
CHAPTER 2

Dendroidal sets

In this chapter the category of dendroidal sets is introduced and some of its
basic properties are studied. Starting the chapter is a motivating problem arising
from the nerve construction of categories and from our approach that operads are a
generalization of categories. Then the simplicial category is briefly recalled together
with some adjunctions related to it. The simplicial category is then extended in two
different ways (which are proven to be equivalent) to what we call the dendroidal
category, which is then used to define the category of dendroidal sets. The chapter
ends by studying a certain closed monoidal structure on the category of dendroidal
sets and a generalization of the skeletal filtration of simplicial sets to dendroidal
sets.

2.1. Motivation - simplicial sets and nerves of categories

The simplicial category ∆ can be defined in several different ways. Each such
definition gives a different point of view on the category and is useful in different
situations. We present here three definitions of the category ∆. The fact that these
definitions produce isomorphic categories is well known and can easily be proven.

Definition 2.1.1. (Algebraic definition of ∆) Consider for each n ≥ 0 the
linearly ordered set [n] = {0 < 1 < · · · < n}. The category ∆A is the full sub-
category of PoSet (the category of partially ordered sets) spanned by the objects
{[n] | n ≥ 0}.

This definition can be rephrased by saying that ∆A is a skeleton of the category
of non-empty, finite linearly ordered sets. This is the most common definition of
the simplicial category ∆.

Definition 2.1.2. (Categorical definition of ∆) Consider for each n ≥ 0 the
category [n] whose objects are {0, 1, · · · , n} and such that for 0 ≤ i, j ≤ n there is
exactly one arrow i→ j whenever i ≤ j. The category ∆C is the full sub-category
of Cat spanned by the objects {[n] | n ≥ 0}.

The equivalence between these two definitions is just the observation that any
poset is precisely a small category with at most one arrow between any two of its
objects.

Definition 2.1.3. (Geometric definition of ∆) Consider for each n ≥ 0 the
space ∆n = {(x0, · · · , xn) ∈ Rn+1} with the sub-space topology. The objects of the
category ∆G are {∆n|n ≥ 0} and the maps are generated by face inclusions and
degeneracies (see [19], page 3).

Usually we will just write ∆ for the simplicial category whose objects are [n]
for n ≥ 0, and will use whichever definition is most convenient. The geometric
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definition implies that there is a functor ∆ → Top, i.e., the inclusion ∆G → Top.
Taking this functor as a probe (see the preliminaries) yields an adjunction

sSet
|−| // Top
N

oo

where N is usually called the singular complex functor and | − | is called the geo-
metric realization functor (see [19]). On the other hand the categorical definition
implies the existence of a functor ∆ → Cat, which is just the inclusion functor
∆C → Cat. When taken as a probe, this functor yields the adjunction

sSet
|−| //

Cat
N

oo

where this time N is the nerve functor and | − | is usually denoted by τ (see [23]).
Lastly, the algebraic definition also implies the existence of a functor ∆ → PoSet
(again the inclusion functor ∆A → PoSet) and thus an adjunction

sSet
|−| //

PoSet.
N

oo

However, this adjunction is not particularly useful.
Staying true to the main principal of the previous chapter, namely that operads

are a natural extension of categories, the adjunction

sSet
|−| //

Cat
N

oo

should catch our attention. We thus ask whether it is possible to define the nerve
of an operad. More concretely we can ask whether in the diagram

sSet

i!

��

Cat
Noo

j!

��
? Operad

Ndoo

the question mark can be replaced by a category and the dotted arrows be filled in a
natural way by functors such that Nd would send an operad to its (not yet defined)
nerve. Our approach to answering this question will be to extend the category ∆
to a bigger category Ω and then use an appropriate probe Ω → Operad that will
produce an adjunction of which the right adjoint will be Nd. Each point of view
of the category ∆ suggests a different way to extend it. We will consider below
the categorical definition and the algebraic one, and extend both (to isomorphic
categories). Each approach will have its merits, as we shall see.

2.2. An operadic definition of the dendroidal category

We consider here the categorical definition (Definition 2.1.2) of ∆ and extend
it to a bigger category by means of special operads induced by trees.

Definition 2.2.1. Let T be a planar tree. The planar operad generated by T ,
denoted Ωπ(T ), is the following free planar operad. We define the collection C on
the set E(T ) of edges of T as follows. For each vertex v with in(v) = (e1, · · · , en)
and out(v) = e0 we set C(e1, · · · , en; e0) to be a one-point set. These are the only
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non-empty sets in the collection C. We now define Ωπ(T ) to be Fπ(C), the free
planar operad on the collection C (see Section 1.2).

Example 2.2.2. For the tree T given by

e @@
@@

@@
@@

f
��

��
��

��

v•

b ??
??

??
??

c

~~
~~

~~
~~

w •

d
ooooooooooooo

•

a

r

Ωπ(T ) has six objects, a, b, · · · , f and the following generating operations:

r ∈ Ωπ(T )(b, c, d; a),

w ∈ Ωπ(T )(−; d)

and

v ∈ Ωπ(T )(e, f ; b).

The other operations are units (such as 1b ∈ Ωπ(T )(b; b)) and formal compositions
of the generating operations (such as r ◦1 v ∈ Ωπ(T )(e, f, c, d; a)).

Definition 2.2.3. Let T be a non-planar tree. The operad generated by T ,
denoted by Ω(T ), is defined as follows. Let T̄ be a planar representative of T , then

Ω(T ) = Symm(Ωπ(T̄ )).

It is clear that the definition does not depend on the chosen planar representa-
tive T̄ . In fact a different choice amounts to choosing a different set of generating
operations for Ω(T ).

Definition 2.2.4. (Operadic definition of Ω) The dendroidal category Ω is the
full sub-category of Operad whose objects are the operads of the form Ω(T ) where
T is a non-planar rooted tree.

To see how ∆ embeds in Ω consider for each n ≥ 0 the linear tree Ln

n

•

•

1

•

0

It is trivial to verify that

Ω(Ln) = j!([n])

and that the functor i : ∆→ Ω sending [n] to Ω(Ln) is an embedding of categories.
This constitutes our operadic extension of ∆.
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2.2.1. Faces and degeneracy maps. Exactly as for ∆, the maps in Ω are
generated by special kinds of maps which we now describe.

Let T be a tree and v ∈ T a vertex of valence 1 with in(v) = e and out(v) = e′.
Consider the tree T/v, obtained from T by deleting the vertex v and the edge e′.
There is an operad map, i.e, an arrow σv : T → T/v in Ω, which sends the operation
in Ω(T ) generated by v to the unit 1e in Ω(T/v). For example:
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An arrow in Ω of this kind will be called a degeneracy (map).
Consider now a tree T and a vertex v in T with exactly one inner edge attached

to it (such a vertex will be called an outer cluster), one can obtain a new tree T/v
by deleting v and all the outer edges attached to it. The operad Ω(T/v) associated
to T/v is simply a sub-operad of the one associated to T , and this inclusion of
operads defines an arrow in Ω denoted

∂v : T/v → T.

