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Abstract. In this paper, we study the development of finite  When the flow is forced by a symmetric wind stress (with
amplitude perturbations on linearly stable steady barotropiaespect to the mid axis of the basin) the quasi-geostrophic
double-gyre flows in a rectangular basin using the conceptquations have a reflection symmetry. For the one-layer
of Conditional Nonlinear Optimal Perturbation (CNOP). The (barotropic) case much is known about stability bounds and
CNOPs depend on a time scale of evolutiprand an ini- bifurcation behavior of nonlinear flows as the viscosity is de-
tial perturbation thresholél. Under symmetric wind forcing, creased. When only lateral friction is considered as a dissi-
a perfect pitchfork perturbation occurs in the model. The pation mechanism, there is basically only one control param-
CNOPs are determined for all linearly stable states and theter, the Reynolds numb&e. The finite amplitude stability
time evolution of the CNOPs is studied. It is found that the of the linear (Munk) solution was studied using analytical
patterns of the CNOPs are similar to those of the non-normamethods Crisciani and Mosetti199Q Crisciani et al. 1994
modes for small, and approach those of the normal modes 1995. The energy stability limitRer of the unique anti-
for largerz,. With slightly asymmetric winds, an imperfect symmetric solution, existing at high viscosity, was calculated
pitchfork occurs in the model. Indications are found that thenumerically inDijkstra and De Ruijte(1996 and guarantees
time evolution of the CNOPs is related to the value of the a monotonic decay of the kinetic energy of any perturbation;
dissipation function of the underlying steady state. this stability limit hence provides sufficient conditions for
stability (Joseph1976.

The linear stability limitsRe; of this barotropic double-
gyre flow in a relatively small ocean basin were presented
in Dijkstra and Katsmar(1997). The first bifurcation is

The so-called quasi-geostrophic double-gyre flow has beeft symmetry-breaking pitchfork bifurcation where the anti-

recognized as one of the characteristic problems to Stud;y:n;netrlc solutlonTl:;]ecomes ””Sti‘?"e ar|1dt'two gsymmetnc
the nonlinear dynamics of the wind-driven ocean circulationS0'UtONS appear. €se asymmetric solutions become un-

(Jiang et al. 1995 Dijkstra, 2005. Usually such a flow is stable at several Hopf bifurcations where periodic orbits ap-

considered in an idealized geometry, such as a rectangulaﬂ(?a,r' _EventL_JaIIy ChaOt'C behay|or occurs due to a homo-
ocean basin, on a midlatitugeplane. The linear problem clinic bifurcation, which can be either of Lorenz or Shilnikov

neglecting inertia, is the basis for the Sverdrup-Stommel-YP€: dépending on the parameters of the sysi¢auliga and
Luce 2001 Simonnet et a].2005.

Munk theory of the wind-driven ocean circulation. In this ] -
case, the Sverdrup balance holds over most of the basin and /N recent years, tools of generalized stability thedfgrt
viscosity only affects the flow in thin boundary layers at the rell and loannou1996 Moore, 1999 Moore et al, 2002
eastern and western boundaries. The Sverdrup transport [{2ve also been applied to this problem. With these tools,
compensated only in the western boundary layer and henc@n€ iS interested in determining growth of perturbations on

the western boundary flow is much stronger than the easterft Particular reference state due the non-normality of the Ja-
one. cobian of that state; the latter state may be either a linearly

stable steady state or a time-mean state of a very irregular
Correspondence to: flow. These tools enable one to determine the response of

A. D. Terwisscha van Scheltinga the flow to stochastic perturbations and hence are interesting
BY

(arjen.terwisschavanscheltinga@ualbertaVé#) respect to predictability issues.

1 Introduction
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In Moore (1999, a basin of size 100302000 km was con- 2 Model and methods
sidered for both the asymptotically stable as well as unstable
regimes and the effects of stochastic wind forcing on the flowIn this section, we will shortly recall the model used
was studied. Focus was on the stochastic forcing patterns th&6ect. 2.1) and then briefly describe the CNOP methodology
account for the largest fraction of noise-induced variability, (Sect. 2.2).
the so-called stochastic optimals. The structure of the Ek-
man pump velocity of the gravest stochastic optimal on time2.1 Model
scales of 2—-3 weeks corresponds to a single-gyre basin wide . i .
flow. This particular wind perturbation induces changes inCoq&derqflow doma|'m’ consisting of a rectangular ocean
vorticity which project strongly on the fastest linear singular _bas_ln of sizeLx L _havmg a constant_ depth. The bgsm
vectors. The noise forcing is most effective in the asymptoti-IS S|tuoated ona m_|dl_at|tudﬁ-plane with a central latitude
cally stable regime but otherwise not sensitivity to the choserf0=4>" N and Coriolis parametefo=2€2sintp, wheres2
norm, basic state flow and geometry.Moore et al.(2002), Is the rotation rate of the Earth. The meridional varia-
it was shown that the variability is maintained by Rossby

