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Abstract. In this paper, we study the development of finite
amplitude perturbations on linearly stable steady barotropic
double-gyre flows in a rectangular basin using the concept
of Conditional Nonlinear Optimal Perturbation (CNOP). The
CNOPs depend on a time scale of evolutionte and an ini-
tial perturbation thresholdδ. Under symmetric wind forcing,
a perfect pitchfork perturbation occurs in the model. The
CNOPs are determined for all linearly stable states and the
time evolution of the CNOPs is studied. It is found that the
patterns of the CNOPs are similar to those of the non-normal
modes for smallte and approach those of the normal modes
for larger te. With slightly asymmetric winds, an imperfect
pitchfork occurs in the model. Indications are found that the
time evolution of the CNOPs is related to the value of the
dissipation function of the underlying steady state.

1 Introduction

The so-called quasi-geostrophic double-gyre flow has been
recognized as one of the characteristic problems to study
the nonlinear dynamics of the wind-driven ocean circulation
(Jiang et al., 1995; Dijkstra, 2005). Usually such a flow is
considered in an idealized geometry, such as a rectangular
ocean basin, on a midlatitudeβ-plane. The linear problem,
neglecting inertia, is the basis for the Sverdrup-Stommel-
Munk theory of the wind-driven ocean circulation. In this
case, the Sverdrup balance holds over most of the basin and
viscosity only affects the flow in thin boundary layers at the
eastern and western boundaries. The Sverdrup transport is
compensated only in the western boundary layer and hence
the western boundary flow is much stronger than the eastern
one.
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When the flow is forced by a symmetric wind stress (with
respect to the mid axis of the basin) the quasi-geostrophic
equations have a reflection symmetry. For the one-layer
(barotropic) case much is known about stability bounds and
bifurcation behavior of nonlinear flows as the viscosity is de-
creased. When only lateral friction is considered as a dissi-
pation mechanism, there is basically only one control param-
eter, the Reynolds numberRe. The finite amplitude stability
of the linear (Munk) solution was studied using analytical
methods (Crisciani and Mosetti, 1990; Crisciani et al., 1994,
1995). The energy stability limitReE of the unique anti-
symmetric solution, existing at high viscosity, was calculated
numerically inDijkstra and De Ruijter(1996) and guarantees
a monotonic decay of the kinetic energy of any perturbation;
this stability limit hence provides sufficient conditions for
stability (Joseph, 1976).

The linear stability limitsReL of this barotropic double-
gyre flow in a relatively small ocean basin were presented
in Dijkstra and Katsman(1997). The first bifurcation is
a symmetry-breaking pitchfork bifurcation where the anti-
symmetric solution becomes unstable and two asymmetric
solutions appear. These asymmetric solutions become un-
stable at several Hopf bifurcations where periodic orbits ap-
pear. Eventually chaotic behavior occurs due to a homo-
clinic bifurcation, which can be either of Lorenz or Shilnikov
type, depending on the parameters of the system (Nadiga and
Luce, 2001; Simonnet et al., 2005).

In recent years, tools of generalized stability theory (Far-
rell and Ioannou, 1996; Moore, 1999; Moore et al., 2002)
have also been applied to this problem. With these tools,
one is interested in determining growth of perturbations on
a particular reference state due the non-normality of the Ja-
cobian of that state; the latter state may be either a linearly
stable steady state or a time-mean state of a very irregular
flow. These tools enable one to determine the response of
the flow to stochastic perturbations and hence are interesting
with respect to predictability issues.
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In Moore(1999), a basin of size 1000×2000 km was con-
sidered for both the asymptotically stable as well as unstable
regimes and the effects of stochastic wind forcing on the flow
was studied. Focus was on the stochastic forcing patterns that
account for the largest fraction of noise-induced variability,
the so-called stochastic optimals. The structure of the Ek-
man pump velocity of the gravest stochastic optimal on time
scales of 2–3 weeks corresponds to a single-gyre basin wide
flow. This particular wind perturbation induces changes in
vorticity which project strongly on the fastest linear singular
vectors. The noise forcing is most effective in the asymptoti-
cally stable regime but otherwise not sensitivity to the chosen
norm, basic state flow and geometry. InMoore et al.(2002),
it was shown that the variability is maintained by Rossby
waves that interact with the western boundary current. The
perturbations that maintain the stochastically induced vari-
ance in the linearly stable regime have a large projection on
some of the non-normal, least-damped eigenmodes.