An arrow in Ω of this kind is called an outer face (map). For example
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and (to emphasize that it is sometimes possible to remove the root of the tree T )
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are both outer faces.
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Moreover, for a corolla Cn and an edge e of Cn (necessarily outer) there is an
associated outer face map

e : ηe → T

sending the unique edge e of ηe to e in Cn.
Given a tree T and an inner edge e in T , one can obtain a new tree T/e

by contracting the edge e. There is a canonical map of operads ∂e : Ω(T/e) →
Ω(T ) which sends the new vertex in T/e (obtained by merging the two vertices
attached to e) into the appropriate composition of these two vertices in Ω(T ). The
corresponding arrow ∂e : T/e→ T in Ω is called an inner face (map). For example

e
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where u = r ◦1 v.
Lastly, we mention the isomorphisms in Ω. Of course there may be non-trivial

isomorphisms from a tree to itself, for example, for the corolla Cn whose input
edges are e1, · · · , en:

e1

??
??

??
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??

?

e2
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···

•

any permutation ϕ ∈ Σn defines an automorphism of Cn in Ω.

Definition 2.2.5. The degree of a tree T , denoted by |T |, is the number of
vertices in T .

It is easily seen that degeneracy maps decrease degree by 1, face maps (outer
or inner) increase degree by 1, and isomorphisms preserve degree.

Theorem 2.2.6. Any map T
f // T ′ in Ω can be written uniquely as f =

ϕπδ, where δ is a composition of degeneracy maps, π is an isomorphism, and ϕ is
a composition of (inner and outer) face maps.

The proof will be given below once we develop the algebraic definition of Ω.
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2.3. An algebraic definition of the dendroidal category

Our aim now is to extend the algebraic definition of ∆ (Definition 2.1.1). This
approach is technically more involved than the previous one since we first have
to enlarge the category of posets (to what we call broad posets) and then find a
suitable algebraic characterization for the analogue of linear orders. Our plan is
thus as follows. We start by developing the notion of a broad poset. The basic
principal is that a broad poset stands in the same relation to a poset as does an
operad to a category. Once the category of broad posets is defined we notice that
it carries a natural symmetric closed monoidal structure. We then turn to the
analogue of a linear order for broad posets, which we call dendroidally ordered sets.
The algebraic definition of the dendroidal category is given, and we then prove that
this definition is equivalent to the operadic one.

2.3.1. Broad posets. For a set A we denote by A∗ the free monoid on A.
That is

A∗ =

∞⋃

n=0

An

with concatenation of tuples as the monoid operation. The set A0 is a singleton
set which consists of the unique tuple of length 0, denoted by ǫ, which is the unit
of the monoid. We denote elements of A∗ by −→a and identify an element a with the
1-tuple (a). We use the notation a ∈ −→a to indicate that a occurs in the tuple −→a .
If −→a ∈ A∗ is of length n and σ ∈ Σn then by permuting the components (that is
(a1, · · · , an)σ = (aσ(1), · · · , aσ(n))), we obtain a right action of Σn on the set An.

A broad relation is a pair (A,R) where A is a set and R is a sub-set of A×A∗. As
is common with ordinary relations, we use the notation aR−→a instead of (a,−→a ) ∈ R.

Definition 2.3.1. A broad poset is a broad relation (A,R) satisfying:

(1) Reflexivity: aRa holds for any a ∈ A.

(2) Transitivity: If aR(a1, · · · , an) and aiR
−→
bi hold for 1 ≤ i ≤ n then aR

−→
b1 ·

· · · ·
−→
bn.

(3) Anti-symmetry: If aR
−→
b and bR−→a hold while a ∈ −→a and b ∈

−→
b then

a = b.
(4) Permutability: If a ≤ −→a and −→a has length n, then a ≤ −→a σ holds for any

σ ∈ Σn.

When (A,R) is a broad poset we denote R by ≤. The meaning of < is then defined
in the usual way.

Remark 2.3.2. In the definition above one can obviously drop condition four
and retain a sensible definition of what we call a non-symmetric ( or a planar) broad
poset. In that context we will sometime refer to a broad poset as a symmetric broad
poset. We will see below that there is a close connection between symmetric operads
and broad posets. There is a similar connection between planar operads and planar
broad posets.

Example 2.3.3. The site http://genealogy.math.ndsu.nodak.edu of the math
genealogy project lists mathematicians and their students. This allows us to define
the following broad poset. The set A is the set of mathematicians. We say that
a ≤ (a1, · · · , an) if mathematicians a1, · · · , an (in no particular order) are students
of mathematician a. We assume every student has exactly one well-defined adviser.
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By agreeing to the convention that a ≤ a for every mathematician a, and closing
under transitivity we obtain a broad relation which is clearly a broad poset.

A map of broad posets f : A→ B is a set function preserving the broad poset
structure, that is if a ≤ −→a then f(a) ≤ f(−→a ) where f(−→a ) is defined component-wise
(namely, f(a1, · · · , an) = (f(a1), · · · , f(an))).

Definition 2.3.4. We denote by BrdPoset the category of all broad posets
and their maps.

Recall that a poset A can be considered as a category C whose objects are the
elements of A and such that there is precisely one arrow a→ a′ in C whenever a ≤ a′.
One obtains thus a functor Poset→ Cat. Similarly, given a symmetric (respectively
planar) broad poset B one can define a symmetric (respectively planar) operad P
whose objects are the elements of B and such that there is exactly one operation
in P(b1, · · · , bn; b) whenever b ≤ (b1, · · · , bn). In that way one obtains a functor
BrdPoset→ Operad.

It is obvious how an ordinary poset can be viewed as a broad poset and that
this defines an embedding

k! : Poset→ BrdPoset.

This functor has a right adjoint k∗ : BrdPoset → Poset, that sends a broad poset
A to the poset k∗(A) = A where a ≤ b holds in k∗(A) exactly when a ≤ b holds
in A. Consider the endofunctor R : Poset → Poset that sends a poset A to the
same set with the reversed partial order. One may now easily establish that in the
following diagram

Poset
k!R //

��

BrdPoset

��

Rk∗
oo

Cat
j! // Operad
j∗

oo

both squares commute. This constitutes our extension of Poset to the category
BrdPoset and establishes the relation to categories and operads. Notice that the
use of the endofunctor R is needed because of the convention that in a broad poset
A a relation a ≤ a1, · · · , an is translated in its corresponding operad to an arrow
from a1, · · · , an to a (arrows go from big to small), while in a poset a relation a ≤ b
is translated in its corresponding category to an arrow from a to b (arrows go from
small to big).

2.3.2. Closed monoidal structure on BrdPoset. The category Poset is
cartesian closed with the obvious product of posets. The category BrdPoset is also
cartesian closed in such a way as to make k! a strong monoidal functor. However,
there is another closed monoidal structure that also extends the one on Poset,
which we now describe.

Definition 2.3.5. Let A and B be two broad posets. Their tensor product
A⊗B is the set A×B with the minimal broad poset structure in which

1. For every a ∈ A if b ≤ (b1, · · · , bn) then (a, b) ≤ ((a, b1), · · · , (a, bn)).
2. For every b ∈ B if a ≤ (a1, · · · , am) then (a, b) ≤ ((a1, b), · · · , (am, b)).
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Theorem 2.3.6. The category BrdPoset with the tensor product of broad posets
is a symmetric closed monoidal category, and k! : Poset → BrdPoset is strong
monoidal.

