
CHAPTER 1

Operads

The theory of operads is a rich and well established one as seen through the
works of May [36], Ginzburg and Kapranov [18], Boardman and Vogt [7], and
Getzler and Jones [17], just to name a few. It is the aim of this chapter to intro-
duce operads and their basic theory and is thus expository in nature. However, our
approach is vastly different than the classical one, in which operads are introduced
as algebraic structures modelled after the endomorphism operad [36]. Instead, our
approach is categorical in the sense that we view operads as a direct generalization
of categories. In fact, what we call operads are usually named symmetric multicat-
egories [31] or coloured operads [6]. Our approach is very close to Leinster’s [31].
Our decision to use the term ’operad’ throughout is a mix of personal preference and
arbitrariness, simply since a choice must be made. We attempt no justification for
our choice nor do we claim that it is better than any other terminology. For the sake
of clarity then we emphasize again that by an operad we mean a symmetric mul-
ticategory or, equivalently, a symmetric coloured operad (in the category of sets).
While the treatment of operads presented here is very elementary and contains a
lot of known results, it is sprinkled with new simple results that arise naturally by
taking the categorical approach. Most notably, Sections 4-7 contain new results all
of which relate to either known results in operad theory or in category theory.

The chapter starts by giving the definition of operads, maps of operads (func-
tors), and natural transformations where an attempt to parallel the development
of the theory to that of category theory is made. The construction of free oper-
ads is then introduced which facilitates the definition of operads using generators
and relations, followed by an examination of limits and colimits of operads. The
Boardman-Vogt tensor product of operads is presented together with a proof that
this makes the category of operads into a symmetric closed monoidal category.
Then the ’folk’ Quillen model structure on the category of small categories is ex-
tended to operads, and it is shown that with the Boardman-Vogt tensor product
the category of operads is a symmetric closed monoidal model category. Following
is a presentation of a Grothendieck construction for operads. The chapter ends
with a consideration of enriched operads and a comparison of our notation with the
classical one.

1.1. Operads, functors, and natural transformations

In [14] the authors explain that categories are defined in order to be able to
define functors, which in turn are defined to facilitate the definition of natural
transformations. We develop the basic definitions of operad theory along the same
lines.
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Definition 1.1.1. A planar operad P is given by specifying objects and oper-
ations and supplying a composition function on the operations, which satisfies unit
and associativity axioms. In detail:

Objects and operations
There is a specified set of objects ob(P). For each sequence of objects

p1, · · · , pn, p,

also called a signature, there is a set P(p1, · · · , pn; p) of operations or arrows. Such
an operation ψ will be depicted as

p1 @@
@@

@@
@@ ···

pn

��
��

��
��

ψ •

p

and will be said to have (p1, · · · , pn) as input and p as output, and to be of arity
n. It is assumed that each operation has a well defined input and output, in other
words if P(p1, · · · , pn; p0) ∩ P(q1, · · · , qm; q0) 6= ∅ then m = n and pi = qi for
0 ≤ i ≤ n. For each object p there is an operation idp ∈ P(p; p) called the identity
on p. We allow n to be 0, in which case ψ will be denoted by

•
p

ψ

Composition function
The operations can be composed in the following way. Given a signature

p1, · · · , pn, p, and for each 1 ≤ i ≤ n, another sequence of objects pi1, · · · p
i
mi

, there
is a composition function

P(p1, · · · , pn; p)× P(p1
1, · · · , p

1
m1

; p1)× · · · × P(pn1 , · · · , p
n
mn

; pn)

��
P(p1

1, · · · , p
1
m1
, · · · , pn1 , · · · , p

n
mn

; p)

If ψ ∈ P(p1, · · · , pn; p) and ψi ∈ P(pi1, · · · , p
i
mi

; pi), we denote by ψ ◦ (ψ1, · · · , ψn)
(or simply by ψ(ψ1, · · · , ψn)) the image of (ψ, ψ1, · · · , ψn) under the composition
function.

Axioms
The identities are required to satisfy

idp(ψ) = ψ

and
ϕ(idp1 , · · · , idpn

) = ϕ

whenever the compositions are defined. Furthermore, the composition is required
to be associative in the sense that given

ψ ∈ P(p1, · · · , pn; p),
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for each 1 ≤ i ≤ n an operation

ψi ∈ P(pi1, · · · , p
i
mi

; pi),

and for each pair (i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ mi an operation ψij with output

pij (and an arbitrary input), the composition

(ψ(ψ1, · · · , ψn))(ψ
1
1 , · · · , ψ

1
m1
, ψ2

1 , · · · , ψ
2
m2
, · · · , ψn1 , · · · , ψ

n
mn

)

should be equal to the composition

ψ(ψ1(ψ
1
1 , · · · , ψ

1
n1

), · · · , ψn(ψ
n
1 , · · · , ψ

n
mn

)).

Some light can be shed on the definition by considering certain labelled planar
trees. In more detail, given an operad P and a planar tree T one can consider la-
belling the edges and vertices of the tree T respectively with objects and operations
of the operad P . We call T a labelled tree if each edge e is labelled by an object
pe ∈ ob(P) and if each vertex v with in(v) = (e1, · · · , en) and out(v) = e is labelled
by an operation ψv ∈ P(pe1 , · · · , pen

; pe). Using this language one can interpret the
composition function in the operad as follows. Given a labelled tree T
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??
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ψ1 •
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···

ψn •
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��
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��

��
��

ψ •

p

the composition function associates to it a labelled corolla (that is, just an oper-
ation) of the shape of the tree obtained from the one above by contracting all of
the inner edges, where the labelling is as follows. All of the edges of the corolla are
also edges in the original tree (namely the outer ones) and they retain their labels
from T . The sole vertex of the corolla is then labelled by ψ◦(ψ1, · · · , ψn). Visually,
the composition associated to the tree above is depicted by the following labelled
corolla:

p11

OOOOOOOOOOOOOOOOOOOOOOOOOOO

···
p1m1
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??
??
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??

??
??

?

···
pn
1
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···
pn

mn
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•

p

We can refine the composition a bit by introducing the so called ◦i-compositions.
Given p1, · · · , pn, p and q1, · · · , qm objects in P , the ◦i-composition for 1 ≤ i ≤ n
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is the function
P(p1, · · · , pn; p)× P(q1, · · · , qm; pi)

◦i

��
P(p1, · · · , pi−1, q1, · · · , qm, pi+1, · · · , pn; p)

defined by
ψ ◦i ϕ = ψ(idp1 , · · · , idpi−1

, ϕ, idpi+1
, · · · , idpn

).

We can again use planar trees to get a geometric picture of the ◦i-compositions.
Given any labelled planar tree S and an inner edge e in it, there is a natural labelling
of the tree S/e, obtained from S by contracting e. The labelling of S/e is as follows.
In S/e there is just one vertex which does not appear in S, all other vertices and
edges other then e occur in S as well and retain their labels. Let v be the new
vertex in S/e and suppose e leads from the vertex u to w, so in(w) = (u1, · · · , uk)
and uj = u for some 1 ≤ j ≤ k. The label of v in S/e is then defined to be ψw ◦j ψu.

By sequentially contracting all of the inner edges in S we obtain a labelled
corolla c(S). It is a direct consequence of the associativity axiom that the label
of the only vertex in c(S) is independent of the chosen order in which edges are
contracted. We will sometimes refer to a labelled tree S as a composition scheme in
P and will then refer to the uniquely labelled corolla c(S) (or rather to the operation
labelling its unique vertex) as the composition of the composition scheme.

It is obvious that under the suitable associativity conditions of the various ◦i-
compositions, an operad can equivalently be given by a set of objects together with
◦i-compositions. See [35] for more details on defining operads via ◦i-compositions
for the special case where the operad in question has just one object. The extension
to the general case is trivial.

Definition 1.1.2. An operad (or a symmetric operad) is a planar operad to-
gether with actions of the symmetric groups as follows. Given a permutation σ ∈ Σn
there is a function σ∗ : P(p1, · · · , pn; p) → P(pσ(1), · · · , pσ(n); p). These functions
are required to define a right action of Σn (that is, (στ)∗ = τ∗σ∗, and for the identity
permutation id ∈ Σn we have id∗ = id) and to respect compositions in the following
sense. Given operations ψ0, · · · , ψn for which the composition ψ0 ◦ (ψ1, · · · , ψn) is
defined, and permutations σ0, · · · , σn where σi ∈ Σki

(with ki the arity of ψi), the
equation

σ∗
0(ψ0)◦(σ

∗
σ0(1)

(ψσ0(1)), · · · , σ
∗
σ0(n)(ψσ0(n))) = [σ0◦(σ1, · · · , σn)]∗(ψ0◦(ψ1, · · · , ψn))

holds. The permutation σ0 ◦ (σ1, · · · , σn) is the block permutation product of the
given permutations, which is the evident one equating inputs on both sides (see
[31] for more details, page 77 under ’operad of symmetries’, and [35]).

Remark 1.1.3. It is easily seen that an operad (planar or symmetric) that has
only operations of arity 1 is the same thing as a category. More precisely, given
such an operad P we define the category j∗(P) by setting

ob(j∗(P)) = ob(P)

and for objects p, p′ ∈ ob(P) we set

j∗(P)(p, p′) = P(p; p′).

