
CHAPTER 3

Operads and dendroidal sets

This chapter is concerned with the relation between operads, dendroidal sets,
and simplicial sets. The relation is established by means of the dendroidal nerve
functor which associates with every operad a dendroidal set - its nerve. The notion
of an inner Kan dendroidal set is then introduced. This notion is a generalization
of a notion given by Boardman and Vogt for simplicial sets in [7]. The technique
of anodyne extensions is then imported from the theory of simplicial sets and is
demonstrated by a simple example. Grafting in dendroidal sets is then discussed
as well as homotopy in a dendroidal set. It is shown that with each inner Kan
complex one can associate a homotopy operad, which is then used to deduce a
characterization of nerves of operads as dendroidal sets satisfying certain strict
filling conditions. Following is a proof that the inner Kan complexes form an
exponential ideal in the category of dendroidal sets, a result which generalizes a
recent result of Joyal [24] for simplicial sets. The chapter ends by introducing a
process that turns an arbitrary dendroidal set into an inner Kan complex.

3.1. Nerves of operads

The functor relating operads to dendroidal sets is the operadic nerve functor.
It is the aim of this section to introduce this functor and study it, and other related
functors, in detail.

Definition 3.1.1. Consider the probe F : Ω → Operad which sends a tree T

to the operad Ω(T ), and the induced adjunction dSet
|·|F // Operad
NF

oo . The functor

NF is called the operadic nerve functor and will be denoted by Nd. The functor
| · |F is called the operadic realization functor and will be denoted by τd.

Explicitly, for an operad P , its nerve is the dendroidal set given by

Nd(P)T = Operad(Ω(T ),P).

It is practically a tautology that for any tree T ∈ ob(Ω)

Nd(Ω(T )) = Ω[T ].

Slightly less trivial is the fact that for any operad P

τd(Nd(P)) ∼= P ,

a property that will be used on several occasions below.
The categories Cat and sSet are both cartesian closed categories and, with

respect to these monoidal structures, both of the functors τ and N are strong
monoidal. As we have seen, the categories Operad and dSet also carry a closed
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3.1. NERVES OF OPERADS 76

monoidal structure, and we turn now to investigate the properties of the functors
τd and Nd with respect to these monoidal structures.

We would first like to relate the tensor product of dendroidal sets with the
Boardman-Vogt tensor product of operads. Recall that the tensor product of den-
droidal sets is defined by cocontinuously extending the formula

Ω[T ]⊗ Ω[S] = N([T ]⊗ [S])

where N : BrdPoset → dSet is the nerve functor defined in Section 2.5. Since we
now also have the nerve functor of operads, we can define a tensor product on dSet
by cocontinuously extending the formula

Ω[T ]⊗ Ω[S] = Nd(Ω(T )⊗BV Ω(S)).

However, both approaches yield essentially the same monoidal structure. This
follows from the easily established equality

N([T ]⊗ [S]) ∼= Nd(Ω(T )⊗BV Ω(S))

which holds for any two trees T and S.
To compare the Boardman-Vogt tensor product with the tensor product of

dendroidal sets it is convenient to notice first that any operad P can be written
canonically as a colimit of operads of the form Ω(T ), namely

P ∼= lim
−→

Ω(T )→P

Ω(T ),

and since the Boardman-Vogt tensor product of operads is closed, we obtain the
formula

P ⊗BV Q = lim
−→

(Ω(T )⊗BV Ω[S])

with the colimit taken over the obvious diagram.

Lemma 3.1.2. For any two operads P and Q

τd(Nd(P)⊗Nd(Q)) ∼= P ⊗BV Q.

Proof. By definition:

Nd(P)⊗Nd(Q) = lim
−→

(Ω[T ]⊗ Ω[S]).

Since
N([T ]⊗ [S]) ∼= Nd(Ω(T )⊗BV Ω(S))

we obtain that

τd(Ω[T ]⊗ Ω[S]) = τd(N([T ]⊗ [S])) ∼= τd(Nd(Ω(T )⊗BV Ω(S)) ∼= Ω(T )⊗BV Ω(S).

Since τd, as a left adjoint, commutes with colimits we obtain that

τd(Nd(P)⊗Nd(Q)) ∼= lim
−→

(Ω(T )⊗BV Ω(S)) ∼= P ⊗BV Q

as claimed. �

Remark 3.1.3. Notice that this lemma implies that the Boardman-Vogt tensor
product of operads is completely determined by the tensor product of broad posets.
While this fact might not be very important in the general theory, it is remarkable
that the quite involved Boardman-Vogt tensor product is already contained within
a much simpler notion.

We summarise the relation between categories, operads, simplicial sets, and
dendroidal sets in the following theorem.
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Theorem 3.1.4. In the diagram

Cat
j! //

N

��

Operad
j∗

oo

Nd

��
sSet

i! //

τ

OO

dSet
i∗

oo

τd

OO

all pairs of functors are adjunctions with the left adjoint on top or to the left.
Furthermore, the following canonical commutativity relations hold

τN ∼= id

τdNd ∼= id

i∗i! ∼= id

j∗j! ∼= id

j!τ ∼= τdi!

Nj∗ ∼= i∗Nd

i!N ∼= Ndj!.

If we consider the cartesian structures on Cat and sSet, the Boardman-Vogt
tensor product on Operad, and the tensor product of dendroidal sets then the four
categories are symmetric closed monoidal categories and the functors i∗, i!, N, τ, j

∗, j!
and τd are strong monoidal.

Proof. The commutativity relations are easily seen to hold. The fact that
N is strong monoidal is well known (and easily proved). Proving that j! is strong
monoidal is also easy. To show that i! is strong monoidal we need to prove that for
two simplicial sets X and Y

i!(X × Y ) ∼= i!(X)⊗ i!(Y ).