Proof. A singleton set with the trivial broad poset structure is clearly the
unit for the tensor product. It is easily verified that ⊗ makes BrdPoset into a
symmetric monoidal category, so all that is left to do is to describe the internal
Hom. Given two broad posets A and B, the set BrdPoset(A,B) of all broad poset
maps from A to B is made into a broad poset by defining

f ≤ (f1, · · · , fn)

to hold if for every a ∈ A

f(a) ≤ (f1(a), · · · , fn(a))

holds in B. It is an easy matter to verify that this broad poset is the internal Hom
with respect to the tensor product of broad posets. The fact that k! : Poset →
BrdPoset is strong monoidal is trivial. �

2.3.3. Dendroidally ordered sets. Above we extended the category Poset
to the category BrdPoset of broad posets. The algebraic definition of ∆ identifies
it as a certain full sub-category of Poset by considering linear orders. Our aim now
is to identify those objects of BrdPoset that generalize linear orders in a suitable
way.

A broad poset (A,≤) induces a partial order relation on A as follows. For

a, b ∈ A we say that a is dominated by b and write a ≤d b if there is a
−→
b ∈ A∗ such

that a ≤
−→
b and b ∈

−→
b . It is immediately seen that ≤d is indeed a partial order.

The broad poset ≤ also induces a partial order relation on the set A∗ as follows.

For −→a = (a1, · · · , an) and
−→
b in A∗ we say that −→a ≤

−→
b if there are

−→
b1 , · · · ,

−→
bn such

that
−→
b =

−→
b1 · · · · ·

−→
bn and such that ai ≤

−→
bi for each 1 ≤ i ≤ n. Notice that this

does not conflict with our abuse of notation which identifies the 1-tuple (a) with a.

Definition 2.3.7. Let A be a broad poset. An element r ∈ A such that for all
a ∈ A

r ≤d a

is called the root of A. Clearly, if a root exists then it is unique.

For a ∈ A let â be the set {−→a ∈ A∗|a < −→a }.

Definition 2.3.8. Let A be a broad poset and a ∈ A. Assume that the set â,
as a sub-set of A∗, has a smallest element which is unique up to symmetry. We will
call such a smallest element a representative of the successors of a and will denote
it (somewhat ambiguously) by s(a). An element a ∈ A for which â is empty is
called a leaf .

By ”a smallest element which is unique up to symmetry” we mean the following.
An element −→a which is a smallest element with respect to the poset ≤ on A∗, such

that if
−→
b is another smallest element then they are both of the same length n, and

there is a σ ∈ Σn such that −→a =
−→
b σ. Note that if −→a is a representative of s(a)

then −→a σ is again a representative of s(a) for any σ ∈ Σn with n the length of −→a .
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Example 2.3.9. In the math genealogy example, a leaf is a mathematician
with no students. For a mathematician a, the tuple s(a) is a list of the students of
a in an arbitrary order. In this example there is no root.

Definition 2.3.10. A broad poset (A,≤) is called finite if the set ≤ is finite.
A is called minimal if whenever

a ≤ (a1, · · · , an)

ai 6= aj for i 6= j.

Notice that the finiteness of A as a broad poset implies that of A as a set, but
not vice-versa.

Definition 2.3.11. Let A be a finite broad poset. A is called dendroidally
ordered if

(1) A has a root.
(2) For every a ∈ A either a is a leaf or a has successors.
(3) A is minimal.

Remark 2.3.12. If A is a dendroidally ordered set, minimality implies that
for each a ∈ A the tuple s(a) does not contain the same element twice. We can
therefore consider s(a) unambiguously as a set. We shall do this from now on.

It is obvious that if A 6= ∅ is a finite poset which is linearly ordered, then the broad
poset k!(A) is dendroidally ordered. This is thus our extension of the notion of a
linear order from the category of posets to the category of broad posets.

Definition 2.3.13. (Algebraic definition of Ω) The dendroidal category Ω is
the full sub-category of BrdPoset spanned by the dendroidally ordered sets.

The embedding of ∆ in Ω using the algebraic definition is obvious, we simply
send the linearly ordered set [n] ∈ ob(∆) to the dendroidally ordered set k!([n]).
This concludes our algebraic extension of the simplicial category to the dendroidal
category.

2.3.4. Grafting in DenOrd. We discuss now how dendroidally ordered sets
can be grafted. We obtain a decomposition of a dendroidally ordered set as the
grafting of certain dendroidally ordered sub-sets of it, much like the fundamental
decomposition of trees (Proposition 0.2.6). It is precisely this property that will
imply the equivalence of the two definitions of the dendroidal category given above.

Definition 2.3.14. Let A and B be two dendroidally ordered sets with A∩B =
{y}, where y is a leaf of A and the root of B. The grafting of B on A, denoted by
A ◦B, is the set A ∪B together with the broad relation in which x ≤ (x1, · · · , xn)
holds if one of the following conditions is satisfied:

(1) x ≤ (x1, · · · , xn) holds in A.
(2) x ≤ (x1, · · · , xn) holds in B.

(3) x ∈ A and there are −→a1,
−→a2 ∈ A∗ and

−→
b ∈ B∗ such that

(x1, · · · , xn) = −→a1 ·
−→
b · −→a2

and

x ≤ −→a1 · y ·
−→a2
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holds in A and

y ≤
−→
b

holds in B.

It is easily seen that the grafting of two dendroidally ordered sets is again a den-
droidally ordered set. By repeated grafting one can define a full grafting operation

A ◦ (B1, · · · , Bn)

which is unambiguously defined whenever the sets Bi are pairwise disjoint, the set
{rBi
}ni=1, consisting of the roots of the dendroidally ordered sets Bi, is equal to the

set of leaves of A, and each Bi meets A at one edge.
Maps of dendroidally ordered sets can also be grafted as explained in the fol-

lowing proposition whose proof is trivial.

Proposition 2.3.15. Let f : A → A′ and g : B → B′ be two maps of den-
droidally ordered sets. Suppose A∩B = {a} and A′∩B′ = {f(a)} where a and f(a)
are leaves in, respectively, A and A′. Assume further that the root of B is a and that
the root of B′ is f(a) and that g(a) = f(a). Then the function f ◦g : A◦B → A′◦B′

given by

f ◦ g(x) =

{
f(x) x ∈ A
g(x) x ∈ B

is well defined and is a map of dendroidally ordered sets.

Remark 2.3.16. When f is the identity we will denote f ◦ g by A◦ g and when
g is the identity we will denote f ◦ g by f ◦B. We use the notation f ◦ (g1, · · · , gn)
for repeated grafting of maps (under the obvious compatibility conditions on the
given maps).

For a dendroidally ordered set A and a ∈ A let

Aa = {a′ ∈ A|a ≤d a
′}

with the induced broad relation from A. It is immediate that Aa is again den-
droidally ordered. For a dendroidally ordered set A with root r and s(r) =
{a1, · · · , an} let

Aroot = {r, a1, · · · , an}

with the induced broad order from A (which is obviously a dendroidal order).

Proposition 2.3.17. (Fundamental decomposition of dendroidally ordered sets)
Let A be a dendroidally ordered set with root r and s(r) = {a1, · · · , an}. Then
A = Aroot ◦ (Aa1

, · · · , Aan
).