In generalized stability theory, it is assumed that the initial
perturbation is so small that its evolution can be described by
a linearized system (the tangent linear model) and optimal
growth is determined through the largest singular value of the
forward propagator of the linearized system. A generaliza-
tion of linear singular vectors is the concept of Conditional
Nonlinear Optimal Perturbations (CNOPs) as introduced by
Mu et al.(2003). The CNOP is the initial (finite amplitude)
perturbation whose nonlinear evolution attains a maximum
growth rate at a chosen end timete given an initial boundδ
on the norm of the initial condition.

The CNOPs of a steady state determines the dominant
time-dependent nonlinear behavior of finite amplitude per-
turbations. On one hand, such behavior bridges the gap
between the behavior below the energy stability boundary
(monotonic decay of all perturbations) and above the lin-
ear stability boundary (exponential growth of infinitesimally
small perturbations). On the other hand, when compared
to non-normal modes, the CNOP displays how much non-
linearity affects the evolution of finite amplitude perturba-
tions. In the case of linearly stable multiple equilibria, the
CNOPs also provide a way to compute finite amplitude sta-
bility boundaries of each of the equilibria (Mu et al., 2004).
It is thus important to be able to compute CNOPs for flows
modeled by systems of partial differential equations.

The computation of CNOPs has so far been only accom-
plished in models having a small number of degrees of free-
dom such as ocean box models (Mu et al., 2004) and rela-
tively simple atmospheric (Mu and Zhang, 2006) and ENSO
models (Mu et al., 2003). As far as we know the CNOPs for
the barotropic double-gyre ocean flow problem are here cal-
culated for the first time. We use the implicit 4D-Var method-
ology (Terwisscha van Scheltinga and Dijkstra, 2005) which
is relatively easily extended to compute CNOPs. We deter-
mine the CNOPs for the double-gyre problem both under
symmetric and asymmetric wind stress forcing.

2 Model and methods

In this section, we will shortly recall the model used
(Sect. 2.1) and then briefly describe the CNOP methodology
(Sect. 2.2).

2.1 Model

Consider a flow domainV consisting of a rectangular ocean
basin of sizeL×L having a constant depthD. The basin
is situated on a midlatitudeβ-plane with a central latitude
θ0=45◦ N and Coriolis parameterf0=2� sinθ0, where�
is the rotation rate of the Earth. The meridional varia-
tion of the Coriolis parameter at the latitudeθ0 is indicated
by β0. The densityρ of the water is constant and the
flow is forced at the surface through a wind-stress vector
T=τ0[τ

x(x, y), τ y(x, y)]. The governing equations are non-
dimensionalized using a horizontal length scaleL, a vertical
length scaleD, a horizontal velocity scaleU , the advective
time scaleL/U and a characteristic amplitude of the wind-
stress vector,τ0. The effect of deformations of the ocean-
atmosphere interface on the flow is neglected.