The units and composition are induced by those in P in the obvious way. The
result is a category by the unit and associativity axioms for operads.
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Example 1.1.4. There are many examples of operads given in the literature
(see e.g., [18, 35, 36]), the vast majority of which have just one object. We
wish to present here a different family of operads, namely, those obtained from
symmetric monoidal categories. Let E be any symmetric monoidal category and M
a subset of ob(E). The operad PM is defined as follows. The set of objects of PM
is M and the set of operations with input (A1, · · · , An) and output B is the set
E(A1 ⊗ · · · ⊗ An, B) where some choice for the repeated tensoring was made. The
composition and units in PM are the evident ones, and the symmetric groups Σn
act by permuting the variables. The operad axioms follow immediately from the
usual coherence theorems for symmetric monoidal categories. We will usually write
Ê instead of Pob(E), or just E where context will prevent confusion.

Definition 1.1.5. Let P and Q be two planar operads. A map of planar
operads F : P → Q is a function F : ob(P) → ob(Q) and for any sequence of
objects p1, · · · , pn, p in ob(P) a function

F : P(p1, · · · , pn; p)→ Q(Fp1, · · · , Fpn;Fp)

such that

F (ψ(ψ1, · · · , ψn)) = F (ψ)(Fψ1, · · · , Fψn)

holds whenever the compositions make sense. Furthermore, for any p ∈ ob(P)
we demand that F (idp) = idFp. If P and Q are both symmetric then a map of
symmetric operads F : P → Q is the same as above with the extra condition that
for any permutation σ ∈ Σn one has

F (σ∗(ψ)) = σ∗(F (ψ))

for any operation ψ with input of length n.

Remark 1.1.6. When P and Q are both categories (that is, they have only
unary operations) it is immediate to see that a map of operads (planar or symmet-
ric) F : P → Q is the same thing as a functor. For this reason we will also use the
word functor to refer to maps of operads.

The category Operadπ is the category of all planar operads and functors be-
tween them with the obvious notion of composition of functors and the evident
identity functors. Likewise, Operad is the category of all symmetric operads and
their maps. The remarks above allude to the fact that the category Operad can
be seen as an extension of the category Cat. We now make this relation precise.
Given a category C we can construct a planar operad j!C by setting

ob(j!C) = ob(C)

and for objects c, c′ ∈ ob(j!C) we define

j!C(c; c
′) = C(c, c′).

Composition and units are induced from C in the obvious way to make j!C into an
operad. Notice that since in j!C all operations are unary (that is they have just
one input), each symmetry group Σn acts trivially on the operations of the planar
operad j!C. It follows that j!C can also be considered as a symmetric operad. We
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thus obtain two functors (both named j!):

Cat
j!

$$I
III

IIIII
j!

zzttttttttt

Operadπ Operad

that view a category as an operad (planar or symmetric) all of which operations
are unary. Clearly both of these functors are fully faithful. We will thus consider
Cat to be embedded in Operad and in Operadπ via j!. These two functors both
have right adjoints which send a (planar or symmetric) operad P to the category
j∗(P) whose objects are the objects of P , and whose arrows for any two objects
p, p′ ∈ Ob(j∗P) are given by

j∗P(p, p′) = P(p; p′).

The identities and the compositions are as in P . Somewhat less formally, we see
that inside any operad there is a category which is the linear part of the operad.
We will freely use category theoretic terms and notation when referring to this
category. Thus for example, the meaning of ”ψ is an isomorphism in the operad P”
should be interpreted as ”j∗ψ is an isomorphism in the category j∗P”. Again we
use the same name, j∗, for both functors Operadπ → Cat and Operad→ Cat.

There is an obvious forgetful functor U : Operad → Operadπ which simply
forgets the symmetric group actions. This functor has a left adjoint

Symm : Operadπ → Operad,

called the symmetrization functor, which we now describe. Let P be a planar
operad. The objects of Symm(P) are the same as the objects of P . To describe
the operations in Symm(P) let p1, · · · , pn, p ∈ ob(Symm(P)). For each σ ∈ Σn let

Pσ(p1, · · · , pn; p) = {σ} × P(pσ−1(1), · · · , pσ−1(n); p).

We now define

Symm(P)(p1, · · · , pn; p) =
∐

σ∈Σn

Pσ(p1, · · · , pn; p).

The unit idp for p ∈ ob(Symm(P)) is (id, idp) and the symmetric groups Σn can
now freely act on the various operations in Symm(P) as we now describe. Let
τ ∈ Σn be a permutation, we define

τ∗ : Symm(P)(p1, · · · , pn; p)→ Symm(P)(pτ(1), · · · , pτ(n); p)

on (σ, ψ) ∈ Pσ(p1, · · · , pn; p) by

τ∗(σ, ψ) = (στ, ψ) ∈ Pστ (pτ(1), · · · , pτ(n); p).

This obviously defines a right action of the symmetric groups. To define the com-
position let ψ0 ∈ Symm(P)(p1, · · · , pn; p) and ψi ∈ Symm(P)(pi1, · · · , p

i
mi

; pi) for
1 ≤ i ≤ n be operations in Symm(P). By definition we have then that ψi = (τi, ϕi)
with

ϕ0 ∈ P(pτ−1
0 (1), · · · , pτ−1

0 (n); p)

and for 1 ≤ i ≤ n

ϕi ∈ P(pi
τ−1

i
(1)
, · · · , pi

τ−1

i
(mi)

; pi).
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We can thus use the composition in P to obtain the operation

ϕ = ϕ0 ◦ (ϕτ−1
0 (1), · · · , ϕτ−1

0 (n)).

Calculating the domain of ϕ we see that

(τ ◦ (τ1, · · · , τn), ϕ) ∈ Symm(P)(p1
1, · · · , p

1
n1
, · · · , pn1 , · · · , p

n
mn

; p),

(where τ ◦ (τ1, · · · , τn) is again the block permutation product) and we define this
operation to be the composition ψ0 ◦ (ψ1, · · · , ψn) in Symm(P). The verification
of the rest of the axioms is straightforward.

We summarize the information given above relating categories, planar operads,
and symmetric operads in the following theorem.

Theorem 1.1.7. The six functors described above fit into the triangle

Cat
j!

$$I
IIIIII

II
j!

zzttttttttt

Operadπ
Symm //

j∗

::ttttttttt
Operad

U
oo

j∗

ddIIIIIIIII

where each pair of functors is an adjunction (with the left adjoint on top), and the
following equations hold:

(1) j∗j! ∼= id (these are actually two equalities)
(2) j∗ ◦ Symm = j∗ as functors from Operadπ to Cat
(3) j∗ ◦ U = j∗ as functors from Operad to Cat

We now turn to define natural transformations for operads.

Definition 1.1.8. Let Fi : P → Q for 1 ≤ i ≤ n and G : P → Q be n+1 func-
tors between symmetric operads. A natural transformation α from (F1, · · · , Fn) to
G is a family {αp}p∈ob(P), where αp ∈ Q(F1p, · · · , Fnp;Gp) and is called the com-
ponent of the natural transformation at p, satisfying the following property. Given
any operation ψ ∈ P(p1, · · · , pm; p) consider the following composition schemes in
Q

F1p1 ??
??

??
??

···

Fnp1��
��

��
��

F1pm ??
??

??
??

···

Fnpm��
��

��
��

αp1 •

Gp1 OOOOOOOOOOOOO
···

•

Gpm
ooooooooooooo αpm

•

Gp

Gψ

and

F1p1 ??
??

??
??

···

F1pm��
��

��
��

Fnp1 ??
??

??
??

···

Fnpm��
��

��
��

F1ψ •

F1p OOOOOOOOOOOOO
···

•

Fnp
ooooooooooooo Fnψ

•

Gp

αp
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and let ϕ1 and ϕ2 be the compositions in Q of, respectively, the first and second
composition schemes. We demand that ϕ2 = σ∗

m,n(ϕ1), where σm,n is the obvious
permutation equating the inputs of both operations.

Remark 1.1.9. It is trivial to check that when P and Q are categories, if α is
a natural transformation from (F1, · · · , Fn) to G then n = 1 and α is exactly the
same thing as a natural transformation in the categorical sense. It is also immediate
to verify that given a natural transformation α : F → G in the operadic sense, the
family {αp}p∈ob(P) is a natural transformation between the functors j∗(F ) and
j∗(G) in the categorical sense.

Notice as well that the symmetric actions play a vital role in the definition. One
cannot define natural transformations between functors of planar operads unless
the domain consists of a single functor. This is a significant difference between the
category of planar operads and that of symmetric operads.

Natural transformations can be composed as follows. Fix two operads P and
Q. Suppose α : (F1, · · · , Fn) → F and βi : (F i1, · · · , F

i
mi

) → Fi for 1 ≤ i ≤ n are
natural transformations where all the functors are from P to Q. The composition
of these natural transformations is the natural transformation

α ◦ (β1, · · · , βn) : (F 1
1 , · · · , F

1
m1
, · · · , Fn1 , · · · , F

n
mn

)→ F

that for each object p ∈ ob(P) has the component

[α ◦ (β1, · · · , βn)]p = αp ◦ (β1
p , · · · , β

n
p ).

The verification of the naturality is routine.

Proposition 1.1.10. Let P and Q be two operads. We denote the set of
all functors F : P → Q by ob(Func(P ,Q)). Given functors F1, · · · , Fn, F ∈
ob(Func(P ,Q)) let Func(P ,Q)(F1, · · · , Fn;F ) be the set of all natural transfor-
mations

α : F1, · · · , Fn → F.