Proof. First notice that Aai
∩Aroot = {ai}. It is generally true for any a ∈ A

that a /∈ s(a), so that if r ∈ Aai
then, since r is the smallest element in (A,≤d) it

follows that r = ai, but then r ∈ s(r), a contradiction. If aj ∈ Aai
and aj 6= ai

then ai ≤d aj which means that there is −→a ∈ A∗ with aj ∈
−→a and ai ≤

−→a . But
transitivity and

r ≤ (a1, · · · , an)

imply

r ≤ (a1, · · · , ai−1) ·
−→a · (ai+1, · · · , an)

which contradicts the minimality of A (since the latter tuple on the right contains
aj twice). Thus the only element of A which can be in Aroot ∩ Aai

is ai which



2.3. AN ALGEBRAIC DEFINITION OF THE DENDROIDAL CATEGORY 59

is clearly there. It follows that Aroot ∩ Aai
= {ai} and thus that the grafting

Aroot ◦ (Aa1
, · · · , Aan

) is well defined.
Next we notice that Aroot ∪ Aa1

∪ · · · ∪ Aan
= A, since for any a ∈ A one has

r ≤d a, which means that there is an −→a such that a ∈ −→a and r ≤ −→a . If −→a = r
then a = r and we are done, otherwise −→a ∈ r̂ and by definition we then have that
s(r) ≤ −→a . This means that −→a can be written as −→a1 · · · · ·

−→an in such a way that
ai ≤

−→ai . Since a ∈ −→a it follows that there is 1 ≤ j ≤ n for which a ∈ −→aj , which
implies that aj ≤d a, and so a ∈ Aaj

. We see thus that the underlying set of
Aroot ◦ (Aa1

, · · · , Aan
) is the same as that of A and it is now easy to see that the

broad order defined by the grafting operation is the original one on A. �

2.3.5. Classification of dendroidally ordered sets. We now establish the
connection between dendroidally ordered sets and trees - thus justifying the use of
the term ’dendroidal’.

Definition 2.3.18. Let T be a tree. We define a dendroidally ordered set,
[T ], whose underlying set is E(T ) (the set of edges of T ), by induction on the
number k of vertices in the tree T . If T = η (the tree with one edge and no
leaves) then the broad poset structure on [η] is just e ≤ e for the unique edge e
in η. If T is an n-corolla Cn with root r and leaves {a1, · · · , an} then the broad
poset structure on [Cn] is the one in which r ≤ −→a where −→a is any permutation of
(a1, · · · , an). Obviously these two broad posets make [η] and [Cn] into dendroidally
ordered sets and thus the cases k = 0, 1 are covered. Suppose now that T has more
then 1 vertex and write T = Troot ◦ (Te1 , · · · , Ten

) (as in 0.2.6). We then define
[T ] = [Troot] ◦ ([Te1 ], · · · , [Ten

]), where the grafting is that of dendroidally ordered
sets.

We now wish to associate with any dendroidally ordered set A a tree T such
that A = [T ]. To do that we introduce the notion of the degree of A, which allows
for induction on dendroidally ordered sets.

A pair (a,−→a ) is called a link in a broad poset A if a < −→a and if a <
−→
b < −→a does

not hold for any choice of
−→
b . We say that two links (a,−→a ) and (a,

−→
a′ ) are equivalent

if there is a permutation σ such that −→a ·σ =
−→
a′ . The number of equivalence classes

of links in a broad poset A is the degree of A and is denoted by |A|. It can easily
be shown that for dendroidally ordered sets A and B the equality:

|A ◦B| = |A|+ |B|

holds, whenever A ◦B is defined.

Lemma 2.3.19. Let A be a dendroidally ordered set. There is a tree Tr(A) for
which A = [Tr(A)].

Proof. By induction on n, the degree of A. If |A| = 0 or |A| = 1 then
the claim is obvious. Assume the statement holds for dendroidally ordered sets of
degree smaller then n and let A be of degree n. Write A = Aroot ◦ (Aa1

, · · · , Aan
),

and let Tr(A) = Tr(Aroot) ◦ (Tr(Aa1
), · · · , T r(Aan

)). By the definition of [−] and
the induction hypothesis it follows that [Tr(A)] = A. �

We summarize the properties of the two constructions relating trees and den-
droidally ordered sets in the following theorem.
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Theorem 2.3.20. (Classification of dendroidally ordered sets) The above con-
structions, associating with any tree T a dendroidally ordered set [T ], and with a
dendroidally ordered set A a tree Tr(A) have the following properties:

1) [Tr(A)] = A.
2) Tr([T ]) = T .
3) Whenever one of the sides of the equation [T ◦ S] = [T ] ◦ [S] is defined so is

the other, and in that case the equation holds.
4) Whenever one of the sides of the equation Tr(A ◦ B) = Tr(A) ◦ Tr(B) is

defined so is the other, and in that case the equation holds.
5) The two constructions Tr(−) and [−] are unique with respect to properties

1-4.

Proof. The proofs of the parts that were not already given follow by an easy
induction and are therefore omitted. �

Under this correspondence each concept of trees can be translated to a concept
of dendroidally ordered sets and vice-versa. for instance, if T is a tree and [T ] is its
corresponding dendroidally ordered set then the root of T is the root of [T ], a vertex
in T is a link in [T ], and so on. Notice also that |T | = |[T ]| and |Tr(A)| = |A|.

2.3.6. The equivalence of the two definitions of the dendroidal cate-

gory. We now prove that the algebraic and operadic definitions of the category Ω
are equivalent, and we recast the notation and definitions of the operadic definition
in the algebraic one. We also provide a proof of Theorem 2.2.6.

Theorem 2.3.21. The algebraic and operadic definitions of Ω are equivalent.

Proof. Let ΩO be the dendroidal category as given in Definition 2.2.4 (op-
eradic definition) and let ΩA be the dendroidal category as given in Definition
2.3.13 (algebraic definition). The precise meaning of the statement is that these
two categories are isomorphic. Given a dendroidally ordered set A ∈ ob(ΩA) we
have the tree Tr(A) associated with it from Lemma 2.3.19. It is easily seen that
the assignment A 7→ Tr(A) extends to a functor Tr : ΩA → ΩO. Similarly, the
assignment T 7→ [T ] extends to a functor [−] : ΩO → ΩA, which is the inverse of
Tr. �

Remark 2.3.22. From now on we will denote the dendroidal category by Ω.
We consider the objects of Ω to be non-planar rooted trees and we regard an arrow
T → S in Ω between two such trees either as a map of dendroidally ordered sets
[T ]→ [S] or as a map of operads Ω(T )→ Ω(S), depending on which point of view
is more convenient at the time.

Given a dendroidally ordered set A of degree n we wish now to identify its degree
n− 1 dendroidally ordered sub-sets. An element a ∈ A which is not a leaf and not
the root will be called an inner element, otherwise it is an outer element. Given a
link (a, (a1, · · · , an)) and a set C consisting of any n of the elements a, a1, · · · , an,
if the elements of C are all outer then C is called an outer cluster of A.

If A is a dendroidally ordered set and B ⊆ A, we will denote by A/B the subset
A\B with the induced broad poset structure. For an element a we write A/a as
shorthand for A/{a}.

Proposition 2.3.23. (Characterization of maximal dendroidally ordered sub-
sets) Let A be a dendroidally ordered set of degree n. If a is an inner element of
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A then A/a is dendroidally ordered and |A/a| = n − 1. If C is an outer cluster
of A then A/C is dendroidally ordered and |A/C| = n − 1. If B ⊆ A and B with
the broad order induced by A is dendroidally ordered of degree n− 1 then B = A/a
for a unique inner element a ∈ A or B = A/C for a unique outer cluster C (the
meaning of ’or’ should be taken in the exclusive sense).