The dimensionless barotropic quasi-geostrophic model of
the flow for the vorticityζ and the geostrophic streamfunc-
tionψ is (Pedlosky, 1987)[ ∂
∂t

+u
∂

∂x
+v

∂

∂y

]
[ζ+βy]=Re−1

∇
2ζ+ατ

(∂τ y
∂x

−
∂τ x

∂y

)
,(1a)

ζ = ∇
2ψ, (1b)

where the horizontal velocities are given byu=−∂ψ/∂y and
v=∂ψ/∂x. The parameters in Eq. (1a) are the Reynolds
numberRe, the planetary vorticity gradient parameterβ and
the wind-stress forcing strengthατ . These parameters are
defined as:

Re =
UL

AH
; β =

β0L
2

U
; ατ =

τ0L

ρDU2
(2)

whereg is the gravitational acceleration andAH is the lat-
eral friction coefficient. When the horizontal velocity scale
is based on a Sverdrup balance of the flow, i.e.,

U =
τ0

ρDβ0L
. (3)

it follows thatατ=β. Consequently, there are only two free
parameters, for example the dimensionless boundary layer
thicknessesδI andδM defined byδ2

I=1/β andδ3
M=1/(βRe),

respectively.
We assume no-slip conditions on the east-west boundaries

and slip on the north-south boundaries. The boundary condi-
tions are therefore given by

x = 0, x = 1 : ψ =
∂ψ

∂x
= 0, (4a)

y = 0, y = 1 : ψ = ζ = 0. (4b)
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The wind-stress profile considered is

τ x(x, y)=−τ0 (σ cosπ
y

B
+(1−σ) cos 2π

y

B
) ; τ y(x, y)=0

(5)

where the dimensionless parameterσ controls the shape of
the zonal wind stress andτ0 is a typical amplitude. Forσ=1
(σ=0), the wind stress induces a single-gyre (double-gyre)
flow.

The governing equations are discretized on a 60×40 grid
with central spatial differences. The resolution in the east-
west direction is slightly higher because the flows are west-
erly intensified. An implicit time-integration scheme (Ter-
wisscha van Scheltinga and Dijkstra, 2005) is used with a
time step of1t=1 day. Standard parameter values of the
model are shown in Table1. After discretization, the state
vectorx ∈ Rd (of dimensiond=2×60×40=4800) consists
of the values ofψ andζ at the grid points.

2.2 Calculation of CNOPs

The discretized equations governing the evolution of pertur-
bationsx on a particular statēx can be written as:
∂x

∂t
+ F(x; x̄) = 0,

x|t=0 = x0,

in Rd × [0, te] (6)

wheret is time,x(t)=(x1(t), x2(t), ..., xn(t)) is the pertur-
bation state vector andF is a nonlinear differentiable oper-
ator. Furthermore,x0 is the initial perturbation,̄x is the ba-
sic state which we take here as a linearly stable steady state,
(x, t)∈Rd×[0, te] andte<+∞.

Suppose the initial value problem (6) is well-posed and the
nonlinear propagatorM is defined as the evolution operator
of Eq. (6) which determines a trajectory from the initial time
t=0 to timete. Hence, for fixedte>0, the state

x(te) = M(x0; x̄)(te). (7)

is the result of the time-evolution att=te of the initial pertur-
bationx0 at t=0.

For a chosen norm‖·‖ measuringx, the perturbationx0δ
is called the Conditional Nonlinear Optimal Perturbation
(CNOP) with constraint conditionC(x0)=‖x0‖≤δ, if and
only if

J (x0δ) = max
‖x0‖≤δ

J (x0), (8)

where

J (x0) = ‖M(x0; x̄)(te)‖. (9)

The CNOP is the initial perturbationx0 whose nonlinear evo-
lution attains the maximal value of the functionalJ at time
te with the constraint condition‖x0‖≤δ; in this sense it is
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Fig. 1. (a) Bifurcation diagram for the double-gyre (σ=0) for a
square basin with the asymmetry of the streamfunction19, defined
as Eq. (16), against the control parameterRe=UL/AH . The energy
stability boundaryReE is aboutReE≈10 (Dijkstra and De Ruijter,
1996). (b) Streamfunctionψ of the anti-symmetric steady state for
Re=25, (c) the jet-down steady state forRe=50 and(d) the jet-up
steady state forRe=50. The contour values are scaled with respect
to a maximum ofψ=2.2 for (b), which represents a transport of
5.5 Sv; and a maximum ofψ=1.1 for (c, d), which represents a
transport of 10.9 Sv. The contour interval is 0.2.
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Table 1. Standard values of the parameters for the barotropic quasi-
geostrophic ocean model in the steady flow regime. For these
values of the parameters, the dimensional parameters have values
ατ=β=2.8×103.