The composition of natural transformations defined above makes Func(P ,Q) into
a symmetric operad (with the obvious units and Σn-actions).

Proof. The proof is completely routine and thus omitted. �

Remark 1.1.11. As noted, the symmetries in the operad play a crucial role
in the definition of Func(P ,Q). If P and Q were planar operads we would still
be able to consider the collection of all functors between them, but in order to
obtain some sensible structure on it we would have to restrict ourselves to those
natural transformations that have a single functor as domain. This is done very
briefly in [31] (page 87 under the name ’transformation’) and we recount it here.
Let P and Q be two planar operads. We denote by ob(Func(P ,Q)) the set of all
functors F : P → Q as above. For two functors F, F ′ : P → Q we denote by
Func(P ,Q)(F, F ′) the set of all natural transformations α : F → F ′. Composition
of such natural transformations still makes sense and makes Func(P ,Q) into a
category.

We can summarize the discussion so far by noticing that the above remarks
imply that both Operad and Operadπ are strict 2-categories. For the category
Operadπ this follows from the fact that for two planar operads we have that
Func(P ,Q) is a category. As for the category Operad, we showed that for two
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symmetric operads P and Q, Func(P ,Q) is a symmetric operad. By considering
the category j∗Func(P ,Q) we see that Operad, too, is a strict 2-category. We now
have:

Theorem 1.1.12. Consider Cat, Operad, and Operadπ as strict 2-categories.
The functors j∗ : Operad → Cat and j∗ : Operadπ → Cat extend naturally to
strict 2-functors.

Proof. The proof is trivial. �

Example 1.1.13. Consider the symmetric operad Comm given as follows.
Comm has one object ⋆, and for each n ≥ 0 there is just one operation in

Comm(⋆, · · · , ⋆; ⋆),

with ⋆ in the domain repeated n times, which is denoted by mn. There is now just
one way to define an operad structure. Namely, the unit id⋆ is m1, composition is
given by

mn ◦ (mk1,, · · · ,mkn
) = mk1+···+kn

,

and all Σn actions are trivial. All of the axioms for an operad are trivially satisfied.
We also consider the category Set of small sets, which we consider as a monoidal
category via the cartesian product. Recall (see Example 1.1.4) that we then have

the operad Ŝet which we denote by Set again. Suppose F : Comm → Set is a
functor. Such a functor consists of a function F : ob(Comm) → ob(Set), which
amounts to a choice of a set A. The functor F consists further of a function
Comm(⋆, · · · , ⋆; ⋆) → Set(An, A), that is simply a choice of a function F (mn) :
An → A for each n ≥ 0. For n = 0 this is a map F (m0) : A0 → A, i.e., a map
I → A where I is a one-point set, so it is just a choice of a constant e ∈ A. We have
thus a constant in A and for every n ≥ 1 an n-ary operation F (mn) : An → A.

Let us now examine the consequences of the functoriality of F . First of all, by
definition, m1 is mapped to the identity. Furthermore, in Comm we have that

m2 ◦ (m1,m2) = m3 = m2 ◦ (m2,m1)

from which it follows that

F (m2) ◦ (id, F (m2)) = F (m3) = F (m2) ◦ (F (m2), id),

which implies that F (m2) is an associative binary operation. In Comm we also
have the relation

m2 ◦ (m1,m0) = m1 = m2 ◦ (m0,m1)

that is
F (m2) ◦ (id, e) = F (m1) = F (m2) ◦ (e, id)

which means that e is a two-sided inverse for the binary operation F (m2). We thus
see that (A,F (m2), e) is a monoid. Lastly, since F commutes with the Σn-actions
it follows that

F (mn · σ) = F (mn) · σ

holds for every σ ∈ Σn. Since σ acts trivially in Comm we obtain that

F (mn) = F (mn) · σ

holds for each σ ∈ Σn. Specifically for n = 2 and for the twist permutation
σ ∈ Σ2, we obtain (by the fact that in Set the symmetric groups act by permuting
the variables) that F (m2) is a commutative operation. A is thus a commutative
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monoid. All the other relations in the operad Comm impose no new conditions on
the monoid, since they all just express general associativity and commutativity for
various tuples of elements of A. Conversely it is clear that given a commutative
monoid A, one can construct a functor F : Comm → Set, such that F (⋆) = A,
F (m0) is the unit of the monoid, and F (m2) is the binary operation.

Let F1, · · · , Fn, F be functors from Comm to Set and let A1, · · · , An, A be their
corresponding commutative monoids. We now examine a natural transformation
α : F1, · · · , Fn → F . To start with, α consists of just one component, namely
α⋆ : Set(F1(⋆), · · · , Fn(⋆);F (⋆)), i.e., a function α⋆ : A1× · · ·×An → A. Following
the definition of a natural transformation one sees that this function α⋆ respects the
binary composition in the sense that if we endow A1 × · · · × An with the obvious
commutative monoid structure then α⋆ is a map of commutative monoids. The
converse is also true and we actually obtain the following. Let ComMon be the
category of commutative monoids. The usual product of monoids makes ComMon
into a symmetric monoidal category and we may thus consider it as a symmetric
operad. We then have

Func(Comm,Set) ∼= CommMon

as operads.

This example illustrates a more general phenomenon, namely that operads can
be used to describe algebraic structures on objects of other operads. Thus given
two operads P and Q and a functor F : P → Q, there are two ways to think
about F . One way is to think of P and Q as algebraic structures and of F as
a mapping preserving this structure. The other is to think of P as modeling an
algebraic structure and ofQ as an operad upon whose objects we wish to define that
algebraic structure. The functor F : P → Q can then be thought of as defining an
algebraic structure in Q by realizing inside Q the model encoded in P . It is useful
to make a semantic distinction between these two interpretations of a functor. We
thus give the second interpretation a different name.

Definition 1.1.14. Let P and E be two operads. An algebra for P in E , or a
(P , E)-algebra, is a functor

A : P → E .

For such an algebra we say that A defines an algebraic structure on the family of
objects given by F : ob(P)→ ob(E).

Remark 1.1.15. The choice of the letter E for the codomain operad is meant
to make the distinction between the two different roles of the operads clear.

We end this section by generalizing some basic properties of categories, functors,
and natural transformations to our setting of operads. These results are chosen since
they will be used in the sequel. Of course many other results can be generalized
along the same lines.

Given a natural transformation α : F → G, we call α a natural isomorphism if
each component of α is an isomorphism in Q.

Definition 1.1.16. Let P and Q be two operads. We say that they are equiv-
alent provided that there are two functors F : P → Q and G : Q → P together
with two natural isomorphisms α : idP → GF and β : idQ → FG. We then call F
an equivalence from P to Q.
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Remark 1.1.17. For two categories C and D, it is obvious that C and D are
equivalent if, and only if, j!C and j!D are equivalent operads. It is also clear that if
P and Q are equivalent operads then j∗P and j∗Q are equivalent categories. The
converse implication is (in general) not true, as can easily be seen.

Definition 1.1.18. A functor F : P → Q is essentially surjective if j∗F is. F
is called full if for any signature p1, · · · , pn, p the function

F : P(p1, · · · , pn; p)→ Q(Fp1, · · · , Fpn;Fp)

is surjective. F is called faithful if the function above is injective. It is called fully
faithful if that map is a bijection.

Lemma 1.1.19. Let F : P → Q be a functor between two operads. F is an
equivalence of operads if, and only if, F is fully faithful and essentially surjective.

Proof. The proof is just like that of the corresponding result for categories
([34] Theorem 1, page 93). �

1.2. Free operads and operads given by generators and relations

We now turn to the construction of free operads (planar and symmetric). This
will be done in terms of the standard planar trees defined in the preliminaries. (see
[31], page 85, for a slightly different approach). We will then use this construction
to define operads by generators and relations. The constructions given here are
a special case of similar constructions in the theory of enriched operads (see e.g.,
[6, 18]).

Definition 1.2.1. Let A be a set. A collection C on the set A is a family of
sets C(a1, · · · , an; a0) where ai ∈ A and n ≥ 0 varies over all natural numbers. An
arrow (A,C)→ (A′, C′) between collections is a function f : A→ A′ and a family
of functions (all denoted f)

f : C(a1, · · · , an; a)→ C′(fa1, · · · , fan; fa).

We denote by Col the category of all collections and their arrows.

Evidently every planar operad P has an underlying collection C on the set
ob(P) given for p1, · · · , pn, p ∈ ob(P) simply by

C(p1, · · · , pn; p) = P(p1, · · · , pn; p).

We thus obtain a functor Cπ : Operadπ → Col.
We shall now construct the left adjoint Fπ : Col → Operadπ of Cπ : Operadπ →

Col.
Let C be a collection on a set A. We are going to define a planar operad P

with ob(P) = A. To define the arrows we consider standard planar trees labelled by
the elements of A and elements from the collection C. Let T be a standard planar
tree. A labelling of T is a choice of an element ae ∈ A for any edge e ∈ E(T ) and
for any vertex v in T with in(v) = (e1, · · · , en) and out(v) = e0, an element cv ∈
C(ae1 , · · · , aen

; ae0). Let LT be the set of all labelled standard planar trees. For
such trees we will use the notation in(T ) to refer to the tuple of leaves (l1, · · · , ln)
of T and also (so long that it is clear which one we mean) to the tuple of labels of
the leaves (al1 , · · · , aln). Similarly out(T ) will refer both to the root of T and to
the label of the root.
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We can now define the arrows in P . For objects p1, · · · , pn, p ∈ ob(P), we define

P(p1, · · · , pn; p) = {T ∈ LT | in(T ) = (p1, · · · , pn), out(T ) = p}.