Proof. The proof is straightforward and thus omitted. �

Consider a dendroidally ordered set A and its corresponding tree Tr(A). One
can easily verify the following assertions. An inner element in A corresponds to
an inner edge in Tr(A) while an outer element corresponds either to a leaf or to
the root of Tr(A). An outer cluster C in A corresponds to a vertex v of valence
n together with a choice of n of the edges adjacent to v that are all outer edges.
Furthermore the tree Tr(A/a) for an inner element a is equal to the tree Tr(A)/e
obtained from the tree Tr(A) by contracting the inner edge e corresponding to a.
Similarly the tree Tr(A/C) for an outer cluster C is equal to the tree Tr(A)/C
obtained from Tr(A) by removing the outer edges (which may or may not contain
the root) corresponding to the outer elements in C.

Definition 2.3.24. Let A be a dendroidally ordered set of degree n. Any
inclusion B → A of a dendroidally ordered sub-set B of degree n− 1 in A is called
a face map. If B = A/a then this inclusion is denoted by ∂a and is called the inner
face map associated to a. if B = A/C then the inclusion is denoted by ∂C and is
called the outer face map associated to C.

Again one can easily see that an inner face map A/a→ A corresponds exactly
to an inner face map Tr(A/e)→ Tr(A) and similarly for an outer face map.

Definition 2.3.25. Let A be a dendroidally ordered set and l = (a1, a2) a
unary link in A. The map σl : A→ A/a2 defined by

σl(x) =

{
x x 6= a2

a1 x = a2

is a map of dendroidally ordered sets and is called the degeneracy map associated
with the unary link l.

Comparing this definition of a degeneracy map with the operadic one we easily
see that (under the identification of ΩA with ΩO) both definitions agree.

We now turn to the isomorphisms in Ω. Let A and B be two dendroidally
ordered sets and f : A→ B a function. It is easily verified that f is an isomorphism
of dendroidally ordered sets if, and only if, f sends the root of A to the root of B
and if for each a ∈ A

f(s(a)) = s(f(a)).

We are now going to prove Theorem 2.2.6. By the discussion so far it is obvious
that we can state and prove the theorem in the setting of dendroidally ordered
sets instead of that of operads. This turns out to be a slightly more convenient
framework for a precise proof. We prepare for this proof with the following simple
proposition whose proof we omit.

Proposition 2.3.26. If the map α : B → B′ of dendroidally ordered sets
is an inner face (respectively outer face, degeneracy, isomorphism) then for any
dendroidally ordered set A, the map A ◦ α : A ◦ B → A ◦ B′ is an inner face
(respectively outer face, degeneracy, isomorphism) whenever the grafting is defined.
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Theorem 2.3.27. (Restatement of Theorem 2.2.6) Any arrow f : A→ B in Ω
decomposes uniquely as

A
f //

δ

��

B

A′ π // B′

ϕ

OO

where δ : A→ A′ is a composition of degeneracy maps, π : A′ → B′ is an isomor-
phism, and ϕ : B′ → B is a composition of face maps.

Proof. We prove this by induction on n = |A| + |B|. If n = 0 or n = 1 the
proof is trivial. Assume the assertion holds for 1 ≤ n < m and let f : A → B
be a map such that |A| + |B| = m. We consider four cases. First assume that
f(rA) = b 6= rB where rA (respectively rB) is the root of A (respectively B). In
that case f factors through Bb:

A
f //

f ′

  A
AA

AA
AA

B

Bb

φ′

OO

where φ′ is the obvious inclusion of Bb into B which is clearly a composition of
face maps (recall that Bb = {b′ ∈ B | b ≤d b′}). Since |Bb| < |B| the induction
hypothesis implies that f ′ can be factored as:

A
f ′

//

δ

��

Bb

A′ π // B′

φ

OO

and adjoining the map φ′ to this decomposition yields the desired factorization of
f .

We now consider the case where f(rA) = rB and f(s(rA)) = s(rB). Let s(rA) =
{a1, · · · , ak} and s(rB) = {b1, · · · , bk} with f(ai) = bi. In that case, by restricting
f to Aai

, one obtains a map fi : Aai
→ Bbi

. Let Aroot = {rA, a1, · · · , ak} with the
broad order induced by A and define Broot similarly. Let froot : Aroot → Broot be
the restriction of f to Aroot. The map f can be written as froot ◦ (fa1

, · · · , fak
).

By the induction hypothesis each fi decomposes as

Aai

fi //

δi

��

Bbi

A′
ai

πi // B′
bi

φi

OO

Let A′ = Aroot ◦ (A′
a1
, · · · , A′

ak
). The maps δi can then be grafted to produce

the map Aroot ◦ (δ1, · · · , δk) : Aroot ◦ (A1, · · · , Ak) → Aroot ◦ (A′
a1
, · · · , A′

ak
) and

since A = Aroot ◦ (A1, · · · , Ak) we obtain a map δ : A → A′. It follows from
the preceding proposition that δ is a composition of degeneracies. Similarly define
B′ = Broot ◦ (B

′

b1
, · · · , B

′

bk
) and then the φi together form a map φ : B′ → B which

is a composition of face maps. Lastly the πi also assemble themselves to give a map
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π : A′ → B′ which is an isomorphism. These maps form the needed factorization
of f .

The third case is when f(rA) = rB but f(s(rA)) 6= s(rB) and f(x) 6= rB for
any x 6= rA. Let s(rA) = {a1, · · · , ak} and f(ai) = bi. Notice that an element

x ∈ B such that rB <d x <d bi for some i is, of course, inner. Let B̂ be the
dendroidally ordered sub-set of B obtained by removing all of those inner elements.

The inclusion φ̂ : B̂ → B is then obviously a composition of (inner) face maps, and
the map f factors through it as

A
f //

f̂ ��?
??

??
??

B

B̂

φ̂

OO

φ̂

OO

Since f(s(rA)) 6= s(rB) the induction hypothesis applies to f̂ which then factors as

A
f̂ //

δ

��

B̂

A′ π // B̂′

φ

OO

and adjoining φ̂ to this decomposition yields the desired factorization of f .
The last case to be considered is when f(rA) = rB and f(s(rA)) 6= f(s(rB))

while for at least one x 6= rA we have f(x) = rB . This implies that s(rA) consists
of just one element a and f(a) = rB. Thus (rA, a) is a link. Let σ : A→ A′ be the
degeneracy associated with it. Since f(rA) = f(a) = rB it follows that f factors
through σ as

A
σ //

f   @
@@

@@
@@

@ A′

f ′

��
B

The induction hypothesis for f ′ together with σ now provide the required decom-
position. The uniqueness of the decomposition follows by a rather straightforward
induction and is omitted. �

2.4. Dendroidal sets - basic definitions

We now introduce the category of dendroidal sets, its basic terminology and
properties, and establish its relation to simplicial sets.

Definition 2.4.1. The category dSet of dendroidal sets is the presheaf category
on the dendroidal category Ω, that is it is the category of functors Ωop → Set and
natural transformations.

A dendroidal set is thus a functor X : Ωop → Set. Given a tree T in Ω we
denote the set X(T ) by XT and for each α : T → S in Ω we denote the function
X(α) : XS → XT by α∗. An element x ∈ XT is called a dendrex of shape T , or
a T -dendrex. A map of dendroidal sets f : X → Y is a natural transformation
between the given functors. Such a natural transformation consists of functions
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(all denoted) f : XT → YT for each tree T , such that for any α : T → S in Ω and
x ∈ XS

α∗f(x) = f(α∗x).

Definition 2.4.2. Let T be a tree. The representable presheaf Ω(−, T ) : Ωop →
Set is called the standard T -dendrex and is denoted by Ω[T ]. Explicitly we have
for each tree S

Ω[T ]S = Ω(S, T ).