Parameter Value

L 1.0×106 m
U 7.1×10−3 m
D 7.0×102 m
β0 2.0 × 10−11 (ms)−1

f0 1.0×10−4 s−1

g 9.8 ms−2

ρ 1.0×103 kgm−3

τ0 1.0×10−1 Pa

called “optimal” (Mu et al., 2003). The CNOP can be re-
garded as the most (nonlinearly) unstable initial perturbation
superposed on the basic state.

To numerically calculate the CNOP for the double-gyre
problem, the kinetic energy norm

‖x0‖E =
1

2

∫
V

(u2
0 + v2

0) dxdy (10)

is used withV=[0,1]×[0,1]. Let L be a linear operator that
mapsx0 to the velocity vector which is calculated from the
values ofψ at four neighbouring grid points. The energy
norm is now evaluated numerically as:

1

2

∫
V

(u2
0 + v2

0) dxdy ≈
1

2
1x1y(u0 · u0 + v0 · v0) (11a)

=
1

2
1x1yLx0·Lx0=

1

2
1x1y‖Lx0‖

2
2, (11b)

where‖·‖2 theL2-norm. Hence, the energy norm is calcu-
lated by multiplying the perturbationx0 with the matrixL
and calculating the norm of the result. Using this numerical
approximation and Eq. (7) we find the following implemen-
tationJnum of J :

Jnum(x0) =
1

2
1x1y‖L(M(x0; x̄)(te)− x̄)‖2

2. (12)

It is easy to derive the gradient:

∇Jnum(x0) =
1

2
1x1yMT LT L(M(x0; x̄)(te)− x̄), (13)

whereM is the tangent linear model and the subscriptT in-
dicates the transpose. The constraint function is numerically
implemented likewise as:

Cnum(x0) =
1

2
1x1y‖Lx0‖

2
2. (14)

The cost function is evaluated using forward integration.
Here, the perturbationx0 is added to the basic steady state

x̄. This state is then propagated forward. Att=te the ba-
sic steady state is subtracted and the kinetic energy norm of
the perturbations is calculated. The gradient is evaluated by
backward integration with the adjoint modelMT . The same
techniques developed for the implicit data assimilation (Ter-
wisscha van Scheltinga and Dijkstra, 2005) are used here.
We use the same tangent linear model, which is stored during
the forward integration. For the evaluation of the gradient the
stored tangent linear model is transposed and used as adjoint.

The constraint optimization problem (8) is implemented
as:

min(−Jnum(x0)) subject to Cnum(x0) ≤ δ, (15)

and is solved using the NAG routine E04UCF. This routine
uses a method that is essentially identical to the method dis-
cussed inGill et al. (1986). The basic structure uses an Se-
quential Quadratic Programming method (Gill et al., 1981)
to solve a quadratic subproblem along the search direction
and uses Lagrangian multipliers for the constraints.

3 Results

In the results below, we first consider the case of symmetric
wind forcing (σ=0) and subsequently the case of a slightly
asymmetric wind forcing (σ=0.05).

3.1 Symmetric case

For the caseσ=0, the structure of the steady solutions is
shown through the bifurcation diagram in Fig.1a, where the
value of the asymmetry of streamfunction19, defined as

19 =
max(ψ)+ min(ψ)

max(ψ,−ψ)
. (16)

is plotted againstRe=UL/AH . At large values ofAH
(small Re), the anti-symmetric double-gyre flow (Fig.1b)
is a unique state. When lateral friction is decreased, this
flow becomes unstable at the pitchfork bifurcationP1 and
two branches of stable asymmetric states appear for smaller
values ofAH (largerRe). The solutions on these branches
(Fig. 1c, d) have the jet displaced either northward (negative
19) or southward (positive19) and are exactly symmetri-
cally related for the same value ofRe.

