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CHAPTER 1

Introduction

Researchers often have ideas about the ordering of model parameters. They frequently
have one or more theories about the ordering of the group means, in analysis of
variance (ANOVA) models, or about the ordering of coefficients corresponding to the
predictors, in regression models. A researcher might have the expectation that the
parameters exhibit an increasing trend: θ1 ≤ . . . ≤ θk, where θj is, for example,
the mean of group j or the regression coefficient corresponding to predictor j, for
j = 1, . . . , k. These types of restrictions are called order restrictions or inequality
constraints.

Although researchers have directional expectations about the parameters, they
usually evaluate it in an exploratory manner. That is, all possible configurations of
groups of parameters being equal are examined (or a subset of these possibilities
often based on the ordering of the sample parameters). For example, in case of five
parameters, five out of the 52 possible configurations are:

θ1 = θ2 = θ3 = θ4 = θ5,

θ1 = θ2 = θ3 = θ4, θ5

θ1 = θ2, θ3 = θ4 = θ5

θ1 = θ2, θ3 = θ4, θ5

θ1, θ2, θ3, θ4, θ5.

Thus, it is inspected which groups of parameters are equal and which are not, while
the ordering of the (groups of) parameters is not investigated. Regardless the resulting
configuration, it generally does not give insight into the hypotheses of interest, that
is, the directional hypothesis. There exist, however, methods that can be used to
evaluate order restrictions directly, the so-called confirmatory methods. Why are they
not used then? Probably because little is known about these methods, most of them
can only be applied to a limited set of models, and there is no software available to
employ them. This dissertation provides insight in evaluating order restrictions with
(confirmatory) model selection techniques: It compares exploratory and confirmatory
methods, extends some of the (confirmatory) techniques, and offers software for each
of the discussed methods.

This dissertation starts with providing examples of informative hypotheses, that
is, hypotheses containing order restrictions, and gaining insight in the properties



2 1 Introduction

of exploratory and confirmatory techniques applicable for ANOVA models. The
confirmatory methods are compared to their explorative counterparts for both
hypothesis testing and model selection techniques. This is done based on one data
set and on multiple data sets (i.e., on a simulation study) in case the three ANOVA
assumptions (i.e., normality, independence, and equal variances) are met. Little is
known regarding the robustness of the confirmatory methods for violations of one
of the assumptions. Therefore, the performance of the confirmatory methods is also
inspected when the equal variance assumption, also known as the homogeneity of
variance assumption, is not met.

One of the two inspected confirmatory model selection techniques is the order-re-
stricted information criterion (oric) of Anraku (1999). The oric can only be used for
simple order restrictions (i.e., θ1 ≤ . . . ≤ θk, where “≤” may be replaced by “=”) in
ANOVA models. Hence, it is extended in this dissertation to an information criterion
that can be applied to a more general form of order restrictions in ANOVA models, the
so-called generalized order-restricted information criterion (goric). In addition, the
goric is modified such that it can be employed in multivariate normal linear models.
These derivations assume a large sample size. Therefore, a small-sample version of
the goric is constructed as well. Subsequently, some remaining issues, like the goric
weights, are discussed.

Another problem researchers often face is missing data. There are methods and
software available for handling missing data when estimating parameter values. But,
what should be done in model selection using information criteria (ICs)? Since little to
nothing is known about handling missing data in both exploratory and confirmatory
model selection employing ICs, this dissertation starts with exploring it for the first
type. The key issue is the model that is assumed to be the underlying data model.
Subsequently, we discuss remaining issues, like how do today’s software programs
calculate ICs in the presence of missing data and how should missing data be dealt
with in confirmatory model selection using ICs.

Besides using model selection based on ICs, one can use Bayesian model selection
(BMS) to evaluate order restrictions. Two advantages of BMS are its ability to
quantify evidence for the hypothesis of interest and to consider prior knowledge
regarding the hypothesis of interest. These two feature can be helpful in combining the
results from several studies concerning the same research question. This dissertation
proposes a Bayesian updating method which combines statistical evidence for the
hypotheses of interest from multiple studies. It should be stressed that there exist
methods to combine the results of several studies (e.g., meta-analysis and prior
updating). Nevertheless, these require (among others) that all the studies contain
the same variables, whereas the proposed Bayesian updating method only requires
that the variables of interest measure the same concept in all studies.

Additionally, software applications are provided for each of the discussed tech-
niques, which are available from my web page:

http://staff.fss.uu.nl/RMKuiper.

In this dissertation, the software for the three confirmatory techniques applicable to
ANOVA models and the software regarding the goric are discussed extensively.

http://staff.fss.uu.nl/RMKuiper
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As might be clear, a variety of subjects regarding model selection is discussed in
this dissertation. The outline is given next.

Outline
Part I compares the exploratory and confirmatory methods in ANOVA models.
In both exploration and confirmation, three types of methods are distinguished:
hypothesis testing, model selection using information criteria, and Bayesian model
selection. The properties of these methods are examined based on one data set in
Chapter 2 and based on multiple data sets in Chapter 3. Moreover, Chapter 3 inspects
the performance of the confirmatory methods for the violation of the homogeneity of
variance assumption.

Part II focusses on confirmatory model selection criteria. Here, the oric is
extended to the goric, a model selection criterion that can be used to evaluate a
more general form of restrictions. In Chapter 4, this is done for ANOVA models and,
in Chapter 5, for univariate and multivariate normal linear models. In Chapter 6, the
small-sample version of the goric is derived. Some remaining issues are discussed in
Chapter 7.

Part III again concentrates on model selection criteria, but now in the presence
of missing data. Chapter 8 reports on how information criteria, like the Akaike
information criterion (AIC) of Akaike (1973), should be calculated in the presence
of missing data. Some remaining issues are discussed in Chapter 9.

Part IV concerns BMS. Chapter 10 discusses how the evidence from multiple
studies regarding one concept can be combined.

Although software is made for all mentioned techniques, Part V covers the
description of some of them. Chapter 12 reports on the software for the three
confirmatory methods in ANOVA models and Chapter 13 on that for the goric
in multivariate regression models.
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CHAPTER 2

Comparisons of Means
Using Exploratory and Confirmatory Approaches

Kuiper, R. M., and Hoijtink, H.

Published in Psychological Methods, 15(1), pp. 69-86.

This chapter discusses comparisons of means using exploratory and confirmatory
approaches. Three methods are discussed: hypothesis testing, model selection based
on information criteria, and Bayesian model selection. Throughout the chapter, an
example is used to illustrate and evaluate the two approaches and the three methods.
We demonstrate that confirmatory hypothesis testing techniques have more power,
that is, have a higher probability of rejecting a false null hypothesis, and confirmatory
model selection techniques have a higher probability of choosing the correct or the
best hypothesis than their exploratory counterparts. Furthermore, we show that,
if more than one hypothesis has to be evaluated, model selection has advantages
over hypothesis testing. Another, more elaborate example is used to further illustrate
confirmatory model selection. This chapter concludes with recommendations: When
a researcher is able to specify reasonable expectations and hypotheses, confirmatory
model selection should be used; otherwise, exploratory model selection should be used.

2.1 Introduction

Researchers are often confronted with the question Do any of the mean responses
differ from the others, and if so, which pairs of means are different from each other?.
For example, Palmer and Gough (2007), examined whether there is a difference in
the attribution of importance of defective education as an explanation for criminal
behavior between three types of “offenders”: person offenders, property offenders, and
non-offenders. The higher the rating, the lower one rates the importance of defective
education and the less one considers defective education to be an explanation for
criminal behavior. Table 2.1 presents the descriptive statistics for this example. we
use this simple example to describe and illustrate the exploratory and confirmatory
methods for comparisons of means. A more elaborate example is discussed at the end
of this chapter.
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Table 2.1: Number of Observations (ni), Sample Means (yi), and Sample Standard
Deviations (sdi) of the Importance of Defective Education in Explaining Criminal
Behavior for Group i

i offender type ni yi sdi
1 person 20 11.95 4.42
2 property 20 9.75 3.78
3 non 31 8.77 3.07

The model used to answer questions about differences in means is the analysis of
variance (ANOVA) model:

yij = µi + εij , (2.1)

where yij is the jth observation (j = 1, . . . , ni) of the dependent variable for Group i
(i = 1, . . . , k), µi is the mean of Group i, and εij is the error term. The error terms
are independently and normally distributed, with expected value 0 and variance σ2,
that is, εij ∼ N (0, σ2).

There are two different approaches for comparisons of means, namely exploration
and confirmation. In exploration, the researcher has no theory or expectation about
which pairs or subsets of means are equal. Therefore, all the possible configurations
of means are inspected. In the example, where k = 3, five hypotheses are under
investigation:

HE0 : µ1 = µ2 = µ3,

HE1 : µ1 = µ2, µ3,

HE2 : µ1, µ2 = µ3, (2.2)

HE3 : µ1 = µ3, µ2,

HEA : µ1, µ2, µ3,

where “µi = µi′”, respectively,“µi, µi′” denotes that µi and µi′ (for i, i′ = 1, 2, 3)
are equal, respectively, not restricted. In confirmation, the researcher has one or more
theories or expectations with respect to the ordering of the means. In the example,
the hypotheses of interest with respect to defective education are:

HC0 : µ1 = µ2 = µ3

HC1 : µ1 > µ2 > µ3 (2.3)

HCA : µ1, µ2, µ3,

where “µi > µi′” denotes that µi is larger than µi′ (for i, i′ = 1, 2, 3). Hypothesis HC1

is based on the expectations of Palmer and Gough (2007) and on previous research.
Palmer and Gough expected that the person and property offenders would be less
likely to rate defective education as being important for explaining crime (against
person or property) than the non-offenders (i.e., µ1 > µ3 and µ2 > µ3). According to
previous research, crime against property (e.g., burglary) is likely to be attributed
to defective education. Therefore, it is expected that person offenders attribute
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less importance to defective education than property offenders (i.e., µ1 > µ2).
When these expectations are combined, this leads to the hypothesis HC1 : µ1 >
µ2 > µ3. The evaluation of the order-restricted hypothesis HC1 requires competing
hypotheses. Here, the traditional null (HC0) and alternative (HCA) hypotheses are
the competitors.

Within exploration and confirmation, three different types of methods can be
distinguished: hypothesis testing, model selection, and Bayesian model selection.
Therefore, six different types of techniques for comparisons of means (see Table 2.2)
are introduced and evaluated in this chapter.

There are several exploratory hypothesis testing techniques. We look at the
Shaffer-Welch Fq (SWFq) test, since it is the most powerful test in exploratory
hypothesis testing, when controlling α for all comparisons (Ramsey, 2002; Toothaker,
1993, pp. 42–43, 48). Thus, the SWFq test has the highest probability of rejecting a
null hypothesis H0 that is false while controlling the familywise error rate which is
defined as P (at least one false rejection of H0 : µi = µi′ (for all i, i′ = 1, . . . , k)) = α.
However, the SWFq test assumes an equal number of observations per group (i.e.,
ni = n for i = 1, . . . , k). According to Toothaker (1993, pp. 60), the Tukey-Kramer
(TK) test is a popular procedure for unequal group observations. The TK test is
a modification of the t statistic, a simple technique, and it maintains the α control
for all comparisons. Therefore, we look at these two exploratory hypothesis testing
techniques, although they might not be as familiar as some other techniques. Note that
other techniques, for example, the t test, the Scheffé test, and Fisher’s least significant
difference (Toothaker, 1993, pp. 12–13 and 49, 34 and 51, and 41, respectively), are
expected to perform similarly. The two most familiar information criteria are probably
the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).
Another is Risanen’s information criterion (RIC). When these are used in a classical
way, all possible configurations of means are inspected. For k = 3, these are summed
up in (2.2). According to Dayton (1998, 2003); Neath and Cavanaugh (2006), the
performance of the information criteria can be improved by looking at all the possible
configurations of the ordered means. When k = 3 and y1 > y2 > y3, as in the
example (see Table 2.1), one then does not look at HE3 in (2.2). That is why we look
at this exploratory model selection technique, which is called the paired-comparison
information criterion (PCIC). Note that the PCIC can be based on any information
criterion. We use the AIC, BIC, and RIC, because Dayton (2003) uses these three. In
Bayesian model selection (BMS), one can use the posterior model probabilities. Note
that BMS is confirmative in essence. It can, however, also be used in an exploratory
way. Furthermore, we use the F̄ test as confirmatory hypothesis testing technique and
the order-restricted information criterion (ORIC) as a confirmatory model selection
technique based on an information criterion. As far as we know, these are the only
options.

All methods are based on the ANOVA model. The assumptions of the ANOVA
model are (a) the dependent variable must be normally distributed for each group,
(b) the population variances are equal for each group, and (c) the observations are
independent. We assume that these assumptions are met in the examples used in
this chapter. We return to this in the Discussion. In the next section, examples of
order-restricted hypotheses encountered in the psychological literature are presented.
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2.2 Examples of Order-Restricted Hypotheses

In addition to Palmer and Gough (2007), this section presents four other examples
of order-restricted hypotheses. At the end of this chapter another example is given,
based upon Gupta, Turban, and Bhawe (2008).

Lievens and Sanchez (2007) investigated the effect of training on the quality of
ratings made by consultants. One variable of interest is the signal detection accuracy
index, which “refers to the extent to which individuals were accurate in discerning
essential from nonessential competencies for a given job” (Lievens & Sanchez, 2007, p.
817). They distinguish three groups of consultants, namely the expert (1), the training
(2), and the control (3) group. The authors expected that accuracy of competency
ratings would be higher among experts and trained raters than among raters in the
control group (i.e., µ1 > µ3 and µ2 > µ3) and furthermore, that it would be highest
among raters who already had competency modeling experience (i.e., µ1 > µ2). These
expectations can be represented by the hypothesis H1 : µ1 > µ2 > µ3.

Wiener, Holtje, Winter, Cantone, and Gross (2007) examined the purchasing
decisions made during a simulated online shopping trip. One of the variables of interest
is the likelihood-to-buy. Their design contained two factors. The factor disclosure has
two levels: the enhanced (e) disclosure condition and the unenhanced (u) disclosure
condition. In the enhanced disclosure condition, details were given about “credit loan
agreements, including interest rates, payment amounts, and repayment time” (Wiener
et al., 2007, p. 35); in the unenhanced disclosure condition, no details were given. The
factor anticipated emotion has four levels that were manipulated by the researchers:
in the pleasant purchase condition (p) persons were manipulated to expect a pleasant
feeling after a buy and an unpleasant feeling after a nonbuy; in the unpleasant
purchase condition (u) persons were manipulated to expect an unpleasant feeling
after a buy and a pleasant feeling after a nonbuy; in the neutral purchase condition
(n) persons were manipulated to feel neutral after a buy or a nonbuy; and in the
control purchase condition (c) the participants simply purchased products without
anticipated emotion manipulations. Wiener et al. expected that in both disclosure
conditions the pleasant-to-buy group would be more likely to make purchases than
the unpleasant-to-buy group (i.e., µep > µeu and µup > µuu). Furthermore, they
expected that disclosure would be influential only for the control and neutral purchase
conditions, where people with “enhanced disclosure information should buy less than
would those without enhanced disclosure” (Wiener et al., 2007, p. 35); µec > µuc and
µen > µun. The latter implies that no difference is expected in the likelihood-to-buy
between the people in the enhanced and unenhanced disclosure groups for both the
pleasant-to-buy and unpleasant-to-buy conditions (i.e., µep = µup and µeu = µuu).
These expectations can be represented by one hypothesis, namely

H1 : µec > µuc,

µen > µun,

µep = µup > µeu = µuu

Hasel and Kassin (2009) examined whether a confession alters the identification
decisions of eyewitnesses and their confidence in those decisions. The variable of
interest is the confidence rating for their identification. The participants were asked
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to give a confidence rating after identification (Phase a). Then the participants were
randomly assigned to four conditions: The participant was told that the identified
suspect had confessed (Condition 1), all suspects had denied involvement (Condition
2), the identified suspect had denied involvement (Condition 3), or another person
confessed (Condition 4). Hereafter, the participants were asked to give another
confidence rating for their identification (Phase b). The authors expected that in
Condition 1, where the identified suspect confessed, their confidence would increase
(i.e., µb1 > µa1); that in the other three conditions their confidence would decrease
(i.e, µb2 < µa2 and µb3 < µa3 and µb4 < µa4); and that the confidence ratings in Phase
b would be in decreasing order from Condition 1 to 4 (i.e, µb1 < µb2 < µb3 < µb4).
These expectations can be represented by one hypothesis:

H1 : µb1 > µa1,

µb2 < µa2,

µb3 < µa3,

µb4 < µa4,

µb1 < µb2 < µb3 < µb4

Lucas (2003) investigated the difference between female and male leadership.
The variable of interest is the influence of the leader, which is measured by the
number of times (out of a total of 10) the subject switches to the leader’s answer.
Five experimental groups were distinguished: a group with a randomly selected male
leader (Group 1), a group with a randomly selected female leader (Group 2), a group
where the male team member who scored highest on a previous task is selected as
leader (Group 3), a group where the female team member who scores highest on a
previous task is selected as leader (Group 4) and a group in which female leadership
is institutionalized and the female team member who scored highest on a previous
task is selected as leader (Group 5). The institutionalization was done by showing
the participants a film in which it was normal to have female leadership and women
did well as leaders. The hypotheses of Lucas (2003) are that male leaders (Groups 1
and 3) exert more influence over participants than female leaders in the same leader
selection method (Groups 2 and 4, respectively); that is, µ1 > µ2 and µ3 > µ4.
Leaders appointed on the basis of their ability (Groups 3 and 4) exerted more influence
over participants than leaders of the same sex appointed randomly (Groups 1 and 2,
respectively); that is, µ3 > µ1 and µ4 > µ2. Institutionalized female leaders selected
on the basis of their ability (Group 5) exerted more influence over participants than
“normal” female leaders selected on the basis of their ability (Group 4) and randomly
selected female leaders (Group 1); that is, µ3 > µ1 and µ3 > µ4, which can be written
(for ease of notation in the resulting H1) as µ3 > {µ1, µ4}. Institutionalized female
leaders selected on the basis of their ability (Group 5) exerted the same amount
of influence over participants as male leaders appointed on the basis of their ability
(Group 3); that is, µ5 = µ3. These expectations can be represented by the hypothesis
H1 : µ5 = µ3 > {µ1, µ4} > µ2.

To investigate the hypotheses of interest, software can be helpful. For PCIC
only the source code for the programming language GAUSS is made available in
an .rtf file (Dayton, 2001). Software for BMS is available, see Klugkist, Laudy, and
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Hoijtink (2005). The F̄ test and the ORIC are not available in any software program.
Therefore, these techniques, the SWFq test, and the TK test are implemented
in ComparisonOfMeans.exe. A zip file with the software ComparisonOfMeans.exe,
the appropriate text files, and a tutorial can be found at http://staff.fss.uu

.nl/RMKuiper and www.fss.uu.nl/ms/informativehypotheses. This zip file also
includes data, input, and output files of the examples of Palmer and Gough (2007),
Gupta et al. (2008), and Lucas (2003).

In the next sections, we describe the three exploratory and three confirmatory
methods and illustrate them using the example concerning the importance of
defective education in explaining criminal behavior, along with input and output
of ComparisonOfMeans.exe. Subsequently, we make two comparisons: hypothesis
testing versus model selection using information criteria and Bayesian model selection,
and exploration versus confirmation. The Appendix contains technical notes for the
interested reader who wants to learn more about the technical nature of some of the
aspects of each technique.

2.3 Exploration

2.3.1 Hypothesis Testing Using the SWFq Test

Goal: Find significant pairwise differences.

Procedure: Do an overall F test followed by the Welsch (1977) step-down procedure
(Ramsey, 2002; Toothaker, 1993, pp. 42–43). According to Shaffer (1979), the addition
of the overall F test increases the power of a step-down procedure. This procedure
is elaborated and illustrated below. Note that in Toothaker (1993, pp. 42–43) the
technique is called Shaffer-Ryan.

Illustration and Interpretation of the Results: The decision steps of the SWFq test
are illustrated using the defective education data of Palmer and Gough (2007). The
SWFq test requires equal group sizes. To be able to apply it to the data in Table 2.1,
we generated data with 20 observations for the third group (i.e., the non-offenders)
with the same mean and standard deviation as the original 31 cases.