Since i! is a left adjoint it commutes with colimits, and it therefore follows that it
is enough to show that the formula holds for representable simplicial sets, which we
now do. Recall that we denote by Lk the linear tree with k vertices. We now have:

i!(∆[n]×∆[m]) ∼= i!(N([n])×N([m]))
∼= i!(N([n]× [m]))
∼= Ndj!([n]× [m])
∼= Nd(j![n]⊗BV j![m])
∼= Nd(Ω(Ln)⊗BV Ω(Lm))
∼= Ω[Ln]⊗ Ω[Lm]
∼= i!(∆[n])⊗ i!(∆[m]).

as claimed.
To prove that τd is strong monoidal we need to show that

τd(X ⊗ Y ) ∼= τd(X)⊗BV τd(Y )
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holds for any two dendroidal sets X and Y . Once again it is enough to establish
the result for representables, and indeed we have

τd(Ω[T ]⊗ Ω[S]) = τd(Nd(Ω(T ))⊗Nd(Ω(S))) ∼=

Ω(T )⊗BV Ω(S) = τd(Nd(Ω(T )))⊗BV τd(Nd(Ω(S))) =

τd(Ω[T ])⊗BV τd(Ω[S])

as required. The rest of the proof follows along similar lines and is omitted. �

Remark 3.1.5. In general, the canonical map τi∗(X) → j∗τd(X) is not an
isomorphism. Consider for example the tree T given by

•

b ??
??

??
??u

c
��

��
��

��

v •

a

For the dendroidal set Ω[T ] we have that i∗Ω[T ] is a disjoint union of three copies
of Ω[η] and thus τi∗Ω[T ] is simply a category with three different objects and
non-identity arrows. On the other hand, the operad τdΩ[T ] contains the unary
operation v ◦1 u : c→ a which is thus also present in j∗τdΩ[T ] and so we have that
j∗τdΩ[T ] ≇ τi∗Ω[T ].

The nerve functor N : Cat → sSet can easily be shown to commute with
internal Homs in the sense that for any two categories C and D, the equation

N(Cat(C,D)) ∼= sSet(N(C), N(D))

holds. Lemma 3.1.2 allows us to prove a similar result for the dendroidal nerve
functor.

Lemma 3.1.6. The dendroidal nerve functor commutes with internal Homs in
the sense that for any two operads P and Q we have

Nd(Operad(P ,Q)) ∼= dSet(Nd(P), Nd(Q)).

Proof. For a tree T ∈ ob(Ω) we have the equations:

dSet(Nd(P), Nd(Q))T = dSet(Nd(P)⊗ Ω[T ], Nd(Q)) =

dSet(Nd(P)⊗Nd(Ω(T )), Nd(Q)) ∼= Operad(τd(Nd(P)⊗Nd(Ω(T ))),Q) ∼=

Operad(P ⊗BV Ω(T ),Q) ∼= Operad(Ω(T ), Operad(P ,Q)) =

Nd(Operad(P ,Q))T

which prove the claim. �

Another functor that commutes with internal Homs is i!. To show that, we
use the useful, and easily verified property, that the the functor i! : sSet → dSet
embeds simplicial sets in dendroidal sets as a sieve, i.e., that given a simplicial
set Y and an arbitrary dendroidal set X , if there is a map i!(X) → Y in Ω then
Y = i!(Y

′) for some simplicial set Y ′.

Lemma 3.1.7. For simplicial sets X and Y we have:

dSet(i!(X), i!(Y )) ∼= i!(sSet(X,Y )).
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Proof. Notice that if T is a tree that is not of the form Lk then

dSet(i!(X), i!(Y ))T = dSet(i!(X)⊗ Ω[T ], i!(Y ))

would be empty if X 6= φ. Now, for a linear tree Lk we have

dSet(i!(X), i!(Y ))Lk
= dSet(i!(X)⊗ Ω[Lk], i!(Y )) =

dSet(i!(X)⊗ i!(∆[k]), i!(Y )) = dSet(i!(X ×∆[k]), i!(Y )) =

sSet(X ×∆[k], i∗i!(Y )) = sSet(X ×∆[k], Y ) =

sSet(X,Y )k = i!(sSet(X,Y ))Lk

as claimed. �

3.2. Inner Kan complexes

In this section we introduce the notion of inner Kan complexes in the category
of dendroidal sets. We start off by motivating the definition, relating it to inner Kan
complexes in the category of simplicial sets (also studied under the name ”quasi-
categories” by Joyal in [23, 24]). Once the definition is given, we provide a class
of examples and examine the relation between coskeletality and strict inner Kan
complexes, as a first step to characterizing the latter.

Recall that a horn Λk[n] in the simplicial sense is said to be inner if 0 < k < n.
In [7] (page 102) the authors make the following definition:

Definition 3.2.1. A simplicial set X is said to satisfy the restricted Kan
condition if every inner horn Λk[n]→ X can be filled.

We will call such a simplicial set an inner Kan simplicial set. The need for such
a definition stems from the fact that weak algebraic structures (for example, A∞-
spaces) and their weak maps usually do not form a category. The problem is that,
generally, the composition of such maps (if it is at all defined) is not associative.
That the notion of an inner Kan simplicial set is at least a plausible replacement
of a category is seen by the fact that the nerve of a category always satisfies the
restricted Kan condition (we prove a stronger result below). However, there are
many simplicial sets that do satisfy this condition without them being nerves of
categories, among which lie the simplicial set of A∞-spaces (as is shown in [7]).

In the more recent work [24] Joyal is extensively studying inner Kan simplicial
sets (which he calls quasi-categories) as an extension of the theory of categories. As
Joyal put it himself: ”You find yourself in the situation where most of the results
of category theory can be extended to quasi-categories. It’s just that the proof
is anything between 10 to 100 times more difficult”. The extra labour needed to
prove those theorems arises from the fact that quasi-categories can be thought of
as special weak ω-categories, and as such carry with them the complexity of maps
between maps between maps between maps..... However, the resulting theory is
applicable in many situations where ordinary category theory is too strict.

Continuing with the main theme of this work, that operads are generalized
categories, it is very natural to extend the inner Kan condition from simplicial sets
to dendroidal sets. This is done by means of the following definition.

Definition 3.2.2. Let X be a dendroidal set. X is said to satisfy the inner
Kan condition with respect to the tree T if for any inner horn h : ΛeΩ[T ] → X ,
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there is a dendrex t : Ω[T ]→ X such that the diagram

ΛeΩ[T ]
h //

��

X

Ω[T ]

t

<<yyyyyyyyy

commutes, where the vertical arrow is the inclusion. If X satisfies the inner Kan
condition with respect to all trees T then X is called an inner Kan complex. When
the filler for the horn is unique we will say that X satisfies the strict inner Kan
condition and that X is a strict inner Kan complex.