From the Yoneda lemma it follows that given any dendroidal setX , a T -dendrex
x ∈ XT corresponds bijectively to a map of dendroidal sets ιx : Ω[T ] → X . We
will usually simply write x instead of ιx, conveniently identifying a dendrex with its
associated map. Notice that Ω[T ] is functorial in T in the sense that given an arrow
α : S → T in Ω, there is the obvious induced dendroidal map Ω[α] : Ω[S] → Ω[T ].
A dendroidal sub-set Y of a dendroidal set X consists of, for each tree T , a sub-set
YT ⊆ XT such that Y , endowed with the obvious structure from X , is a dendroidal
set. Given a dendroidal set X and for each T a subset YT ⊆ XT , we call the
smallest dendroidal sub-set Ȳ of X that contains Y (i.e., YT ⊆ ȲT for each T ) the
dendroidal set generated by Y .

We now define the basic functors that relate dendroidal sets to simplicial sets.
These functors will be used often to relate definitions and results regarding den-
droidal sets to simplicial sets and vice-versa. Since we have two (equivalent) defi-
nitions for Ω we need to be a bit more precise. We thus, very temporarily, use the
notation ΩA and ΩO for (respectively) the algebraic and operadic definitions of Ω.
Recall the functor i : ∆ → ΩO that sends [n] ∈ ob(∆) to the operad Ω(Ln) where
Ln is the tree depicted by

n

•

•

1

•

0

and the functor i : ∆→ ΩA that sends the poset [n] to itself viewed as a dendroidally

ordered set. It is clear that under the isomorphism ΩA
Tr // ΩO
[−]

oo given in Theorem

2.3.21, the diagram

∆
i

  B
BB

BB
BB

B
i

~~||
||

||
||

ΩA
Tr // ΩO
[−]

oo

commutes. That means that we have one well-defined embedding i : ∆→ Ω which
from now on is fixed. This functor induces a restriction functor i∗ : dSet → sSet
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which sends a dendroidal set X to the simplicial set

i∗(X)n = Xi(n).

This functor has both a left and a right adjoint (by Kan extension, see [34]) of
which the left adjoint is of significance. The left adjoint i! : sSet → dSet sends a
simplicial set X to the dendroidal set given by

i!(X)T =

{
Xn, if T ∼= i([n]).
φ, otherwise.

This functor is full and faithful and thus embeds sSet in dSet.

Definition 2.4.3. Let T be a tree and α : S → T a face map in Ω. The α-face
of Ω[T ], denoted by ∂αΩ[T ], is the dendroidal sub-set of Ω[T ] which is the image of
the map Ω[α] : Ω[S]→ Ω[T ].

Thus we have that

∂αΩ[T ]R = { R // S
α // T | R→ S ∈ Ω[S]R}

When α is obtained by contracting an inner edge e in T we denote ∂α by ∂e.

Definition 2.4.4. Let T be a tree. The boundary of Ω[T ] is the dendroidal
sub-set ∂Ω[T ] of Ω[T ] obtained as the union of all the faces of Ω[T ]. That is

∂Ω[T ] =
⋃

α∈Φ1(T )

∂αΩ[T ]

where Φ1(T ), is the set of all faces of T .

Definition 2.4.5. Let T be a tree and α ∈ Φ1(T ) a face of T . The α-horn in
Ω[T ] is the dendroidal sub-set Λα[T ] of Ω[T ] which is the union of all the faces of
T except ∂αΩ[T ], that is

Λα[T ] =
⋃

β 6=α∈Φ1(T )

∂βΩ[T ].

The horn is called an inner horn if α is an inner face, otherwise it is called an
outer horn. We will denote an inner horn Λα[T ] by Λe[T ], where e is the contracted
inner edge in T that defines the inner face α = ∂e : T/e→ T . A horn in a dendroidal
set X is a map of dendroidal sets Λα[T ]→ X . It is inner (respectively outer) if the
horn Λα[T ] is inner (respectively outer).

Remark 2.4.6. It is trivial to verify that these notions for dendroidal sets
extend the common ones for simplicial sets in the sense, for example, that for the
simplicial horn Λk[n] ⊆ ∆[n], the dendroidal set

i!(Λ
k[n]) ⊆ i!(∆[n]) = Ω[Ln]

(where Ln is the linear tree with n vertices as described above) is a horn in the
dendroidal sense. Furthermore, the horn Λk[n] is inner (i.e., 0 < k < n) if, and only
if, the horn i!(Λ

k[n]) is inner. A similar remark holds for the rest of the notions
just introduced.

Both the boundary ∂Ω[T ] and the horns Λα[T ] in Ω[T ] can be described as
colimits as follows.
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Definition 2.4.7. Let T1 → T2 → · · · → Tn be a sequence of n face maps in
Ω. We call the composition of these maps a sub-face of Tn of codimension n.

Notice then that a face S → T is a sub-face of T of codimension 1.

Proposition 2.4.8. Let S → T be a sub-face of T of codimension 2. The map
S → T decomposes in precisely two different ways as a composition of faces.

Proof. Consider [S] and [T ], the dendroidally ordered sets associated with
the trees S and T . We have to consider several cases in which the map S → T can
be obtained. Assume thus that S → T is the composition of two inner face maps.
That means that [S] = [T ]/{e, e′} where e and e′ are both inner elements of [T ]. It
is obvious then that S → T decomposes only as

T/e

∂e

!!C
CC

CC
CC

C

S //

∂e !!B
BB

BB
BB

B

∂e′

==||||||||
T

T/e′
∂e′

=={{{{{{{{

The other cases involve removing outer clusters (see 2.2.1) as well and are proved
similarly. �

Let Φ2(T ) be the set of all sub-faces of T of codimension 2. The proposition
implies that for each β : S → T ∈ Φ2(T ) there are two maps β1 : S → T1 and
β2 : S → T2 through which β factors. Using these maps we can form two maps γ1

and γ2
∐

S→T∈Φ2(T )

Ω[S] ⇉
∐

R→T∈Φ1(T )

Ω[R]

where γi (i = 1, 2) has component Ω[S]
Ω[βi] // Ω[Ti] // ∐Ω[R] for each β : S →

T ∈ Φ2(T ).

Lemma 2.4.9. Let T be a tree in Ω. With notation as above we have that the
boundary ∂Ω[T ] is the coequalizer

∐

S→T∈Φ2(T )

Ω[S] ⇉
∐

R→T∈Φ1(T )

Ω[R]→ ∂Ω[T ]

for the two maps γ1, γ2 constructed above.

Proof. The required universal property of ∂Ω[T ] is easily established. �

Corollary 2.4.10. A map of dendroidal sets ∂Ω[T ]→ X corresponds exactly
to a sequence {xR}R→T∈Φ1(T ) of dendrices whose faces match, in the sense that for
each sub-face β : S → T of codimension 2 we have β∗

1 (xT1
) = β∗

2 (xT2
).
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We have a similar presentation for horns. For a fixed face α : S → T ∈ Φ1(T )
consider the parallel arrows defined by making the following diagram commute

Ω[S]

��

β1 // Ω[T1]

��∐
β:S→T∈Φ2(T ) Ω[S] // //

∐
R→T 6=α∈Φ1(T ) Ω[R]

Ω[S]

OO

β2 // Ω[T2]

OO

where the vertical arrows are the canonical injections into the coproduct and where
we use the same notation as above.