Let ni, the number of observations in Group i, equal n for all i and let N be the
total number of observations.

1. Overall F test: Do an overall F test. If F is significant, proceed with SWFq;
otherwise, stop and fail to reject H0 : µ1 = . . . = µk.
In the example, an F (k − 1 = 2, N − k = 57) of 3.68 renders a significant p value
of 0.03.

2. Order means (if F is significant) and determine pairwise differences:
Order the means in ascending order. Calculate the pairwise differences (i.e., ȳi−ȳi′
for i, i′ = 1, . . . , k, where ȳi is the sample mean of Group i) of the ordered means
(see Table 2.3).

3. Select the largest pairwise difference and determine the stretch size:
Select from all the pairwise differences that have not yet been evaluated the largest

http://staff.fss.uu.nl/RMKuiper
http://staff.fss.uu.nl/RMKuiper
www.fss.uu.nl/ms/informativehypotheses
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pairwise difference ȳi− ȳi′ . In case of a tie, select the one with the largest stretch
size.
Determine the stretch size s of ȳi − ȳi′ . This is the number of means located
between ȳi and ȳi′ plus two (for ȳi and ȳi′). One may obtain s by first assigning
the numbers 1 to k to the k ordered means such that the numbers indicate the
ranking in the ordering and then by calculating

s = ranking of ȳi − ranking of yi′ + 1.

In the comparison of the largest and smallest mean, s = k. When comparing two
adjacent mean, s = 2.
In the example, the largest pairwise difference is 3.18 (see Table 2.3), with a
stretch size equal to 3.

4. Test H0 : µi = µi′ (accounting for multiple comparisons): Reject H0 : µi =
µi′ when

|tȳi−ȳi′ | =

∣∣∣∣∣∣ ȳi − ȳi′√
MSW

2
n

∣∣∣∣∣∣ ≥ tSWFq
crit =

qαsdfs,dfW√
2

, (2.4)

were MSW is the within-group mean square of the whole design; that is,

MSW =

∑k
i=1

∑ni
j=1(yij − ȳi)2

N − k
,

and qαsdfs,dfW is the critical value of the studentized range distribution with a
significance level of

αs =

{
α, for s = k, k − 1;
1− (1− α)s/k, for s ≤ k − 2,

where α is the nominal significance level, often set to .05, the error degrees of
freedom dfW = N − k, and the ”stretch size“ degrees of freedom

dfs =

{
k − 1, for s = k, k − 1;
s, for s ≤ k − 2.

In the example, |tȳ3−ȳ1 | is 2.65 (see Table 2.4). The critical value tSWFq
crit is 2.00.

This implies that H0 : µ3 = µ1 is rejected. Note that only for k = 2 and k = 3
the critical values are the same for all stretch sizes (i.e., when k = 3, for s = 2
and s = 3). For k > 3, they are decreasing with stretch size.

5. Stopping rule: When ȳi− ȳi′ is not significant, the subsets of this nonsignificant
set are also nonsignificant. For example, when k = 3 and ȳ1− ȳ3 is not significant,
the nonsignificant set consists of the Groups 3, 2 and 1, denoted by {3, 2, 1}. Then,
the subsets are {3, 2} and {2, 1}. In other words, when made into a table like
Table 2.3, the pairwise differences below and/or to the left of this nonsignificant
pairwise difference are nonsignificant too. Note that these subsets / pairwise
differences do not have to be evaluated any more. Return to Step 3 and continue
with the largest pairwise difference that has not yet been tested (directly or
indirectly). Proceed this way until all pairwise differences are evaluated (directly
or indirectly). Table 2.4 shows that for the example at hand, only µ1 = µ3 is
rejected.
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Table 2.3: Ordered Means and Pairwise Differences (ȳi− ȳi′ for i, i′ = 1, 2, 3) Between
the Ordered Means for Defective Education

Group no. (i) Ordered means ȳi ȳ3 − ȳi ȳ2 − ȳi ȳ1 − ȳi
3 8.77 0.98 3.18
2 9.75 2.20
1 11.95

Table 2.4: SWFq Test for Defective Education When n3 = 20 (Nominal α = .05)

Pairwise diff. (ȳi − ȳi′) i & i′ s |tȳi−ȳi′ | tSWFq
crit Significant

3.18 3 & 1 3 2.65 2.00 yes
2.20 2 & 1 2 1.83 2.00 no
0.98 3 & 2 2 0.82 2.00 no

Note. s = stretch size.

Input and Output of ComparisonOfMeans: Note that, in this case, we have three
groups with each 20 observations. The data, consisting of two columns, must be
given in Data.txt. The group number (i) must be given in the first column, and the
corresponding data (yij) must be given in the second column. (More details can be
found in the tutorial of ComparisonOfMeans.exe.) When performing the SWFq test,
lines 1 to 3 can be ignored, and lines 4 to 9 in Input.txt should look as follows:

Number of groups
3
Number of observations in the groups
20 20 20
Perform: SWFandTK, PCIC, ExplBMS, Fbar, ORIC, ConfBMS (1 = yes, 0 = no)
1 0 0 0 0 0

All the other lines are not of interest here, but should not be deleted.
In the first lines of the output file, Output.txt, there are some remarks regarding

the software, followed by the summary of the data. In case of the above mentioned
input, the output of the overall F test and the SWFq test is as follows. (Bold numbers
change with the data set.)

– Overall F test –

The probability that an F( 2, 57) variate is greater than 3.68 is 0.03,
thus reject H0 for all comparisons (at a nominal alpha level of 0.05)

– SWFq –

The following pairs of means are, according to Shaffer-Welch-test, significant
different (with 3 groups and 57 degrees of freedom):
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Pairwise difference between mean 3 and 1 is significant
(significance level = 0.01, alpha level = 0.05)

Strengths and Weaknesses: A drawback of the SWFq test is that the SWFq test can
render inconsistent results, as can be seen in Table 2.4. It is logically impossible
that µ1 6= µ3, µ1 = µ2, and µ2 = µ3, because the latter two imply µ1 = µ3.
Another weakness is that when the number of groups (k) and therefore the number
of hypotheses increases, the probability of choosing an incorrect hypothesis increases.

2.3.2 Hypothesis Testing Using the TK Test

Goal: Find significant pairwise differences.

Procedure: In the TK test (Tukey, 1953; Kramer, 1956, 1957; Toothaker, 1993, pp.
60–61) a test statistic is calculated for every pairwise difference ȳi−ȳi′ (i, i′ = 1, . . . , k).
Accounting for multiple comparisons, they are evaluated using the studentized range
distribution:

H0 : µi = µi′ is rejected if |tȳi−ȳi′ | =

∣∣∣∣∣ ȳi−ȳi′√
MSW ( 1

ni
+ 1
n
i′

)

∣∣∣∣∣ ≥ tTKcrit =
qαk,dfW√

2
.

Illustration and Interpretation of the Results: In Table 2.5, the significant and
nonsignificant differences for defective education are shown. The same conclusions
are obtained as for the SWFq test. Note that the SWFq test is based on a data set
with equal ns and the TK test on the original data set.

Table 2.5: TK Test for Defective Education (Nominal α = .05)

i & i′ Pairwise diff. (ȳi − ȳi′) |tȳi−ȳi′ | tTKcrit Significant
1 & 2 2.20 1.89 2.40 no
1 & 3 3.18 3.01 2.40 yes
2 & 3 0.98 0.93 2.40 no

Input and Output of ComparisonOfMeans: The input for the TK test is the same as
for the SWFq test, only in this case the number of observation for Group 3 is 31 and
not 20:

Number of observations in the groups
20 20 31

In the example, the output of the TK test looks like this (bold numbers change
with the data set):
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– TK –

The following pairs of means are, according to Tukey-Kramer-test, significant
different (with 3 groups and 68 degrees of freedom):

Pairwise difference between mean 1 and 3 is significant (significance level = 0.01)

Strengths and Weaknesses: The TK test has the same drawbacks as the SWFq test.

2.3.3 Model Selection Using the PCIC

Goal: Select the best fitting model/hypothesis of a set of hypotheses. The set of
hypotheses consists of 2k−1 distinct patterns of subsets of ordered means.

Procedure: Calculate logLm and PTm:

1. logLm, that is, the log likelihood for hypothesis Hm, is calculated by:

logLm(µ̂m1, . . . , µ̂mk, σ̂
2
m|y) =

−N
2

log(2π)−N
2

log(σ̂2
m)− 1

2σ̂2
m

k∑
i=1

ni∑
j=1

(yij−µ̂mi)2, (2.5)

where σ̂2
m = 1

N

∑k
i=1

∑ni
j=1(yij − µ̂mi)2, N =

∑
i ni, and µ̂m1, . . . , µ̂mk are the

values for which (2.5) is maximized subject to the restrictions in hypothesis
Hm. So, the restricted means, that is, µ̂m1, . . . , µ̂mk, are in accordance with the
hypotheses of interest. For example, for hypothesis HE0 in (2.2), it holds that

µ̂01 = µ̂02 = µ̂03 = µ0, where µ0 =
∑3
i=1 niyi∑3
i=1 ni

is the overall sample mean. For

hypothesis HE1 in (2.2), it holds that µ̂01 = µ̂02 = n1y1+n2y2
n1+n2

and µ̂03 = y3.
Furthermore, for hypothesis HEA in (2.2), it holds that µ̂01 = y1, µ̂03 = y3 and
µ̂02 = y2.
If the restricted mean values of Hm are equal to the sample mean values, like
in hypothesis HEA, Hm has the highest log likelihood value (see Table 2.6). The
larger the difference between the restricted means and the sample means, the
lower the value of the log likelihood. For example, the restrictions in hypothesis
HE2 are not in agreement with the sample means and the restrictions in HE0

even less, therefore, log L2 = −190.13 > log L0 = −194.09 (see Table 2.6).
2. PTm, that is, the penalty term for hypothesis Hm, is the number of distinct means

in Hm (am) plus 1 for the residual variance σ2, that is, PTm = am + 1.

The (log) likelihood represents the fit of the hypothesis with respect to the
data at hand. However, the hypothesis with the highest (log) likelihood is not
necessarily the best hypothesis. In determining the best hypothesis, the size of the
hypothesis also needs to be taken into account. This is represented by the penalty
term. As in Ockham’s razor, the penalty term can be seen as an implementation
of a simple-hypothesis-is-preferred principle. Note that the size of the hypothesis is
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Table 2.6: PCIC of the 22 = 4 Exploratory Hypotheses (HEm) for Defective Education

Ordered means 8.77 9.75 11.95
Group nr. (i) 3 2 1

Restricted means PCIC based on

m HEm µ̂m3 µ̂m2 µ̂m1 PTm logLm AICm BICm RICm
0 µ1 = µ2 = µ3 9.94 9.94 9.94 2 -196.36 396.71 401.24 394.94
1 µ1 = µ2, µ3 8.77 10.85 10.85 3 -193.70 393.41 400.19 390.74
2 µ1, µ2 = µ3 9.15 9.15 11.95 3 -192.34 390.68 397.46 388.01
A µ1, µ2, µ3 8.77 9.75 11.95 4 -191.89 391.79 400.84 388.01

Note. PCIC = paired-comparison information criterion; AIC = Akaike information
criterion; BIC = Bayesian information criterion; RIC = Risanen’s information
criterion. Bolding indicates the lowest value in each column.

sometimes referred to as the complexity of the hypothesis. Therefore, the information
criteria are determined by the log likelihood and the penalty. As mentioned, we will
look at the PCIC (Dayton, 1998, 2003) based on the AIC, the BIC, and the RIC:

AICm = −2 logLm + 2(am + 1),

BICm = −2 logLm + log(N)(am + 1),

RICm = −2 logLm + log

(
N + 2

24

)
(am + 1).

The hypothesis with the smallest value for an information criterion is the preferred
hypothesis. This hypothesis is preferred because it best uses the information in the
data. In other words, it has the optimal balance between the fit (i.e., log Lm) and the
size (i.e., PTm = am + 1) of the hypothesis.

Illustration and Interpretation of the Results: There are four hypotheses that can be
constructed using the three ordered means of the defective education data: namely
HE0, HE1, HE2, and HEA from (2.2). The AIC, BIC, and RIC values for these
hypotheses among others are given in Table 2.6.

The log likelihood of hypothesis HEA (i.e., m = A) is the highest (see Table 2.6),
because for this hypothesis the restricted means (i.e., the µ̂Ai) are equal to the sample
means. However, HEA has a complexity factor of four, because it contains three
distinct means plus one for the residual variance σ2. In this illustration, hypothesis
HE2 : µ1, µ2 = µ3, is the preferred hypothesis (according to all three information
criteria).

Input and Output of ComparisonOfMeans: The input for the PCIC is analogous to
the input of the TK test. For the example, the output of the PCIC is given below.
In the lines concerning group structure, a number represents a group index. So, “1 2
3” represents µ1, µ2, µ3, “1 1 1” represents µ1 = µ2 = µ3, and “1 2 2” represents
µ1, µ2 = µ3. (Bold numbers change with the data set.)
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– PCIC –

The group-structure and the values of the information criteria for the three best
hypotheses, according to the Paired-Comparisons Information Criterion.

AIC = -2 * log likelihood + 2 * penalty
BIC = -2 * log likelihood + log(N) * penalty
RIC = -2 * log likelihood + log((N+2)/24) * penalty

According to the AIC:

Group-structure of the preferred hypothesis: 1 2 2
Group-structure of the second best hypothesis: 1 2 3
Group-structure of the third best hypothesis: 1 1 2

AIC of the preferred hypothesis = -2 * -192.34 + 2 * 3 = 390.68
AIC of the second best hypothesis = -2 * -191.89 + 2 * 4 = 391.79
AIC of the third best hypothesis = -2 * -193.70 + 2 * 3 = 393.41

According to the BIC:

Group-structure of the preferred hypothesis: 1 2 2
Group-structure of the second best hypothesis: 1 1 2
Group-structure of the third best hypothesis: 1 2 3

BIC of the preferred hypothesis = -2 * -192.34 + log(N) * 3 = 397.46
BIC of the second best hypothesis = -2 * -193.70 + log(N) * 3 = 393.41
BIC of the third best hypothesis = -2 * -191.89 + log(N) * 4 = 391.79

According to the RIC:

Group-structure of the preferred hypothesis: 1 2 2
Group-structure of the second best hypothesis: 1 2 3
Group-structure of the third best hypothesis: 1 1 2

RIC of the preferred hypothesis = -2 * -192.34 + log((N+2)/24) * 3 = 388.01
RIC of the second best hypothesis = -2 * -191.89 + log((N+2)/24) * 4 = 388.24
RIC of the third best hypothesis = -2 * -193.70 + log((N+2)/24) * 3 = 390.74

Note that the results of the PCIC is consistent with the results of the TK test.

Strengths and Weaknesses: The strength of the PCIC is that it, like all model selection
techniques, always gives consistent results. A weakness of the PCIC is that when the
number of groups (k) and therefore the number of hypotheses (2k−1) increases, the
probability of selecting the best hypothesis decreases. Because in model selection
there is no null hypothesis, we do not call this probability power but the probability
of choosing the best hypothesis.
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2.3.4 Model Selection Using Exploratory BMS

Goal: Select the best fitting model/hypothesis of a set of hypotheses. In exploratory
BMS, like when using the PCIC, the set of hypotheses consists of 2k−1 distinct
patterns of subsets based on means ordered from smallest to largest.

Procedure: Calculate the marginal likelihood of a hypothesis. In order to do this, the
likelihood with respect to the parameters µ1, . . . , µk, σ2, and the prior distribution of
these parameters are needed. The log likelihood is given in (2.5).

Prior Distribution. The prior distribution reflects prior knowledge with respect to
the means (µ1, . . . , µk) and the residual variance (σ2). So, the (order) restrictions of
Hm are taken into account in the prior (see the technical note “The Prior” in the
Appendix for an elaboration). Klugkist, Laudy, and Hoijtink (2005) used the same
and mutually independent prior distribution for each mean. They and others (Chen
& Sungduk, 2008; Johnson, 2005; Rossell, Baladandayuthapani, & Johnson, 2008)
showed that such a prior does not favor any of the hypotheses under investigation.
Furthermore, they showed that this prior has good properties when the goal is to
select the best of a set of order-restricted hypotheses.

The prior knowledge of each mean is represented by a normal distribution, with
a data-based mean β0 and data-based variance τ2

0 . The prior distribution of σ2 is a
scaled inverse chi-squared distribution, with hyperparameters ν0 and κ2

0, where ν0 is
the degrees of freedom parameter and κ2

0 is the scale parameter. (For an elaboration,
see the technical note “Data-based Hyperparameters” in the Appendix.) The prior is
chosen such that it has a minimal impact on the results. This is done by choosing a
prior which is not only vague (such that it has low impact), but also compatible with
the data (such that it is not too vague (Klugkist, Laudy, & Hoijtink, 2005)).

The mean β0 and the variance τ2
0 depend not only on the data but also on a

user-specified term that reflects the vagueness of the prior (PV ). Three degrees of
vagueness are used here: PV equal to 1, 2, and 3, where PV = 3 renders the vaguest
prior.

Marginal Likelihood. The marginal likelihood for hypothesis Hm is a measure of
the degree of support for hypothesis Hm provided by the data (Klugkist, Laudy, &
Hoijtink, 2005). It is equal to the integral of the likelihood over the prior distribution
for the hypothesis at hand, Hm (see the technical note “The Marginal Likelihood”
in the Appendix for an elaboration). For an elaboration of the interpretation and
calculation of the marginal likelihood, we refer the reader to Klugkist (2008) and
Klugkist, Laudy, and Hoijtink (2005).

The marginal likelihood quantifies the support in the data for the hypothesis at
hand (Hm) accounting for the fit and complexity/size of Hm. In this way, the marginal
likelihood resembles information criteria, like the PCIC based on the AIC, which can
be written as −2 log likelihood + 2 penalty. That is, −2 times the log of the marginal
likelihood can be written as −2 log likelihood + 2 penalty (see the technical note
“The Marginal Likelihood” in the Appendix), where the penalty equals −1 times the
log of the ratio of the prior density and the posterior density. Note that the marginal
likelihood is higher for a hypothesis with a better fit and/or a lower complexity.
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To interpret several marginal likelihoods at once, it can be helpful to transform
them into posterior model probabilities (PMPs). A PMP is the probability that,
given the data, the corresponding hypothesis is the best of the set of hypotheses
(assuming a priori that all the hypotheses have equal probabilities of being the best;
the interested reader is referred to the technical note “Posterior Model Probability”
in the Appendix). The hypothesis with the highest PMP is the preferred hypothesis,
that is, the best hypothesis of the set of hypotheses.

Illustration and Interpretation of the Results: In exploratory BMS, the same hypothe-
ses are compared as in PCIC. In Table 2.7, the PMPs (for each hypothesis and each
prior vagueness) are shown for the defective education data. The preferred hypothesis
(for each prior vagueness) is hypothesis HE2 : µ1, µ2 = µ3.

Note that when PV increases, the support for hypotheses with equality constraints
(“=”), that is, HE0, HE1, and HE2, relative to the support for the unconstrained
model (i.e., HEA) increases. However, the differences in PMP values are not that large
for the different PV values. This implies that the results are robust with respect to
the specification of the prior distribution. The interested reader is referred to Hoijtink,
Huntjens, Reijntjes, Kuiper, and Boelen (2008), Klugkist, Laudy, and Hoijtink (2005),
and Klugkist, Kato, and Hoijtink (2005) for further elaboration.

Table 2.7: Posterior Model Probabilities (PMP) of the 22 = 4 Exploratory Hypotheses
(HEm) for Defective Education for Three Types of Prior Vagueness (PV )

PMP

m HEm PV = 1 PV = 2 PV = 3
0 µ1 = µ2 = µ3 .04 .06 .06
1 µ1 = µ2, µ3 .13 .16 .17
2 µ1, µ2 = µ3 .58 .55 .62
A µ1, µ2, µ3 .25 .23 .16

Note. Bolding indicates the highest value in
each column.