The proof of the following proposition, relating the inner Kan condition for
simplicial sets and dendroidal sets, is trivial.

Proposition 3.2.3. Let S be a simplicial set and D a dendroidal set.

(1) i!(S) is an inner Kan complex if, and only if, S is.
(2) If D is an inner Kan complex then so is i∗(D).

The following lemma provides a whole class of examples of strict inner Kan com-
plexes.

Lemma 3.2.4. Let P be an operad. The dendroidal set X = Nd(P) is a strict
inner Kan complex.

Proof. A dendrex x ∈ XT is a map x : Ω[T ]→ Nd(P) which, by adjunction, is
the same as a map of operads Ωπ(T̄ )→ P , where T̄ is an arbitrary (but fixed) planar
representative of T . Since Ωπ(T̄ ) is a free planar operad generated by operations
corresponding to the vertices of the tree T̄ , it follows that x is equivalent to a
labelling of T̄ as follows. The edges are labelled by objects of P and the vertices
are labelled by operations in P where the input of such an operation is the tuple
of labels of the incoming edges to the vertex and the output is the label of the
outgoing edge from the vertex. Any inner horn Λe[T ]→ Nd(P) is easily seen to be
equivalent to such a labelling of the tree T and thus determines a unique filler. �

The strict inner Kan condition is very strong and in fact we will show below
that the strict inner Kan complexes are precisely those dendroidal sets that are
nerves of operads. One can easily turn a strict inner Kan complex into a non-strict
one, simply by adding new dendrices that fill already existing horns. More natural
examples of inner Kan complexes that are usually not strict will be seen to arise
as suitable nerves of operads in a symmetric monoidal model category E , when
homotopy is built into the nerve construction. For now, we exhibit the relation
between certain strict filling conditions and coskeletality.

Proposition 3.2.5. Let X be a dendroidal set and m ≥ 2 an integer. If X
satisfies the strict inner Kan condition for all trees T of degree at least m, then X
is m-coskeletal.

Proof. Let Y be an arbitrary dendroidal set and assume that a map f :
Skm(Y ) → Skm(X) is given. We have to show that f extends uniquely to a map

f̂ : Y → X . Suppose f were extended to a map fk : Skk(Y )→ Skk(X) for k ≥ m.
Let y ∈ Skk+1(Y ) be a non-degenerate dendrex and assume y /∈ Skk(Y ). So y ∈ YT
and T has exactly k + 1 vertices. Choose an inner horn Λe[T ] (such an inner horn
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exists since k ≥ 2). The collection {β∗y}β 6=∂e
where β : S → T runs over all faces

of T , defines a horn Λe[T ] → Y . Since this horn factors through the k-skeleton of
Y , we obtain by applying fk, a horn Λe[T ]→ X in X given by {fk(β∗y)}β 6=∂e

. Let
fk+1(y) ∈ XT be the unique filler of that horn. By construction we have that for
each β 6= ∂e

β∗fk+1(y) = fk(β
∗y).

It thus remains to show the same for ∂e. The dendrices fk(∂
∗
ey) and ∂∗efk+1(y) both

have the same boundary and they are both of shape S where S has k vertices. Since
k ≥ 2, S has an inner face, but then it follows that both f(∂∗ey) and ∂∗efk+1(y)
are fillers for the same inner horn in X and they are thus equal. By repeating
the process for all non-degenerate dendrices in Skk+1(Y ) it follows that fk can be
extended to fk+1 : Skk+1(Y )→ Skk+1(X). This holds for all k ≥ m which implies

that f can be extended to f̂ : Y → X .

To show the uniqueness of f̂ assume that g is another extension of f . Suppose

it has been shown that f̂ and g agree on all dendrices of shape T where T has
at most k ≥ m vertices, and let y ∈ XS be a dendrex of shape S where S has

k+ 1 vertices. But then f̂(y) and g(y) are both dendrices in X that have the same
boundary. Since k ≥ 2 it follows that these dendrices are both fillers for the same

inner horn and so are equal. This proves that f̂ = g. �

Corollary 3.2.6. Let P be an operad. Since the dendroidal set Nd(P) is a
strict inner Kan complex it follows that it is 2-coskeletal.

Proposition 3.2.7. Let X be a dendroidal set and k ≥ 0 an integer. If X
is k-coskeletal then X satisfies the strict inner Kan condition for all trees T with
|T | ≥ k + 2.

Proof. Let T be a tree with |T | ≥ k + 2 and e an inner face of T . Consider
the inner horn extension problem

Λe[T ] //

��

X

Ω[T ]

==

in X . Since X is k-coskeletal, this problem is equivalent to finding the dotted arrow
in the diagram

Skk(Λ
e[T ]) //

��

Skk(X)

Skk(Ω[T ])

88

The result will follow if we can show that the inclusion Skk(Λ
e[T ]) → Skk(Ω[T ])

is an isomorphism. Let s ∈ Skk(Ω[T ])S be a non-degenerate dendrex of shape
S, if we can show that s ∈ Skk(Λ

e[T ]) then we are done. We have that s is a
map s : Ω[S] → Ω[T ] and S has at most k vertices. Since T has at least k + 2
vertices it follows that s factors through a sub-face of Ω[T ] of codimension 2, say
Ω[R] → Ω[R′] → Ω[T ] and Ω[R′] → Ω[T ] can be chosen to be different from ∂e
(Proposition 2.4.8). Thus s factors through the face Ω[R′] → Ω[T ] and thus also
through Λe[T ], which means that s ∈ Λe[T ], as needed. �
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3.3. Anodyne extensions

In the theory of simplicial sets [16], anodyne extensions are a technical tool that
simplifies proofs significantly. We now develop the equivalent notion for dendroidal
sets and provide a simple example that shows how anodyne extensions are typically
used.

Definition 3.3.1. A class M of monomorphisms in dSet is called saturated if
the following conditions are satisfied:

(1) All isomorphisms are in M .
(2) M is closed under pushouts.
(3) M is closed under retracts.
(4) M is closed under arbitrary sums.
(5) M is closed under countable unions.

See [19] for a similar definition for simplicial sets, and a detailed explanation of the
closedness properties. Given an arbitrary class of monomorphism B, the saturated
class generated by B is simply the intersection of all saturated classes containing
B.

Definition 3.3.2. Let B be the class of all inner horn inclusions in dSet. The
class of anodyne extensions is the saturated class generated by B.