Composition is obtained by grafting labelled trees as follows. Given

ψ0 ∈ P(p1, · · · , pn; p)

and

ψi ∈ P(pi1, · · · , p
i
mi

; pi)

let ϕ be the standard planar tree obtained by grafting the root of each of ψi onto
the i-th leaf of ψ0. The labelling of ϕ is obtained by copying the labelling of each
ψi onto the obvious sub-tree in ϕ corresponding to ψi. This composition is clearly
associative. The unit at an object a is simply the tree η labelled by a itself. This
completes the construction of P . It is now trivial to confirm that we obtain a functor
Fπ : Col → Operadπ which is in fact the left adjoint of Cπ : Operadπ → Col. A
planar operad obtained in this way is called a free planar operad. Thus, for a
collection C on a set A, a map of planar operads G : FC → Q is completely
determined by a function g : A→ ob(Q) and a family of functions

G : C(a1, · · · , an; a)→ Q(fa1, · · · , fan; fa).

Given an arbitrary ψ ∈ FC(p1, · · · , pn; p), consider the corresponding composition
scheme in Q obtained by labelling each vertex in the planar standard planar tree
representing ψ by its image under G in Q. We call this the composition scheme
associated with ψ and denote it by cs(ψ). It follows that Gψ is the composition in
Q of cs(ψ).

We can use this construction to describe operads using generators and relations,
much like the description of certain groups by generators and relations. This will
become very handy when we discuss the closed monoidal structure on Operad. Let
P be the free planar operad on the collection C. We refer to C as generators . A set
of relations in P is a family of sets R = {Rp1,··· ,pn;p0}pi∈ob(P) where Rp1,··· ,pn;p0 is
a relation on the set P(p1, · · · , pn; p0). For two operations ψ, ψ′ ∈ P(p1, · · · , pn; p)
we write ψ ∼ ψ′ if (ψ, ψ′) ∈ Rp1,··· ,pn,p0 . A set of relations R is called normal if each
Rp1,··· ,pn,p0 is an equivalence relation which is a congruence for the composition in
P in the sense that given ψ0, · · · , ψn and ψ′

0, · · · , ψ
′
n with ψi ∼ ψ′

i for each 0 ≤ i ≤ n
then (whenever the composition is defined)

ψ0 ◦ (ψ1, · · · , ψn) ∼ ψ
′
0 ◦ (ψ′

1, · · · , ψ
′
n)

holds. Since the intersection of normal relations is again a normal relation, it follows
that given any relation R in P , there is a unique smallest normal relation R′ that
contains it. We call this R′ the normal relation generated by R.

It is now clear that given a normal relation R′ in P , there is an operad P/R′

given by

ob(P/R′) = ob(P)

and for objects p1, · · · , pn, p0 ∈ ob(P/R
′) we set

(P/R′)(p1, · · · , pn; p0) = P(p1, · · · , pn; p0)/ ∼

with the obvious operadic structure induced from P .

Definition 1.2.2. Let C be a collection and R a set of relations in the planar
operad FπC. The planar operad FπC/R

′, where R′ is the normal relation generated
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by R, is called the planar operad generated by the generators C and the relations
R.

Obviously the same can be applied to symmetric operads. The only thing we
need to do is modify the definition of a normal relation R′ in a free symmetric
operad P to involve the symmetric group actions as well. In detail, let C be a
collection. A set of relations R in the symmetric operad P = Symm(FπC) is a set
of relations in the planar operad underlying P . R is called normal if it is normal
in the planar sense and if given ψ ∼ ψ′ and σ ∈ Σn (n being the arity of ψ), then

σ∗ψ ∼ σ∗ψ′.

Just as before, given any set of relations R, there exists a unique smallest normal
set of relations R′ containing R. Clearly, for a normal set of relations R, one can
define the operad P/R just as above.

Definition 1.2.3. Let C be a collection and R a set of relations in the symmet-
ric operad Symm(FπC). The symmetric operad FπC/R′, where R′ is the normal
set of relations generated by R, is called the symmetric operad generated by the
generators C and the relations R.

Remark 1.2.4. In the special case where in the collection C all sets not of the
form C(a; b) are empty, one may interpret C as defining a directed graph (in the
traditional sense of the word). It is easily verified that in that case the operad FπC
has only unary operations and is thus (essentially) a category. This category is of
course isomorphic to the free category on the graph given by C.

When we use this construction to describe operads, we will usually not define
the set R of relations in the way given above. Rather, we will just give a list of the
equations between various operations that we wish to force.

It is clear from our construction that if the (planar or symmetric) operad P is
generated by C and R, then, given any operad Q, a map of operads F : P → Q
corresponds exactly to a function f : ob(P)→ ob(Q) and a family of functions

f : C(p1, · · · , pn; p)→ Q(fp1, · · · , fpn; fp)

mapping the generators of P to operations in Q such that if ψ ∼ ψ′ in FC then the
compositions of the composition schemes cs(ψ) and cs(ψ′) in Q, which correspond
to ψ and ψ′, are equal.

Remark 1.2.5. One can obviously define the notion of a symmetric collection
and proceed to construct the free symmetric operad on a symmetric collection. This
is the more usual approach in the literature (e.g., [6]) yet for our purposes in this
work the above (slightly simpler) construction is sufficient.

1.3. Limits and colimits in the category of operads

In this section we prove that the category Operad is small complete and small
cocomplete. We give explicit constructions for products, coproducts, equalizers,
and coequalizers which of course suffice to prove that all small limits and colimits
exist (see [34] Theorem 2, page 113). We also obtain the easy result that the func-
tor ob : Operad → Set that sends an operad P to ob(P) preserves both limits and
colimits. We wish to point out that the existence of limits and colimits of operads
follow from general category theory (the category of operads is defined by a finite
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limit theory and thus is locally finitely presentable). Our decision to give an explicit
construction is motivated by two considerations. One is to stress the analogy with
category theory, since the limits and colimits of operads are constructed in essen-
tially the same way as limits and colimits of categories. The other consideration is
to emphasize the difference from the construction of limits and colimits of operads
in the classical sense. The common construction of limits and colimits of operads
usually consist of a diagram of operads with just one object and then calculate the
(co)limit inside the category of operads with just one object, which is of course very
different then the (co)limit of the same diagram inside the category of all operads.

Theorem 1.3.1. The category Operad is small complete.

Proof. It is sufficient to prove that Operad has equalizers and small products.

Let P
F //
G

// Q be an equalizer diagram. We construct an operad Q as follows.

The set of objects of R is the equalizer

ob(R)
e // ob(P)

F //
G

// ob(Q)

in Set, which we view as a subset of ob(P). Given objects r1, · · · , rn, r0 ∈ ob(R)

we have that Fri = Gri = r
′

i. Let the set of operations from (r1, · · · , rn) to r0 be
the equalizer

R(r1, · · · , rn; r)
e // P(r1, · · · , rn; r)

F //
G

// Q(r′1, · · · , r
′
n; r

′)

where again we viewR(r1, · · · , rn; r0) as a subset of P(r1, · · · , rn; r0). The operadic
structure on R is induced from that of P in the obvious way. This makes R into
an operad in such a way that all of the above given equalizing maps (all called) e,
form together a map of operads e : R → P . It is easily verified that this makes R

into an equalizer of the diagram P
F //
G

// Q . Given a small collection {Pi}i∈I of

operads we can similarly construct a product for this family such that

ob(
∏

i∈I

Pi) =
∏

i∈I

ob(Pi).

We omit the details. �

Theorem 1.3.2. The category Operad is small cocomplete.

Proof. Again we just need to show that Operad has all coequalizers and all
small coproducts. Consider a coequalizer diagram

P
F //
G

// Q

of operads. Let C be the collection underlying the operad Q. The coequalizer we
are looking for is then the operad generated by C and the relations

Fψ = Gψ

for any operation ψ in P , as well as all relations describing the composition in Q.
Coproducts are constructed similarly, and we omit the rest of the details. �
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Corollary 1.3.3. The functor ob : Operad → Set which sends an operad P
to the set ob(P) preserves all small limits and all small colimits.

Proof. This follows either by inspection of the constructions of limits and
colimits in Operad or from the fact that ob : Operad → Set has both a left and a
right adjoint (as can easily be seen). �

1.4. Yoneda’s lemma

In this section we briefly study how the Yoneda lemma extends from category
theory to operad theory. To that end we introduce representable functors for op-
erads, a construction that, from the point of view of operads as a tool to describe
algebraic structures, associates with each operad P some canonical algebras, namely
those functors that are represented by the objects of P .

Definition 1.4.1. Let P be an operad and q ∈ ob(P). The representable
functor P(q∗,−) : P → Set is the functor of operads defined as follows. For an
object p ∈ ob(P) we have

P(q∗,−)(p) =

∞∐

n=0

P(qn; p) = P(q∗, p)

where qn is the tuple (q, · · · , q) with q occurring n times. Given ψ ∈ P(p1, · · · , pm; p)
we define the operation P(q∗, ψ) ∈ Set(P(q∗, p1), · · · ,P(q∗, pm);P(q∗, p)), i.e., a
function ∐

P(qn; p1)× · · · ×
∐
P(qn; pm)

��∐
P(qn; p)

as follows. For (ψ1, · · · , ψm) with ψi ∈ P(qni ; pi) we define P(q∗, ψ)(ψ1, · · · , ψm)
to be ψ ◦ (ψ1, · · · , ψm), which has input qn1+···+nm and output p and is thus an
element of P(q∗, p).