Input and Output of ComparisonOfMeans: The input for exploratory BMS is
analogous to the input for the TK test. However, in case of BMS, two additional
specifications are needed: the desired δ and the prior vagueness PV . Specify δ = 0 for
an “exact equality” (i.e., µ1 = . . . = µk, that is, |µi−µi′ | = δ = 0 for all i, i′ = 1, . . . , k)
and any positive number (i.e., δ > 0) for an “about equality” (i.e., µ1 ≈ . . . ≈ µk,
that is, |µi−µi′ | < δ for all i, i′ = 1, . . . , k). In the latter case, one must specify δ in a
reasonable way, for example, by looking at previous studies and/or asking experts in
the field. The default recommendation for PV is PV = 2, but any positive number
may be specified. When setting δ = 0 and PV = 3, the first lines of Input.txt should
look as follows:
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When BMS is performed, an interval for equality relations (delta) is needed and a
parameter for prior vagueness (pv).

When BMS is not performed, nothing needs to be filled in (but do not delete these
lines).

0.0 3.0

In the example, the output of exploratory BMS looks like the following. (Bold numbers
change with the data set.)

– exploratory BMS –

The preferred hypothesis, according to exploratory Bayesian model selection, has
the following group-structure:
1 2 2

The resulting Bayes factor (BF) value (of this hypothesis versus the unconstrained
hypothesis) and the posterior model probabilities (PMP) of this hypothesis with
respect to the whole set of hypotheses:

PMP
0.62

As in PCIC, “1 2 2” represents µ1, µ2 = µ3.

Strengths and Weaknesses: The strength of BMS is that it, like all model selection
techniques, always gives consistent results. A weakness of BMS is that it is a time
consuming technique. In addition, if a hypothesis contains an equality constraint (i.e.,
“=”), BMS can be sensitive to the choice of the prior. However, as shown in Table 2.7,
for these choices of PV this sensitivity usually does not lead to a different evaluation
of the hypotheses under investigation.

2.4 Confirmation

2.4.1 Hypothesis Testing Using the F̄ Statistic

In standard statistical testing, the hypothesis all means are equal (i.e, H0 : µ1 = . . . =
µk) is tested against the alternative not all means are equal (i.e., HA : µ1, . . . , µk).
This is usually tested with an F test using a one-way ANOVA. However, researchers
often want to test a certain order restriction because of a theory or expectation with
respect to the order of the means in the experiment. For example, it is expected
that non-offenders are more likely to rate defective education as being important
for explaining crime than the other two offenders, and property offenders are more
likely to rate it as being important than person offenders (see HC1 in (2.3)). Such an
order-restricted hypothesis can be tested with the F̄ test.

Goal: Evaluate the null hypothesis. When testing an ordered alternative (i.e., test
all means are equal against an order-restricted hypothesis), the traditional null
hypothesis is evaluated. When testing an ordered null (i.e., test an order-restricted
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hypothesis against all parameters are free), the order-restricted hypothesis is evalu-
ated. In summary, in the ordered alternative, H0 : µ1 = . . . = µk is tested against
Hm : µi−µi′ ≥ 0 (for some i, i′ = 1, . . . , k) and, in the ordered null, Hm : µi−µi′ ≥ 0
(for some i, i′ = 1, . . . , k) is tested against HA : µ1, . . . , µk.

Procedure: Calculate the value of the F̄ statistic (Silvapulle & Sen, 2005, pp. 25–42).
Like the classical F test, the F̄ test is based on the residual sum of squares
(RSS) for the tested null distribution (i.e., the classical null or an order-restricted
hypothesis) and the tested alternative (i.e., an order-restricted hypothesis or the
classical alternative, respectively). For the classical null (H0) and the classical
alternative (HA), the RSS are determined with respect to the overall mean (ȳ) and
sample means (ȳi), respectively. Note that these are the values for which the RSS is
minimized given that the values are in accordance with the hypothesis at hand (i.e.,
H0 and HA, respectively). The analogue is done for an (order-restricted) hypothesis,
Hm. The values that minimize the RSS given that these are in accordance with Hm

are called the restricted means. (For an elaboration see the technical note “The F̄
Statistic” in the Appendix.) So, the order restrictions are taken into account in one
of the RSS (depending on the type of F̄ test).

As with classical hypothesis testing, p values must be determined. Because of the
order restrictions, this is done via simulation (Silvapulle & Sen, 2005, pp. 32–33 and
40; for an elaboration see the technical note “Calculation of the p Value of the F̄
Statistic” in the Appendix).

Illustration and Interpretation of the Results: Table 2.8 shows that HC0 : µ1 = µ2 =
µ3 is rejected (for α = 0.05) when it is tested against both HCA : µ1, µ2, µ3 and
HC1 : µ1 > µ2 > µ3 and that HC1 is not rejected when it is tested against HCA. So,
HCA is preferred over HC0 and HC1 is preferred over both HC0 and HCA. Therefore,
HC1 is the preferred hypotheses.

Table 2.8: F̄ Test of the Specified Hypotheses for Defective Education

Hypotheses tested F̄ p

HC0 against HCA 9.11 .01
HC0 against HC1 9.11 .00
HC1 against HCA 0.00 1.00

Input and Output of ComparisonOfMeans: For all three confirmatory techniques (i.e.,
the F̄ test, ORIC, and confirmatory BMS), all hypotheses of interest must be given
explicitly. This must be done in Input.txt from line 10 on. In the example, the
hypotheses of interest are the set of hypotheses specified in (2.3).

In order to write down the hypotheses of interest in the input file, some notation
must be introduced. The way the hypotheses are written down in the input file has to
do with the hypothesized group numbers and the inequality constraints “>” and “<”.
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For ease, the first mean is said to be in the first group. When looking at HC0 : µ1 =
µ2 = µ3, all means are hypothesized to be in the same group. Therefore,HC0 is written
down as “1 1 1”. When looking at HCA : µ1, µ2, µ3, all means are hypothesized to be
in another group. Because there are no restrictions on the means, HCA is written down
as “1 2 3”. When looking at HC1 : µ1 > µ2 > µ3, all means are also hypothesized
to be in another group, but now there are restrictions on the means. The sign “>”
is represented by a “-3”. Therefore, HC1 : µ1 > µ2 > µ3 is represented by “1 -3 -3”,
meaning that the first mean is bigger than the second, which is bigger than the third
one. In the example, the ordering of the group numbers for all three hypotheses is “1
2 3” and all three hypotheses are written down in one line/restriction. (More details
on this can be found in the tutorial of ComparisonOfMeans.exe.)

When performing the F̄ test, the first half of Input.txt is analogous to the input
of the TK test, and the second half, from line 10 on, should look as follows:

In case of Fbar test and/or ORIC and/or ConfBMS:
Number of hypotheses to be compared
3
Number of restrictions per hypothesis
1
1
1
Ordering of means in restriction
1 2 3
1 2 3
1 2 3
(Order) Restrictions
1 1 1
1 -3 -3
0 0 0

The output of the F̄ test in the example looks like this (bold numbers change with
the data set and/or set of hypotheses):

– Fbar test –

Results of the Fbar test for the null hypothesis 1 and the unconstrained hypothesis
3

Hypotheses numbers Fbar value p-value
1 versus 3 9.11 0.01

Results of the ”ordered alternative” Fbar test
Ordered-hypothesis number Fbar value p-value

H0 versus 2 9.11 0.00

Results of the ”ordered null” Fbar test
Ordered-hypothesis number Fbar value p-value

2 versus Ha 0.00 1.00
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Strengths and Weaknesses: A disadvantage of the F̄ test is that it can only test one
order-restricted hypothesis at a time. In this case, the F̄ test results in three p values
(see Table 2.8), which can be evaluated straightforwardly and will give a consistent
result. When a researcher wants to test more than one order-restricted hypothesis, say
H1 and H2, problems arise. Then the F̄ tests results in five p values: one resulting from
the classical F test, two from the ordered alternative for both H1 and H2, and two
from the ordered null for both H1 and H2. No straightforward, nonarbitrary rules
exist for the evaluation of these five p values. Furthermore, these p values cannot
be used for a direct comparison of the two order-restricted hypotheses H1 and H2.
Therefore, the F̄ test is most useful when one order-restricted hypothesis has to be
evaluated.

2.5 Model Selection Using the ORIC

Goal: Select the best fitting model/hypothesis of a set of hypotheses. The ORIC
inspects a limited set of well defined hypotheses constructed using one or more
restrictions of the form µi − µi′ ≥ 0 for i, i′ = 1, . . . , k.

Procedure: Calculate the ORIC (Anraku, 1999) for hypothesis Hm by

ORICm = −2 logLm + 2 PTm, (2.6)

where

1. logLm is calculated by (2.5).
Note that in the ORIC the order restrictions are taken into account in the
(order-restricted) likelihood. Namely, the (order-restricted) likelihood is based
on means that maximize the likelihood (like the maximum likelihood estimates),
only theses estimates are in accordance with the restrictions in Hm. We will
refer to these means as the restricted means. Note that the restricted means
(µ̂m1, . . . , µ̂mk) are the same as the restricted means in the F̄ test (see the technical
note “The Restricted Means” in the Appendix).

2. PTm is calculated by:

PTm = 1 +

am∑
l=1

LPml · l, (2.7)

where LPml is the level probability for hypothesis Hm, that is, the a priori
probability that there are l distinct mean values among µ̂m1, . . . , µ̂mk (which are in
agreement with Hm), and am equals the number of distinct µis in the restrictions
of Hm. For example, in H1 : µ1 > µ2 > µ3, a1 = 3 and, in H2 : µ1 > µ2 = µ3,
a2 = 2. The computation of the level probabilities can be done via simulation
(Silvapulle & Sen, 2005, pp. 78–81). For a description of this simulation, see the
technical note “Calculation of the Level Probabilities” in the Appendix.
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The order restrictions are not only taken into account in the (order-restricted)
likelihood, but also in the penalty term. The penalty term can be seen as the
expected number of distinct mean values plus 1 (because of the unknown variance
term). When there are no order restrictions, this penalty reduces to the penalty
of the PCIC, that is, PTm = am + 1, and ORIC reduces to the AIC.

The hypothesis with the smallest value for the ORIC is the preferred hypothesis (as
in the PCIC).

Illustration and Interpretation of the Results of the ORIC: In Table 2.9, the restricted
means (µ̂mi), the log likelihood values (logLm), the penalty terms (PTm), and the
ORIC values are given for the three hypotheses for defective education.

Since the sample means are in accordance with the restrictions in both HC1 and
HCA, the restricted means (i.e., the µ̂mi’s for m = 1 and m = A) are equal to the
sample means. Therefore, hypotheses HC1 and HCA have the highest log likelihood.
However, HC1 is less complex than HCA (i.e, PT1 < PTA), because the means in
HCA are not restricted. When looking at the optimal combination of fit (i.e., log Lm)
and size/complexity (i.e., PTm) of the hypotheses, HC1 is the preferred hypothesis.

Table 2.9: ORIC of the Three Specified Hypotheses (HCm) for Defective Education

Restricted means

m HCm µ̂m1 µ̂m2 µ̂m3 PTm logLm ORICm
0 µ1 = µ2 = µ3 9.94 9.94 9.94 2.00 -196.36 396.71
1 µ1 > µ2 > µ3 11.95 9.75 8.77 2.82 -191.89 389.42
A µ1, µ2, µ3 11.95 9.75 8.77 4.00 -191.89 391.79

Note. ORIC = order-restricted information criterion.
Bolding indicates the lowest value.

Input and Output of ComparisonOfMeans: The input for the ORIC is analogous to
the input for the F̄ test. In the example, the output of the ORIC looks like this (bold
numbers change with the data set and/or set of hypotheses):

– ORIC –

The value of the Order-Restricted Information Criterion (ORIC) =
-2 * log likelihood + 2 * penalty:

for Hypothesis 1, ORIC = -2 * -196.36 + 2 * 2.00 = 396.71
for Hypothesis 2, ORIC = -2 * -191.89 + 2 * 2.82 = 389.42
for Hypothesis 3, ORIC = -2 * -191.89 + 2 * 4.00 = 391.79

The preferred hypothesis, according to the Order-Restricted Information Criterion,
of the hypotheses to be compared is hypothesis number 2,

with the following ordering(s) of means:
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1 2 3
and corresponding restriction(s):
1 -3 -3

Strengths and Weaknesses of the ORIC: As all model selection techniques, the ORIC
always gives consistent results.

Most researchers are able to specify reasonable hypotheses, since they are expert
in their research field. However, it is possible that the set of specified hypotheses
does not contain a reasonable or good hypothesis. In that case, a model selection
technique, like ORIC, will choose the best hypothesis of a set of weak hypotheses.
To ensure that a weak hypothesis is not chosen, one can include the unconstrained
hypothesis HA : µ1, . . . , µk in the set of hypotheses. HA will always be preferred
over a weak order-restricted hypothesis.

2.6 Model Selection Using Confirmatory BMS

Goal: Select the best fitting model/hypothesis of a set of hypotheses. Confirmatory
BMS, like the ORIC, examines a limited set of well defined hypotheses constructed
using one or more restrictions of the form µi − µi′ ≥ 0 for i, i′ = 1, . . . , k.

Procedure: Calculate the marginal likelihood of a hypothesis as is done in exploratory
BMS. Note that, in BMS, the order restrictions are taken into account via the
admissible space of the prior for hypothesis Hm (more details can be found in the
technical note “The Prior” in the Appendix).

Illustration and Interpretation of the Results: In Table 2.10, the PMPs (for each prior
vagueness) are given for the three hypotheses for defective education. The preferred
hypothesis (for each prior vagueness) isHC1 : µ1 > µ2 > µ3. Note again the robustness
of the inferences with respect to the vagueness of the prior distribution.

Table 2.10: Posterior Model Probabilities (PMP) of the Three Specified Hypotheses
(HCm) for Defective Education for Three Types of Prior Vagueness (PV )

PMP

m HCm PV = 1 PV = 2 PV = 3
0 HC0 : µ1 = µ2 = µ3 .03 .03 .06
1 HC1 : µ1 > µ2 > µ3 .80 .80 .78
A HCA : µ1, µ2, µ3 .17 .17 .17

Note. Bolding indicates the highest value in each column.

Input and Output of ComparisonOfMeans: The input for confirmatory BMS is
analogous to the input for the F̄ test. Note that, in this case, as when using exploratory
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BMS, δ and PV must be specified. In the example, with δ = 0 and PV = 3, the output
of confirmatory BMS looks like this (bold numbers change with the data set and/or
set of hypotheses):

– confirmatory BMS –

The resulting posterior model probabilities (PMP) of the order-restricted
hypotheses with respect to the whole set of hypotheses:

PMP
Hypothesis 1 0.07
Hypothesis 2 0.77
Hypothesis 3 0.16

The preferred hypothesis, according to confirmatory Bayesian model selection,
of the hypotheses to be compared is hypothesis number 2,

with the following ordering(s) of means:
1 2 3

and corresponding restriction(s):
1 -3 -3

Strengths and Weaknesses: Confirmatory BMS gains and suffers from the same things
as exploratory BMS. Also here, the illustration (see Table 2.10) shows that for
reasonable choices of PV , the prior sensitivity does usually not lead to a different
evaluation of the hypotheses. Furthermore, if a hypothesis contains only inequality
constraints (i.e., “<” and/or “>”), the relative support of this hypothesis with respect
to the unconstrained hypothesis shows that BMS is not sensitive to the choice of the
prior.

As is the case when using the ORIC, the unconstrained hypothesis should be
included in the set of hypotheses to protect against choosing a weak order-restricted
hypothesis.

2.6.1 Conclusions with Respect to Defective Education

From the SWFq test (in case of equal group sizes) and the TK test, it follows that
only the pairwise difference between Groups 3 and 1 is significant. Palmer and Gough
(2007) concluded the same when performing an ANOVA F test and a Scheffé post hoc
test. As mentioned before, this is a logically impossible result, because µ1 = µ2 and
µ2 = µ3 would imply µ1 = µ3. When using the PCIC and exploratory BMS, it can be
concluded that hypothesis HE2 : µ1, µ2 = µ3 is the preferred hypothesis (according
to all three criteria and for each prior vagueness, respectively). When looking at the
sample means, more can be said about the ordering of the means. However, when using
an exploratory method, the hypotheses of interest, µ1 > µ2 > µ3, is not evaluated.
From the three F̄ tests (i.e., the classical F test, the ordered alternative, and the
ordered null), we concluded that HC1 : µ1 > µ2 > µ3 is the preferred hypotheses. The
same is concluded when using the ORIC or doing confirmatory BMS (for each prior
vagueness).
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2.7 Comparison of the Two Approaches and the Three
Methods

2.7.1 The TK Test is Less Powerful than the SWFq Test

In case of equal group sizes, the TK test is less powerful than the SWFq test. Thus,
the SWFq test has a higher probability of rejecting a false null hypothesis than the TK
test has. This can be seen from the critical values for both tests (Toothaker, 1993, pp.
42–43, 48), because both tests are based on the same calculated value |tȳi−ȳi′ |. In the
example, in case of equal group sizes in defective education (i.e., n1 = n2 = n3 = 20),
the SWFq test has a critical value of 2.00 (see Table 2.4) which is lower than 2.41
(see Table 2.11), the critical value of the TK test. So, when 2.41 > |tȳi−ȳi′ | > 2.00
(for i, i′ = 1, 2, 3), the SWFq test does reject the (false) null hypothesis and the TK
test does not.

Table 2.11: TK Test for Defective Education when n3 = 20 (Nominal Alpha = 0.05)

i & i′ Pairwise diff. (ȳi − ȳi′) |tȳi−ȳi′ | tTKcrit Sign.
3 & 1 3.18 2.65 2.41 yes
2 & 1 2.20 1.83 2.41 no
1 & 2 0.98 0.82 2.41 no

2.7.2 The F̄ Test is More Powerful than the SWFq Test or the F Test

The advantage of the F̄ test is that it has more power than the SWFq test, since
it tests fewer hypotheses and it can test order-restricted hypotheses. The increase in
power due to testing order-restricted hypotheses can be illustrated by comparing the
ordered alternative F̄ test with the classical F test.

For example, look at a generated data set with k = 3 groups, effect size ES, and
n observations per group. When ES = 0, the sample means are the same and, when
ES = 0.1, 0.2, 0.3, 0.4, or 0.5, the sample means are decreasing, that is, y1 > y2 > y3.

Note that ES = 1
σ̂

√
1
3

∑3
i=1(yi − y)2 (Cohen, 1992), where y = 1

3

∑3
i=1 yi and σ̂

is set to 1. An effect size of ES = 0.1 is called small, ES = 0.25 medium, and
ES = 0.4 large. For ES = 0, a sample is constructed that is perfect in agreement
with H0 : µ1 = µ2 = µ3, and for ES > 0, one that is perfect in agreement with
H1 : µ1 > µ2 > µ3. In the ordered alternative F̄ test, H0 : µ1 = µ2 = µ3 is tested
against H1 : µ1 > µ2 > µ3. Note that, in the F test, H0 : µ1 = µ2 = µ3 is tested
against HA : µ1, µ2, µ3.

In Table 2.12, the p values of both tests are given for each generated data set. For
ES > 0, the p values of the ordered alternative F̄ are always lower than the p values
of the F test. Thus, (the false) H0 is rejected for an lower effect size when tested
against H1 than when tested against HA. Therefore, the ordered alternative F̄ test
has more power than the F test (when the order-restricted hypothesis is true). Hence,
testing order-restricted hypotheses increases power.
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Table 2.12: p values of the Ordered Alternative F̄ Test (pF̄ ) and the F Test (pF ) for
One Generated Data Set With k = 3 Groups, Effect Size ES, and n Observations per
Group

n

p value 10 20 50 100

ES = 0

pF 1.00 1.00 1.00 1.00

pF̄ 1.00 1.00 1.00 1.00

ES = 0.1

pF 0.91 0.82 0.61 0.37

pF̄ 0.48 0.40 0.26 0.14

ES = 0.2

pF 0.6742 0.4543 0.1390 0.0193

pF̄ 0.3022 0.1802 0.0470 0.0059

ES = 0.3

pF 0.4184 0.1746 0.0127 0.0002

pF̄ 0.1648 0.0599 0.0039 0.0000

ES = 0.4

pF 0.220454 0.048182 0.000501 0.000006

pF̄ 0.080770 0.015600 0.000110 0.000000

ES = 0.5

pF 0.100899 0.009983 0.000011 0.000001

pF̄ 0.034460 0.002880 0.000000 0.000000

What if another order-restricted hypothesis, say H2, is true? In that case, if H0 is
tested against H1, H0 may or may not be rejected. However, if H1 is tested against
HA, H1 will be rejected (if the sample is large enough).