tion of the Coriolis parameter at the latituégis indicated
waves that interact with the western boundary current. Theby Po. The densityp of the water is constant and the

perturbations that maintain the stochastically induced vari-fIOW is forced at, the surface th“’“gh a Wlnd_-stress vector
=71o[t* (x, y), 7(x, ¥)]. The governing equations are non-

ance in the linearly stable regime have a large projection on’ . g ’ i :
some of the non-normal, least-damped eigenmodes. dimensionalized using a honzontgl length scaja vertlc_al
_ - o ... length scaleD, a horizontal velocity scal&, the advective
In generalized stability theory, it is assumed that the initial {je scaleL/U and a characteristic amplitude of the wind-
perturbation is so small that its evolution can be described bysiress vectorzg. The effect of deformations of the ocean-
a linearized system (the tangent linear model) and Optimahtmosphere interface on the flow is neglected.
growth is determined through the largest singular value ofthe  The dimensionless barotropic quasi-geostrophic model of

forward propagator of the linearized system. A generaliza-hg fioy for the vorticitys and the geostrophic streamfunc-
tion of linear singular vectors is the concept of Conditional 4, ¥ is (Pedlosky 1987)

Nonlinear Optimal Perturbations (CNOPS) as introduced by
Mu et al.(2003. The CNOP is the initial (finite amplitude) [3 K2 i] 1o Ty 9t*
perturbation whose nonlinear evolution attains a maximum 8t+u 8x+U8y [&+Byl=Re "V §JFO[’( ox  dy )(la)
growth rate at a chosen end timegiven an initial bound ¢ = V2y (1b)
on the norm of the initial condition. '

The CNOPs of a steady state determines the dominant/here the horizontal velocities are giveniby —dy/9y and
time-dependent nonlinear behavior of finite amplitude per-v=9%/dx. The parameters in Eq14) are the Reynolds
turbations. On one hand, such behavior bridges the gafiUmberRe, the planetary vorticity gradient paramefeand

between the behavior below the energy stability boundaryth€ wind-stress forcing strengthy. These parameters are
(monotonic decay of all perturbations) and above the lin-defined as:

ear stability boundary (exponential growth of infinitesimally BoL? oL
small perturbations). On the other hand, when comparedRe = —; B = Po- . ar = 0—2 2
to non-normal modes, the CNOP displays how much non- " 4 pDU

linearity affects the evolution of finite amplitude perturba- whereg is the gravitational acceleration andy is the lat-

tions. In the case of linearly stable multiple equilibria, the ¢y friction coefficient. When the horizontal velocity scale
CNOPs also provide a way to compute finite amplitude sta-s hased on a Sverdrup balance of the flow, i.e.

bility boundaries of each of the equilibrid(i et al, 2004).
It is thus important to be able to compute CNOPs for flows U—_" 3)
modeled by systems of partial differential equations. oDBoL’

The computation of CNOPs has so far been only accomyy o)iows thata, . Consequently, there are only two free

glished ir;]models ha\éing a S?;g numblerztgodegreéas ?f fréeparameters, for example the dimensionless boundary layer
lom such as ocean box modeldu( et al, 2004 and rela-  hicknesses; andsy defined bys2=1/8 ands3,=1/(B Re),
tively simple atmospheridu and Zhang2006 and ENSO respectively.