It is trivial to prove that P(p∗,−) is indeed a functor.

Remark 1.4.2. This extends the usual definition of representable functors in
the theory of categories in the sense that given a category C and an object C ∈ ob(C)
the representable functor j!(C)(C∗,−) is naturally isomorphic to j!(C(C,−)). This
follows since for any D ∈ ob(C), by definition

j!(C)(C
∗, D) =

∞∐

n=0

j!C(C
n;D)

however for n 6= 1 the set j!C(Cn;D) is empty while for n = 1 it is exactly C(C,D).

Lemma 1.4.3. (Yoneda for operads) Let P be an operad, q ∈ ob(P), and
F : P → Set a functor. There is a natural bijection between the set of natural
transformations α : P(q∗,−)→ F and the set F (q).

Proof. First we show that a natural transformation α : P(q∗,−) → F is
completely determined by αq(idq), where αq : P(q∗, q)→ F (q) is the component of
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α at q. To that end let ψ ∈ P(q∗, p), that is ψ ∈ P(qk; p) for some k ≥ 0. Naturality
of α with respect to ψ implies that the composition of the composition scheme

P(q∗,q) P(q∗,q)

•

F (q) ??
??

??
??

···αq αq •

F (q)��
��

��
��

F (ψ)•

Fp

is equal to that of the composition scheme

P(q∗,q) ??
??

??
??

P(q∗,q)
��

��
��

��

P(q∗,ψ)•

P(q∗,p)

αp •

F (p)

We now chase the value of (idq, · · · , idq) along both schemes. From the first one we
obtain the value F (ψ)(αq(idq), · · · , αq(idq)), while from the second one we obtain
the value αp(P(q∗, ψ)(idq, · · · , idq)) = αp(ψ ◦ (idq, · · · , idq)) = αp(ψ). Since both
compositions are equal, we see that

αp(ψ) = F (ψ)(αq(idq), · · · , αq(idq))

and thus that α is completely determined by αq(idq). Furthermore, a straightfor-
ward verification shows that for any fixed a ∈ F (q), the formula

αp(ψ) = F (ψ)(a, · · · , a)

for all p and ψ ∈ P(q∗, p), defines a natural transformation α(a) : P(q∗,−) → F .
It now follows that the assignment α 7→ αq(idq) has an inverse function, namely
a 7→ α(a). �

Example 1.4.4. Consider the operad Comm from Example 1.1.13 whose al-
gebras are commutative monoids. There is precisely one representable functor
Comm(⋆∗,−) : Comm → Set since Comm has just one object. It is easy to
verify that the commutative monoid corresponding to that representable functor is
the free commutative monoid on one object. The correspondence between natu-
ral transformations Comm(⋆∗,−) → F and the set F (⋆) is precisely the universal
property of free commutative monoid on one object. Representable functors for
other operads usually yield some ’free’ algebras as well.

We end this section by noting that a Yoneda embedding does not exist for
operads. The Yoneda embedding for categories states that the assignment C 7→
C(C,−) is an embedding

Cop → Cat(C, Set).
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Such a result is not possible for operads since for an operad P the opposite ’operad’
Pop does not exist. Instead Pop can be defined to have the structure of an ’anti-
operad’ where each operation has one input and possibly many (or no) outputs.
However there is then no natural definition of an arrow from an anti-operad to an
operad.

1.5. Closed monoidal structure on the category of operads

The category Cat is a cartesian closed category for which the internal Hom
Cat(C,D) is formed by taking functors as objects, and natural transformations as
arrows. In [7], Boardman and Vogt define a tensor product for topological operads.
In this section we show that essentially the same tensor product can be defined in
the context of our notion of operads and we show that it turns the category Operad
into a symmetric closed monoidal category in an analogous way.

Definition 1.5.1. (The Boardman-Vogt tensor product) Let P and Q be two
symmetric operads. The Boardman-Vogt tensor product of these operads is the
symmetric operad P ⊗BV Q with ob(P ⊗BV Q) = ob(P) × ob(Q) given in terms
of generators and relations as follows. Let C be the collection on ob(P) × ob(Q)
which contains the following generators. For each q ∈ ob(Q) and each operation
ψ ∈ P(p1, · · · , pn; p) there is a generator ψ ⊗bv q in C((p1, q), · · · , (pn, q); (p, q))
and for each p ∈ ob(P) and an operation ϕ ∈ Q(q1, · · · , qm; q) there is a generator
p⊗bv ϕ in C((p, q1), · · · , (p, qm); (p, q)). There are five types of relations among the
arrows generated by these generators:

1) (ψ ⊗bv q) ◦ ((ψ1 ⊗bv q), · · · , (ψn ⊗bv q)) = (ψ ◦ (ψ1, · · · , ψn))⊗bv q
2) σ∗(ψ ⊗bv q) = (σ∗ψ)⊗bv q
3) (p⊗bv ϕ) ◦ ((p⊗bv ϕ1), · · · , (p⊗bv ϕm)) = p⊗bv (ϕ ◦ (ϕ1, · · · , ϕm))
4) σ∗(p⊗bv ϕ) = p⊗bv (σ∗ϕ)
5) (ψ⊗bvq)◦((p1⊗bvϕ), · · · , (pn⊗bvϕ)) = σ∗

m,n((p⊗bvϕ)◦((ψ, q1), · · · , (ψ, qm)))

By the relations above we mean every possible choice of operations for which
the compositions are defined. The relations of type 1 and 2 ensure that for any
q ∈ ob(P), the map p 7→ (p, q) naturally extends to a map of operads P → P⊗BV Q.
Similarly, the relations of type 3 and 4 guarantee that for each p ∈ ob(P), the map
q 7→ (p, q) naturally extends to a map of operads Q → P ⊗BV Q. The relation of
type 5 can be pictured as follows. The left hand side is an operation in the free
operad, represented by the labelled planar tree

(p1,q1) ??
??

??
??

(p1,qm)��
��

��
��

(pn,q1) ??
??

??
??

(pn,qm)
��

��
��

��

p1⊗ϕ •

(p1,q) OOOOOOOOOOOOO pn⊗ϕ •

(pn,q)ooooooooooooo

ψ⊗q •

(p.q)
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while the right hand side is given by the tree

(p1,q1) ??
??

??
??

(pn,q1)��
��

��
��

(p1,qm) ??
??

??
??

(pn,qm)
��

��
��

��

ψ⊗q1 •

(p,q1) OOOOOOOOOOOOO ψ⊗qm •

(p,qm)
ooooooooooooo

p⊗ϕ •

(p,q)

before applying σ∗
m,n, which is the same permutation that was used in the definition

of natural transformation, in order to equate the domain of the second operation
to that of the first one. We call this type of relation the interchange relation.

Theorem 1.5.2. The category Operad with the Boardman-Vogt tensor product
is a symmetric closed monoidal category.

Proof. The fact that the Boardman-Vogt tensor product makes Operad into
a symmetric monoidal category is a straightforward verification and is omitted. We
now describe the internal Hom. Let Q and R be two operads. We are going to
prove that

Operad(Q,R) = Func(Q,R),

that is ob(Operad(Q,R)) are all functorsQ → R and for such functors F1, · · · , Fn, G,
the operations with input F1, · · · , Fn and output G are the natural transformations
from (F1, · · · , Fn) to G.

We need to construct a bijection

Operad(P ⊗BV Q,R) ∼= Operad(P , Operad(Q,R))

natural in P , Q, and R. Let F : P⊗BV Q→ R be a functor. For each p ∈ ob(P) we
need to construct a functor Fp : Q → R. This functor is given on objects q ∈ ob(Q)
and operations ϕ in Q by

Fp(q) = F (p, q)

and

Fp(ϕ) = p⊗bv ϕ

which is obviously functorial. Actually, Fp is just the composition

Q // P ⊗BV Q
F // R

where the first functor is the one sending q to (p, q) mentioned above, right after the
definition of the Boardman-Vogt tensor product. If we are now given an operation
ψ ∈ P(p1, · · · , pn; p), we need to construct a natural transformation

α(ψ) = α : (Fp1 , · · · , Fpn
)→ Fp.

The component of this natural transformation at q ∈ ob(Q) is the arrow

αq = F (ψ ⊗bv q) ∈ R(F (p1, q), · · · , F (pn, q);F (p, q)) = R(Fp1q, · · · , Fpn
q;Fpq).

To verify that α(p) is indeed a natural transformation we need to show that given an
operation ϕ ∈ Q(q1, · · · , qn; q) the two composition schemes from the definition of a
natural transformation yield the same operation. In our case these two composition
schemes are the two trees which appear in the interchange relation, with F applied
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to each edge and vertex. Since F is a functor, the interchange relation guarantees
that α(p) is a natural transformation.

To go in the other direction, let G : P → Operad(Q,R) be a functor. To
construct a functor H : P ⊗BV Q → R we need to specify it on the objects and
on the generators of P ⊗BV Q such that the relations are satisfied. For an object
(p, q) ∈ ob(P ⊗BV Q) let

H(p, q) = G(p)(q)

and for a generator of the form p⊗bv ϕ we define

H(p⊗bv ϕ) = G(p)(ϕ).