2.7.3 The ORIC is More “Powerful” than the PCIC

The ORIC has an higher probability of choosing the best hypothesis than the PCIC,
because it evaluates fewer hypotheses and it can evaluate order-restricted hypotheses.
We illustrate the latter by comparing the ORIC with the AIC, using the same data
sets used to illustrate the gain in power when the F̄ test is used instead of the F test.

The three hypotheses to be evaluated are:

H0 : µ1 = µ2 = µ3,

H1 : µ1 > µ2 > µ3,

HA : µ1, µ2, µ3.

In Figure 2.1, the ORIC values are given for these three hypotheses (for n = 10 and
n = 100). As mentioned before, the ORIC reduces to the AIC when there are no order
restrictions, that is, for hypotheses H0 and HA. The ORIC values for H0 increase with
ES, because the differences between the sample means yi and the restricted means
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µ̂0i = µ0 (for all i = 1, . . . , k) increase with increasing effect size. This leads to a
decrease in the log likelihood (see (2.5)) and, consequently, an increase in ORIC value
(see (2.6)). The ORIC values for H1 and HA do not depend on effect size, because
the sample means are in accordance with H1 and, logically, HA. Thus, the difference
between yi and µ̂mi (for i = 1, . . . , k) is zero for both H1 and HA for each effect
size. This implies that the likelihood values for H1 and HA are equal; therefore, the
difference in ORIC values equals two times the difference in the penalty terms, that
is, 2(PT2−PT1) = 2(4−2 5

6 ) = 21
3 . So, when the sample means are in accordance with

H1, as in the example, H1 is always preferred over HA. As can be seen in Figure 2.1,
compared to HA, H1 will be preferred over H0 for smaller effect sizes. This implies that
the probability of choosing the correct/best hypothesis is higher if H0 is compared to
H1 than if H0 is compared to HA (when H1 is true).

Fig. 2.1: Order-restricted information criterion (ORIC) values for one generated data
set with k = 3 groups, effect size ES, and n observations per group.
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In this example, the ideal case is represented, namely H1 is true and H1 is included
in the set of hypotheses. What if another order-restricted hypothesis, say H2, is true?
In that case, HA will be preferred over H1 if the sample size is large enough to
distinguish H1 from H2. Therefore, the unconstrained model HA should always be
included in the set of hypotheses. So, if the unconstrained hypothesis is included
in the set, model selection techniques select the correct hypothesis or a similar one
(i.e., a hypothesis that resembles the true hypothesis, that is, only differs in a few
constraints) or otherwise the unconstrained hypothesis.

2.7.4 Exploratory BMS is more “Powerful” than Confirmatory BMS

Confirmatory BMS has the same advantages over exploratory BMS as the ORIC has
over the AIC.

2.7.5 Conclusion of Comparisons

In confirmation there will be more power (i.e., a higher probability of rejecting a
false null hypothesis) or a higher probability of choosing the best hypothesis than in
exploration. This is due to the smaller number of hypotheses that have to evaluated
and to the inclusion of expectations, in the form of order restrictions, in the hypotheses
of interest (see Table 2.12 and Figure 2.1). But, the most important advantage
is that the expectations of researchers (see the examples given in the beginning
of this chapter) can be evaluated using a confirmatory approach. The weakness of
confirmation is that a researcher must be able to specify his expectations. Note that
the inclusion of the unconstrained hypothesis HA : µ1, . . . , µk is a safeguard against
choosing a hypothesis that is weakly supported by the data.

Model selection, in contrast to hypothesis testing, always gives consistent results
and can handle more than one (order-restricted) hypothesis at once.

2.8 Elaborate Example to Illustrate the Confirmatory Model
Selection Techniques

The final example will be used to further illustrate the (preferred) confirmatory model
selection techniques, that is, the ORIC and (confirmatory) BMS.

As mentioned in the introduction, the evaluation of the order-restricted hypothesis
(like HC1) requires competing hypotheses. Until now, the traditional null (H0 : µ1 =
. . . = µk) and alternative (HA : µ1, . . . , µk) hypotheses are used. However, it is also
possible to specify a set of hypotheses without the classical null and even include
another order-restricted hypothesis. We suggest that the set of hypotheses should
consist of one or two order-restricted hypotheses and the unconstrained hypotheses
(as a safeguard). Namely, H0 is often not of real interest, and sometimes there is more
than one theories/expectations, as in the example described next.

Gupta et al. (2008) studied the impact of implicit and explicit activation of
gender stereotypes on men’s and women’s intentions to pursue an entrepreneurship,
a traditionally masculine career. The variable of interest is entrepreneurial intensions
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Table 2.13: Number of Observations (ni), Sample Means (yi), and Sample Standard
Deviations (sdi) of Entrepreneurial Intentions for Group i

i ni yi sdi
1 38 3.44 1.01
2 46 2.94 1.07
3 36 3.48 1.08
4 37 2.66 1.09
5 33 2.93 1.05
6 39 2.43 1.00

(see Table 2.13), which is measured by the average of four items on a 5-point scale.
Here, we look at 3 conditions (control, explicit masculine stereotype, and implicit
masculine stereotype) for both men and women. In the control group, “participants
read an article about entrepreneurship education that made no mention of gender or
gender differences in entrepreneurship” (Gupta et al., 2008, p. 1055). In the other two
groups, the participants read an article in which three masculine characteristics (i.e.,
aggressive, risk taking, and autonomous) are mentioned. In the implicit condition, the
article simply described the three characteristics, whereas in the explicit condition,
there was more emphasis on the characteristics. For example, the participants in
the explicit masculine stereotype group were told that it pays to have masculine
characteristics. Thus, we look at six groups (see Table 2.14).

According to Gupta et al. (2008), previous studies show that people tend to
behave in a way similar to that predicted by the stereotype they are made aware
of (Theory 1). However, Gupta et al. also stated that other recent evidence suggests
that under certain circumstances, people may not assimilate with the stereotype, but
respond in a way opposite to that predicted by the stereotype. The response depends
on whether the stereotype is activated implicitly or explicitly: Implicit stereotype
activation leads to behavior consistent with the stereotype, whereas explicit activation
leads to behavior opposite to the stereotype (Theory 2).

Based on the above theories, two (main) expectations are distinguished. The first
one is based on Theory 1 and the second one is based on the expectations of Gupta
et al. (2008), which are based on Theory 2. Based on these two expectations, two
hypotheses are formulated, namely H1 and H2, respectively. In H1, it is hypothesized
that men who are made aware of an explicit prevalent masculine stereotype (Group

Table 2.14: The Six Groups in Entrepreneurial Intentions

Masculine stereotype

Gender Control Explicit Implicit
Male 1 2 3
Female 4 5 6
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2) have the strongest entrepreneurial intentions with respect to the other same-sex
groups (Groups 1 and 3). It is also hypothesized that women who are made aware of
an explicit prevalent masculine stereotype (Group 5) have the weakest entrepreneurial
intentions with respect to the other same-sex groups (Groups 4 and 6, respectively).
So, it is hypothesized that µ2 > µ1, µ2 > µ3, µ5 < µ4, and µ5 < µ6, that is, µ1 <
µ2 > µ3 and µ4 > µ5 < µ6. Furthermore, it is expected that, in the control condition,
men (Group 1) have stronger entrepreneurial intentions than women (Group 4), that
is, µ1 > µ4 (Gupta et al., 2008). Note that the expectations µ2 > µ1, µ1 > µ4,
and µ4 > µ5 imply that µ2 > µ5. Therefore, it is also (indirectly) expected that in
the explicit condition, men (Group 2) have stronger entrepreneurial intentions than
women (Group 5), that is, µ2 > µ5. In the implicit condition (Groups 3 and 6),
however, it is unclear aforehand whose entrepreneurial intentions will be stronger.
In H2, it is expected that “gender and stereotype activation will interact such that
men will report stronger entrepreneurial intentions when presented with an implicit”
(Group 3) versus an explicit (Group 2) “masculine stereotype whereas women will
report stronger entrepreneurial intentions when presented with an explicit” (Group
5) versus an implicit (Group 6) masculine stereotype (Gupta et al., 2008, p. 1055),
that is, µ3 > µ2 and µ5 > µ6, respectively. Furthermore, it is expected that, in the
control condition, men (Group 1) will report stronger entrepreneurial intentions than
women (Group 4), that is, µ1 > µ4. Thus, the set of hypotheses is:

H1 : µ1 < µ2 > µ3

∨ ∨ ,
µ4 > µ5 < µ6

H2 : µ1 , µ2 < µ3

∨ , ,
µ4 , µ5 > µ6

HA : µ1, µ2, µ3, µ4, µ5, µ6,

where the comma denotes that there is no restriction between the corresponding
means. For example, in H1 there is no restriction between the means of Group 3
and 6. Note that the unconstrained hypothesis (HA) is included to protect against
choosing the best of two weak order-restricted hypotheses. As mentioned before,
when evaluating hypotheses H1 and/or H2, the pairwise relations will be evaluated
simultaneously.

For the three hypotheses, the ORIC values are given in Table 2.15 and the PMPs
in Table 2.16. These tables show that both ORIC and BMS prefer H2, the hypothesis
based on the expectations of Gupta et al. (2008). Furthermore, Table 2.16 shows that,
if a hypothesis contains only inequality constraints (i.e., “<” and/or “>”), BMS is
not sensitive to the choice of the prior.

To conclude, a direct evaluation of two competing hypotheses renders strong
support for H2. Since HA was also included in the evaluation, H2 is more than only
the best of two weak hypotheses. This example further illustrates how ORIC and
BMS can straightforwardly be used to evaluate the expectations of a researcher. All
a researcher has to do is to specify expectations, collect data, and compute the ORIC
or do BMS.
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Table 2.15: ORIC of the Three Specified Hypotheses (Hm) for Entrepreneurial
Intentions

m Hm ORIC
1 H1 686.31
2 H2 677.14
A HA 680.13

Note. ORIC = order-restricted information criterion.
Bolding indicates the lowest value.

Table 2.16: Posterior Model Probabilities (PMP) of the Three Specified Hypotheses
(Hm) for Entrepreneurial Intentions (for Three Types of Prior Vagueness (PV ))

PMP

m Hm PV = 1 PV = 2 PV = 3
1 H1 .00 .00 .00
2 H2 .89 .89 .89
A HA .11 .11 .11

Note. Bolding indicates the highest
value in each column.

2.9 Discussion

2.9.1 Violations of the Model Assumptions

As mentioned in the introduction, all techniques are based on the ANOVA model,
which has three assumptions. We first assumed that these assumptions were met.
But, what if there are some violations of these assumptions? It is known that the
ANOVA F test is robust with respect to nonnormality (Stevens, 1999, pp. 74–80;
Toothaker, 1993, pp. 57–66) It is also robust against violations of equal variances, as
long as the ratio of the largest group size versus the smallest group size is smaller
than 1.5 (Stevens, 1999, pp. 75–76). If the large variances are associated with the
small group sizes, the F tests rejects the null too often; that is, the actual α is bigger
than the nominal α, which is often set to .05. In contrast, when the large variances
are associated with the large group sizes, the actual α is smaller than the nominal α.
The ANOVA model is, however, affected by the violation of independent observations.
Even a small violation results in a substantial effect on the actual significance level
and power of the F test. The same is expected for the other techniques, although
currently no results are available on this topic. In case of dependent observations,
one could use a multilevel model (Hox, 2002). The robustness of the techniques with
respect to nonnormality and unequal variances are described next and are summarized
in Table 2.17.

In general, most multiple comparison procedures seem to be robust to moderate
violations of the normality assumption (Toothaker, 1993, pp. 64–66). Miller (1986)
states that the studentized range test is a bit more sensitive to nonnormality than the
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F test. However, as long as the number of observations per group are large enough,
the studentized range statistic q should be approximately correct (according to the
central limit theorem). Among others, Martin, Toothaker, and Nixon (1989) examined
multiple comparison procedures with unequal variances. Their findings are the same
as the findings for the ANOVA F test. Because the SWFq and TK test are multiple
comparison procedures, which are based on the studentized range statistic, we expect
that the above also holds for these two tests. However, further research is needed.

One could expect that the same holds for the F̄ test as for the F test. However, as
far as we know, there is no research about the violations of the ANOVA assumptions
for the F̄ test yet.

Some study has been done with respect to the robustness of the PCIC against
nonnormality and heterogeneity (Dayton, 2003), but the PCIC has not been
evaluated extensively. The PCIC seems to be quite robust for nonnormality. However,
heterogeneity of variance had a negative impact on the correct identification rates
in a simple simulation study. Note that there is a modification of the PCIC for
heterogeneity of variance (see Dayton, 1998, 2003). Further research is needed for
the PCIC.

One could expect that the same holds for the ORIC as for the PCIC. However,
as far as we know, this is not been studied yet. The same holds for BMS. So, for the
ORIC and BMS, research with respect to the violations of the assumptions is needed.

Check on Normality and Equal Variances in the Two Examples

The check on the assumption of normality and equal variances can be done by looking
at the Shapiro-Wilk test and the Levene’s test, respectively. For all data examples,
the assumptions of normality (per group) and of equal variances are not violated,
since the p values of the corresponding tests are larger than 0.05 (see Table 2.18).
Thus, the results in this chapter are not influenced by violations of the assumptions.

Table 2.18: p Values of the Tests Used for the Check on Normality (i.e., Shapiro-Wilk)
and Equal Variances (i.e., Levene’s) of the Two Data Examples (Defective Education
and Entrepreneurial Intentions)

Defective education

n3 = 31 n3 = 20 Entrepreneurial intentions
Shapiro-Wilk test Group 1 .255 .255 .210

Group 2 .446 .446 .903
Group 3 .423 .994 .729
Group 4 .554
Group 5 .989
Group 6 .839

Levene’s .135 .186 .991
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2.9.2 Final Conclusions and Recommendations

Hypothesis testing techniques can give inconsistent results. Some exploratory methods
cannot handle unequal group sizes, and the confirmatory approach cannot handle
multiple order-restricted hypotheses. Therefore, model selection is preferred over
hypothesis testing.

Confirmatory model selection techniques have a higher probability of choosing the
best hypothesis than their exploratory counterparts. Furthermore, in confirmatory
model selection, a direct evaluation of competing hypotheses, that is, the expectations
of a researcher, is possible. However, confirmatory model selection techniques can only
be used when a researcher is able to formalize his expectations in order-restricted
hypotheses. To ensure that confirmatory model selection does not result in preferring
a weak order-restricted hypothesis, the unconstrained hypothesis HA : µ1, . . . , µk
must be included in the set of hypotheses. Often the classical null hypothesis is not
of interest. When that is the case, the classical null hypothesis should be left out of
the set of hypotheses.

Because BMS needs a specification of δ and PV (see Section 2.3.4) and it is
a time-consuming technique, we prefer the PCIC in exploration and the ORIC in
confirmation.

2.A Technical Notes

2.A.1 The Prior

The prior for the unconstrained hypothesis (i.e., the traditional alternative hypotheses)
HA : µ1, . . . , µk is defined as

pA(µ1, . . . , µk, σ
2) = p(µ1)× . . .× p(µk)× p(σ2),

where p(µi) = p(µ) for all i (i = 1, . . . , k). p(µ) is a data-based normal distribution
with hyperparameters β0 and τ2

0 and p(σ2) an scaled inverse chi-squared distribution
with hyperparameters ν0 and κ2

0.
The prior pm(.) for hypothesis Hm is (up to a normalizing constant) equal to this

prior on the admissible space of Hm (and to zero outside this space). For example, in
exploration, the admissible space of HE : µ1 = µ2 are those combinations of means
for which it holds that |µ1−µ2| = 0. Note that with |µ1−µ2| < δ an “about equality
constraint” is inspected, if δ is set to a positive number. For example, in confirmation,
the admissible space of HC : µ1 > µ2 are those combinations of means for which it
holds that µ1 > µ2. Here we see that, in BMS, the (order) restrictions are taken into
account via the admissible space of the prior for hypothesis Hm. The admissible space
covers a certain proportion of the total space, say b% (for b ∈ [0, 100]); then the prior
density of Hm equals 100

b times the prior density of HA : µ1, µ2 on this admissible
space and equals zero outside this space. For HC , b = 50, because it covers half of the
total space.
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2.A.2 Data-based Hyperparameters

For each µi (i = 1, . . . , k), a credibility interval is computed:

yi ± PV × σ̂.

Three vague priors are used, namely the priors where PV is set to 1, 2, and 3. Note
that if PV = 3, 2, and 1, the 99.7%, 95%, and 68% credibility intervals are computed,
respectively. The credibility interval for µi has a lower bound LBi and an upper bound
UBi. Let the lowest lower bound be LBmin (i.e., LBmin = min{LB1, . . . , LBk}) and
the highest upper bound UBmax. Then, the data-based hyperparameters β0 and τ2

0

are calculated by:

β0 =
LBmin + UBmax

2
, and

τ2
0 =

[
UBmax − LBmin

2

]2

,

respectively. The hyperparameter ν0 is set to 1 and κ2
0 to the estimate of the error

variance.

2.A.3 The Marginal Likelihood (ML)

The marginal likelihood of hypothesis Hm is defined by

ML(y|Hm) =∫
. . .

∫ ∫
Lm(µ1, . . . , µk, σ

2|y) pm(µ1, . . . , µk, σ
2) dµ1 . . . dµk dσ

2.

The marginal likelihood can be rewritten as

ML(y|Hm) = Lm(µ1, . . . , µk, σ
2|y)

pm(µ1, . . . , µk, σ
2)

postm(µ1, . . . , µk, σ2|y)
,

where postm(µ1, . . . , µk, σ
2|y) is the posterior density, for which it holds that

postm(µ1, . . . , µk, σ
2|y) ∝ Lm(µ1, . . . , µk, σ

2|y)pm(µ1, . . . , µk, σ
2).

Therefore,

−2 log ML(y|Hm) =

−2 log Lm(µ1, . . . , µk, σ
2|y) + 2

[
−log

(
pm(µ1, . . . , µk, σ

2)

postm(µ1, . . . , µk, σ2|y)

)]
.

2.A.4 Posterior Model Probability (PMP)

Assuming a priori that all the hypotheses have equal probabilities of being the best
(i.e., appm = appm′ for m,m′ = 1, . . . ,M , with M the total number of hypotheses),
the posterior model probability of hypothesis Hm′ is defined as

PMPm′ =
appm′ML(y|Hm′)∑M
m=1 appmML(y|Hm)

=
ML(y|Hm′)∑M
m=1 ML(y|Hm)

.
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2.A.5 The F̄ Statistic

The F̄ statistic for testing Hnull against Halt is calculated by

F̄ =
RSS(Hnull)−RSS(Halt)

S2
,

where S2 is the mean square error:

S2 = (n1 + · · ·+ nk − k)−1
k∑
i=1

ni∑
j=1

(yij − ȳi)2

and RSS(H) is the residual sum of squares with respect to hypothesis H,

in an ordered alternative in an ordered null
(i.e., Hnull = H0 and Halt = Hm) (i.e., Hnull = Hm and Halt = HA)

RSS(Hnull) =
∑
i

∑
j(yij − ȳ)2 RSS(Hnull) =

∑
i

∑
j(yij − µ̂mi)2

RSS(Halt) =
∑
i

∑
j(yij − µ̂mi)2 RSS(Halt) =

∑
i

∑
j(yij − ȳi)2,

with ȳ as the overall mean, µ̂m1, . . . , µ̂mk as the restricted mean values, that is, the
values of µ1, . . . , µk that minimize

∑
i

∑
j(yij − µi)2, subject to Hm : µi− µi′ ≥ 0 for

some i, i′ = 1, . . . , k, and ȳi as the ith group mean. More details about the restricted
means can be found in the next section. Note that the classical F test is based on
RSS(Hnull) =

∑
i

∑
j(yij − ȳ)2 and RSS(Halt) =

∑
i

∑
j(yij − ȳi)2.

2.A.6 The Restricted Means

As mentioned, the restricted means (i.e., µ̂m1, . . . , µ̂mk) are in accordance with the
hypotheses of interest, Hm. This was also the case with the restricted means used in
the PCIC, only now Hm can contain order restrictions.