We first focus on the caseRe=25 which is in the asymptot-
ically stable regime of the anti-symmetric state. Forδ=0.1,
the streamfunction patterns of the CNOPs are shown for four
different values ofte=7,14,21,28 days in Fig.2. The pat-
tern of the CNOP in Fig.2a is similar to the pattern of the
most energetic disturbance at a similar value ofβ (Fig. 7b
of Dijkstra and De Ruijter, 1996) as determined through the
energy stability analysis. As the energy stability boundary
ReE is located nearReE≈10 (Fig. 5 ofDijkstra and De Rui-
jter, 1996), this shows that in the conditional stability regime
(Joseph, 1976) the pattern of the energy stability analysis is

Nonlin. Processes Geophys., 15, 727–734, 2008 www.nonlin-processes-geophys.net/15/727/2008/



A. D. Terwisscha van Scheltinga and H. A. Dijkstra: CNOPs of double-gyre flows 731

(a)
0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0
y

0.
00

0.
00

0.10

0.
10

0.10

0.20

0.
20

0.
20

0.30

0.30

0.40

0.40

0.50

0.600.70

(b)
0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.1

0.1

0.1

0.
1

0.3

0.
3

0.3

0.5

0.5

0.7

(c)
0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

-0.1

-0
.1

0.1

0.1

0.1

0.3

0.3

0.3

0.5

0.5

0.7

(d)
0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

-0.3
-0

.3

-0.1

-0.1

-0.1

-0.1

0.1

0.1

0.1

0.3

0.3
0.5

0.50.7

Fig. 2. Patterns of the barotropic streamfunctionψ for the CNOPs
of the steady state atRe=25 for δ=0.1 and(a) te=7 days, with an
absolute maximum of 0.20;(b) te=14, with an absolute maximum
of 0.17; (c) te=21 days, with an absolute maximum of 0.13 and
(d) te=28 days, with an absolute maximum of 0.11.

still relevant for short timeste. When the CNOP is com-
puted for larger timeste, the pattern keeps the same symmet-
ric three cell structure, but the cells at top and bottom extend
in size (Fig.2b–d).

The streamfunction patterns atte days when the CNOPs in
Fig. 2 are taken as an initial condition are shown in Fig.3.
The pattern of Fig.3a results after 7 days when the steady
state atRe=25 is perturbed with the pattern in Fig.2a with
δ=0.1. It has not changed much in shape but it becomes more
localized into the western boundary region. The patterns of
Fig. 3b–d arise at 14, 21 and 28 days when the steady state
is perturbed with the pattern in Fig.2b–d, respectively, with
δ=0.1. The final pattern in Fig.3d is recognized as the least
stable normal mode, the P-mode inSimonnet and Dijkstra
(2002). Hence, the CNOPs for larger timeste induce a re-
sponse into the direction of the normal mode, which indeed
controls the long time evolution behavior.

The energy norm of the perturbation atte for the steady
state atRe=25 and several values ofδ=0.1,0.25 and 0.50 is
plotted in Fig.4 as a function ofte. For δ=0.1, the values
correspond to the amplitudes of the patterns in Fig.3. For
each value ofδ, the energy norm flattens for larger timeste
and the value increases with increasingδ.