models Mu et al, 2003. As far as we know the CNOPs for \ye assume no-slip conditions on the east-west boundaries
the barotropic double-gyre ocean flow problem are here caly, gjin on the north-south boundaries. The boundary condi-
culated for the first time. We use the implicit 4D-Var method- tions are therefore given by

ology (Terwisscha van Scheltinga and Dijkst2®09 which

is relatively easily extended to compute CNOPs. We deter-x —0x=1:y= I 0 (4a)
mine the CNOPs for the double-gyre problem both under™ =~ 7~ = =" " = §5x =
symmetric and asymmetric wind stress forcing. y=0,y=1:¢y=¢=0. (4b)
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The wind-stress profile considered is 0.6
0.4
¥ (x, y)=—10 (0 Cosn%—i-(l—a) 00521%) . '(x, y)=0 0.2
© 3 00
-0.2
where the dimensionless parametecontrols the shape of -0.4
the zonal wind stress ang is a typical amplitude. Far=1 -0.6
(0=0), the wind stress induces a single-gyre (double-gyre) @ 20 40 6Rg 80 100
flow. 10 == —— —* T
The governing equations are discretized on a 40 grid ’f; Som =L :o,e\ N
with central spatial differences. The resolution in the east- o.sl'll!/\\/\\ SN N
west direction is slightly higher because the flows are west- 'III,"A = ’/ - / /’ !
erly intensified. An implicit time-integration schemeef- O.Gj&‘\\:\zﬁ// —— -7

wisscha van Scheltinga and Dijkstr2005 is used with a >
time step ofAr=1 day. Standard parameter values of the

model are shown in Tabl&é. After discretization, the state

vectorx € R¢ (of dimensiond=2x60x40=4800) consists

of the values of) and¢ at the grid points.

2.2 Calculation of CNOPs ®

The discretized equations governing the evolution of pertur-
bationsx on a particular staté can be written as:

ox -
G TF®H=00 s o ©)
X|;=0 = X0,

wheret is time, x (1)=(x1(2), x2(?), ..., x,(¢)) is the pertur-
bation state vector anfl is a nonlinear differentiable oper-
ator. Furthermorexg is the initial perturbationy is the ba-
sic state which we take here as a linearly stable steady state, 00 02 04 06 08 10
(x, 1)eR? %[0, 1,] andr, <+oo.

Suppose the initial value problerd)(s well-posed and the
nonlinear propagata¥/ is defined as the evolution operator
of Eqg. (6) which determines a trajectory from the initial time
t+=0 to timer,. Hence, for fixed, >0, the state

x(1e) = M(xo; x)(te). ()

is the result of the time-evolution at¢, of the initial pertur-
bationxg atr=0.

For a chosen norm-|| measuringe, the perturbation
is called the Conditional Nonlinear Optimal Perturbation
(CNOP) with constraint conditioit” (xg)=||xol|<§, if and
only if

Fig. 1. (a) Bifurcation diagram for the double-gyre£0) for a

J(xgs) = max J(xo), (8)  square basin with the asymmetry of the streamfuncidn defined

Iroll=s as Eq. 16), against the control paramete=U L /A fy. The energy

where stability boundaryReg is aboutRep~10 (Dijkstra and De Ruijter
1996. (b) Streamfunction)/ of the anti-symmetric steady state for

J(x0) = | M (x0; %)(2.)]l. (9) Re=25, (c) the jet-down steady state f&e=50 and(d) the jet-up

steady state foRe=50. The contour values are scaled with respect
The CNOP is the initial perturbatiory whose nonlinear evo-  to @ maximum ofy=2.2 for (b), which represents a transport of
lution attains the maximal value of the functionalat time ~ 5-5SV; and a maximum of=1.1 for (c, d), which represents a
1, with the constraint conditiorjxo||<8; in this sense it is  transportof 10.9 Sv. The contour interval is 0.2.
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Table 1. Standard values of the parameters for the barotropic quasi-i_' This state is _then propagated forwgrd. _t'é“t[e the ba-
geostrophic ocean model in the steady flow regime. For theséIC Steady state is subtracted and the kinetic energy norm of

values of the parameters, the dimensional parameters have valudge perturbations is calculated. The gradient is evaluated by

ar=f=2.8x10°. backward integration with the adjoint moddl”. The same
techniques developed for the implicit data assimilatiter{
Parameter Value wisscha van Scheltinga and Dijkstr2005 are used here.
We use the same tangent linear model, which is stored during
L 1-0X10§ m the forward integration. For the evaluation of the gradient the
v 71x107% m stored tangent linear model is transposed and used as adjoint.
,3D 207'0125(5 ?:ns)*l The constraint optimization problen8)(is implemented
0 .U X .
fo 1.0x1074 71 as:
g 98 ms? MiN(—Jnum(*¥0))  Subjectto Crum(xo) < 8, (15)
0 1.0x10° kgm3
0 1.0x10°1 Pa and is solved using the NAG routine EO4UCF. This routine

uses a method that is essentially identical to the method dis-
cussed irGill et al. (1986. The basic structure uses an Se-

called “optimal” (Mu et al, 2003. The CNOP can be re- quential Quadratic Programming methd@il( et al, 1983
garded as the most (nonlinearly) unstable initial perturbationt0 solve a quadratic subproblem along the search direction
Superposed on the basic state. and uses Lagrangian mUltip”erS for the constraints.