For H1 : µ1 > · · · > µk, it holds that µ̂11 ≥ . . . ≥ µ̂1k and their values depends
on the (weighted) sample means. An example is given in Table 2.19. To elaborate on
this, numerical examples for k = 3 and equal group sizes are given in Table 2.20.

Table 2.19: The Restricted Mean Values for Different Sample Mean Values When
H1 : µ1 > · · · > µk

Corresponding restricted means

Ordering of the sample means µ̂11 . . . µ̂1k−2 µ̂1k−1 µ̂1k

y1 ≥ · · · ≥ yk y1 . . . yk−2 yk−1 yk
y1 ≥ · · · ≥ yk−2 and yk−1 ≤ yk y1 . . . yk−2

nk−1yk−1+nkyk
nk−1+nk

nk−1yk−1+nkyk
nk−1+nk

When the restrictions are simple order restrictions (i.e., the restrictions can be
written as µ1 > · · · > µk′ for k′ ≤ k), the restricted means can be calculated by
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Table 2.20: Numerical Examples of the Restricted Mean Values for k = 3 and for
Equal Group Sizes When H1 : µ1 > · · · > µk

Sample means Corresponding restricted means
y1 y2 y3 µ̂11 µ̂12 µ̂13

2 1 2 2 1.5 1.5
1 2 1.4 1.5 1.5 1.4
1 2 2 1 2

3 1 2
3 1 2

3

the pool adjacent violators algorithm (PAVA). For more details see Silvapulle and
Sen (2005, pp. 47–50). Another method, which can be applied to all types of order
restrictions, is quadratic programming. For more details see Silvapulle and Sen (2005,
pp. 36–37).

2.A.7 Calculation of the p Value of the F̄ Statistic

1. Generate independent observations zij (i = 1, . . . , k and j = 1, . . . , ni) from the
standard normal distribution N (0, 1).

2. Compute the value of the F̄ statistic for the generated data.
3. Repeat the previous two steps R times. R is set to R = 100, 000, because then we

obtain stable estimates for the p values, that is, when we calculated the p value
again, the difference was rarely larger than 0.001.

4. Determine the number of times the F̄ statistic, calculated in Step 2, exceeds the
sample value of the F̄ . Denoted this by C.

5. The p value is estimated by C/R.

2.A.8 Calculation of the Level Probabilities

1. Generate z1, . . . , zk from Nk(0, V ), that is, the multivariate normal distribution,
with mean 0 and the covariance matrix V , where V is a diagonal matrix with the
elements 1/n1, . . . , 1/nk on the diagonal.

2. Compute the restricted means ẑm1, . . . , ẑmk analogously to µ̂m1, . . ., µ̂mk. So,
ẑm1, . . . , ẑmk are the values for which Lm(ẑm1, . . . , ẑmk, σ̂

2
m| z1, . . ., zk) (see (2.5))

is maximized subject to hypothesis Hm.
3. Determine the number of distinct values in ẑm1, . . . , ẑmk, called levels. Denote this

by l̃m.
4. Repeat the previous steps R times. R is set to R = 100, 000, because in that case

we obtain stable estimates for LPml. That is, when we calculated it again, the
difference was most of the time less than 0.02.

5. Estimate the level probability LPml by the proportion of times l̃m is equal to l.

Because the restricted means ẑm1, . . . , ẑmk are in accordance with Hm, the
maximum value l̃m can take on is am. For example, for H2 : µ1 > µ2 = µ3, it
holds that a2 = 2 and ẑ21 ≥ ẑ22 = ẑ23. When ẑ21 = ẑ22 = ẑ23, there is one level, and
when ẑ21 > ẑ22 = ẑ23, there are two levels. Therefore, for l = am+1, . . . , k, LPml = 0.





CHAPTER 3

Performance and Robustness of Confirmatory Approaches
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In this chapter, the performance of three confirmatory comparisons of means
methods is inspected. The three types are hypothesis testing, model selection using
information criteria, and Bayesian model selection. A simulation study is conducted
to evaluate the performance of the three methods. For comparison, the performance of
their exploratory counterparts are also determined. We demonstrate that confirmatory
analyses have more power than exploratory analyses and that model selection has
advantages over hypothesis testing.

Little is known about the robustness of the different methods for violations of
the assumptions, especially for confirmatory techniques. Therefore, we do another
simulation study where we study the performance of the confirmatory methods when
the homogeneity of variance assumption is violated. From this study, it can be
concluded that the techniques are robust to heterogeneity when the sample sizes
are equal. When the sample sizes are unequal, the performance is substantially
affected by heterogeneity. However, the deviations from the baseline, where there
is no heterogeneity, are not pronounced.

3.1 Introduction

A central issue in most research is to evaluate the researcher’s theory. When comparing
group means, the researcher often would like to know whether group means differ and,
if so, which group means are different from each other. There are two approaches
that can be used to address this question, namely exploration and confirmation. In
exploration, all the possible configurations of subsets of means are inspected. The
number of possible configurations increases rapidly with an increase in the number
of groups k. For example, when k = 3 and k = 5, there are 5 and 52 possible
configurations, respectively. In confirmation, researchers solely evaluate their theories
or expectations, given that they can specify reasonable ones. This mostly results
in a limited set of hypotheses. Besides the classical null all means are equal (H0)
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and the classical alternative there are no restrictions (HA), one can include so-called
order-restricted hypotheses which represent a certain ordering of the means (e.g., the
group means are increasing with k). Both in exploration and confirmation, different
methods can be used: hypothesis testing, model selection using information criteria,
and Bayesian model selection. These two distinctions lead to six different types of
techniques that can be used to evaluate group means (see Table 3.1). The descriptions
of the six techniques are summarized in the next section accompanied with an
illustration. For each type, a detailed description is given in Kuiper and Hoijtink
(2010).

Kuiper and Hoijtink (2010) show for one data set that confirmatory techniques
perform better than their exploratory counterparts. In this chapter, we will quantify
the performance of the three exploratory and three confirmatory approaches by means
of simulation. Besides making the comparison between exploratory and confirmatory
techniques, we compare the performance of the three types of methods: hypothesis
testing, model selection using information criteria, and Bayesian model selection.
Here, the performance of a method is measured by the percentage of times the correct
hypothesis is chosen by this method. Moreover, little is known about the performance
of confirmatory techniques when model assumptions are violated. To the authors
knowledge, only Wesel, Hoijtink, and Klugkist (in press) examined this for Bayesian
model selection. To gain more insight into the performance of all three confirmatory
methods, we also study their robustness for the violation of the homogeneity of
variance assumption.

In the next section, we describe the model used for comparing means and the
assumptions of the model. Furthermore, we introduce an example based on Lucas
(2003). In addition, we briefly demonstrate the six techniques that can be applied to
comparing group means based on this example. Subsequently, the design and results
of the two simulation study are described. We end with a discussion.

3.2 Preliminaries

3.2.1 Analysis of Variance Model

All methods which will be described next are based on the analysis of variance
(ANOVA) model:

yij = µi + εij , (3.1)

where yij is the jth observation (j = 1, . . . , ni) of the dependent variable for group i
(i = 1, . . . , k), µi is the mean of group i, and εij is the error term. The error terms
are independent and normally distributed random variables, each with the expected
value 0 and variance σ2, that is, εij ∼ N (0, σ2).

The assumptions of the ANOVA model are (a) the dependent variable must be
normally distributed conditional on each group, (b) the observations are independent,
and (c) the population variances are equal for each group. The latter is also known
as the homogeneity of variance assumption.

The effect of violating the homogeneity of variance assumption on the performance
of the traditional ANOVA F test is studied several times (Schumacker & Akers, 2001;
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Box, 1954). According to Box (1954), there is no profound effect on the Type I error
(i.e., the error that the null hypothesis is incorrectly rejected) when the sample sizes
are equal. When the groups sizes exhibit the same trend as the variances, the Type I
error is lower than stated (usually .05); in case the groups sizes and the variances have
an opposite trend, the Type I error is higher than stated. One can use the ratio of the
largest and smallest group variance, called the Fmax statistic, to test for heterogeneity
(Hartley, 1950). Tabachnick and Fidell (2001) conclude that an Fmax value of 10 is
acceptable for analyses with equal group sizes and Fmax = 3 for unequal group sizes.
However, Box (1954) shows that the F test is severely affected when Fmax = 3 and
the groups sizes and the variances exhibit opposite trends.

Notably, the robustness of exploratory methods has been studied. In the second
part of this chapter, we will study the effects of homogeneity of variance violations
on the performance of the confirmatory methods. To define/control the severity of
(population) heterogeneity of variance in the second simulation study, we employ the
following measure (for ease also called Fmax):

Fmax =
σ2
max

σ2
min

. (3.2)

Example

The methods for testing hypotheses and selecting models are introduced using Lucas
(2003). His experiment contains five experimental groups: 1) a group with a randomly
selected male leader, 2) a group with a randomly selected female leader, 3) a group
where the male team member who scores highest on the first task is selected as
leader, 4) a group where the female team member who scores highest on the first task
is selected as leader, and 5) a group in which female leadership is institutionalized
and the female team member who scores highest on the first task is selected as leader.
The institutionalization is done by showing the participants a film in which female
leadership is normal and females do well as leaders. The dependent variable is the
influence of the leader, obtained by a second task. The model of interest is (3.1) with
k = 5 and ni = n = 30. The group means and standard deviations are shown in
Table 3.2.

Table 3.2: Group Means and Standard Deviations of Influence (Lucas, 2003)

Group Mean s.d. n
1: randomly selected male leader 2.33 1.86 30
2: randomly selected female leader 1.33 1.15 30
3: male leader highest score 3.20 1.79 30
4: female leader highest score 2.23 1.45 30
5: female leader highest score and

female leadership is institutionalized 3.23 1.50 30
Note. s.d. = standard deviation and n denotes the number of
observations.
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In this example, we evaluate the set of four hypotheses in (3.3): the traditional null
H0, the traditional alternative HA, and two order-restricted ones H1 and H2. Both H1

andH2 are based on the expectation that leaders appointed on the basis of their ability
(Groups 3 and 4) are expected to exert more influence over participants than leaders
of the same sex appointed randomly (Groups 1 and 2, respectively); that is, µ1 < µ3

and µ2 < µ4. H1 is based on two additional theories: Women, according to status
characteristics theory, will be disadvantaged relative to men in social interactions, all
other things being equal and Institutionalizing women as leaders may overcome the
influence gap between women and men. In the context of the experiment, the first
theory leads to the expectation that female leaders (Groups 2 and 4) will exert less
influence over the members of a group they lead than male leaders selected in the same
manner (Groups 1 and 3, respectively); that is, µ2 < µ1 and µ4 < µ3. This yields
µ2 < µ4 < µ3 and µ2 < µ1 < µ3, which will be written as µ2 < {µ1, µ4} < µ3 for ease
of notation. The second theory can be interpret in a few ways. Our interpretation is
that “overcome” means that the gap is closed. Hence, based on the second theory, it
is expected that institutionalized female leaders selected on the basis of their ability
(Group 5) exerted the same amount of influence over participants as male leaders
appointed on the basis of their ability (Group 3); that is, µ5 = µ3. These expectations
lead to H1 in (3.3). H2 is additionally based on two competing theories: Female leaders
selected on the basis of their competence (Group 4) have less influence than male
leaders selected at random (Group 1) and Institutionalizing women as leaders has no
effect. The first theory is represented by µ4 < µ1. Based on the second theory, it is
expected that there is no difference between the influence of female leaders selected
on the basis of their competence in the case of institutionalization (Group 5) or in
the normal case (Group 4), that is, µ5 = µ4. These expectations are represented by
H2 in (3.3).

H0 : µ1 = µ2 = µ3 = µ4 = µ5,

H1 : µ2 < {µ1, µ4} < µ3 = µ5, (3.3)

H2 : µ2 < µ5 = µ4 < µ1 < µ3,

HA : µ1, µ2, µ3, µ4, µ5.

3.2.2 Exploratory and Confirmatory Techniques

Hypothesis Testing

There are several exploratory hypothesis testing techniques. The most common
procedure is conducting an ANOVA F test followed by post hoc tests / pairwise
multiple comparisons procedures when F is significant. A pairwise multiple compar-
isons procedure renders pairs of means significantly or insignificantly different from
each other. When testing more than one pair, the α level, that is, the Type I error,
inflates. There are several corrections to adjust for this, like the Bonferroni correction.
Although this correction is perhaps the most familiar, it is not the most powerful. More
powerful alternatives are the Shaffer-Welch Fq procedure (SWFq) in case of equal
group sizes (Ramsey, 2002; Toothaker, 1993, pp. 42–43, 48; note that the technique
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is called Shaffer-Ryan here) or the Tukey-Kramer (TK) method in case of unequal
group sizes (Toothaker, 1993, pp. 60-61) Since we solely examine the performance of
exploratory methods for equal group sizes, we will employ the SWFq test.

The SWFq method starts with an overall F test and is followed by testing only
a selection of pairs of means which is based on the order of the sample means. In
the example, F (k − 1 = 4, N − k = nk − k = 145) = 7.57 renders a p value of
0.00. Hence, the group means are not equal, and we proceed with testing a certain
selection of pairs of means. We will not give the details of the procedure, this can be
found in Kuiper and Hoijtink (2010); Ramsey (2002); Toothaker (1993, pp. 42–43, 48).
Using a nominal α level of .05, it is concluded that the means of group 2 and 5 and
those of group 2 and 3 are significantly different; all the other pairs of means are not
significantly different. From these results, it is hard to conclude anything with respect
to the hypotheses H1 and H2 in (3.3). Moreover, the results of exploratory hypothesis
testing techniques may be hard to interpreted simultaneously. For example, when
k = 3, it is logically impossible that H0 : µ1 = µ2 and H0 : µ2 = µ3 are not rejected
and H0 : µ1 6= µ3 is. Although it might not be directly clear, in the example, there are
also inconsistencies: The difference between mean 2 and 1 is not significant, neither is
the difference between mean 5 and 1. However, the difference between mean 5 and 2
is significant, which seems to be in conflict with the other two results. Both problems
are avoided by testing the hypotheses directly with a confirmatory hypothesis testing
technique.

The F̄ test (Silvapulle & Sen, 2005, pp. 25-42) is a confirmatory hypothesis testing
technique, which is a modification of the F test such that it can test order-restricted
hypotheses like Hm : µ1 ≥ µ2 ≥ µ3. One can test H0 against an order-restricted
alternative and one can test an order-restricted null against HA. Since it is possible not
to reject H0 in the first (more or less, favoring H0) and to reject the order-restricted
null in favor of HA, we also test H0 against HA. This leads to in 1 + 2 ∗M tests,
with M the number of order-restricted hypotheses. Note that no pairwise tests are
required and, therefore, there are no inconsistencies. In the case of Lucas, H0 is tested
against HA, H1, and H2 and both H1 and H2 are tested against the unconstrained
hypothesis HA. The results are presented in Table 3.3 and show, for α = .05 (without
multiple testing corrections), that HA is preferred over H0 and that both H1 and H2

are preferred over H0 and HA.

Table 3.3: The F̄ tests of the four specified hypotheses

Hypotheses tested F̄ p value

H0 against HA 30.27 < 0.001

H0 against H1 30.26 < 0.001
H1 against HA 0.01 0.995

H0 against H2 22.91 < 0.001
H2 against HA 7.36 0.070

Note. Bolding indicates the preferred hypothesis.
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Although we obtain clearer information regarding our expectations (H1 and H2),
there is still a drawback of this confirmatory method. The conclusions from the five
tests must be combined and, thus, the results do not always lead to one overall
preferred hypothesis. This is also the case in Table 3.3. Since no direct comparison
between order-restricted hypotheses is possible with the F̄ test, nothing can be
concluded with respect to H1 versus H2. Hence, the F̄ test is best used in case of one
order-restricted hypothesis.

Model Selection using Information Criteria

Familiar exploratory information criteria are the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC). They consist of a fit/likelihood
part and a complexity/penalty part and select a best of a set of hypotheses. In
classical exploration, all possible configurations of means are inspected. Dayton
(2003) introduces a modification, called the Paired-Comparison Information Criterion
(PCIC), which does not examine all possibilities. Like in the SWFq test, where
comparisons are made based on the order of the sample means. Here, only the
possible configurations based on the ordered sample means are examined. This avoids
inconsistencies (Dayton, 1998, 2003) and it renders higher true-hypothesis rates when
all population means are unequal (Dayton, 2003; Cribbie & Keselman, 2000). In case
of k = 5 groups, there are 52 possible configurations and 2k−1 = 25−1 = 16 subsets
based on ordered sample means. For the example, the order of the sample means
and the corresponding group numbers are given in the upper panel in Table 3.4.
Based on the ordering (i.e., 2, 4, 1, 3, and 5), 16 subsets can be determined, see
Table 3.4 under ‘Model’, where a number represents the group number and a comma
separates two subsets. For example, {24135} represents H0, {2, 4, 1, 3, 5} equals
HA, and {2, 41, 35} denotes µ2, µ4 = µ1, µ3 = µ5. Since model selection criteria
evaluate configurations of means and not pairwise differences, they do not provide
inconsistencies like exploratory hypothesis testing techniques can do. In summary, the
PCIC is a modification that restricts the number of hypotheses to be evaluated and can
be applied with the AIC (PCIC-AIC) or BIC (PCIC-BIC). Burnham and Anderson
(2002, §6.4) argue that AIC has theoretical advantages over the BIC. In addition, the
confirmatory model selection criterion discussed next is another modification of the
AIC. Consequently, we will only evaluate the PCIC-AIC.

Table 3.4 displays the number of distinct model parameters (i.e., the number
of model means plus one for the unknown σ2) which equals the penalty of the
AIC, denoted by qm, the log likelihood logLm, and the PCIC-AIC values for all
16 hypotheses (for now, ignore the last column). The hypothesis with the lowest
PCIC-AIC value is the preferred one. Here, this is Hypothesis 7 with group structure
{2, 41, 35} (i.e., µ2, µ4 = µ1, µ3 = µ5). Although PCIC-AIC does not render
inconsistencies, it still does not give clear information about H1 and H2. This problem
is solved by evaluating the set of (order-restricted) hypotheses directly, which can be
done with a confirmatory model selection criterion.

The Order-Restricted Information Criterion (ORIC; Anraku, 1999) is a modi-
fication of the AIC such that it can evaluate a set of order-restricted hypotheses.
Thus, as opposed to the F̄ test, the ORIC can evaluate multiple order-restricted
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Table 3.4: PCIC-AIC and PMP Values for the 16 Hypotheses based on Ordered
Sample Means

Ordered sample means: 1.33 2.23 2.33 3.20 3.23
Group nr. (i): 2 4 1 3 5
Model nr. (m) Model qm logLm PCIC-AIC PMP
1 {24135} = H0 2 -292.27 588.54 0.00
2 {2,4135} 3 -283.38 572.76 0.03
3 {24,135} 3 -283.68 573.36 0.03
4 {241,35} 3 -281.79 569.57 0.11
5 {2413,5} 3 -288.36 582.71 0.00
6 {2,4,135} 4 -281.27 570.53 0.04
7 {2,41,35} 4 -278.08 564.16 0.45
8 {2,413,5} 4 -281.54 571.09 0.03
9 {24,1,35} 4 -280.57 569.14 0.06
10 {24,13,5} 4 -282.84 573.67 0.01
11 {241,3,5} 4 -281.78 571.57 0.02
12 {2,4,1,35} 5 -278.05 566.10 0.09
13 {2,4,13,5} 5 -280.39 570.79 0.02
14 {2,41,3,5} 5 -278.08 566.16 0.01
15 {24,1,3,5} 5 -280.57 571.13 0.09
16 {2,4,1,3,5} = HA 6 -278.05 568.10 0.02

Note. Bolding indicates the preferred hypothesis, the lowest
PCIC-AIC value, and the highest PMP value.