Lemma 2.4.11. Let T be a tree in Ω and α a face of T . In the diagram
∐

S→T∈Φ2(T )

Ω[S] ⇉
∐

R→T 6=α∈Φ1(T )

Ω[R]→ Λα[T ]

the dendroidal set Λα[T ] is the coequalizers of the two maps constructed above.

Proof. Again, the verification of the universal property is simple and thus
omitted. �

Corollary 2.4.12. A horn Λα[T ]→ X in X corresponds exactly to a sequence
{xR}R→T 6=α∈Φ1(T ) of dendrices that agree on common faces in the sense that if
β : S → T is a sub-face of codimension 2 which factors as

R1

α1

  A
AA

AA
AA

S
β //

β1

>>~~~~~~~~

β2   @
@@

@@
@@

@ T

R2

α2

>>}}}}}}}

where αi 6= α (i = 1, 2) then

β∗
1 (xR1

) = β∗
2(xR2

).

Remark 2.4.13. In the special case where the tree T is linear we obtain the
equivalent result for simplicial sets. Namely, the presentation of the boundary
∂∆[n] and of the horn Λk[n] as colimits of standard simplices, and the description
of a horn Λk[n] → X in a simplicial set X (see, respectively, [19] page 8, page 9,
and Corollary 3.2).

We end this section by introducing the terminology of faces, sub-faces, and so
on for dendrices in a dendroidal set.

Definition 2.4.14. Let α : S → T be a map in Ω and X a dendroidal set.
Given a dendrex t ∈ XT we refer to the dendrex α∗t ∈ XS as

(1) a face (respectively inner face, outer face) of t if α is a face (respectively
inner face, outer face) of T .

(2) a sub-face of t if α is a sub-face of T .
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(3) isomorphic to t if α is an isomorphism.
(4) a degeneracy of t if α is a composition of degeneracies.

2.5. Closed monoidal structure on the category of dendroidal sets

Just like any presheaf category, dSet is a cartesian closed category ([33]). This
cartesian product extends the cartesian product of simplicial sets in the sense that
for two simplicial sets X and Y we have

i!(X × Y ) ∼= i!(X)× i!(Y ).

However, there is another closed monoidal structure on dSet with a very strong
connection to the Boardman-Vogt tensor product of operads, as we shall see below.
In this section we introduce this monoidal structure and study it in detail.

In a presheaf category a closed monoidal structure is completely determined
(up to isomorphism) by the tensor product of representables. This follows easily
since the tensor product, being closed, preserves colimits and since every object in
a presheaf category is a colimit of representables (see the preliminaries). In more
detail, suppose ⊗ is a closed monoidal structure on dSet and let X and Y be two
dendroidal sets. Write

X = lim
−→

Ω[T ]

and

Y = lim
−→

Ω[S]

canonically as in Section 0.1.1. Then we obtain that

X ⊗ Y = lim
−→

Ω[T ]⊗ lim
−→

Ω[S] ∼= lim
−→

(Ω[T ]⊗ Ω[S])

and we see that X ⊗ Y can be expressed in terms of Ω[T ]⊗Ω[S]. We thus need to
define ⊗ only for representable dendroidal sets. To that end consider the functor
Ω→ BrdPoset which sends a tree T to the dendroidally ordered set [T ]. Taken as
a probe (Section 0.1.1) it induces a nerve-realisation adjunction

dSet
//
BrdPoset

N
oo

of which the left adjoint shall remain nameless. We now define, for two trees T and
S in Ω, the tensor product of the associated representable dendroidal sets by

Ω[T ]⊗ Ω[S] = N([T ]⊗ [S])

where [T ]⊗ [S] is the tensor product in the category BrdPoset (Definition 2.3.5).
We can now define the tensor product in dSet.

Definition 2.5.1. Let X and Y be two dendroidal sets. Their tensor product
is given as follows. Write X and Y canonically as colimits as above. Then

X ⊗ Y = lim−→Ω[T ]⊗ lim−→Ω[S] = lim−→(Ω[T ]⊗ Ω[S]).

Theorem 2.5.2. The above defined tensor product of dendroidal sets turns dSet
into a symmetric closed monoidal category.

Proof. This follows from general theorems of category theory as presented in
[11, 26]. �
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The internal Hom is explicitly given as follows. Let X and Y be two dendroidal
sets. Their internal Hom is the dendroidal set dSet(X,Y ) whose set of T -dendrices
is given by

dSet(X,Y )T = dSet(X ⊗ Ω[T ], Y )

and the dendroidal structure is given in the obvious way.
The monoidal structure on dSet extends the cartesian product in sSet in the

following sense.

Lemma 2.5.3. For any two simplicial sets X and Y

i!(X)⊗ i!(Y ) ∼= i!(X × Y ).

Proof. The statement will follow if we can show that it holds for representable
simplicial sets. This will be proved in Theorem 3.1.4 after we have developed some
more of the theory of dendroidal sets. �

Let us study the simplest (yet important) case of the tensor product of two
representable dendroidal sets. To that end let us fix two trees S and T . Our aim
is to exhibit Ω[S]⊗Ω[T ] as a union of some of its dendrices, which carry a natural
partial order.

By definition, Ω[S] ⊗ Ω[T ] is the dendroidal set N([S] ⊗ [T ]), where [S] ⊗ [T ]
is the tensor product of broad posets and N(−) is the functor N : BrdPoset →
dSet obtained from the probe Ω → BrdPoset sending T to [T ]. An R-dendrex in
Ω[S]⊗ Ω[T ] is thus a map

[R]→ [S]⊗ [T ]

of broad posets. It is easily seen that this dendrex is non-degenerate if, and only
if, its underlying set function is injective. For the purpose of characterizing these
maps, let us think of the vertices of S as being white (drawn ◦) and those of T as
being black (drawn •). Consider a tree R whose set of edges is the set E(S)×E(T ).
A vertex in such a tree that looks like this:

(a1,x) ??
??

??
??

(an,x)��
��

��
��

v ◦

···

(b,x)

where v is a vertex in S with input edges a1, · · · , an and output edge b, while x is
an edge of T , will be called a white vertex. Similarly a vertex in R that looks like
this:

(a,x1) ??
??

??
??

(a,xm)
��

��
��

��

w •

···

(a,y)

where w is a vertex in T with input edges x1, · · · , xm and output edge y, while a
is an edge in S, will be called a black vertex.

Definition 2.5.4. An (S, T )-tree is a tree R whose set of edges is the set
E(T )× E(S) in which every vertex is either white or black.
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Obviously, any (S, T )-tree R gives rise to an injective map f : [R] → [S]⊗ [T ]
(just the inclusion), and thus corresponds to a non-degenerate dendrex in Ω[S] ⊗
Ω[T ]. Moreover, every such non-degenerate dendrex is isomorphic (see Definition
2.4.14) to a dendrex obtained this way. Among all (S, T )-trees there are certain
trees that are maximal in the following sense:

Definition 2.5.5. An (S, T )-tree R is called a percolation tree if the root of R
is (rS , rT ) where rS (respectively rT ) is the root of S (respectively T ) and if each
leaf of R is of the form (lS , lT ) where lS (respectively lT ) is a leaf of S (respectively
T ).

It is easily verified that every (S, T )-tree can be extended (not necessarily
uniquely) to a percolation tree. In that sense the percolation trees are maximal
and it follows that every non-degenerate vertex in Ω[S] ⊗ Ω[T ] is isomorphic to a
sub-face (see Definition 2.4.14) of a dendrex given by a percolation tree.