It is easy to show that given any anodyne extension X → Y and a map X → Z,
where Z is an inner Kan complex, there exists an extension Y → Z:

X
h //

��

Z

Y

t

>>~~~~~~~~

It is precisely this property that makes anodyne extensions useful. Consider the
following situation for example. Let e1 and e2 be two inner edges in a tree T and
let

Λe1,e2Ω[T ] =
⋃

∂e1
,∂e2

6=α∈Φ1(T )

∂αΩ[T ]

be the dendroidal sub-set of Ω[T ] which is the union of all of the faces of Ω[T ] except
the two inner ones corresponding to e1 and e2. Assume one is given the following
extension problem:

Λe1,e2Ω[T ]
h //

��

X

Ω[T ]

::

with the vertical map being the inclusion. If X is an inner Kan complex it is
expected that the dotted arrow would exist. This would follow if we can show that
the inclusion Λe1,e2Ω[T ]→ Ω[T ] is anodyne, as is indeed the case. More generally,
for a sub-set A ⊆ E(T ) of inner edges let ΛA[T ] be the union of all faces of Ω[T ]
except those arising by contracting an edge from A, which we denote by

ΛAΩ[T ] =
⋃

α∈Φ(T )\A

∂αΩ[T ]
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where we (somewhat loosely) write A also for the set {∂e | e ∈ A}.

Proposition 3.3.3. For any non-empty A ⊆ E(T ) of inner edges in a tree T ,
the inclusion ΛA[T ]→ Ω[T ] is anodyne.

Proof. By induction on k = |A|. If k = 1 then the inclusion ΛA[T ] → Ω[T ]
is just an inner horn inclusion, thus anodyne. Assume the proposition holds for
1 ≤ n < k and suppose |A| = k. Choose an arbitrary e ∈ A and put B = A\{e}.
The map ΛA[T ]→ Ω[T ] factors as

ΛA[T ] //

##H
HHH

HHH
HH

ΛB[T ]

��
Ω[T ]

The vertical map is anodyne by the induction hypothesis and it therefor suffices to
prove that ΛA[T ]→ ΛB[T ] is anodyne. The following diagram expresses that map
as a pushout

ΛB[T/e] //

��

ΛA[T ]

��
Ω[T/e] // ΛB[T ]

and since by the induction hypothesis, the map ΛB[T/e]→ Ω[T/e] is anodyne, the
proof is complete. �

3.4. Grafting in an inner Kan complex

We now consider how dendrices in an inner Kan complex can be grafted. Recall
that for two trees T and S with E(T ) ∩ E(S) = {l}, where l is a leaf of T which
is also the root of S, we have the tree T ◦l S obtained by grafting S onto T along
l. Both S and T embed naturally as sub-faces in T ◦l S, which we denote by
S : S → T ◦l S and T : T → T ◦l S. These then induce the obvious inclusions
Ω[S]→ Ω[T ◦l S] and Ω[T ]→ Ω[T ◦l S] and the union of their images in Ω[T ◦l S]
we denote by Ω[T ] ∪l Ω[S].

Lemma 3.4.1. For any two trees T and S and any leaf l as above, the inclusion
Ω[T ] ∪l Ω[S]→ Ω[T ◦l S] is anodyne.

Proof. Let us write R = T ◦l S. The case where T = η or S = η is trivial, we
therefore assume that this is not the case. We proceed by induction on n = |T |+|S|,
the sum of the degrees of T and S. The cases n = 0 or n = 1 are taken care of by our
assumption that T 6= η 6= S. For the case n = 2 the same assumption implies that
the inclusion Ω[T ] ∪l Ω[S] → Ω[R] is an inner horn inclusion and is thus anodyne.
Assume then that the result holds for 2 ≤ n < k and suppose |T |+ |S| = k.

Let I be the set of all inner edges of R and ΛI [R] the union of all the outer
faces of Ω[R]. First notice that Ω[T ] ∪l Ω[S]→ Ω[R] factors as

Ω[T ] ∪l Ω[S] //

&&LLLLLLLLLLL
ΛI [R]

��
Ω[R]
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and the vertical arrow is anodyne by Proposition 3.3.3. If we can now show that
the map

Ω[T ] ∪l Ω[S]→ ΛI [R]

is anodyne then we are done. We do this by exhibiting it as a pushout of an anodyne
extension. Recall (Section 2.2.1) that an outer cluster is a vertex v with the property
that one of the edges adjacent to it is inner while all the other edges adjacent to
it are outer. Let Cl(T ) (respectively Cl(S)) be the set of all outer clusters in
T (respectively S) which do not contain l (respectively the root of S). For each
C ∈ Cl(T ) the face of Ω[R] corresponding to C is isomorphic to Ω[(T/C) ◦l S] and
the map Ω[T/C] ∪l Ω[S] → Ω[(T/C) ◦l S] is anodyne by the induction hypothesis.
Similarly for every C ∈ Cl(S) the face of Ω[R] that corresponds to C is isomorphic
to Ω[T ◦l (S/C)] and the map Ω[T ] ∪l Ω[S/C] → Ω[T ◦l (S/C)] is anodyne by the
induction hypothesis. The following diagram is a pushout

∐
C∈Cl(T )(Ω[T/C] ∪l Ω[S]) ∐

∐
C∈Cl(S)(Ω[T ] ∪l Ω[S/C]) //

��

Ω[T ] ∪l Ω[S]

��∐
C∈Cl(T )(Ω[(T/C) ◦l S]) ∐

∐
C∈Cl(S)(Ω[T ◦l (S/C)]) // ΛI [R]

where the map on the left is the coproduct of all of the anodyne extensions just
mentioned. Since anodyne extensions are closed under coproducts, it follows that
the map on the left of the pushout is anodyne and thus also the one on the right,
which is what we set out to prove. This concludes the proof. �

Corollary 3.4.2. Let X be an inner Kan complex, S and T two trees, and
l a leaf of T which is also the root of S such that T ◦l S is defined. Suppose that
s ∈ XS and t ∈ Xt are two dendrices such that l∗(t) = l∗(s) where l denotes both
of the obvious maps η → T and η → S. It then follows that there is a dendrex
r ∈ XT◦lS with the property that S∗(r) = s and T ∗(r) = t.