Table 3.5: ORIC and PMP values of the Four Specified Hypotheses

Model qm logLm ORIC PMP
H0 : µ1 = µ2 = µ3 = µ4 = µ5 2.00 -292.27 588.54 0.00
H1 : µ2 < {µ1, µ4} < µ3 = µ5 3.19 -278.05 562.48 0.96
H2 : µ2 < µ5 = µ4 < µ1 < µ3 3.14 -281.76 569.80 0.02
HA : µ1, µ2, µ3, µ4, µ5 6.00 -278.05 568.10 0.01

Bolding indicates the preferred hypothesis, the lowest ORIC value, and
the highest PMP value.

hypotheses at once. Note that HA should be included as a safeguard for weak
hypotheses (Kuiper & Hoijtink, 2010), that is, hypotheses not supported by the
data. Namely, when all hypotheses are weak, HA will receive the most support. In
Table 3.5, the penalty terms qm, the log likelihood values logLm, and the ORIC values
are given for the four hypotheses of interest denoted in (3.3) (again, ignore the last
column). Note that for hypotheses with no order restrictions, like H0 and HA, the
ORIC reduces to the (PCIC-)AIC. In that case, the penalty equals the number of
distinct parameters. Otherwise, the penalty of the ORIC equals the expected number
of distinct parameters. This is hard to determine by hand, but can easily be simulated
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(Silvapulle & Sen, 2005, pp. 78–81). For the example, hypothesis H1 is preferred, since
it has the smallest ORIC value.

Bayesian Model Selection

Klugkist, Laudy, and Hoijtink (2005) present a Bayesian model selection (BMS)
method in which the selection of the best configuration of means is not based on
an information criterion but on the marginal likelihood. The marginal likelihood for a
specific hypothesis is a measure of the degree of support for the hypothesis provided
by the data. To interpret several marginal likelihoods at once, it can be helpful to
transform them into the so-called posterior model probabilities (PMPs). A PMP is
the probability that, given the data, the corresponding hypothesis is the best of the
set of hypotheses (assuming a priori that all the hypotheses have equal probabilities).
The marginal likelihood depends on the likelihood and a so-called prior. A prior
reflects prior knowledge with respect to the means. In this chapter, we use the normal
distribution with a data-based mean and a large variance for every µi (i = 1, . . . , k).
The prior is not only chosen vague (such that it has minimal impact on the results),
but also compatible with the data (such that it is not too vague), see Klugkist, Laudy,
and Hoijtink (2005). The prior mean and variance not only depend on the data, but
also on a user-specified term (PV ) that reflects the vagueness of the prior (see Kuiper
& Hoijtink, 2010; Kuiper, Klugkist, & Hoijtink, 2010), where a higher PV value
corresponds to an increasing prior vagueness. Klugkist and Hoijtink (2007) show that
for reasonable choices of PV , the prior sensitivity does usually not lead to a different
evaluation of the hypotheses. Furthermore, if a hypothesis contains only inequality
constraints (i.e., “<” and/or “>”), the relative support of this hypothesis with respect
to the unconstrained hypothesis is not sensitive to the choice of the prior. Moreover,
simulations with PV values of 1, 2, and 3 showed that with PV = 1 the false rejection
rate of H0 is best controlled, with PV = 3 the power to find non-null hypotheses is
largest, and that PV = 2 provides a compromise. As a consequence, we will solely
display the results for PV = 2 for both exploration and confirmation.

BMS can be used in an exploratory way as well as in a confirmatory one. In
exploration, we can for instance evaluate only the 2k−1 subsets based on ordered
sample means (comparable with PCIC). In confirmation, a limited set of well-defined
hypotheses is evaluated. In BMS, the hypothesis with the highest PMP value is the
preferred one. The last column in Table 3.4 shows that Hypothesis 7 with group
structure {2, 41, 35} (i.e., µ2, µ4 = µ1, µ3 = µ5) is the preferred hypothesis in
exploration. From the last column in Table 3.5 it can be concluded that H1 is the
preferred hypothesis in confirmation. Note that the same conclusions were obtained
with the PCIC-AIC and ORIC, respectively.

Comparison of the Six Methods

It should be stressed that hypothesis testing serves another purpose than model
selection does. The goal of the first is to reject the null hypothesis, whereas the goal
of the latter is to select the best out of a set of hypotheses. Hence, in the first, the
null hypothesis is of more importance and, in the latter, all hypotheses are equally
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important. Nevertheless, we do compare them to examine the true hypothesis-rates of
the null hypothesis and other (order-restricted) hypotheses. Due to their purposes, we
expect that true hypothesis-rate of the null hypothesis is the highest for hypothesis
testing and that of non-null hypotheses for model selection.

3.3 Performance of Confirmatory and Exploratory Methods
under Heterogeneity

The performance of the three exploratory and three confirmatory methods (summa-
rized in Table 3.1) is evaluated by conducting a simulation study. The performance
of hypothesis testing can be measured by power, that is, the probability that the test
will reject a false null hypothesis. Stated otherwise, power is the probability that the
test will favor the alternative hypothesis when it is true. In model selection, one can
employ an equivalent of power, namely the probability that the method will render
the most support for the correct or best hypothesis. In the simulation study, the
performance is quantified by the number of times the method prefers the correct or
best hypothesis.

In this section, two comparisons are made: one between the performance of
hypothesis testing, model selection using information criteria, and Bayesian model
selection; the other between the performance of exploratory and confirmatory
approaches. Before describing the results, we discuss the values of k and ni, the
hypotheses, and the population parameters employed in the simulation.

3.3.1 The Number of Groups and Observations

Bear in mind that confirmatory methods have an added value when comparing three
means or more, since with two means one can do a one-sided test. To obtain insight
in the performance of the methods, we start with a simulation with k = 3 groups.
We additionally inspect the ANOVA model in (3.1) with k = 5 groups (based on
the Lucas example discussed before). From these two simulations a pattern becomes
clear with respect to the performance of exploratory and confirmatory techniques.
Therefore, we only inspect ANOVA models with k = 3 and k = 5.

Note that the performance of a method increases when the number of observations
per group increases. As a consequence, it is more interesting to examine data sets with
low to medium group sizes. Based on the findings of Cohen (1992) (to show a medium
and large effect with the ANOVA F -test), we will inspect group sizes between 20 and
50 observations. Since our second simulation is based on Lucas (2003), we choose to
employ an equal number of observations per group in the first simulation. Due to the
reasonings above, we will examine the ANOVA model with k = 3 for both n = 20
and n = 50. The results for n = 20 are not shown here, since the patterns are the
same as for n = 50, the only difference is that the performance itself is lower. For the
ANOVA model with k = 5 we will employ n = 30, since this was the group size in
the study of Lucas (2003).
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3.3.2 Hypotheses

Table 3.6 depicts the hypotheses of interest in the simulation study for k = 3 and
k = 5. As explained in the previous section, the three exploratory techniques (SWFq,
PCIC-AIC, and BMS) do not evaluate all possible configurations of means (5 for k = 3
and 52 for k = 5) in the observed data set, but a subset based on the ordering of the
sample means of the data set at hand (in case of PCIC-AIC and BMS, 4 for k = 3
and 16 for k = 5). Nevertheless, more configurations of means can be examined, since
the ordering of the sample means can differ per data set in the simulation. In the
exploratory approaches, the hypotheses to be examined are certain group structures
represented by pairwise equality and non-equality relations. Combining the significant
and insignificant pairs of means resulting from the SWFq test can lead to favoring
one of the hypotheses in the first column of Table 3.6 or can give inconsistencies.
PCIC-AIC and BMS always result in preferring one of the hypotheses in Table 3.6.

In the confirmatory approaches (F̄ , ORIC, BMS), the hypotheses to be tested or
selected need to be specified by the researcher. This can be based on previous research
and/or on existing theories. One can also inspect competing theories. Table 3.6
displays the hypotheses that are evaluated in this chapter. Bear in mind that the
type and the number of hypotheses are an example. For k = 3, we choose to evaluate
five hypotheses. Note that this number equals the maximum number of possible
configurations of means in exploration, but the structure is different. The set for k = 5
is based on Lucas (2003) and is the same as presented in (3.3). It should be stressed
that 16 hypotheses are evaluated for one data set in exploration for k = 5, whereas
the researcher often has a limited number of theories/hypotheses; for instance, 4 in
the Lucas example and simulation.

The F̄ test is designed for testing one order-restricted hypothesis, like HC1. One
can choose to test both H0 against HC1 and HC1 against HA in addition to H0 against
HA. The decision rules for these three test are rather straightforward. However, if M
order-restricted hypotheses are evaluated by 1 + 2M tests, the decision rules become
very ad hoc and more than one plausible set of decision rules exist. Therefore, we
will only examine the performance of the F̄ test for one order-restricted hypothesis,
namely HC1.

3.3.3 Populations

Several populations based on the general ANOVA model presented in (3.1) are
inspected. In all populations, the population standard deviation σ is set equal to
1. Sets of population means are given in Table 3.7. The values are based on the
number of groups k, the true hypothesis, and the effect size denoted by ES, where

ES =
1

σ

√√√√1

k

k∑
i=1

(µi − µ)2, (3.4)

with µ = 1
k

∑k
i=1 µi. According to Cohen (1992), the effect size in (3.4) is low for

ES = 0.1, medium for ES = .25, and high for ES = 0.4. Two types of populations
can be distinguished: one where all the population means are identical (ES = 0)
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Table 3.6: Hypotheses tested for k = 3 and k = 5 in the exploratory (HE.) and
confirmatory approach (HC.).

Exploration Confirmation
k = 3 H0 : µ1 = µ2 = µ3 H0 : µ1 = µ2 = µ3

HE1 : µ1 = µ2, µ3 HC1 : µ1 < µ2 < µ3

HE2 : µ1, µ2 = µ3 HC2 : µ1 = µ2 < µ3

HE3 : µ1 = µ3, µ2 HC3 : µ1 < µ2 < µ3

HA : µ1, µ2, µ3 HA : µ1, µ2, µ3

k = 5 H0 : µ1 = µ2 = µ3 = µ4 = µ5 H0 : µ1 = µ2 = µ3 = µ4 = µ5

HE1 : µ1 = µ2 = µ3 = µ4, µ5 HC1 : µ5 = µ3 > {µ1, µ4} > µ2

HE2 : µ1 = µ2 = µ3 = µ5, µ4 HC2 : µ3 > µ1 > µ4 = µ5 > µ2

HA : µ1, µ2, µ3, µ4, µ5
...

HE49 : µ1, µ2, µ4, µ3 = µ5

HE50 : µ1, µ3, µ2, µ4 = µ5

HA : µ1, µ2, µ3, µ4, µ5

and one where they are in accordance with HC1 (ES = 0.1, 0.25, and 0.4). Based
on each population in Table 3.7, 1,000 data sets are simulated. Subsequently, the
corresponding hypotheses in Table 3.6 are evaluated in each of these data sets. Note
that HA and HE49 are the correct hypotheses in exploration when ES > 0 for k = 3
and k = 5, respectively.

Table 3.7: Population means for k = 3 and k = 5 for zero, small, medium, and large
effect size (ES).

k true Hm ES µ1 µ2 µ3 µ4 µ5

3 H0 0 0.000 0.000 0.000
HC1 0.10 -0.122 0.000 0.122
HC1 0.25 -0.306 0.000 0.306
HC1 0.40 -0.490 0.000 0.490

5 H0 0 0.000 0.000 0.000 0.000 0.000
HC1 0.10 0.000 -0.122 0.130 0.122 0.130
HC1 0.25 0.000 -0.306 0.321 0.306 0.321
HC1 0.40 0.000 -0.490 0.516 0.490 0.516
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3.3.4 Results

Exploration for k = 3

Table 3.8 displays the proportions of times the hypotheses are preferred for each
method and each population. The SWFq test chooses, as expected, H0 as the preferred
hypothesis about 95% of the times when it is indeed true. Notably, the SWFq test
is designed such that α = .05. The other two methods do not choose H0 as often.
For ES = 0.10, all three method lack power to prefer the correct hypothesis, as is to
be expected for a small effect size. When ES = 0.25 or ES = 0.40, the performance
is still questionable, but the PCIC-AIC clearly outperforms the other two. Thus, the
SWFq test performs well under H0 and the PCIC-AIC has most power to find the
effect specified.

Table 3.8: The Proportion of Times a Hypothesis is Preferred in Exploration

k = 3 and n = 50
ES Method H0 HE1 HE2 HE3 HA ’Inconsistent’
0 SWFq .944 .012 .009 .007 .000 .028
0 PCIC-AIC .653 .109 .116 .117 .005 -
0 BMS .807 .060 .063 .059 .011 -
0.1 SWFq .845 .042 .037 .004 .000 .072
0.1 PCIC-AIC .445 .252 .231 .060 .012 -
0.1 BMS .631 .017 .181 .116 .055 -
0.25 SWFq .227 .268 .262 .000 .043 .200
0.25 PCIC-AIC .040 .335 .337 .002 .226 -
0.25 BMS .066 .431 .433 .000 .070 -
0.4 SWFq .006 .260 .281 .000 .416 .037
0.4 PCIC-AIC .000 .139 .149 .000 .712 -
0.4 BMS .001 .256 .279 .000 .464 -

Note. SWFq = Shaffer-Welch Fq test; PCIC = paired-comparison
information criterion; AIC = Akaike information criterion; BMS =
Bayesian model selection; Bolding indicates the correct or best
hypothesis in each row.

Confirmation for k = 3

In Table 3.9, the performance of the confirmatory methods is presented for one
order-restricted hypothesis in addition to the classical null and alternative hypothesis.
The F̄ test chooses H0 as the preferred hypothesis about 90% of the times when it
is indeed true. This is to be expected, since we perform two tests with respect to
H0 with α = .05 and do not correct for multiple testing. The performance of BMS
resembles the one of the F̄ test, while the ORIC performs less well under H0. For
ES = 0.10, the three techniques do not perform very well, as is to be expected at
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Table 3.9: The Proportion of Times a Hypothesis is Preferred in Confirmation (H0

vs HC1 vs HA)

k = 3 and n = 50
ES Method H0 HC1 HA ’Inconsistent’
0 F̄ .912 .052 .033 .003
0 ORIC .724 .187 .089 -
0 BMS .881 .075 .044 -
0.1 F̄ .682 .310 .007 .001
0.1 ORIC .413 .563 .025 -
0.1 BMS .615 .354 .031 -
0.25 F̄ .114 .886 .000 .000
0.25 ORIC .017 .981 .002 -
0.25 BMS .072 .917 .011 -
0.4 F̄ .004 .995 .001 .000
0.4 ORIC .000 .999 .001 -
0.4 BMS .000 .998 .002 -

Note. ORIC = order-restricted information criterion;
BMS = Bayesian model selection; Bolding indicates
the correct or best hypothesis in each row.

a low effect size. For ES = 0.25 and ES = 0.4, all three method perform very well,
they all prefer HC1 more than 88% of the times. For all ES > 0, the ORIC performs
(somewhat) better than the other two.

Table 3.10 shows the results for evaluating multiple order-restricted hypotheses.
Since, the F̄ test is hard to use if more than one order-restricted hypothesis is
evaluated, the F̄ test is excluded. Here one can see that including more hypotheses
decreases the proportion of times the correct hypothesis is chosen, especially when
the effect size is not large. When H0 is true, BMS performs better than the ORIC
and when HC1 is true the ORIC outperforms BMS.

When comparing Table 3.10 to Table 3.8, it is evident that confirmative methods
have more power than explorative methods. For instance, for medium effect size, the
ORIC selects HC1 in about 75% of the simulated data sets and the PCIC-AIC selects
HA in about 23% of the cases. Bear in mind that HA is the correct hypothesis in
exploration when HC1 is the true hypothesis.

Exploration for k = 5

In exploration, there are 52 possible hypotheses when k = 5 (when inspecting more
than one data set). Because of the large number of hypotheses, only the results
of three of these are given and the results of the other hypotheses are combined
(column “other” in Table 3.11). We display the results for the null hypothesis H0,
the alternative hypothesis HA, and the correct hypothesis HE49. Moreover, we did
not include BMS, since evaluating 16 hypotheses per data set with BMS is very
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Table 3.10: The Proportion of Times a Hypothesis is Preferred in Confirmation (H0

vs HC1 vs HC2 vs HC3 vs HA)

k = 3 and n = 50
ES Method H0 HC1 HC2 HC3 HA

0 ORIC .672 .059 .124 .110 .035
0 BMS .777 .025 .114 .063 .021
0.1 ORIC .358 .296 .298 .044 .004
0.1 BMS .461 .153 .333 .052 .001
0.25 ORIC .016 .751 .219 .014 .000
0.25 BMS .039 .634 .297 .030 .000
0.4 ORIC .000 .938 .062 .000 .000
0.4 BMS .000 .888 .109 .003 .000

Note. ORIC = order-restricted information criterion;
BMS = Bayesian model selection; Bolding indicates
the correct or best hypothesis in each row.

time-consuming. Furthermore, given the results of the other two methods, we do not
expect that examining BMS renders additional information.

The proportions of times the hypotheses are selected are displayed in Table 3.11.
It shows that in exploration, if H0 is true, H0 is frequently preferred when using the
SWFq test, namely about 95% of the times. In contrast, if HE49 is true, the true
hypothesis is not chosen by the SWFq test. The PCIC-AIC only gives 35% of the
times the most support to H0 when it is true and less than 2% to HE49 when it is
true. Hence, explorative methods perform poorly under HE49. Note that HA is not
preferred at all.

Table 3.11 shows that the power to test any specific configuration of means is
very low whereas the power to detect at least one effect (1 minus first column) is not.
Hence, employing these methods will usually give significant results, but they tend to
vary across data sets. This was also discussed by Maxwell (2004), where he defined
power for a specific comparison, any-pairs power, and all-pairs power in the context
of multiple testing.

Confirmation for k = 5

Table 3.12 shows the results of the three methods for evaluating one order-restricted
hypothesis. This table exhibits the same patterns as the one for k = 3, that is, F̄ and
BMS outperform the ORIC under H0, whereas the ORIC has more power to detect
small or medium effect sizes. For large effect sizes, all three methods perform very
well and approximately equal.

Table 3.13 depicts the performance of the ORIC and BMS for examining two
order-restricted hypotheses. It can be seen that adding a hypothesis lowers the
performance of the methods, but the trend remains the same. BMS performs well
under H0 and under HC1 for a large effect size, while the ORIC has more power to
detect the correct hypothesis (HC1) for small and medium effect sizes.
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Table 3.11: The Proportion of Times a Hypothesis is Preferred in Exploration

k = 5 and n = 30
ES Method H0 HE49 HA other
0 SWFq .947 .000 .000 .053
0 PCIC-AIC .349 .000 .000 .651
0.1 SWFq .878 .000 .000 .122
0.1 PCIC-AIC .201 .000 .000 .799
0.25 SWFq .371 .000 .000 .629
0.25 PCIC-AIC .015 .002 .000 .983
0.4 SWFq .007 .000 .000 .993
0.4 PCIC-AIC .000 .016 .000 .984

Note. SWFq = Shaffer-Welch Fq test; PCIC =
paired-comparison information criterion; AIC =
Akaike information criterion; Bolding indicates
the correct or best hypothesis in each row.

Table 3.12: The Proportion of Times a Hypothesis is Preferred in Confirmation (H0

vs HC1 vs HA)

k = 5 and n = 30
ES Method H0 HC1 HA ’Inconsistent’
0 F̄ .920 .045 .031 .004
0 ORIC .752 .162 .086 -
0 BMS .965 .027 .008 -
0.1 F̄ .715 .264 .019 .002
0.1 ORIC .421 .536 .043 -
0.1 BMS .779 .200 .021 -
0.25 F̄ .130 .860 .007 .003
0.25 ORIC .026 .935 .039 -
0.25 BMS .201 .768 .031 -
0.4 F̄ .002 .990 .008 .000
0.4 ORIC .000 .965 .035 -
0.4 BMS .005 .970 .025 -

Note. ORIC = order-restricted information criterion;
BMS = Bayesian model selection; Bolding indicates
the correct or best hypothesis in each row.

3.3.5 Conclusion

When the interest lies in one or more order-restricted hypotheses, exploration has
some disadvantages. First, the hypotheses of interest cannot be evaluated directly.
Moreover, exploratory hypothesis techniques can render inconsistencies or difficult
to interpret results. Last, exploratory methods exhibit low power to detect specific
configurations of means, especially when the number of groups (k) increase.
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From the simulations, it can be concluded that the confirmatory methods
outperform their exploratory counterparts in case the interest lies in one or more
order-restricted hypotheses. The F̄ test performs very well under H0. In contrast,
it performs not as good when another hypothesis is true. Note that when you have
a theory, one could chose to protect H0 less by testing at a lower α level, which
increases the performance when a non-null hypothesis is true. A disadvantage of the
F̄ test is that it can evaluate only one order-restricted hypothesis (in a straightforward
manner). Hence, we recommended the use of confirmatory model selection, that is, the
Order-Restricted Information Criterion (ORIC) or Bayesian model selection (BMS).
The ORIC performs best when H0 is not true, whereas BMS performs less well when
H0 is not true (with an exception of large effect sizes where it is about equally good
as the ORIC) but better when H0 is true.