To numerically calculate the CNOP for the double-gyre

problem, the kinetic energy norm 3 Results

lxolle = % / (w3 + v3) dxdy (10) In the results below, we first consider the case of symmetric
v wind forcing (=0) and subsequently the case of a slightly

is used withV=[0, 1]x [0, 1]. LetL be a linear operator that asymmetric wind forcing¢=0.05).

mapsxo to the velocity vector which is calculated from the )

values ofy at four neighbouring grid points. The energy 3-1 Symmetric case

norm is now evaluated numerically as: . .
y For the caser=0, the structure of the steady solutions is

1 1 shown through the bifurcation diagram in Fig, where the
—/(u%—i—v%) dxdy =~ EAxAy(uo~uo+vo-vo) (11a) 9 9 )
1%

2 value of the asymmetry of streamfunctionl, defined as
1 1 .
= EAxAnyo-LxO:EAxAy||on||%, (11b) Ly — Maxy) +min(y) (16)
max(yr, —v)

where|-||2 the Lo-norm. Hence, the energy norm is calcu- ]
lated by multiplying the perturbationg with the matrixL 1S plotted againstRe=UL/Apn. At large values ofAy
and calculating the norm of the result. Using this numerical(Small Re), the anti-symmetric double-gyre flow (Figb)

approximation and Eq7f we find the following implemen- is a unique state. When lateral friction is decreased, this
tation Jpym of J: flow becomes unstable at the pitchfork bifurcatifn and

two branches of stable asymmetric states appear for smaller
values of Ay (larger Re). The solutions on these branches
(Fig. 1c, d) have the jet displaced either northward (negative
AW) or southward (positivé\\W) and are exactly symmetri-
cally related for the same value &F&.

1 T B _ We first focus on the casee=25 which is in the asymptot-
VJnum(xo) = EAxAyM LPL(M(xo; X)(2e) = %), (13)  jcally stable regime of the anti-symmetric state. Fe:0.1,

the streamfunction patterns of the CNOPs are shown for four

whereM is the tangent linear model and the subscfiph-  gjfferent values of,=7, 14, 21, 28 days in Fig2. The pat-
dicates the transpose. The constraint function is numericallyern of the CNOP in Fig2a is similar to the pattern of the

1 . -2
Jnum(x0) = EAXA)’HL(M(XOQ x)(te) — X)|I5. (12)

It is easy to derive the gradient:

implemented likewise as: most energetic disturbance at a similar valuedofFig. 7b
1 of Dijkstra and De Ruijter1996 as determined through the
Chum(x0) = EAxAyHonH%. (14) energy stability analysis. As the energy stability boundary

Reg is located neaRe~10 (Fig. 5 ofDijkstra and De Rui-
The cost function is evaluated using forward integration.jter, 1996, this shows that in the conditional stability regime
Here, the perturbatiomg is added to the basic steady state (Joseph1976 the pattern of the energy stability analysis is
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Fig. 2. Patterns of the barotropic streamfunctigrfor the CNOPs  Fig. 3. Patterns of the barotropic streamfunctign (deviations
of the steady state de=25 for §=0.1 and(a) 7,=7 days, with an  from the steady state &e=25) for (a) r.=7 days,(b) =14 days,
absolute maximum of 0.2@b) 7,=14, with an absolute maximum (c) t,=21 days andd) +.=28 days.

of 0.17; (c) t,.=21 days, with an absolute maximum of 0.13 and

(d) £,=28 days, with an absolute maximum of 0.11.