Proof. The two dendrices s and t induce a map Ω[T ] ∪l Ω[S] → X . Since
Ω[T ]∪lΩ[S]→ Ω[T ◦lS] is anodyne it follows that there is an extension Ω[T ◦lS]→
X . This extension is precisely the required dendrex. �

Consider the special case where both T and S are corollas. The corollary can
then be interpreted as saying that suitable dendrices t ∈ XT and s ∈ XS in an
inner Kan complex can be ’composed’ along an input. We make this precise in the
following definition.

Definition 3.4.3. Let X be a dendroidal set, T and S two corollas (not nec-
essarily with the same number of leaves), and x a leaf of T which is also the root
of S such that T ◦x S is defined. Given two dendrices t ∈ XT and s ∈ XS we say
that they match along x if

x∗t = x∗s

(where x denotes both induced maps η → S and η → T ). Any dendrex r ∈ XT◦xS

with the property that T ∗r = t and S∗r = s is called a composition of the dendrex
s on t along x. We denote this situation by r ∼ t ◦i s.

Remark 3.4.4. Notice that usually there need not be a unique dendrex r for
which r ∼ t ◦x s and that consequently we cannot talk about the composition of
two matching dendrices but only about a composition of such dendrices.
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It is convenient to introduce the following conventions. For each n ≥ 0 let Cn
be the n-corolla:

1 ??
??

??
??

?

n
��

��
��

��

•

0

and for each 0 ≤ i ≤ n recall that i : η → Cn denotes the obvious (outer face) map
in Ω that sends the unique edge of η to the edge i in Cn. We include here the case
C0, a tree with no leaves and just one vertex. An element f ∈ XCn

will be denoted
by

1 ??
??

??
??

?

n
��

��
��

��

f •

0

If C
′

n is another n-corolla together with an isomorphism α : C
′

n → Cn then we will
usually write f again instead of α∗(f). We will use this convention quite often in
the sequel, where in each case there will be an obvious choice for the isomorphism
α given by the planar representation of the trees at question, which will usually be
taken for granted. Given dendrices f ∈ XCn

and g ∈ XCm
, the definition above

does not permit us to consider composing one with the other. To remedy this we
proceed as follows.

Definition 3.4.5. Let X be a dendroidal set and let f ∈ XCn
and g ∈ XCm

be
two dendrices in X . We will say that a dendrex h ∈ XCn+m−1

is a ◦i-composition
of f and g if there is a dendrex γ in X as follows (we use the convention just
mentioned):

1
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m
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with inner face

1 OOOOOOOOOOOOOO

i
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m
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n
rrrrrrrrrrrr

h •

0

We will denote this situation by h ∼ f ◦i g and call γ a witness for the composition.
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Remark 3.4.6. The notion of composition of dendrices in a dendroidal set is
now somewhat ambiguous. However, context will always make it clear which one
is meant. Notice that if h ∼ f ◦i g in the second definition then the dendrex i∗f is
not equal to i∗g, but it does follow that i∗f is isomorphic to i∗g. We refer to this
situation also by saying that f and g match along i, relying again on context to
prevent confusion.

Proposition 3.4.7. In an inner Kan complex every two matching dendrices
have at least one composition (using any of the two definitions).

Proof. This is a special case of Corollary 3.4.2. �

It is straightforward to check that given an operad P , the notion of composition
of dendrices in Nd(P) corresponds exactly to the ◦i-composition of arrows in P . So
that we see that composition in a dendroidal set is a generalization of composition
in an operad.

3.5. Homotopy in an inner Kan complex

In this section we study a notion of homotopy inherent to a dendroidal set.
Basically two dendrices are said to be homotopic if one is a composition of the
other with a degenerate dendrex. This notion makes the most sense for dendrices
shaped like corollas and indeed we study the homotopy of just such dendrices.
We show that this homotopy theory within a dendroidal set is particularly well
behaved if the dendroidal set is an inner Kan complex. In that case we show that
the obtained homotopy relation is an equivalence relation and we show that it is
a congruence for the composition of dendrices as defined in the previous section.
From this it follows that with each inner Kan complex one can associate an operad
which we call the homotopy operad associated with the inner Kan complex. Using
this and other results obtained earlier we prove that a dendroidal set is a strict
inner Kan complex if, and only if, it is the nerve of an operad. The ideas presented
here generalize similar ideas presented in [7].

Using the convention from the end of the previous section we embark with the
definition of homotopy.

Definition 3.5.1. Let X be a dendroidal set and let f, g ∈ XCn
. For 1 ≤ i ≤ n

we say that f is homotopic to g along the edge i, and write f ∼i g, if g ∼ f ◦i id
where by id we mean a degeneracy. In more detail, f ∼i g if there is a dendrex H
of shape

i
′

1 ??
??

??
?? •

i n
��

��
��

��

•

0
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whose three faces are:

1 BB
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BB

i
n
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��
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f •

0

1 BB
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BB

i
′

n
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g •

0

i
′

id •

i

where id in the last tree is a degeneracy of i.
Similarly we will say that f is homotopic to g along the edge 0 and write f ∼0 g

if g ∼ id ◦0 f , that is if there is a dendrex of shape

1 ??
??

??
??

?

n
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0
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whose three faces are:
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When f ∼i g for some 0 ≤ i ≤ n we will refer to the corresponding H as a homotopy
from f to g along i and will sometimes write H : f ∼i g.

Remark 3.5.2. Notice that in a strict inner Kan complex X the homotopy
relation just defined is the identity relation.

Proposition 3.5.3. Let X be an inner Kan complex. For each 0 ≤ i ≤ n the
relation ∼i on the set XCn

is an equivalence relation.

Proof. First we prove reflexivity. For 1 ≤ i ≤ n let

i
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?? •

i n
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σi //
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i
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0
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and for i = 0 let
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•

0
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σ0 //
1 ??

??
??

??
?

n
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•

0

be the obvious degeneracies. It then follows that for any f ∈ XCn
the dendrex

σ∗
i (f) is a homotopy from f to f , thus f ∼i f .