For a generator of the form ψ⊗bv q where ψ ∈ P(p1, · · · , pn; p), we have the natural
transformation G(ψ) : (G(p1), · · · , G(pn)→ G(p). We then define

H(ψ ⊗bv q) = G(ψ)q

to be the component of G(ψ) at q. We omit the rest of the details. �

Remark 1.5.3. Notice that the symmetric actions in the definition of an operad
again proved to be crucial for the definition of the Boardman-Vogt tensor product.
This again illustrates the significant differences between the category of planar op-
erads and symmetric operads. One can of course define a Boardman-Vogt style
tensor product for planar operads too, simply by leaving out the interchange rela-
tion, and obtain a closed monoidal structure. However, the corresponding internal
Hom is not well behaved as we show below.

Recall again the operad Comm (Example 1.1.13) whose algebras are commu-
tative monoids. We have seen that Func(Comm,Set) is isomorphic to the operad
of commutative monoids with the cartesian product. We now make the following
definition.

Definition 1.5.4. Let P and E be operads. We denote by Alg(P , E) the operad
Operad(P , E) and refer to it as the operad of P algebras in E , or as the operad of
(P , E)-operads.

This is again just a shift in focus regarding the roles that the two operads
play (see Remark 1.1.15). Notice that the objects of Alg(P , E) are precisely the
P-algebras in E .

The internal Hom captures thus the notion of P-algebras in E , provides a notion
of operations between such algebras (namely, natural transformations), and in such
a way that they form themselves an operad.

Remark 1.5.5. Let us return now to discuss the differences between symmet-
ric and non-symmetric operads. Assume that we consider Operadπ as a closed
monoidal category via the modified Boardman-Vogt tensor product (i.e., without
the interchange relations). Let Asπ be the planar operad that has just one object
and one n-ary operation of each arity. If we now inspect the operad

Operadπ(Asπ, Set)

we easily see that the objects correspond to associative monoids and that unary
arrows correspond to maps between the corresponding associative monoids. How-
ever, arrows of arity n > 1 fail to preserve the monoid structures, precisely be-
cause of the lack of symmetries. On the other hand, for the symmetric operad
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As = Symm(Asπ), it is easy to confirm that

Operad(As, Set) ∼= Mon,

where we view Mon, the category of associative monoids, as an operad via the
usual cartesian product of monoids.

In short, if we define Algπ(P , E) = Operadπ(P , E) for planar operads P and E
then we have

j∗(Algπ(P , E)) ∼= j∗(Alg(Symm(P), Symm(E)))

but in general

Algπ(P , E) ≇ Alg(Symm(P), Symm(E)).

Thus planar operads fail to capture the correct notion of multi-maps of algebras.

We end this section by noting that given two operads P and Q, one has the
equality:

Alg(P , Alg(Q, E)) ∼= Alg(P ⊗BV Q, E) ∼= Alg(Q, Alg(P , E)).

This property can loosely be stated by saying that P ⊗BV Q-algebras in E are
the same as P algebras in Q-algebras in E and, at the same time, the same as
Q-algebras in P-algebras in E .

1.6. Quillen model structure on the category of operads

In this section we introduce a Quillen model structure which is a direct gen-
eralization of the ’folk’ Quillen model structure on Cat. Rezk, in an unpublished
manuscript [41], gave a complete proof of this model structure, which we will now
recall. More recently, Joyal and Tierney [22] establish the same model structure as
a special case in the much more general context of internal categories in a topos.
Again, the same model structure is established by Lack [28] as a special case in the
context of model structures on 2-categories.

Theorem 1.6.1. The category Cat admits a cartesian closed Quillen model
structure where:

1) The weak equivalences are the categorical equivalences.
2) The cofibrations are those functors F : C → D that are injective on objects.
3) The fibrations are those functors F : C → D such that for any c ∈ Ob(C)

and each isomorphism ψ : Fc→ d in D, there exists an isomorphism φ : c→ c′ for
which Fφ = ψ.

We refer to this model structure as the folk model structure on Cat. The proof
itself is not at all difficult and constitutes one of the rare examples of non-trivial,
interesting Quillen model structures which are easily proved by elementary means.
As stated, this model structure extends, to what we call the folk model structure,
to the category Operad as we now prove.

Theorem 1.6.2. The category Operad admits a Quillen model structure where:
1) The weak equivalences are the operadic equivalences.
2) The cofibrations are those functors F : P → Q that are injective on objects.
3) The fibrations are those functors F : P → Q such that for any p ∈ Ob(P)

and each isomorphism ψ : Fp → q in Q, there exists an isomorphism φ : p → p′

for which Fφ = ψ.
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Proof. Notice that a functor F : P → Q is a fibration (respectively cofi-
bration) if, and only if, j∗F is a fibration (respectively cofibration). Notice as
well that a functor F : P → Q is a trivial fibration if, and only if, the function
ob(F ) : ob(P)→ ob(Q) is surjective and F is fully faithful. We now set out to prove
the Quillen axioms.

M1 (Existence of limits and colimits): As discussed above, Operad has all small
limits and small colimits (Theorem 1.3.1 and 1.3.2).

M2 (2 out of 3 property): Obviously holds.
M3 (Closed under retracts): Can easily be established.
M4 (Liftings): Consider the square

P
U //

� _

F

��

R

G
����

Q
V

//

H
>>

S

where F is a cofibration and G is a fibration. We need to prove the existence of
a lift H making the diagram commute, whenever F or G is a weak equivalence.
Assume first that G is a weak equivalence. Applying the object functor (that sends
an operad P to the set ob(P)) to the lifting diagram we obtain

ob(P)
U //

F

��

ob(R)

G

��
ob(Q)

V
//

H
::

ob(S)

where F is injective and G is surjective. We can thus find a lift H . Let now
ψ ∈ Q(q1, · · · , qn; q), and consider V (ψ) ∈ S(V q1, · · · , V qn;V q). Since G is fully
faithful and HG = V on the level of objects, we obtain that the function

G : R(Hq1, · · · , Hqn;Hq)→ S(V q1, · · · , V qn;V q)

is an isomorphism. We now define H(ψ) = G−1(V (ψ)). It is easily checked that
this (uniquely) extends H and makes it into the desired lift.

Assume now that F is a trivial cofibration. We can thus construct a functor
F ′ : Q → P such that

F ′ ◦ F = idP

together with a natural isomorphism α : F ◦F ′ → idQ. We can moreover choose α
such that for each p ∈ ob(P), the component at Fp is given by

αFp = idFp.

To define H : ob(Q)→ ob(R) let q ∈ ob(Q) and consider the object V FF ′q ∈ ob(S).
Since

V FF ′q = GUF ′q

it follows from the definition of fibration that there is an object H(q) and an iso-
morphism

βq : UF ′q → Hq

in R such that

GHq = V q
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and

Gβq = V αq.

We can also choose β such that for every p ∈ ob(P)

HFp = Up

and

βFp = idUp.

Let now ψ ∈ Q(q1, · · · , qn; q) and defineH(ψ) to be the composition of the following
composition scheme in R:

Hq1 ··· Hqn

•

UF ′q1 ??
??

??
?? β−1

qn
β−1

q1
•

UF ′qn��
��

��
��

UF ′ψ •

UF ′q

βq •

Hq

The resulting H is easily seen to be a functor and the desired lift.
M5 (Factorizations): Let F : P → Q be a functor. We first construct a

factorization of F into a trivial cofibration followed by a fibration. Construct first
the following operad P ′ with

ob(P ′) = {(p, ϕ, q) ∈ ob(P)×Q(Fp, q)× ob(Q) | ϕ is an isomorphism}

and, for objects (p1, ϕ1, q1), · · · , (pn, ϕn, qn), (p, ϕ, q), the arrows

P ′((p1, ϕ1, q1), · · · , (pn, ϕn, qn); (p, ϕ, q)) = P(p1, · · · , pn; p)

with the obvious operadic structure. If we now define G : P → P ′ on objects
p ∈ ob(P) by

G(p) = (p, idFp, Fp)

and for and arrow ψ ∈ P(p1, · · · , pn; p) by

G(ψ) = ψ

we evidently get a functor, which is clearly a trivial cofibration. We now define the
functor H : P ′ → Q on objects (p, ϕ, q) ∈ ob(P ′) by

H(p, ϕ, q) = q
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and on an arrow ψ ∈ P ′((p1, ϕ1, q1), · · · , (pn, ϕn, qn); (p, ϕ, q)) to be the composition
of the composition scheme

q1 ··· qn

•

Fp1 ??
??

??
?? ϕ−1

nϕ−1
1 •

Fpn��
��

��
��

Fψ •

Fp

ϕ •

q

Clearly, H is a fibration since if f : H(p, ϕ, q) → q′ is an isomorphism in Q then
(p, fϕ, q′) is also an object of Q and idp is an isomorphism in P ′ from (p, ϕ, q) to
(p, fϕ, q′) which, by definition, maps under H to fϕ ◦ F (idp) ◦ ϕ−1 = f . Since we
obviously have that F = H ◦G we have the desired factorization.