0.8 ///m
0.6} ]
still relevant for short times,. When the CNOP is com- -
puted for larger timeg,, the pattern keeps the same symmet- ;;8 04y %]
ric three cell structure, but the cells at top and bottom extend
in size (Fig.2b—d). o2r ]
The streamfunction patternsradays when the CNOPs in 0.0
Fig. 2 are taken as an initial condition are shown in Fg. 5 10 15 20 25 30

The pattern of Fig3a results after 7 days when the steady L. [days]

state atRe=25 is perturbed with the pattern in Figa with

§=0.1. Ithas not changed much in shape butit becomes morgig 4 The energy norm of the perturbationvat J (xgs) as defined

localized into the western boundary region. The patterns oty (12), against,, for differents for the steady state &e=25 and
Fig. 3b—d arise at 14, 21 and 28 days when the steady state—0.

is perturbed with the pattern in Figb—d, respectively, with
8=0.1. The final pattern in Fig3d is recognized as the least
stable normal mode, the P-mode $monnet and Dijkstra  ground state and it already quite localized near the west-

(2003. Hence, the CNOPs for larger timesinduce a re-  ern poundary current region. When the steady state is per-
sponse into the direction of the normal mode, which indeedyrhed with the CNOP and with=0.1, the deviation from
controls the long time evolution behavior. the steady state after 7 days (F) shows a bipolar pat-
The energy norm of the perturbationzatfor the steady  tern resembling one phase of a Rossby basin mode. This
state atRe=25 and several values 6£0.1,0.25and 060 is  is an oscillatory normal mode to which the steady state be-
plotted in Fig.4 as a function of,. For§=0.1, the values comes unstable at slightly larg&e (Dijkstra and Katsman
correspond to the amplitudes of the patterns in BigFor ~ 1997). Figure5¢c—d shows the CNOP and its evolution after
each value of, the energy norm flattens for larger timgs 7 days for the jet-up steady stateRt=50. The patterns are
and the value increases with increasing simply related to those in Figsa—b by the reflection sym-
We next consider the casRBe=50 on the asymmetric metry. There are very minor differences due to accuracy set
branches for which two asymmetric steady solutions (jet-upin the minimization algorithm and the implicit time-stepping
state and the jet-down state) are linearly stable. s=e0.1, schemes. For both asymmetric steady states the curves of the
the streamfunction patterns of the CNOP of the jet-downfinal amplitude of the energy norm versysire the same due
state is shown for,=7 days in Fig.5a. The pattern is no to the reflection symmetry. F&e=50 the time-scale of flow
longer symmetric because of the asymmetry of the back-changes in the system is set by the gyre advection which is
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Fig. 5. For Re=50, 0=0.0, §=0.1 andr,=7 days:(a) CNOP for (b) Re

the jet-down steady statéb) deviation of the flow from the jet-
down steady state at=t.; (c) CNOP for the jet-up steady state;

(d) deviation of the flow from the jet-up steady state-at,. Fig. 6. Bifurcation diagram forr=0.05 where the asymmetry of

the streamfunctiony plotted against control parametge. (b) Di-
mensionless viscous dissipation along the branchés)in

a few years. For eachthe energy norm (not shown) shows
a monotonic increase in the rangerpfcontrary to the case
of Re=25 (Fig.4) where saturation occurs over a period of a
month.

cases. The pattern for the jet-down state seems less deformed
from the symmetric case (compare Figa with Fig. 5a).

The CNOP pattern for the jet-up solution on the contrary
has deformed substantially (compare Fig.with Fig. 5¢).

The evolution of both CNOPs eventually leads to anomalies
When the wind stress is taken slightly asymmetric, an imperWhich have a pattern resembling a Rossby-basin mode, just
fect pitchfork bifurcation results as can be seen in the the bi-2S in the symmetric case.

furcation diagram fot=0.05 in Fig.6a. The jet-up solution For both states the final amplitude of the energy norm is
is now continuously connected with the near anti-symmetricPlotted against, for several values of in Fig. 8. The solid
solution at small values aRe. On the other hand, the jet- curves are those for the jet-up steady state while the dashed
down solution becomes an isolated branch. The asymmetones are those for the jet-down solution. For all values of
ric wind-stress forcing gives a preference for the jet_up So_there is a clear difference between the CNOP evolution from
lution since the easterlies in the northern part of the domairPoth states. Fag <16 days, the final amplitude of the energy
are slightly weaker than those in the southern part of the donorm is the largest for the jet-down state, i.e. the state with
main. The position of the saddle-node bifurcationfatc54  the lower viscous dissipation; foy>16 days the opposite

for 0=0.05 Fig. 6a) shifts to larger values aRe when o occurs. In these results, equilibration of the amplitude of the
increases. Along the branches fo=0.05 the value of the  Perturbations occurs on a longer (advective) time scale.
dimensionless viscous dissipation function