To prove symmetry assume f ∼i g for some 1 ≤ i ≤ n and let Hfg be a
homotopy from f to g along i. Consider the tree T :

i
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•

i
′
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?? •
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•

0

We now describe an inner horn Λi[T ]→ X . Such a map is given by specifying three
dendrices in X of certain shapes such that their faces match in a suitable way. We
describe this map by explicitly writing the mentioned dendrices and their faces:

Hi

i
′′

id •

i
′

id •

i

Hf

i
′′

1 FFFFFFFFF id •

i
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f
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i
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i
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f
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0
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with inner faces of these dendrices:

i
′′

id •

i

1 BB
BB

BB
BB

i
′′

n
��

��
��

��

f •

0

1 BB
BB

BB
BB

i
′

n
��

��
��

��

g •

0

where Hi is a double degeneracy of i, Hf is a homotopy from f to f (along the
branch i) and Hfg is the given homotopy from f to g. It is easily checked that the
faces indeed match so that we have a horn in X . Let x be a filler for that horn and
consider Hgf = ∂∗i (x). This dendrex can be pictured as

i
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with inner face:
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and is thus a homotopy from g to f along i, so that g ∼i f . For i = 0 a similar
proof works.

To prove transitivity let f ∼i g and g ∼i h for 1 ≤ i ≤ n. Let Hfg be a
homotopy from f to g and let Hgh be a homotopy from g to h. We again consider
the tree T :

i
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i
′
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The following is a horn Λi
′

[T ]→ X in X :

Hi
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with inner faces being:
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Let x be a filler for that horn and let Hfh = ∂∗i′ (x), this dendrex can be pictured
as follows:
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with inner face:
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and is thus a homotopy from f to h so that f ∼i h. The proof for i = 0 is
similar. �

Lemma 3.5.4. Let X be an inner Kan complex. The relations ∼0, · · · ,∼n on
XCn

are all equal.

Remark 3.5.5. On the basis of this lemma, we will later just write f ∼ g
instead of f ∼i g.
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Proof. Suppose H : f ∼i g for 1 ≤ i ≤ n and let 1 ≤ i < j ≤ n. We consider
the tree T:

i
′

j
′

1 GGGGGGGGGG •
i
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and the following inner horn Λi[T ]→ X :
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where Hj
f : f ∼j f and Hi

f : f ∼i f . The inner faces of the three dendrices are
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Let x be a filler for this horn, then ∂∗i (x) is the following dendrex
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and is thus a homotopy from g to f along the j-th branch. Thus g ∼j f and so
f ∼j g as well. The other cases to be considered follow in a similar way. �
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We now turn to prove that the homotopy equivalence relation behaves well with
respect to the composition of dendrices.

Lemma 3.5.6. In an inner Kan complex X, if h ∼ f ◦i g and h′ ∼ f ◦i g then
h ∼ h′.

Proof. Let γ be a witness for the composition h ∼ f ◦i g and γ′ one for the
composition h′ ∼ f ◦i g. We consider the tree T :
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Let Hg : g ∼i g and consider the following horn Λi[T ]→ X
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Let x be a filler for this horn. The face ∂∗i (x) is then the dendrex
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whose inner face is
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which proves that h ∼ h′. �

Lemma 3.5.7. In an inner Kan complex X, let f ∼ f ′ and g ∼ g′. If h ∼ f ◦i g
and h′ ∼ f ′ ◦i g′ then h ∼ h′.

Proof. Let H be a homotopy from f to f ′ along the edge i, H ′ a homotopy
from from g′ to g along the root, and γ a witness for the composition h ∼ f ◦i g.
We now consider the tree T:
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and the inner horn Λi[T ]→ X in X :
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The missing face of a filler for this horn is then:
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which proves that h ∼ f ′ ◦i g′, and thus by the previous result also that h ∼ h′. �

We are now in a position to define the homotopy operad associated with an
inner Kan complex. Given an inner Kan complex X and x0, · · · , xn ∈ Xη let
X(x1, · · · , xn;x0) be the set of all dendrices f ∈ XCn

such that i∗f = xi for
0 ≤ i ≤ n. We now define a collection Ho(X) as follows. The set of objects of
Ho(X) is the set Xη. Given objects x0, · · · , xn we put

Ho(X)(x1, · · · , xn;x0) = X(x1, · · · , xn;x0)/ ∼

where ∼ is the homotopy relation defined above.

Theorem 3.5.8. Let X be an inner Kan complex. The composition of dendrices
makes the collection Ho(X) into an operad.

Proof. Lemma 3.5.7 implies that for [f ] ∈ Ho(X)(x1, · · · , xn;x) and [g] ∈
Ho(X)(y1, · · · , ym;xi) the assignment

[f ] ◦i [g] = [f ◦i g]

is well defined. This provides the ◦i-compositions of the operad Ho(X). The Σn-
actions are defined as follows. Given a permutation σ ∈ Σn let σ : Cn → Cn be the
obvious induced map in Ω. The map σ∗ : XCn

→ XCn
restricts to a function

σ∗ : X(x1, · · · , xn;x)→ X(xσ(1), · · · , xσ(n);x)

and it is trivial to verify that this map respects the homotopy relation. We thus
obtain a map

σ∗ : Ho(X)(x1, · · · , xn;x)→ Ho(X)(xσ(1), · · · , xσ(n);x).

We now need to show that these structure maps make the collection Ho(X) into an
operad. The verification is simple and we exemplify it by proving the associativity of
the ◦i-compositions. Let [f ] ∈ Ho(X)(x1, · · · , xn;x), [g] ∈ Ho(X)(y1, · · · , ym;xi)
and [h] ∈ Ho(X)(z1, · · · , zk; ym). We need to prove that [f ]◦([g]◦[h]) = ([f ]◦[g])◦[h]
(for simplicity we are neglecting to mention the input along which the compositions
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are being performed) which is the same as showing that f ◦ (g ◦ h) ∼ (f ◦ g) ◦ h for
any choice of compositions ψ ∼ g ◦ h and ϕ ∼ f ◦ g. Consider the tree T given by
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and consider the anodyne extension Λ{i,j}[T ]→ Ω[T ] (see Proposition 3.3.3). The
two given compositions ψ ∼ g◦h and ϕ ∼ f ◦g define a map Λ{i,j}[T ]→ X depicted
by
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whose inner faces are respectively ψ and ϕ. Let x ∈ XT be a dendrex extending
this map and c : Cm → T be the map obtained by contracting both i and j, and put
ρ = c∗x. It now follows that ∂∗i (x) is a witness for the the composition ρ ∼ ψ ◦ h
and ∂∗j (x) is a witness for the composition ρ ∼ f ◦ ϕ, which proves the needed
associativity. The other axioms for an operad follow in a similar manner. �

Definition 3.5.9. Given an inner Kan complex X the operad Ho(X) as above
is called the homotopy operad associated with X .