It should be stressed that in this simulation study the true hypothesis is included
in the set for the confirmatory methods. What if a hypothesis not contained in the
set is true? In that case, HA will be preferred over the other hypotheses, if the sample
size is large enough to distinguish between those in the set from the correct one.
Therefore, we recommend to always include the unconstrained hypothesis HA in the
analysis. In this case, model selection techniques select

• the correct hypothesis (if it is included), or
• a similar one (i.e., a hypothesis which resembles the true hypothesis, that is, only

differs in a few constraints), or
• the unconstrained hypothesis.

This is also supported by simulation (not shown here).

Table 3.13: The Proportion of Times a Hypothesis is Preferred in Confirmation (H0

vs HC1 vs HC2 vs HA)

k = 5 and n = 30
ES Method H0 HC1 HC2 HA

0 ORIC .708 .114 .113 .065
0 BMS .948 .024 .018 .010
0.1 ORIC .378 .364 .221 .038
0.1 BMS .761 .152 .074 .013
0.25 ORIC .033 .757 .175 .035
0.25 BMS .181 .690 .101 .028
0.4 ORIC .000 .888 .076 .036
0.4 BMS .002 .918 .035 .045

Note. ORIC = order-restricted information
criterion; BMS = Bayesian model selection;
Bolding indicates the correct or best
hypothesis in each row.
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3.4 Robustness of Performance in Confirmation under
Heterogeneity

As mentioned before, little is known about the influence of violations of assumptions of
the ANOVA model, especially for the confirmatory methods. In this simulation study,
we will investigate their robustness of performance in the presence of heterogeneity.

3.4.1 Populations and Hypotheses

As in the previous section, we use (3.1) in the analyses. We will employ k = 3. But,
the populations differ, namely now there are group specific variances: σ2

i for i = 1, 2, 3.
Although the population standard deviations are divergent, they are assumed to be
equal in the model. As mentioned before, the F test is not as robust for heterogeneity
when the groups with the largest sample sizes have the highest variances and the ones
with the smallest sample sizes have the lowest variances than when the group sizes
are equal. Therefore, we will examine both equal group sizes (n1 = n2 = n3 = n, with
n = 20 and n = 50) and unequal group sizes (n1 = 20, n2 = 50, and n3 = 100). In
this study, the following set of hypotheses is evaluated:

H0 : µ1 = µ2 = µ3,

H1 : µ1 < µ2 < µ3, (3.5)

HA : µ1, µ2, µ3.

The population means of this study equal the population means in the previous
one, see the upper panel in Table 3.7. Thus, there is one set where all the population
means are identical (ES = 0) and H0 is true and three where they exhibit an upward
trend (ES > 0) and H1 is true. Due to heterogeneity, the effect size is calculated by
(3.4), where σ is replaced by the pooled standard deviation σp, with

σp =

√∑
Niσ2

i∑
Ni

,

with Ni the size of group i in the population. In the simulation, we will use ni instead
of Ni, because we assume that the relative sizes of the groups in the samples equals
those in the population. By setting σp to 1, the same effect sizes as in the previous
simulation study (upper panel in Table 3.7) are obtained.

The standard deviations (σi) are with σp = 1 solely based on the Fmax value in
(3.2). Evidently, a higher Fmax value indicates a larger difference in group variances
and vice versa. Importantly, Fmax = 1 implies that there is no difference in the
group variances, that is, the homogeneity of variance assumption is not violated.
Consequently, we will use Fmax = 1 as the baseline. Based on the findings of
Tabachnick and Fidell (2001) and Box (1954), we additionally set Fmax to 3 and
10. To examine the effect of a large violation, we inspect Fmax = 100 as well. For
Fmax > 1, different orderings of the σi values in relation to the ordering of group sizes
exist. Note that the ranking of the σi values is arbitrary in case of equal group sizes.
Hence, for equal group sizes, we only examine σi values with an upward trend, that
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is, the σ2
i values increase with i. If the group sizes are unequal, we will investigate

samples with sizes increasing with i with two rankings of σi values based on the results
of Box (1954), namely one with an upward trend and one with a downward trend.
Due to the two types of group sizes (equal and unequal), the four Fmax values, and
the two types of trends (upward or downward), eleven sets of population standard
deviations are investigated, which are given in Table 3.14.

Table 3.14: The Population Standard Deviations

Equal Group Sizes* Unequal Group Sizes**
Type of trend Fmax σ1 σ2 σ3 σ1 σ2 σ3

Baseline 1 1.000 1.000 1.000 1.000 1.000 1.000
Upward 3 0.707 1.000 1.225 0.612 1.000 1.061
Downward 3 1.500 1.000 0.866
Upward 10 0.426 1.000 1.348 0.343 1.000 1.085
Downward 10 2.000 1.000 0.632
Upward 100 0.141 1.000 1.407 0.109 1.000 1.094
Downward 100 2.390 1.000 0.239
* n1 = n2 = n3 = n, with n = 20 and n = 50
** n1 = 20, n2 = 50, n3 = 100

For each combination of ni in relation with σi, Fmax, and ES, 1,000 data sets are
simulated. Subsequently, the hypotheses in (3.5) are evaluated in each of these data
sets.

3.4.2 Results and Conclusions

Figure 3.1 displays the proportion of times H1 is preferred by the three confirmatory
techniques (F̄ on top, ORIC in the middle, and BMS on the bottom) for effect size
ES (represented by the different lines in each plot) and heterogeneity level Fmax
(depicted at the x-axis of each plot) in case of unequal group sizes. The results for
equal group sizes are not plotted, since they are very robust, but we will briefly
elaborate on this below. The performance is measured by the proportion of times the
correct hypothesis is preferred (displayed on the y-axis of each plot). Observe that
complete robustness for heterogeneity would imply only horizontal lines. The figure
shows that the effect of heterogeneity on the performance of the three methods when
H1 is true depends on the effect size. For medium to large effect sizes (i.e., ES = 0.25
and 0.4), the proportion of times H1 is preferred increases with Fmax, when the σs
show an upward trend (see the two top lines in the panels on the left hand side
in Figure 3.1). In addition, the proportion of times H1 is preferred decreases with
Fmax, when the σs show an downward trend (see the two top lines the panels on
the right hand side in Figure 3.1). The opposite holds true for small effect sizes (i.e.,
ES = 0.1 and 0). That is, for ES = 0.1 and 0, the proportion of times H1 is preferred
decreases (increases) with Fmax, when the σs show an upward (downward) trend
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(see the two bottom lines in the panels on the left (right) hand side in Figure 3.1).
Furthermore, the difference in performance due to heterogeneity is larger when the σs
have a downward trend compared to when they exhibit an upward trend. It should
be stressed that the difference in performance due to heterogeneity is not profound
for Fmax = 3 in all cases and for Fmax = 10 when the σs exhibit an upward trend.
Moreover, note that an Fmax value of 100 can be considered an extreme violation,
compared to the benchmarks of Tabachnick and Fidell (2001) discussed earlier, where
an Fmax value of 10 and 3 is concluded to be acceptable for analyses with equal group
sizes and unequal group sizes, respectively.

Although the general trend is clear from Figure 3.1, the magnitude of the
deviations from the baseline is less clear. In addition, it does not report on the
performance when the group sizes are equal or on the proportion of times H0

is selected. Note that, in this simulation, the interest lies in robustness of the
techniques and not in the performance itself. Therefore, we included two tables in
the appendix which present the difference in performance for an Fmax > 1 compared
with Fmax = 1. These differences give an indication of the robustness of heterogeneity
on the performance under both H0 and H1, where a difference of zero indicates full
robustness. As a consequence, a higher absolute difference reflects a poorer robustness.

Table 3.15 depicts the difference in performance for ES = 0 when H0 is correct.
In case of equal group sizes, no eminent trend can be seen across methods and/or
Fmax values. Additionally, the difference in proportion of times H0 is preferred are
extremely small for the different Fmax values. In the unequal sample size condition,
the proportion of times H0 is preferred increases (decreases) with Fmax, when the
σs exhibit an upward (downward) trend. Furthermore, the effect of heterogeneity on
performance are more severe for the downward trend than for the upward trend.
It should be stressed that these results resemble the effect of heterogeneity on the
ANOVA F test.

Table 3.16 shows, for all effect sizes, the difference in the proportion of times H1

is preferred. It shows that the difference in proportion of times H1 is preferred do not
differ more than .045 in absolute sense for the three Fmax values for all effect sizes
for both sample sizes. Also here, no profound trend arises. The patterns in robustness
for unequal group sizes are already discussed with Figure 3.1. In addition, Table 3.16
shows that the absolute difference in performance is less than .10 in case of the upward
trend and .16 in case of the downward trend.

We conclude that for all three techniques (i.e., the F̄ test, the ORIC, and BMS)
the performance under both H0 and H1 is robust for heterogeneity when the group
sizes are equal. In case of unequal group sizes and when the group standard deviations
exhibit the same trend, the performance under both H0 and H1 is still quite robust.
However, when the group standard deviations exhibit an opposite trend, there are
larger deviations, especially for Fmax values larger than three.

3.5 Discussion

Several populations have been examined, however, for brevity only a summary of
the simulation study is given in this chapter. As we have advocated, there is much
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Fig. 3.1: Proportion of times H1 is selected as best hypothesis for increasing
heterogeneity (Fmax) for unbalanced designs with either larger variances in larger
subgroups (Upward) or smaller variances in larger subgroups (Downward). In each
plot, the four lines from bottom to top show results for ES = 0, 0.1, 0.25, and 0.4,
respectively.

to be gained from using confirmatory model selection techniques. Furthermore, we
have attempted to provide some insight into the robustness of confirmatory methods.
Although more research is required to state that the confirmatory methods are robust
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for heterogeneity, our results should encourage the use of confirmatory techniques,
primarily confirmatory model selection. Software (with a tutorial) is available (at
http://staff.fss.uu.nl/RMKuiper) to perform the techniques described on your
own data set. More details can be found in Kuiper and Hoijtink (2010) and Kuiper
et al. (2010).

3.A Tables with Results of Robustness of Heterogeneity in
Confirmation

http://staff.fss.uu.nl/RMKuiper
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CHAPTER 4

An Akaike-Type Information Criterion
for Model Selection under Inequality Constraints
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The Akaike information criterion for model selection presupposes that the
parameter space is not subject to order restrictions or inequality constraints. Anraku
(1999) proposed a modified version of this criterion, called the order-restricted
information criterion, for model selection in the one-way analysis of variance model
when the population means are monotonic. We propose a generalization of this to the
case when the population means may be restricted by a mixture of linear equality and
inequality constraints. If the model has no inequality constraints, then the generalized
order-restricted information criterion coincides with the Akaike information criterion.
Thus, the former extends the applicability of the latter to model selection in multi-way
analysis of variance models when some models may have inequality constraints while
others may not. Simulation shows that the information criterion proposed in this
chapter performs well in selecting the correct model.

The Akaike information criterion (Akaike, 1973) is among the most widely used
criteria for model selection. This criterion assumes that the parameter space of the
model is not restricted by inequality constraints of the form θ1 ≤ θ2, where θ1 and
θ2 are unknown parameters. In this note, we propose an Akaike-type information
criterion for the analysis variance model when the treatment means {θ1, . . . , θp} are
assumed to satisfy a mixture of linear equality and inequality constraints.

To illustrate the essentials, let us consider the analysis of variance model

yij ∼ N(θi, σ
2) (i = 1, . . . , p, j = 1, . . . , ni), (4.1)

with independent observations from p normal populations, and let θ = (θ1, . . . , θp)
>.

This setting is general enough to incorporate factorial designs as well. For model (4.1),
aic = −2{maximum log likelihood − number of parameters} when θ is not subject
to inequality constraints. However, in many studies, prior information such as that
the new treatment is at least as good as the old treatment, which may take the form
θ1 ≤ θ2, is available. In such cases, the Akaike information criterion is not suitable
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for model selection. When θ satisfies the simple order θ1 ≤ · · · ≤ θp, Anraku (1999)
proposed the order-restricted information criterion

oric = −2

{
maximum log likelihood− 1−

p∑
i=1

iwi

}
, (4.2)

where the constants {w0, . . . , wp} are the so-called level probabilities for the simple
order θ1 ≤ · · · ≤ θp. In this note, we propose an extension of (4.2), called the
generalized order-restricted information criterion, to the case when the parameter
θ may be restricted by Rθ ≥ 0 where R is any matrix of known constants.

The form Rθ ≥ 0 is general enough to accommodate practically any linear
inequality constraints encountered in practice. Some examples to which the generalized
order-restricted information criterion is applicable include the simple order, the tree
order θ1 ≤ θ2, . . . , θ1 ≤ θp, and the matrix order (Silvapulle & Sen, 2005, pp. 43,
296). By contrast, (4.2) is applicable only when θ1 ≤ · · · ≤ θp; thus, for example, it
is not applicable for the tree order or the matrix order, even after transformation of
the model.

4.1 The generalized order-restricted information criterion

4.1.1 Preliminaries

Consider the analysis of variance model (4.1) with θ subject to Rθ ≥ 0, where R is a
r × p matrix. Let n = n1 + · · · + np be the total number of observations. It follows
from (4.1) that the log likelihood is

`(θ, σ) = −1

2
n log(2πσ2)− 1

2

k∑
i=1

ni∑
j=1

{
yij − θi

σ

}2

.

Let `0(θ∗, σ∗) denote the expected log likelihood function E{`(θ∗, σ∗) | θ, σ} at an
arbitrary point (θ∗, σ∗) in the parameter space, where the expectation is evaluated at
the true value (θ, σ). Then

`0(θ∗, σ∗) = −1

2
n{log(2π) + log σ∗2} − 1

2

[
n
( σ
σ∗

)2

+

p∑
i=1

ni

{
θi − θ∗i
σ∗

}2
]
.

Let (θ̃, σ̃) denote the maximum likelihood estimator of (θ, σ) under equality and/or
inequality constraints, if there are any. The objective of an information criterion-based
approach is to choose the model for which `0(θ̃, σ̃), the expected log likelihood at the
maximum likelihood estimator (θ̃, σ̃), is maximized. However, `0(·) depends on the
unknown population distribution, and therefore, the standard method is to use an
estimator of `0(θ̃, σ̃). A natural estimator of this is the maximum log likelihood, `(θ̃, σ̃).
However, this is not a good estimator because its bias B(θ, σ) = E{`(θ̃, σ̃)− `0(θ̃, σ̃) |
θ, σ} does not reduce to zero as n→∞. Details of these derivations for the case when
there are no inequality constraints are well known (for example, see Claeskens &
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Hjort, 2008; Hurvich & Tsai, 1989; McQuarrie & Tsai, 1998; Gourieroux & Monfort,
1995, §22.3.2). If θ is restricted by Rθ ≥ 0, then

B(θ, σ) = −n
2

+
n

2
E

{(σ
σ̃

)2
∣∣∣∣ θ, σ}+

1

2
E

{
p∑
i=1

ni
(θ̃i − θi)2

σ̃2

∣∣∣∣∣ θ, σ
}
.

Let us temporarily suppose that there are no constraints on θ, and let (θ̂, σ̂) denote

the unconstrained maximum likelihood estimator of (θ, σ). Then the bias E{`(θ̂, σ̂)−
`0(θ̂, σ̂) | θ, σ} in estimating `0(θ̂, σ̂) by `(θ̂, σ̂) is p+o(1). Therefore, an asymptotically

unbiased estimator of `0(θ̂, σ̂) is {`(θ̂, σ̂)− p}, which is proportional to aic.
In the inequality constrained case, suppose that θ is subject to Rθ ≥ 0. Now,

B(θ, σ) is no longer constant up to a term of order o(1), and therefore, the bias cannot
be removed by subtracting a constant. For this setting, Anraku (1999) proposed the
order-restricted information criterion −2{`(θ̃, σ̃)−infθ,σ B(θ, σ)}, which resembles the
aic and is most favourable to the parametric model. Because B(θ, σ) depends on the
particular inequality constraints, a challenge is to find simple and practical ways of
computing infθ,σ B(θ, σ) for different inequality constraints.

For the simple order restriction θ1 ≤ · · · ≤ θp, Anraku (1999) showed that
infθ,σ B(θ, σ) has the closed form (1 +

∑p
i=1 iwi), which in turn led to (4.2). A main

contribution of this note is to provide a similar simple closed form for infθ,σ B(θ, σ)
when θ is restricted by Rθ ≥ 0.

4.1.2 A closed form for the penalty term infθ,σ B(θ, σ)

Let W = diag{n−1
1 , . . . , n−1

p }, the diagonal matrix with the ith diagonal being n−1
i

(i = 1, . . . , p). Let C = {θ∗ : Rθ∗ ≥ 0}, X ∼ N(0,W ) and X̃ = arg minx{(X −
x)>W−1(X − x) : x ∈ C}. Now, let {wi(p,W, C), i = 0, . . . , p} be the nonnegative
constants that are uniquely defined and appear in the chi-bar square distribution,
pr(X̃>W−1X̃ ≤ c) =

∑p
i=0 wi(p,W, C) pr(χ2

i ≤ c). These constants, also known
as chi-bar square weights, arise naturally in constrained statistical inference where
their computation has been studied in detail. For details and references, see §3.5 in
Silvapulle and Sen (2005) and Silvapulle (1996).

The crucial result to extend order-restricted information criterion to accommodate
more general order restrictions is the following.

Proposition 1. Consider the normal theory analysis of variance model (4.1). Let
C be a closed convex cone in Rp or C = Rp. Let θ ∈ C and σ > 0. Then 1 +∑p
i=1 iwi(p,W, C) + O(n−1) ≤ B(θ, σ) ≤ (1 + p) + O(n−1), where the lower bound

is reached if and only if θ is in the largest linear space contained in C.

This result is applicable when the constraints are of the form Rθ ≥ 0 because C
can then be taken to be {θ ∈ Rp : Rθ ≥ 0}. In view of the greatest lower bound for
B(θ, σ) in Proposition 1, and the form −2{`(θ̃, σ̃)− infθ,σ B(θ, σ)} for the information
criterion, we define the generalized order-restricted information criterion

goric = −2

{
`(θ̃, σ̃)− 1−

p∑
i=1

iwi(p,W, C)

}
. (4.3)
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We propose that the model for which this is the minimum to be chosen. For the special
case of simple order, (4.3) reduces to (4.2). Suppose that there are no inequality
constraints on θ. Then, Proposition 1 is applicable with C = Rp. With this choice, we
have wp(p,W, C) = 1, wi(p,W, C) = 0 for i < p, and thus, generalized order-restricted
information criterion reduces to aic.

The approach proposed in this chapter shares a consistency property with the
traditional Akaike information criterion approach. To establish this, let us consider
the two models Ha : θ ∈ Ca and Hb : θ ∈ Cb, where Ca and Cb are closed convex
cones and are not equal. Suppose that the true parameter θ lies in Ca and not in
Cb. Then, by mimicking the arguments in Anraku (1999) for his Theorem 4, we have
that n−1(gorica − goricb)/(−2) = c + op(1), where c = E[log{f(y; θ, σ)} | θ, σ] −
log{f(y; θb, σb)} > 0, and (θb, σb) is the probability limit of the maximum likelihood
estimator of (θ, σ) under model Cb. Hence, the correct model will be chosen with
probability going to 1 for n→∞.

The only computer program required to compute generalized order-restricted
information criterion is a quadratic program. Since such programs are available in
many mathematical and statistical computer software, computation of generalized
order-restricted information criterion does not encounter any serious difficulties. The
computer time required to compute the penalty term {1 +

∑p
i=1 iwi(p,W, C)} in

generalized order-restricted information criterion does not depend on the number
of observations in the sample, but only on the dimension of θ and the nature of
inequality constraints on θ. In most practical settings, the computation of generalized
order-restricted information criterion would take only a matter of seconds.