3.2 Asymmetric case

®— / [(a_u)z n (8_1))2 N (8_14)2 N (8_:))2} dxdy  (17) 4 Conclusions
v [ ox ax dy dy

In this paper, we have explored the development of finite am-
is plotted in Fig.6b. As can be seen, values ®fdiffer be- plitude perturbations of linearly stable steady states of the
tween the jet-up and jet-down solutions for similar values of double-gyre flow in the barotropic quasi-geostrophic model,
Re, with the (stable) jet-down steady state having a lowerby determining the Conditional Nonlinear Optimal Perturba-
viscous dissipation. tions (CNOPSs). These are the perturbations to the flow which

For 0=0.05 and Re=60, CNOPs for fixeds=0.1 and  have an optimal nonlinear evolution at a tim€in a chosen
te=7 days are plotted for both jet-up and jet-down solu- norm) under the condition of a bourddon the norm of the
tions in Fig.7. Patterns now slightly differ between the two initial perturbation. The4D-Var methodology as presented

Nonlin. Processes Geophys., 15, 7234 2008 www.nonlin-processes-geophys.net/15/727/2008/
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. dashed curves are for the jet-down solution.
Fig. 7. For the caseRe=60, 0=0.05, §=0.1 and,=7 days:

(a) CNOP for the jet-down steady stat@s) deviation of the flow
from the jet-down steady state att.; (c) CNOP for the jet-up
steady state an(tl) deviation of the flow from the jet-up steady
state at=f,.

For Re> Re; , two asymmetric linearly stable steady states
exists which are (by their simultaneous existence) unstable
to finite amplitude perturbations. The CNOPs for both solu-
tions (for the same&ke) are symmetry related and these pat-

in Terwisscha van Scheltinga and Dijks{2005 was eas- terns project during evolution on the normal mode patterns
ily adapted to compute these CNOPs efficiently and hencdassociated with the first Hopf bifurcation on the asymmetric
provides a technique to determine CNOPs for fairly generalPranches) which is most clearly seen at large evolution times
Systems of partia' differential equationS. te. For the Sllghtly asymmetl’ic case, we showed that the
By calculating the CNOPs for the symmetrio=£0) growth of finite amplitude perturbations is different for the

double-gyre flow, we have added another detail of the beJjet-up and jet-down steady states at simikar. The physics
havior of this flow system wheRe is changed. Up to the of this difference is likely related to differences in the value

energy stability boundarRez~10 (as determined iDijk- of the viscous d_issipation funqtion of gach steady state.
stra and De Ruijtef1996) the anti-symmetric flow is mono- The separatrices (of attraction basins) are very difficult to

tonically stable, i.e., the kinetic energy of every finite ampli- calculate for the double-gyre flows; for the 680 grid used
tude perturbation decays monotonically to zero. Just abovéiere a system with 4800 degrees of freedom results. How-
Reg, there exist perturbation patterns of which the kinetic €ver, the CNOPs may provide information on the finite am-
energy grows in time and the CNOPs are the ones with opplltude Stablllty boundaries in multlple equ”ibrium regimes.
timal growth under the conditions of Chosanands_ The One can vary at fixedle and determine for which critical
patterns of these CNOPs are basin wide and their Spatid:he time evolution of the CNOP will not return to the Original
structure Correspond to the ones Of the non_normal mode§teady state. Such finite amplitude Stab|l|ty boundaries were
as found inMoore et al.(2002. For smalls, the growth of ~ determined irMu et al.(2004) for a simple box-model (with
the CNOPs is similar to that of the non-normal modes but2-degrees of freedom). As this is not an easy computation
for larges it may be larger. FoRe<Re;, (the first pitchfork  for the double-gyre flow, with a very large CPU time needed
bifurcation) these CNOPs evolve in time to patterns resemfor the minimization process, it is outside the scope of this
bling the least stable normal modes. Certainly, as soon afaper.

Re>Rey, the anti-symmetric state becomes linearly unsta-
ble and the perturbations with the largest growth rates are th
normal modes.
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