All the possible percolation trees Ri come in a natural partial order. The
minimal tree R1 in the poset is the one obtained by stacking a copy of the black
tree T on top of each of the input edges of the white tree S. Or, more precisely, on
the bottom of T1 there is a copy S ⊗ rT of the tree S all whose edges are (a, rT )
where rT the root of T . For each input edge b of S, a copy of T is grafted on the
edge (b, r) of S ⊗ r, whose edges are (b, x). The maximal tree RN in the poset is
the similar tree with copies of the white tree S grafted on each of the input edges
of the black tree. Pictorially R1 looks like
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and RN looks like
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The intermediate trees Rk (1 < k < N) are obtained by letting the black
vertices in R1 slowly percolate in all possible ways towards the root of the tree.
Each Rk is obtained from an earlier Rl by replacing a configuration
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in Rl by the configuration

..
..

..
..

��
��
��
��

..
..

..
..

��
��
��
��

..
..

..
..

��
��
��
��

..
..

..
..

��
��

��
��

..
..

..
..

��
��
��
��

v ◦

KKKKKKKKKKKKKKKKKKKKKK ◦

99
99

99
99

99
99

99
9 ◦ ◦

��
��

��
��

��
��

��
� · · · v ◦

qqqqqqqqqqqqqqqqqqqqqqqq

(2)

w •

in Rk. More explicitly, let P be the portion of the tree Rl shaped like (1). If we
denote by R′ the part of Rl below the vertex v and by R′

1, · · · , R
′
m the parts of Rl

above the edges depicted as leaves in (1) then we can write

Rl = R′ ◦ P ◦ (R′
1, · · · , R

′
m).

The tree Rk is now given as

Rk = R′ ◦ P ′ ◦ (R′
1, · · · , R

′
m)

where P ′ is a tree that looks like (2). Notice that the grafting is well defined since
the output edges of P ′ are precisely the roots of the various Ri, where only the order
changed. Since we are dealing with non-planar trees we don’t have to rearrange the
trees Ri. When this is the case we say that Rk is obtained by a single percolation
step from Rl and denote this by Rl ≤ Rk. This defines a partial order on the set
of all percolation trees.

As mentioned, each percolation tree Rk corresponds to a dendrex in Ω[S]⊗Ω[T ]
of shape Rk and thus to a map m : Ω[Rk] → Ω[S] ⊗ Ω[T ]. We denote by m(Rk)
the image of Ω[Rk] under this map. We summarize the above discussion in the
following lemma.
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Lemma 2.5.6. (Shuffle presentation of Ω[S]⊗Ω[T ]) With notation as above we
have the equality

Ω[S]⊗ Ω[T ] =

N⋃

k=1

m(Rk).

Example 2.5.7. We illustrate this shuffle presentation with the following two
trees S and T ; here, we have singled out one particular edge e in S, numbered the
edges of T as 1, · · · , 5, and denoted the edge (e, i) in Rk by ei.
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There are 14 percolation schemes T1, · · · , T14 in this case:
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The poset structure on the percolation trees above is:
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2.6. Skeletal filtration

We present now a useful filtration of a dendroidal set based on non-degenerate
elements.

Definition 2.6.1. Let X be a dendroidal set. A dendrex t ∈ XT is called
degenerate if it is a degeneracy of some dendrex s (see Definition 2.4.14). Otherwise
t is called non-degenerate. The degree of the dendrex t is equal to the degree of the
tree T , i.e., the number of vertices of T .

For example, any dendrex t ∈ XT where T has no unary vertices is non-
degenerate. One can also easily see that every degenerate dendrex t ∈ XT is a
degeneracy of a non-degenerate dendrex. This dendrex is unique up to an isomor-
phism.

Definition 2.6.2. Let X be a dendroidal set and n ≥ 0 a natural number. The
n-skeleton of X is the dendroidal set Skn(X) ⊆ X generated by the dendrices of X
of degree less then or equal to n. There is an obvious inclusion Skn(X) ⊆ Skn+1(X).

Clearly we have that

X =

∞⋃

n=0

Skn(X)

and we refer to this presentation of X as the skeletal filtration of X .

Remark 2.6.3. This filtration of a dendroidal set relates to the standard fil-
tration of a simplicial set as follows. If X is a simplicial set with skeletal filtration
X0 ⊆ X1 ⊆ · · · then i!(X0) ⊆ i!(X1) ⊆ · · · is isomorphic to the skeletal filtration
of the dendroidal set i!(X).
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Definition 2.6.4. A dendroidal set X is called n-skeletal if, given a den-
droidal set Y , every map Skn(X)→ Skn(Y ) extends uniquely, along the inclusion
Skn(Y ) → Y , to a map X → Y . Similarly, X is called n-coskeletal if given an
arbitrary dendroidal set Z, every map Skn(Z)→ Skn(X) extends uniquely , along
the inclusion Skn(Z)→ Z, to a map Y → X .

Once again, for a simplicial set X , the dendroidal set i!(X) is n-skeletal (re-
spectively n-coskeletal) if, and only if, X is n-skeletal (respectively n-coskeletal).

Notice that
Sk0(X) =

∐

x∈Xη

Ω[η]

where η is some fixed unit tree. For n > 0 consider now the following diagram:
∐

(t,T ) ∂Ω[T ] //

��

Skn−1(X)

��∐
(t,T ) Ω[T ] // Skn(X)

where the coproduct ranges over all isomorphism classes of pairs (t, T ) in the cat-
egory of elements of X , where |T | = n and t ∈ XT is non-degenerate. In more
detail, two pairs (t, T ) and (s, S) where |T | = |S| = n and both t ∈ XT and s ∈ XS

are non-degenerate are isomorphic if there is an isomorphism α : S → T such
that α∗t = s. In the coproduct above we choose one representative of each such
isomorphism class of pairs.

Definition 2.6.5. Let X be a dendroidal set. The skeletal filtration of X is
said to be normal if for each n > 0, the square above is a pushout. We then say
that X admits a normal skeletal filtration.

Following Cisinski [9] we make the following definition:

Definition 2.6.6. A dendroidal setX is called normal if for each non-degenerate
dendrex t ∈ XT , the only isomorphism α : T → T that fixes t (i.e., α∗(t) = t) is
the identity.

Cisinski develops a very rich theory of certain presheaf categories and a special
case of his theory is the following theorem:

Lemma 2.6.7. A dendroidal set X is normal if, and only if, it admits a normal
skeletal filtration.

Proof. The proof is a special case of Lemma 8.1.34 in [9] after noting that Ω
is a skeletal category (Definition 8.1.1 in [9]). �

Clearly, all representable dendroidal sets are normal. Below we will see exam-
ples of other normal dendroidal sets. To get a better intuition for normal dendroidal
sets let us give an example of a dendroidal set which is not normal. Consider the
dendroidal set X = Ω[C2] where C2 is a 2-corolla. For this dendroidal set, Xη con-
sists of three dendrices and XC2

consists of two dendrices with an evident action
of Z2. Consider now the dendroidal set Y = X/Z2 obtained from X by identifying
the two dendrices in XC2

. That means that Yη consists of two elements and YC2

of one element. It is then clear that Y doesn’t satisfy the condition for normality
(the unique dendrex in YC2

is fixed by a non-trivial isomorphism) and it can also
be seen directly that the skeletal filtration of Y is not normal.