We next consider the caseRe=50 on the asymmetric
branches for which two asymmetric steady solutions (jet-up
state and the jet-down state) are linearly stable. Forδ=0.1,
the streamfunction patterns of the CNOP of the jet-down
state is shown forte=7 days in Fig.5a. The pattern is no
longer symmetric because of the asymmetry of the back-
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Fig. 3. Patterns of the barotropic streamfunctionψ (deviations
from the steady state atRe=25) for (a) te=7 days,(b) te=14 days,
(c) te=21 days and(d) te=28 days.
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Fig. 4. The energy norm of the perturbation atte, J (x0δ) as defined
by (12), againstte, for differentδ for the steady state atRe=25 and
σ=0.

ground state and it already quite localized near the west-
ern boundary current region. When the steady state is per-
turbed with the CNOP and withδ=0.1, the deviation from
the steady state after 7 days (Fig.5b) shows a bipolar pat-
tern resembling one phase of a Rossby basin mode. This
is an oscillatory normal mode to which the steady state be-
comes unstable at slightly largerRe (Dijkstra and Katsman,
1997). Figure5c–d shows the CNOP and its evolution after
7 days for the jet-up steady state atRe=50. The patterns are
simply related to those in Fig.5a–b by the reflection sym-
metry. There are very minor differences due to accuracy set
in the minimization algorithm and the implicit time-stepping
schemes. For both asymmetric steady states the curves of the
final amplitude of the energy norm versuste are the same due
to the reflection symmetry. ForRe=50 the time-scale of flow
changes in the system is set by the gyre advection which is
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Fig. 5. ForRe=50, σ=0.0, δ=0.1 andte=7 days: (a) CNOP for
the jet-down steady state;(b) deviation of the flow from the jet-
down steady state att=te; (c) CNOP for the jet-up steady state;
(d) deviation of the flow from the jet-up steady state att=te.

a few years. For eachδ the energy norm (not shown) shows
a monotonic increase in the range ofte contrary to the case
of Re=25 (Fig.4) where saturation occurs over a period of a
month.

3.2 Asymmetric case

When the wind stress is taken slightly asymmetric, an imper-
fect pitchfork bifurcation results as can be seen in the the bi-
furcation diagram forσ=0.05 in Fig.6a. The jet-up solution
is now continuously connected with the near anti-symmetric
solution at small values ofRe. On the other hand, the jet-
down solution becomes an isolated branch. The asymmet-
ric wind-stress forcing gives a preference for the jet-up so-
lution since the easterlies in the northern part of the domain
are slightly weaker than those in the southern part of the do-
main. The position of the saddle-node bifurcation (atRe≈54
for σ=0.05 Fig. 6a) shifts to larger values ofRe when σ
increases. Along the branches forσ=0.05 the value of the
dimensionless viscous dissipation function

8 =

∫
V

[
(
∂u

∂x
)2 + (

∂v

∂x
)2 + (

∂u

∂y
)2 + (

∂v

∂y
)2

]
dxdy (17)

is plotted in Fig.6b. As can be seen, values of8 differ be-
tween the jet-up and jet-down solutions for similar values of
Re, with the (stable) jet-down steady state having a lower
viscous dissipation.

For σ=0.05 andRe=60, CNOPs for fixedδ=0.1 and
te=7 days are plotted for both jet-up and jet-down solu-
tions in Fig.7. Patterns now slightly differ between the two
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Fig. 6. Bifurcation diagram forσ=0.05 where the asymmetry of
the streamfunctionψ plotted against control parameterRe. (b) Di-
mensionless viscous dissipation along the branches in(a).

cases. The pattern for the jet-down state seems less deformed
from the symmetric case (compare Fig.7a with Fig. 5a).
The CNOP pattern for the jet-up solution on the contrary
has deformed substantially (compare Fig.7c with Fig. 5c).
The evolution of both CNOPs eventually leads to anomalies
which have a pattern resembling a Rossby-basin mode, just
as in the symmetric case.

For both states the final amplitude of the energy norm is
plotted againstte for several values ofδ in Fig. 8. The solid
curves are those for the jet-up steady state while the dashed
ones are those for the jet-down solution. For all values ofδ

there is a clear difference between the CNOP evolution from
both states. Forte<16 days, the final amplitude of the energy
norm is the largest for the jet-down state, i.e. the state with
the lower viscous dissipation; forte>16 days the opposite
occurs. In these results, equilibration of the amplitude of the
perturbations occurs on a longer (advective) time scale.