We now proceed to prove that F can be factored as a composition of a cofibra-
tion followed by a trivial fibration. Let Q′ be the operad with

ob(Q′) = ob(P)
∐

ob(Q)

and with arrows defined as follows. Given an object x ∈ ob(Q′) let (somewhat
ambiguously)

Fx =

{
x, if x ∈ ob(Q)
Fx, if x ∈ ob(P)

Now, for objects x1, · · · , xn, x ∈ ob(Q
′) let

Q′(x1, · · · , xn;x) = Q(Fx1, · · · , Fxn;Fx).

The operad structure is the evident one. If we now define a functor G : P → Q′ for
an object p ∈ ob(P) and an arrow ψ ∈ P(p1, · · · , pn; p) by

Gp = p

and

Gψ = Fψ

then we obviously obtain a cofibration. We now define H : Q′ → Q as follows.
Given an object x ∈ ob(Q′), if x ∈ ob(P) then we setHx = Fx and if x ∈ ob(Q) then
we set Hx = x (thus in our slightly ambiguous notation we have that Hx = Fx).
Given an arrow ψ ∈ Q′(x1, · · · , xn;x), defining Hψ = ψ makes H into a functor,
clearly fully faithful. MoreoverH is a fibration as can easily be seen. Since obviously
F = H ◦G the proof is complete. �

Note that all operads are both fibrant and cofibrant under this model structure.

Theorem 1.6.3. The category Operad with the Boardman-Vogt tensor product
and the model structure defined above is a monoidal model category.
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Proof. Since all objects are cofibrant we only have to prove that given two

cofibrations F : P
� � // Q and G : P ′ �

� // Q′ , the push-out corner map F ∧G

P ⊗BV P ′P⊗BV G//

F⊗BV P′

��

P ⊗BV Q′

F⊗BV Q′

��5
55

55
55

55
55

55
55

55
55

55
55

��
Q⊗BV P ′

Q⊗BV G

((PPPPPPPPPPPPPPPPPPPPPPPPPP
// K

F∧G

  A
AA

AA
AA

AA
AA

AA
AA

AA

Q⊗BV Q′

is a cofibration which is a trivial cofibration if F is a trivial cofibration.
Since in general ob(P ⊗BV Q) = ob(P) × ob(Q) and since ob : Operad → Set

commutes with colimits, if we apply the functor ob we obtain the following diagram

ob(P)× ob(P ′)
P×G //

F×P′

��

ob(P)× ob(Q′)

H

��

F×Q′

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;

ob(Q)× ob(P ′) //

Q×G

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
ob(K)

F∧G

##G
GGGGGGGGGGGGGGGGGG

ob(Q)× ob(Q′)

which is again a pushout. We are given that F and G are injective from which
follows that F ×P ′ and P×G are also injective. It is now easy to verify that F ∧G
is injective as well which proves that the operad map F ∧G : K → Q⊗BV Q′ is a
cofibration.

Assume now that F in the first diagram is also a weak equivalence, i.e., an
operadic equivalence. It is trivial to verify that F ⊗BV P ′ is also an equivalence.
Thus F×P ′ is a trivial cofibration. Since trivial cofibrations are closed under cobase
change it follows that H is a trivial cofibration. Since F ×Q′ is too an equivalence,
the two out of three property implies that F ∧G is a trivial cofibration. �

Remark 1.6.4. Considering categories as operads, it is easily seen that in the
proofs above every construction applied to categories yields again a category. For
this reason these proofs can be restricted to the case of categories to give a proof
of the folk model structure on Cat. Such a proof is essentially identical to the one
given in [41].

Lemma 1.6.5. The adjunction Operad
j∗ //

Cat
j!

oo is a Quillen adjunction.

Proof. It is enough to prove that j! preserves cofibrations and trivial cofibra-
tions. Actually it is trivial to verify the much stronger property that both j∗ and
j! preserve fibrations, cofibrations, and weak equivalences. �
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We end our treatment of the model structure on Operad with the following:

Theorem 1.6.6. The operadic model structure on Operad is cofibrantly gener-
ated.

Proof. Let ∗ be the operad with one object and just one arrow (the identity
on ∗) and let H be the free living isomorphism operad, which has two objects and,
besides the necessary identities, just one isomorphism between the two objects. It
is a triviality to check that a functor F : P → Q is a fibration if, and only if, it
has the right lifting property with respect to (any one of the two possible functors)
∗ → H .

To characterize the trivial fibrations by right lifting properties we will need to
consider several other operads. First of all, it is clear that if a functor F : P → Q
has the right lifting property with respect to φ → ∗ then F : ob(P) → ob(Q) is
surjective (where φ is the initial operad with no objects). For each n ≥ 1 consider
the operad Arn that has n + 1 objects {0, 1, · · · , n} and is generated by a single
arrow from (1, · · · , n) to 0. Thus a functor Arn → P is just a choice of an arrow in
P of arity n. Let ∂Arn be the sub-operad of Arn that contains all the objects of
Arn but only the identity arrows. It now easily follows that if a functor F : P → Q
has the right lifting property with respect to the inclusion ∂Arn → Arn then for
any objects p1, · · · , pn, p ∈ ob(P), the function

F : P(p1, · · · , pn; p)→ Q(Fp1, · · · , Fpn;Fp)

is surjective. Consider now the operad PArn with n + 1 objects {0, 1, · · · , n}
generated by two different arrows from (1, · · · , n) to 0 and the obvious map PArn →
Arn which identifies those two arrows. If a functor F : P → Q has the right lifting
property with respect to PArn → Arn then the map

F : P(p1, · · · , pn; p)→ Q(Fp1, · · · , Fpn;Fp)

is injective. Combining these results we see that if a functor F : P → Q has the
right lifting property with respect to the set of functors

{φ→ ∗} ∪ {∂Arn → Arn | n ≥ 0} ∪ {PArn → Arn | n ≥ 0}

then F is fully faithful and F : ob(P) → ob(Q) is surjective, which implies that F
is a trivial fibration. Finally, since all the functors just mentioned are cofibrations
it follows that all trivial fibrations have the right lifting property with respect to
them. This then proves that the trivial fibrations are exactly those functors having
the right lifting property with respect to that set. �

1.7. Grothendieck construction for operads

We now turn to the definition of a Grothendieck construction for diagrams of
operads. This construction is useful if one wishes to ’glue’ a suitably parametrized
family of operads into one operad. We start by giving an example where such a
gluing procedure is required and then proceed to the construction itself.

For a fixed set A we consider the planar operad CπA whose objects are

ob(CπA) = A×A

and for a given signature (a1, a2), (a2, a3) · · · , (an−1, an); (a1, an) there is a single
operation in

CπA((a1, a2), (a2, a3), · · · , (an−1, an); (a1, an))
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and for every a ∈ A there is one operation in

CπA(; (a, a)).

There are no other operations except for those just mentioned. The operadic struc-
ture is now uniquely determined. We denote

CA = Symm(CπA)

the symmetrization of CπA.
Let E be a symmetric monoidal category and let us consider a functor CA → E

where we view E as a symmetric operad. By adjunction this is the same as a
functor B : CπA → E where E is now considered as a planar operad. Such a functor
F consists of a function B : ob(CπA)→ ob(E), that is a choice of an object B(a, a′)
for any two elements a, a′ ∈ A. Further, the operations of CπA are to be mapped
to operations of E , so for each a ∈ A we have a map

CπA(; (a, a))→ E(;B(a, a))

which is just a choice of an arrow

ida : I → B(a, a)

in E , where I is the monoidal unit. Furthermore, for any two elements a1, a2 ∈ A
there is a map

CπA((a1, a2), (a2, a3); (a1, a3))→ E(B(a1, a2)⊗ B(a2, a3),B(a1, a3))

that is, a choice of an arrow

m : B(a1, a2)⊗ B(a2, a3)→ B(a1, a3)

in E . It can now be easily verified that the functoriality condition implies that
the various B(a, a′) are the Hom-objects of a category enriched in E whose set of
objects is A, with m the composition arrow.

Consider now the operad Operad(CA, E). From what we just showed, the ob-
jects of this operad are E-enriched categories whose set of objects is the set A.

Proposition 1.7.1. Let CA be as above and E a symmetric monoidal category.
Let Cat(E)A be the category of all E-enriched categories whose set of objects is A,
and arrows those E-enriched functors that are the identity on objects. There is
a symmetric monoidal structure on Cat(E)A and, when we view Cat(E)A as an
operad, we have:

Operad(CA, E) ∼= Cat(E)A.

Proof. We first describe the monoidal structure on Cat(E)A. Let A and A′ be
two E-enriched categories with ob(A) = ob(A′) = A. Let A⊗A′ be the E-enriched
category with set of objects equal to A whose arrow objects for a1, a2 ∈ A is

A⊗A′(a1, a2) = A(a1, a2)⊗A
′(a1, a2).

Composition in this category is defined ’component-wise’ in the obvious way. It is
routine to verify that this makes Cat(E)A into a symmetric monoidal category.