Remark 3.5.10. In [7] the authors construct a homotopy categoryHo(X) from
an inner Kan simplicial set X . Our construction is a generalization of that one in
the sense that for an inner Kan simplicial set X

Ho(i!(X)) ∼= j!Ho(X).

The proof is trivial by inspection of these constructions.

We can now relate the homotopy operad of a dendroidal set with its operadic
realization.

Proposition 3.5.11. For any inner Kan complex X, Ho(X) is isomorphic to
τd(X).

Proof. We prove that Ho(−) has the required universal property, that is that
for an inner Kan complex X and an operad P there is a natural bijection between
operad maps Ho(X)→ P and dendroidal maps X → Nd(P). Let F : Ho(X)→ P
be a map of operads. Since Nd(P) is 2-coskeletal we only need to construct a map
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Sk2(X)→ Nd(P). Since ob(Ho(X)) = Xη and ob(P) ∼= Nd(P)η, the map F clearly
induces a function (the object part function of F ) G0 : Sk0(X) → Nd(P). To
extend this to a map G1 : Sk1(X)→ Nd(P) let x ∈ XCn

. The equivalence class [x]
is an operation in Ho(X), and thus F ([x]) is an operation in P which clearly defines
a dendrex in Nd(P) which we denote by G1(x). This assignment clearly extends
G0 so that we obtain a map Sk1(X)→ Nd(P). We now extend this map to a map
G2 : Sk2(X) → Nd(P). Let γ ∈ XT where T is of degree 2. The dendrex γ is a
witness for a composition in X of two dendrices, say h ∼ f ◦ig, so that in Ho(X) we
have that [h] = [f ] ◦i [g]. Since F is a map of operads the composition is respected
so that γ defines a unique dendrex in Nd(P)T which we denote by G2(γ). Again, it
is easily seen that G2 extends G1 so that we obtain a map G2 : Sk2(X)→ Nd(P).

Consider now a given map G : X → Nd(P), that is a map G2 : sk2(X) →
Nd(P). We now construct a map Ho(X) → P . Again we clearly have an obvious
function ob(Ho(X))→ ob(P). Let f now be an operation in Ho(X), that is f = [f ′]
for some dendrex f ′ ∈ XCn

. Since Nd(P)Cn
consists precisely of the operations

in P of arity n, we have that G(f ′) is such an operation. Since any dendroidal
map preserves homotopic dendrices and since the homotopy relation in Nd(P) is
the identity we obtain that if f ′′ ∼ f ′ then G(f ′′) = G(f ′). We can thus define
F (f) = G([f ]). It is easy to verify that F is actually a map of operads. Furthermore
the two constructions just described are natural and are each other inverses which
establishes the required bijection and thus finishes the proof. �

We can now prove the characterization of inner Kan complexes as those den-
droidal sets that arise as nerves of operads.

Theorem 3.5.12. Let X be a dendroidal set. X is a strict inner Kan complex
if, and only if, X is the dendroidal nerve of an operad.

Proof. One direction was proved in Lemma 3.2.4. Assume then that X is
an inner Kan complex. We shall prove that X ∼= Nd(Ho(X)) by showing that
the canonical map X → Nd(Ho(X)) is an isomorphism. Since we already know
Nd(Ho(X)) to be 2-coskeletal we can easily describe the map X → Nd(Ho(X))
simply by stating its value for dendrices shaped like trees with 2 or fewer vertices.
The objects of Ho(X) are Xη and f : Xη → Nd(Ho(X))η is the identity. When
X has unique fillers the homotopy relation is the identity and thus for any corolla
we have Nd(Ho(X))Cn

= XCn
and again f : XCn

→ Nd(Ho(X))Cn
is the identity.

Notice that any tree T with two vertices defines a composition of two operations in
Ho(X), which implies that f : XT → Nd(Ho(X))T is again the identity. Coskele-
tality implies now that f is the identity. �

Remark 3.5.13. This theorem specializes to provide a proof that the strict
inner Kan simplicial complexes are precisely the nerves of categories. This result is
stated, for example, in [23] without proof.

3.6. The exponential property

In this section we are going to prove that the sub-category of dSet spanned by
the inner Kan complexes is an exponential ideal with respect to normal dendroidal
sets. That means that given an inner Kan complex K and a normal dendroidal set
X , the dendroidal set dSet(X,K) is an inner Kan complex.
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We first reduce the problem to proving that a certain map is an anodyne exten-
sion. Given trees S and T , and an inner horn Λe[S] → Ω[S], we may consider the
dendroidal sets Λe[S]⊗Ω[T ] and Ω[S]⊗∂Ω[T ] as dendroidal sub-sets of Ω[S]⊗Ω[T ].
As such, their union is a well defined dendroidal sub-set:

Λe[S]⊗ Ω[T ] ∪ Ω[S]⊗ ∂Ω[T ] // // Ω[S]⊗ Ω[T ].

Lemma 3.6.1. Assume that for any trees S and T and any inner horn Λe[S]→
Ω[S], the inclusion

Λe[S]⊗ Ω[T ] ∪ Ω[S]⊗ ∂Ω[T ] // // Ω[S]⊗ Ω[T ]

is anodyne. It then follows that the inner Kan complexes form an exponential ideal
in dSet with respect to normal dendroidal sets.

Proof. We have to show that any map of dendroidal sets

ϕ : Λe[S]⊗X → K

extends to some map

ψ : Ω[S]⊗X → K.

By writing X as the union of its skeleta,

X = lim
−→

Skn(X)

as in Section 2.6 and using the fact that X admits a normal skeletal filtration,
we can build this extension ψ by induction on n. For n = 0, Sk0(X) is a sum
of copies of Ω[η], the unit for the tensor product, so obviously the restriction ϕ0 :
Λe[S]⊗ Sk0(X)→ K extends to a map

ψ0 : Ω[S]⊗ Sk0(X)→ K.