4 Conclusions

In this paper, we have explored the development of finite am-
plitude perturbations of linearly stable steady states of the
double-gyre flow in the barotropic quasi-geostrophic model,
by determining the Conditional Nonlinear Optimal Perturba-
tions (CNOPs). These are the perturbations to the flow which
have an optimal nonlinear evolution at a timete (in a chosen
norm) under the condition of a boundδ on the norm of the
initial perturbation. Thei4D-Var methodology as presented
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Fig. 7. For the caseRe=60, σ=0.05, δ=0.1 and te=7 days:
(a) CNOP for the jet-down steady state;(b) deviation of the flow
from the jet-down steady state att=te; (c) CNOP for the jet-up
steady state and(d) deviation of the flow from the jet-up steady
state att=te.

in Terwisscha van Scheltinga and Dijkstra(2005) was eas-
ily adapted to compute these CNOPs efficiently and hence
provides a technique to determine CNOPs for fairly general
systems of partial differential equations.

By calculating the CNOPs for the symmetric (σ=0)
double-gyre flow, we have added another detail of the be-
havior of this flow system whenRe is changed. Up to the
energy stability boundaryReE≈10 (as determined inDijk-
stra and De Ruijter(1996)) the anti-symmetric flow is mono-
tonically stable, i.e., the kinetic energy of every finite ampli-
tude perturbation decays monotonically to zero. Just above
ReE , there exist perturbation patterns of which the kinetic
energy grows in time and the CNOPs are the ones with op-
timal growth under the conditions of chosente andδ. The
patterns of these CNOPs are basin wide and their spatial
structure correspond to the ones of the non-normal modes
as found inMoore et al.(2002). For smallδ, the growth of
the CNOPs is similar to that of the non-normal modes but
for largeδ it may be larger. ForRe<ReL (the first pitchfork
bifurcation) these CNOPs evolve in time to patterns resem-
bling the least stable normal modes. Certainly, as soon as
Re>ReL, the anti-symmetric state becomes linearly unsta-
ble and the perturbations with the largest growth rates are the
normal modes.

5 10 15 20 25 30
te [days]

0
1

2

3

4

5

6

J(
x 0δ

)

δ = 0.10

δ = 0.25

δ = 0.50

Fig. 8. The energy norm of the perturbation atte, J (x0δ) as defined
by Eq. (12), againstte, for differentδ for the steady state atRe=60
andσ=0.05. The solid curves are for the jet-up solution while the
dashed curves are for the jet-down solution.

ForRe>ReL, two asymmetric linearly stable steady states
exists which are (by their simultaneous existence) unstable
to finite amplitude perturbations. The CNOPs for both solu-
tions (for the sameRe) are symmetry related and these pat-
terns project during evolution on the normal mode patterns
(associated with the first Hopf bifurcation on the asymmetric
branches) which is most clearly seen at large evolution times
te. For the slightly asymmetric case, we showed that the
growth of finite amplitude perturbations is different for the
jet-up and jet-down steady states at similarRe. The physics
of this difference is likely related to differences in the value
of the viscous dissipation function of each steady state.

The separatrices (of attraction basins) are very difficult to
calculate for the double-gyre flows; for the 60×40 grid used
here a system with 4800 degrees of freedom results. How-
ever, the CNOPs may provide information on the finite am-
plitude stability boundaries in multiple equilibrium regimes.
One can varyδ at fixedte and determine for which criticalδ
the time evolution of the CNOP will not return to the original
steady state. Such finite amplitude stability boundaries were
determined inMu et al.(2004) for a simple box-model (with
2-degrees of freedom). As this is not an easy computation
for the double-gyre flow, with a very large CPU time needed
for the minimization process, it is outside the scope of this
paper.
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