalence in the inner Kan simplicial
set i∗(X).

Let E and X be two dendroidal sets and consider the dendroidal set Alg(X,E)
of X-algebras in E. Such an algebra is thus a map A : X → E. The map Sk0(A) :
Sk0(X) → Sk0(E) consists of a choice of elements in Eη and we think of A as
defining an algebraic structure on the element Sk0(A). Suppose now that E is an
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inner Kan complex and A is a fixed X-algebra in E. We say that the algebraic
structure on Sk0(A) given by A has the homotopy invariance property if given
another choice of elements in Xη, given as a map A′ : Sk0(X) → Sk0(E), and for
each w ∈ Eη a weak equivalence

fw : A(w)→ A′(w)

there is an E-algebra structure on A′ and a map of E-algebras f : A → A′ that
extends the given fw.

Theorem 4.7.9. Let X be a normal dendroidal set and E an inner Kan com-
plex. If conjecture 4.7.6 holds then all E-algebras in X have the homotopy invari-
ance property.

Proof. Assume that we have an algebra A : X → E and a choice of weak
equivalences fw : A(w) → A′(w) as above. Since a weak equivalence in X is the
same as a map i!(S

∞) → X it follows that the choice of the maps fw produces
a map f : i!(S

∞) → dSet(Sk0(X), E)). We now have the following commutative
diagram

Ω[η]
A //

��

dSet(X,E)

��
i!(S

∞)
f // dSet(Sk0(X), E)

where the vertical arrow on the right is induced by the cofibration Sk0(X) → X ,
(see Remark 4.7.5 for why this is a cofibration) and is thus a fibration (by the push-
out product axiom). Notice that a diagonal filler for this diagram corresponds to
an element f̄ ∈ dSet(X,E)L1

, and thus to a map of algebras f̄ : A → A′ which
extends f - which is what we would like to show. It therefore suffices to show that
this diagram has a diagonal filler, which will follow if the left vertical map is a trivial
cofibration. Notice that this map is actually the image under i! : sSet → dSet of
the map ∆[1] → S∞, which is a trivial cofibration in the Joyal model structure
on simplicial sets. It thus follows from the assumption that i! is a left Quillen
functor that Ω[η]→ i!(S

∞) is indeed a trivial cofibration, which thus completes the
proof. �

Remark 4.7.10. This homotopy invariance property is related to a similar
property (Theorem 3.5 in [4]) for algebras over cofibrant operads.