Suppose now that we have found an extension ψn : Ω[S] ⊗ Skn(X) → K of the
restriction ϕn : Λe[S]⊗ Skn(X)→ K. Consider the following diagram:

∐
Λe[S]⊗ ∂Ω[T ] //

��

��

&&NNNNNNNNNNN

∐
Λe[S]⊗ Ω[T ]

��

��

''NNNNNNNNNNN

Λe[S]⊗ Skn(X) //
��

��

Λe[S]⊗ Skn+1(X)
��

��

∐
Ω[S]⊗ ∂Ω[T ]

((PPPPPPPPPPPP
// ∐Ω[S]⊗ Ω[T ]

((QQQQQQQQQQQQQ

Ω[S]⊗ Skn(X) // Ω[S]⊗ Skn+1(X)

In this diagram, the top and bottom faces are pushouts given by the normal skeletal
filtration of X . Now inscribe the pushouts U and V in the back and front face,
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fitting into a square

U
��

��

// ∐
Ω[S]⊗ Ω[T ]

��

��
V // Ω[S]⊗ Skn+1(X)

The maps ψn : Ω[S] ⊗ Skn(X) → K and ϕn+1 : Λe[S] ⊗ Skn+1(X) → K together
define a map V → K. So, to find ψn+1, it suffices to prove that

V // // Ω[S]⊗ Skn+1(X)

is anodyne. But, by a diagram chase argument, the square above is a pushout, so

in fact, it suffices to prove that U // // ∐ Ω[S]⊗ Ω[T ] is anodyne. The latter map

is a sum of copies of anodyne extensions as assumed. �

Proposition 3.6.2. The map

Λe[S]⊗ Ω[T ] ∪ Ω[S]⊗ ∂Ω[T ] // // Ω[S]⊗ Ω[T ]

is anodyne for any trees S and T and an inner edge e in S.

Proof. The quite technical proof is given in [38] Proposition 9.2. �

These two results constitute thus the proof of the following theorem.

Theorem 3.6.3. The inner Kan dendroidal sets form an exponential ideal with
respect to the normal dendroidal sets.

Corollary 3.6.4. The inner Kan simplicial sets form an exponential ideal in
the category of simplicial sets.

Proof. Let K be an inner Kan simplicial set and X an arbitrary simplicial
set. Clearly the dendroidal set i!(X) is normal. By Proposition 3.2.3 the dendroidal
set i!(K) is an inner Kan complex, and thus we have that

dSet(i!(X), i!(K))

is an inner Kan complex. By Lemma 3.1.7 this dendroidal set is isomorphic to
i!(sSet(X,K)) and by Proposition 3.2.3 again it follows that sSet(X,K) is an
inner Kan complex. �

Remark 3.6.5. Since an inner Kan simplicial set is the same as a quasi-
category, the above corollary states that quasi-categories form an exponential ideal
in simplicial sets. This result was proved by Joyal in [24], though the proof is quite
different. The restriction of our proof to simplicial sets resembles more the one
given in [39].
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3.7. Inner Kan complex generated by a dendroidal set

We end this chapter by introducing a straightforward way of turning an arbi-
trary dendroidal set into an inner Kan complex. This construction provides thus
many examples of inner Kan complexes that may not be strict.

For a dendroidal set X let Hornn(X) be the set of all inner horns Λe[T ]→ X
where |T | = n, that do not have a filler in X . So X is an inner Kan complex if,
and only if, Hornn(X) = φ for all n ≥ 2.

Proposition 3.7.1. Let X be a dendroidal set and n ≥ 2. Consider the den-
droidal sets

Hn =
∐

h:Λe[T ]→X

Λe[T ]

and

Fn =
∐

h:Λe[T ]→X

Ω[T ]

where h runs over the set Hornn(X). Let Hn → Fn be the obvious inclusion and
let Hn → X be the obvious induced map. Denote by Jn(X) the pushout

Hn
//

��

X

��
Fn // Jn(X)

then X → Jn(X) is anodyne and for every horn h ∈ Hornn(X) the horn Λe[T ]→
X → Jn(X) has a filler.

Proof. Since Hn → Fn is an anodyne extension (it is a coproduct of inner
horn inclusions) so is X → Jn(X) an anodyne extension (as a pushout of one).
It is now immediate that for a horn h : Λe[T ] → X in Hornn(X), the dendrex
Ω[T ] → Fn → Jn(X), where Ω[T ] → Fn is the summand corresponding to h, is a
filler for h. �

Notice that it is not necessarily true that Hornn(Jn(X)) = φ since by filling
the horns in Hornn(X) many new horns might have been created. This can easily
be remedied as we now show.

Definition 3.7.2. Let X be a dendroidal set and n ≥ 2. Define the sequence
of dendroidal sets {Xk}

∞
k=0 by X0 = X and Xk+1 = Jn(Xk). We thus have a

sequence of anodyne extensions

X // X1
// · · · // Xk

// · · ·

We denote the colimit (countable composition) of this sequence by X → Kn(X).

Proposition 3.7.3. The map X → Kn(X) is anodyne and Hornn(Kn(X)) =
φ.

Proof. The map X → Kn(X) is an anodyne extension since it is a countable
composition of anodyne extensions. To prove that Hornn(Kn(X)) = φ let h :
Λe[T ] → Kn(X) with |T | = n. We need to show that this horn has a filler in
Kn(X). Since such a horn is given by a finite sequence of dendrices in Kn(X) and
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Kn(X) is the union of an increasing sequence of dendroidal sets, it follows that the
horn factors as

Λe[T ]
h //

h′

��

X

Xk

@@��������

for some Xk as in the definition above. Now, the horn h′ has a filler in Xk+1 which
then extends to a filler of h in Kn(X). �

Lemma 3.7.4. Let X be a dendroidal set. There exists an inner Kan com-
plex K(X) together with an anodyne extension X → K(X). Furthermore, this
construction is functorial.

Proof. Define the sequence {Xn}∞n=1 by X1 = X and Xn+1 = Kn+1(Xn).
We let K(X) be the colimit of the induced sequence

X1 → X2 → · · ·

A similar argument to the one given in the previous proposition now shows that
Hornn(K(X)) = φ for all n ≥ 1 and thus that K(X) is an inner Kan complex.
The obvious map X → K(X) is an anodyne extension as a countable composition
of such. The functoriality can easily be established. �

Remark 3.7.5. Of course one can also use a Quillen small object argument to
obtain an inner Kan complex from an arbitrary dendroidal set.