We have already established that the objects of Operad(CA, E) are the objects

of Cat(E)A. Given objects A1, · · · ,An,A ∈ Operad(CA, E), if we now unfold the
definition of a natural transformation α : A1, · · · ,An → A, we readily discover that
it corresponds precisely to a functor in Cat(E)A from A1 ⊗ · · · ⊗An → A with the
tensor product as just defined, and thus establishes the isomorphism. �
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Having an operad CA such that Operad(CA, E) is the operad of E-enriched
categories with a fixed set of objects (and special functors), it is natural to look for
an operad C such that Operad(C, E) will be isomorphic to the category Cat(E) of
all E-enriched categories. However, such an operad does not exist (here is a sketch
of a proof due to Tom Leinster: It suffices to prove that Cat is not monadic over
SetA for any set A. To do that one can show that the regular epimorphisms in a
category monadic over SetA are the coordinate-wise surjections, and are thus closed
under composition. However, in Cat the regular epimorphisms are not closed under
composition). We are thus led to look for a construction that will assemble the
various operads Operad(CA, E) into one operad that (hopefully) will be isomorphic
to Cat(E).

Definition 1.7.2. A diagram of operads is a functor F : Bop → Operad where
B is a cartesian category called the indexing category. For an arrow f : B → B′ in
B we will denote the functor Ff : FB′ → FB by f∗.

Example 1.7.3. Let B = Set with the usual cartesian product of sets. For each
set B ∈ ob(B) consider the operad CπB described above. Any function f : B → B′

induces a functor Fπ : CπB → CπB′ as follows. On the level of the objects we define

Fπ : ob(CπB)→ ob(CπB′)

to be the function

f × f : B ×B → B′ ×B′.

On the level of operations, the functor Fπ is then simply the identity

CπB((b1, b2), · · · , (bn−1, bn); (b1, bn))

Fπ

��
CπB′((fb1, fb2), · · · , f(bn−1, fbn); (fb1, fbn)).

We now define F = Symm(Fπ) : CB → CB′ and we obtain a functor B→ Operad.
The assignment B 7→ Operad(CB, Set) is thus contravariant in B and therefore
defines a diagram of operads F : Bop → Operad.

Definition 1.7.4. (The Grothendieck construction) Let F : Bop → Operad be
a diagram of operads. We define the operad

∫

B

F

as follows. The objects of
∫

B
F are pairs (B, p) where B ∈ ob(B) and p ∈ ob(FB).

An arrow in ∫

B

F ((B1, p1), · · · , (Bn, pn); (B, p))

is a pair (f, ψ) where f : B1× · · · ×Bn → B is an arrow in B and ψ is an operation
in F (B1 × · · · × Bn)(π

∗
1p1, · · · , π∗

npn; f
∗B), where πi is the canonical projection

B1 × · · · ×Bn → Bi.

The composition in
∫

B
F is given as follows. If (f, ψ) is an operation from

((B1, p1), · · · , (Bn, pn)) to (B, p) and for each 1 ≤ i ≤ n we have an operation
(fi, ψi) from ((Bi1, p

i
1), · · · , (B

i
mi
, pimi

)) to (Bi, pi) then the composition

(f, ψ) ◦ ((f1, ψ1), · · · , (fn, ψn))
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is the pair (g, ϕ) given by the following compositions:

g = f ◦ (f1, · · · , fn)

where we consider B as an operad via the cartesian structure. To define ϕ let us
denote by in(h) also the object X1 × · · · ×Xn ∈ ob(B). Since B is cartesian there
are canonical projections π(i) : in(g)→ in(fi), and ϕ is then the composition

(f1 × · · · × fn)
∗(ψ)(π∗

(1)ψ1, · · · , π
∗
(n)ψn)

in F (in(g)). Given an operation (f, ψ) of arity n and σ ∈ Σn we define

σ∗(f, ψ) = (σ∗f, σ∗ψ)

where σ∗f is interpreted in (the operad) B. The units are the evident ones, and
the fact that the axioms for an operad are satisfied is easily established.

Example 1.7.5. For the diagram F : Setop → Operad given in Example 1.7.3
we obtain that

∫
Set

F is isomorphic to the operad Cat with the usual cartesian
structure, as was hoped for.

1.8. Enriched operads

Just as categories can be enriched in a symmetric monoidal category E by de-
manding that for any two objects A,B in the category one has an object C(A,B) ∈
ob(E) such that the composition and identity operations are now arrows in E mak-
ing suitable diagrams commute (see [26]), so can operads be enriched in the same
manner. It is possible to extend most of what was mentioned above to enriched
operads, however we will only introduce here that part of the theory that is relevant
for rest of this work.

Definition 1.8.1. An E-enriched planar operad P consists of a set ob(P),
whose elements are called the objects of the operad, and for every signature

p1, · · · , pn, p ∈ ob(P)

an object of E

P(p1, · · · , pn; p) ∈ ob(E)

called the object of arrows from the input (p1, · · · , pn) to the output p. Further-
more, there are composition arrows in E

P(p1, · · · , pn; p)⊗ P(p1
1, · · · , p

1
m1

; p1)⊗ · · · ⊗ P(pn1 , · · · , p
n
mn

; pn)

γ

��
P(p1

1, · · · , p
1
m1
, · · · , pn1 , · · · , p

n
mn

; p)

for all possible signatures as indicated. For each object p ∈ ob(E) there is also an
arrow idp : I → P(p, p), where I is the monoidal unit in E . These arrows should
satisfy certain commutativity axioms that express associativity of the composition
and unit laws.

An E-enriched (symmetric) operad is the same data as above together with
actions of the symmetric groups, which again satisfy certain diagrams expressing
the equivariance of the composition with respect to these actions.
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Remark 1.8.2. In [35] these diagrams are explicitly given for the special case
where the operad contains just one object. In [26] these diagrams are given in the
case where all object arrows with P(p1, · · · , pn; p) for n 6= 1 are empty (i.e., the
initial object). The needed diagrams for our definition are then a merging of these
two kinds of diagrams. For more details see [6, 15].

The category Operad(E) is the category of E-enriched operads with the evident
notion of E-enriched functors between E-enriched operads.

Remark 1.8.3. It is trivial to check that for E = Set with the cartesian struc-
ture

Operad(E) = Operad

Example 1.8.4. Let E be a symmetric closed monoidal category and M ⊆
ob(E). We then have the E-enriched operad PM given by:

ob(PM ) = M

and for objects p1, · · · , pn, p ∈M

PM (p1, · · · , pn; p) = E(p1 ⊗ · · · ⊗ pn; p)

with the obvious operadic structure (compare with Example 1.1.4). When M =

ob(E) we will simply write Ê or even just E for the enriched operad Pob(E).

Every enriched operad P in Operad(E) has an underlying operad P0 defined as
follows. The objects of P0 are those of P and for objects p1, · · · , pn, p ∈ ob(P) we
have

P0(p1, · · · , pn; p) = E(I,P(p1, · · · , pn; p)),

that is the set of arrow in E from the unit I to P(p1, · · · , pn; p). The operad
structure is the evident one. This actually defines a functor (−)0 : Operad(E) →
Operad which has a left adjoint which we now describe (for the case where E has
colimits). For a setA let I[A] be the coproduct of A copies of the unit I. The functor
disc : Operad → Operad(E) sends an operad P ∈ Operad to the enriched operad
disc(P) that has the same objects as P and, for objects p1, · · · , pn; p ∈ ob(disc(P))
has the object of operations

disc(P)(p1, · · · , pn; p) = I[P(p1, · · · , pn; p)].

These constructions are direct generalizations of the corresponding construction

for enriched categories (see [26]). The proof that Operad
disc // OperadE
(−)0

oo is an

adjunction follows in just the same way as the analogous result for categories. An
operad which is in the image of disc will be called a discrete operad.

1.9. Comparison with the usual terminology

In this section we compare our definitions with the classical notions related to
operads. This is just meant to justify our definitions by showing that they agree
with the classical ones. The proofs to all the claims we make are trivial and thus
omitted.

Definition 1.9.1. Let E be a symmetric closed monoidal category. A classical
operad in E is an E-enriched operad P such that ob(P) is a one-point set.
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Let P be a classical operad. Since ob(P) is just a one point set, say {⋆}, the
operad is given by specifying for each n ≥ 0 an object P(⋆, · · · , ⋆; ⋆) of E where
⋆ appears n + 1 times. We can thus denote it simply by P(n). If we now rewrite
the axioms for an operad in terms of P(n) we obtain a description of a classical
operad which is identical to the definition in the literature (see e.g., [18, 35, 36]).
More explicitly, Let P be a classical operad in E . P is then given by a sequence
{P(n)}∞n=0 of objects of E together with an arrow I → P(1) (the unit of the unique
object) and composition functions

P(n)⊗ P(m1)⊗ · · · ⊗ P(mn)→ P(m1 + · · ·+mn)

for all sequences of natural numbers n,m1, · · · ,mn, satisfying the appropriate unit
and associativity constraints.

The notion of a map of classical operads is then defined in the obvious way and
it is easily seen that it agrees with our definition. Given a classical operad P , a
P-algebra is, by definition, a map of operads P → EndX from P to the so called
endomorphism (classical) operad. This operad is defined by

EndX(n) = E(X⊗n, X)

where the composition is given by substitution and the symmetric groups act by
permuting the variables. This is actually just a special case of Example 1.8.4,
namely

EndX = P{X}.

Lemma 1.9.2. Let P be a classical operad in E. Then a P-algebra A : P →
EndX corresponds to a map of enriched operads B : P → E such that B(⋆) = X.

Notice that if P = disc(P ′) is a discrete operad then a P-algebra P → E is the
same as a P ′-algebra P ′ → E . We can thus form the operad Operad(P ′, E) and
obtain the operad of P-algebras. This is a slightly richer structure on the collection
of P-algebras than the usual category of P-algebras presented in the literature,
namely it forms an operad and not just a category.