4.2 An example

Zelano, Zelano, and Kolb (1972) conducted an experiment to evaluate the effect of
exercise on the age y at which a child starts to walk. The data are available in
Silvapulle and Sen (2005, p. 34). Each of the four groups received a different walking
exercise. The first group received a seven-week walking exercise for twelve minutes
a day beginning at the age of one week. The second group received a daily exercise,
but not a daily walking exercise. The third group did not receive any exercises, and
serves as control group. The fourth group also did not receive any exercise, but they
were checked weekly for progress. The model used here is (4.1), with p = 4, n1 =
n2 = n4 = 6, n3 = 5, and θi the mean age in months at which a child starts to walk
(i = 1, . . . , 4).

Because the effect of the exercises is not completely understood, several different
possible competing hypotheses are of interest. One possible hypothesis is H1 in
Table 4.1, that the mean age decreases with increasing intensity of exercise. Another
is H2 in Table 4.1, that Treatments 1 and 2 are at least as good as Treatments 3 and
4, but no ordering is suggested between Treatments 1 and 2, or between Treatments
3 and 4.

The hypotheses H0, H1, H2 and Hu in Table 4.1 have different inequality
constraints on θ. Consequently, generalized order-restricted information criterion has
different values for these hypotheses. Table 4.1 suggests that, in terms of generalized
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Table 4.1: Estimates of the penalty term inf(θ,σ)B(θ, σ), the log likelihood `(θ̃, σ̃2) and
generalized order-restricted information criterion

Hypothesis inf(θ,σ)B(θ, σ) `(θ̃, σ̃2) goric
H0 : θ1 = θ2 = θ3 = θ4 2·00 −43·36 90·73
H1 : θ1 ≤ θ2 ≤ θ4 ≤ θ3 3·10 −40·01 86·23
H2 : θ1 ≤ θ3, θ2 ≤ θ3, θ1 ≤ θ4, θ2 ≤ θ4 3·61 −40·01 87·25
Hu : No restrictions on the parameters 5·00 −40·01 90·03
goric, generalized order-restricted information criterion.

order-restricted information criterion, model H1 fits better than the other three. The
traditional approach based on aic is unable to provide such a discrimination between
these models. Because the order restriction in H2 cannot be expressed as a simple
order, the method in Anraku (1999) is inadequate to compare H2 with the other
models in Table 4.1. In this sense, generalized order-restricted information criterion
extends the applicability of generalized order-restricted information criterion to more
general linear order restrictions.

4.3 Simulation

A simulation study was carried out to evaluate the performance of the generalized
order-restricted information criterion, using the design of a real data example.
Berzonsky, Kleven, and Leach (2003) studied the effects of parthenogenesis on wheat
embryo formation in the presence and in the absence of maize pollination. This
experiment was conducted as a balanced 4 × 2 factorial design in a glass house.
The response variable y is a measure of embryo formation. Factor A is genotype
with four levels, and Factor B is maize pollination with two levels. Berzonsky et al.
(2003) studied the two-way analysis of variance model, Yijk = µij + ηijk (i = 1, . . . , 4,
j = 1, 2, k = 1, . . . , 20). They also discussed possible orderings of the cell mean
parameters based on prior knowledge about the relationship among the cell means.
The main one is stated below as H1. One use of a well-fitting model in the context of
this study is prediction of embryo formation under different experimental conditions.

To apply the results of this chapter, let us rewrite the foregoing model as yij =
θi + εij (i = 1, . . . , 8, j = 1, . . . , 20). Now, let us define Hu as the model with no
restrictions on θ, H0 : θ1 = θ2 = θ3 = θ4, θ5 = θ6 = θ7 = θ8, and

H1 : θ1 ≥ {θ2, θ3, θ4}, θ5 ≥ {θ6, θ7, θ8}, θ1 ≥ θ5, θ2 ≥ θ6, θ3 ≥ θ7, θ4 ≥ θ8,

θ1 − θ5 ≥ {θ2 − θ6, θ3 − θ7, θ4 − θ8}.

To choose suitable parameter values for the simulation, we used the effect size
(Cohen, 1992) and the true hypothesis to guide us. Nine different values for the vector
of population means were studied. For each value of θ, estimates were obtained using
1,000 independent samples. Based on these, we computed the percentage of times that
the correct model was chosen. Table 4.2 shows that the method introduced in this
chapter, selected the correct model at least 90% of the times, when the effect size was
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Table 4.2: Percentage of times that different models were chosen by the generalized
order-restricted information criterion

Case 1: H0 is true Case 2: H1 is true Case 3: Hu is ’true’
ES H0 H1 Hu H0 H1 Hu H0 H1 Hu

0 · 1 84 9 7 48 49 3 60 30 10
0 · 25 91 1 9 7 92 1 18 35 47
0 · 4 91 0 9 0 99 1 1 9 91

greater or equal to 0.25. When the effect size was equal to 0.1, the method selected H0

more often, as expected. More simulation results are given in Appendix 4.B and the
computer program for computing generalized order-restricted information criterion is
available from http://staff.fss.uu.nl/RMKuiper.

4.A Proofs

Let W be a positive definite matrix of order p × p. Let ‖x‖2 denote the squared
length x>W−1x, 〈x, y〉 denote the inner product x>W−1y, and P (x | C) denote the
projection of x onto C defined by arg minc∈C ‖x− c‖. Thus, P (x | C) is the point in C
closest to x with respect to the distance ‖ · ‖. For any set A ⊂ Rp, let ρ(x,A) denote
the distance infa∈A ‖x− a‖ between the point x and the set A. LetM be the largest
linear space contained in C.

Lemma 1. Let X ∈ Rp, θ0 ∈M, θ1 ∈ C, and λ = θ1−θ0. Then (i) ‖X−P (X | C)‖ ≥
‖(X + θ1)− P (X + θ1 | C)‖, and (ii) ‖P (X | C)− θ0‖ ≤ ‖P (X + λ | C)− (λ+ θ0)‖.

The first part of the lemma follows from C ⊂ C − θ1. The second part follows from
Nomakuchi (2002, Thm 2.1).

Lemma 2. Let Rθb ≥ 0 and Rθa = 0. For a given vector of error terms E, let
Yaij = θai + Eij and Ybij = θbi + Eij . Let the suffices a and b correspond to θa and

θb respectively. Then, (i) σ̃2
b ≤ σ̃2

a, (ii) ‖θ̃b − θb‖2 ≥ ‖θ̃a − θa‖2 and (iii) B2(θb, σ) ≥
B2(θa, σ).

Proof. Let λ = θb − θa. If Rγ ≥ 0, then there exists a θ∗ such that Rθ∗ ≥ 0 and
γ = θ∗ − λ. Therefore, nσ̃2

b = minRθ∗≥0

∑
ij(Ybij − θ∗i )2 = minRθ∗≥0

∑
ij{θai +Eij −

(θ∗i − λi)}2 ≤ minRγ≥0

∑
ij(θai + Eij − γi)2 = nσ̃2

a. By Lemma 1(ii), we have ‖θ̃b −
θb‖2 = ‖P (θ̂b | C)−θb‖2 = ‖P (θ̂a+λ | C)−(θa+λ)‖2 ≥ ‖P (θ̂a | C)−θa‖2 = ‖θ̃a−θa‖2.
Part (iii) follows from (i) and (ii) in Lemma 2.

Lemma 3. Suppose that Rθ = 0. Then E{σ2/σ̃2 | (θ, σ)} = 1+n−1
∑p
i=0 iwi(p,W, C)

+ 2n−1 + O(n−2).

Proof. We use the lemmas from Silvapulle and Sen (2005, pp. 125–132) without
further comment. Let {F1, . . . Fm} be the partition of C = {x ∈ Rp : Rx ≥ 0},
where each Fs is the relative interior of a face of C (s = 1, . . . ,m); for a definition

http://staff.fss.uu.nl/RMKuiper
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of face see Silvapulle and Sen (2005, p. 124). Let Ss = {x ∈ Rp : P (x | C) ∈ Fs}
(s = 1, . . . ,m). Then {S1, . . . , Sm} is a partition of Rp, except for a set of measure
zero. Let Ls denote the linear space spanned by Fs for s = 1, . . . ,m. By arguments
similar to the proof of Theorem 3.4.2 in Silvapulle and Sen (2005), we have

pr

(
σ̃2

σ2
≤ t
)

=

p∑
i=0

∑
over all s with dim(Ls)=p−i

pr(θ̂ ∈ Ss) pr

(
σ̃2

σ2
≤ t
∣∣∣∣ θ̂ ∈ Ss)

=

p∑
i=0

wp−i(p,W, C) pr(χ2
n−p+i ≤ nt).

Now, with Ni = (n− p+ i)/2, we have

E

(
σ2

σ̃2

)
=

∫ ∞
0

t−1d

{
pr

(
σ̃2

σ2

)
≤ t
}

=

∫ ∞
0

t−1d

{
p∑
i=0

wp−i(p,W, C) pr(χ2
n−p+i ≤ nt)

}

=

p∑
i=0

wp−i(p,W, C)
∫ ∞

0

t−1{Γ (Ni)2
Ni}−1 exp

(
−nt

2

)
(nt)Ni−1n dt

=
n

2

p∑
i=0

wp−i(p,W, C)(Ni − 1)−1

= 1 + n−1

{
2 +

p∑
i=0

iwi(p,W, C)

}
+O(n−2).

Lemma 4. If Rθ = 0, then, E(σ̃−2‖θ̃ − θ‖2) =
∑p
i=0 iwi(p,W, C) +O(n−1).

Proof. Let Fs, Ss, and Ls, s = 1, . . . ,m, be the same as those in the proof of the
previous lemma. Conditional on {θ̂ ∈ Ss}, ‖θ̃− θ‖2 and nσ̃2 are independent and are
distributed as χ2

i and χ2
n−i respectively, where i = dim(Ls). Now,

pr(σ̃−2‖θ̃ − θ‖2 ≤ c) =

p∑
i=0

∑
over all s with dim(Ls)=i

pr(θ̂ ∈ Ss) pr(σ̃−2‖θ̃ − θ‖2 ≤ c | θ̂ ∈ Ss)

=

p∑
i=0

wi(p,W, C) pr

(
ni

n− i
Fi,n−i ≤ c

)
.

Hence, E(σ̃−2‖θ̃ − θ‖2) =
∑p
i=0 iwi(p,W, C){1 + O(n−1)} =

∑p
i=0 iwi(p,W, C) +

O(n−1).

4.B Additional information on the simulation study

A simulation study was conducted to evaluate the performance of goric. For this
simulation study, we chose the design of a real data example for which goric would
be useful, namely the one of Berzonsky et al. (2003). The model used in this study
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can be written as yij = θi + εij where i = 1, . . . , 8 and j = 1, . . . , 20. The following
three models/hypotheses were studied:

H0 : θ1 = θ2 = θ3 = θ4, θ5 = θ6 = θ7 = θ8,

H1 : θ1 ≥ {θ2, θ3, θ4}, θ5 ≥ {θ6, θ7, θ8}, θ1 ≥ θ5, θ2 ≥ θ6, θ3 ≥ θ7, θ4 ≥ θ8, and

θ1 − θ5 ≥ {θ2 − θ6, θ3 − θ7, θ4 − θ8},
Hu : θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 are unrestricted.

To acquire a suitable set of parameter values for the simulation, we used the effect
size (Cohen, 1992) to guide us. The effect size of an analysis of variance model is
measured by ES = σm/σ, with σm the standard deviation of the k = 8 population
means and σ the standard deviation of the population, here set to 1. An effect size
(ES) of 0 · 1 is called low, ES = 0 · 25 medium, and ES = 0 · 4 high. Based on
these three values and on the true hypothesis, we obtained nine different values for
the vector of population means (see Table 4.5).

For each value of θ, we generated 1,000 independent samples. For each simulated
data set we calculated the goric for the three models of interest. The percentage of
times the correct model was chosen (with ni = 20 for all i) are given in Table 4.2.
This table shows that the goric selects the correct model at least 90% of the times,
when the effect size is greater or equal to 0 · 25. When the effect size was small, that
is, lower than 0 ·25, the goric selects H0 more often, as expected. Namely, with small
effect sizes, large samples would be required to be able to distinguish between the two
models. In fact, Table 4.4 displays that the proportion of times the goric selects the
correct model increases with increasing sample size.

Table 4.3: Percentage of times that the models H0, H1, and Hu were chosen by the
goric for ni = 20

Case 1: H0 is true Case 2: H1 is true Case 3: Hu is ’true’
ES H0 H1 Hu H0 H1 Hu H0 H1 Hu

0 · 1 84 9 7 48 49 3 60 30 10
0 · 25 91 1 9 7 92 1 18 35 47
0 · 4 91 0 9 0 99 1 1 9 91

Table 4.4: Percentage of times that the models H0, H1, and Hu were chosen by the
goric for ni = 50

Case 1: H0 is true Case 2: H1 is true Case 3: Hu is ’true’
ES H0 H1 Hu H0 H1 Hu H0 H1 Hu

0 · 1 91 4 5 37 63 1 49 33 19
0 · 25 94 0 6 0 99 1 1 10 89
0 · 4 94 0 6 0 99 1 0 0 100
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CHAPTER 5

Generalization of the Order-Restricted Information Criterion

for Multivariate Normal Linear Models

Kuiper, R. M., Hoijtink, H., and Silvapulle, M. J.

Manuscript submitted

The order-restricted information criterion (oric) of Anraku (1999) is a model
selection criterion for analysis of variance models that can be applied to simple order
restrictions, which are of the form θ1 ≤ . . . ≤ θk, where θj is the mean of group j.
We generalize the oric to an information criterion, called the goric, which can be
applied to univariate and multivariate normal linear models for a more general form
of order restrictions: Rθ ≤ 0, where θ is a vector of length tk and R a cm× tk matrix.
Subsequently, we show that the goric works for restrictions of the form Rθ ≤ r as
well, with r is a vector of length cm and R a cm × tk matrix of full rank.

Like the oric, the goric selects the best of a set of hypotheses and consists of
a likelihood part and a penalty part. We describe how the penalty of the goric is
assessed by means of simulation. At the end of this chapter, we illustrate that the
goric is easy to implement in a multivariate regression model.

5.1 Introduction

Anraku (1999) proposes the order-restricted information criterion (oric), which is
used for models of the form yij = θj+εij , where yij is observation i (with i = 1, . . . , Nj)
for group j (with j = 1, . . . , k), θj is the mean for group j, and εij is the error term,
which follows a normal distribution with mean 0 and variance σ2. This model selection
criterion can only be applied to hypotheses which can be written as simple order
restrictions: Hm : θ1 ≤ . . . ≤ θk, where “≤” may be replaced by “=”. Furthermore,
Hughes and King (2003) derive the so-called one-sided aic which is “applicable in
problems where the signs of some or all the parameters are known or can be inferred
on basis of a priori information”. In addition, Kuiper, Hoijtink, and Silvapulle (2011)
propose a generalization of the order-restricted information criterion, goric. This
model selection criterion can be used for a more general form of order restrictions:
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Rθ ≤ 0, where θ is a vector of length k and R a cm×k matrix. However, the derivation
is only done for analysis of variance models.

In this chapter, we derive a generalization of the oric, called the goric, that
can be used for t-variate normal linear models to evaluate commonly encountered
hypotheses of the type Hm : θ ∈ Cm for m ∈ M, where θ is a vector of length
tk, Cm is a closed convex cone, and M the set of hypothesis indices. Special cases
of closed convex cones are simple order restrictions and matrix order restrictions
(Silvapulle & Sen, 2005, pp. 82). The latter are of the type Hm : Rθ ≤ 0, with R
a cm × tk matrix. The set of restrictions can contain equality restrictions as well:
Hm : R1θ ≤ 0, R2θ = 0, where R1 is a cm1 × tk matrix and R2 a cm2 × tk matrix.
Namely, Hm : R1θ ≤ 0, R2θ = 0 equals Hm : R1θ ≤ 0, R2θ ≤ 0,−R2θ ≤ 0 which
can be rewritten as Hm : Rθ ≤ 0. In this chapter, we prove that the goric can also
be applied to Hm : Rθ ≤ r when R is of full rank, with r a vector of length cm.
Namely, Hm : Rθ ≤ r is a relocated closed convex cone or, stated otherwise, it is a
close convex cone for shifted data, when R is of full rank. Note that the matrix of
full rank may be obtained by discarding redundant restrictions. As before, equality
restrictions can be a part of these type of restrictions, that is, Hm : R1θ ≤ r1, R2θ = r2

is also a relocated closed convex cone when [R′1, R
′
2]′ is of full rank (after discarding

redundant restrictions), with r1 a vector of length cm1 and r2 of cm2. Notably, a
hypothesis including the restrictions θl ≥ r11 and θl ≤ r12 is not a (closed) convex
cone for r11 6= r12, with θl the lth element of θ for l = 1, . . . , tk, since in that case R is
not of full rank and there are no redundant restrictions. The same remains valid for
θl ≥ r11, θl′ ≥ r12, θl + θl′ ≤ r13 for l 6= l′. For Hm : θl ≤ r11, θl′ ≤ r12, θl + θl′ ≤ r13,
R is also not of full rank. However, when r11 + r12 ≥ r13, there is a redundant
restriction, namely θl+ θl′ ≤ r13. When discarding it, R is of full rank. Hence, in that
case Hm : θl ≤ r11, θl′ ≤ r12, θl + θl′ ≤ r13 equals Hm : θl ≤ r11, θl′ ≤ r12 which is a
relocated closed convex cone.

The derivation of the goric is done in three steps. In the next section, Section 5.2,
we give the main part of the derivation of the goric for simple multivariate models
of the form yi = θ + εi, where yi (for i = 1, . . . , N) is the vector of the k dependent
variables for observation i (i.e., yi = [yi1, . . . , yik]′), θ the vector of the k group
means, and εi the vector of the k error terms for observation i. This forms a good
starting point for the derivation of the goric for univariate normal linear models,
which is discussed in Section 5.3.1. Finally, we extend it to multivariate normal linear
models in Section 5.3.2. The demonstration that the goric can be applied to relocated
close convex cones is given in Section 5.4. Like the oric, the goric incorporates a
likelihood part and a penalty part. In Section 5.5, we proceed by demonstrating (based
on Silvapulle & Sen, 2005, pp. 78–81) how the penalty part of the goric is obtained
by simulation. There, we assume that the residual covariance matrix is equal to an
unknown positive constant (σ2) times a known scale matrix. We discuss briefly what
consequences there are if this scale matrix is not known but estimated from the data in
Section 5.6. We end, in Section 5.7, with an illustration of the goric in a multivariate
regression model.
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5.2 Derivation of the GORIC

5.2.1 Preliminaries

The goric is based on the Kullback–Leibler discrepancy (Kullback & Leibler, 1951):

Eg(y|ξ) {−2 log f(y|ξm)} = −2

∫ ∞
−∞

log {f(y|ξm)} g(y|ξ) dy,

where g(y|ξ) is the true generating model, with ξ the true parameter, and f(y|ξm)
a candidate model or hypothesis, that is, a statistical model to approximate g(y|ξ),
with ξm the parameter corresponding to hypothesis Hm. The preferred hypothesis
is the one which renders the lowest Kullback–Leibler discrepancy (parameterized by

ξm = ξ̂m). Therefore, the goric, like the oric, is an estimate of the Kullback–Leibler
discrepancy or rather of minus two times the expected log-likelihood.

Let the data be y = [y1, . . . , yN ] ∈ Rk×N , with yi = [yi1, . . . , yik]′ ∈ Rk×1. It is
assumed that the data yi are normally and independently distributed with means θ
and covariance matrix V :

yi ∼ Nk(θ, V ) for i = 1, . . . , N, (5.1)

where θ ∈ Rk×1 and V a k × k positive definite matrix. Models of this type are used
in multivariate one-sided testing and repeated measures analysis.

The log-likelihood of y is written as

log f(y|θ, V ) =

N∑
i=1

[
−k

2
log{2π} − 1

2
log |V | − 1

2
(yi − θ)′V −1(yi − θ)

]

= −Nk
2

log{2π} − N

2
log |V | − 1

2

N∑
i=1

[
(yi − θ)′V −1(yi − θ)

]
.

Based on the premise of normality, we postulate that the true density g(y|ξ) is a
normal distribution with means θ and covariance matrix V :

g(y|ξ) = f(y|θ, V ).

Let the order-restricted maximum likelihood estimators of hypothesis Hm be
denoted by θ̃m and Ṽ m. They are obtained by

min
θ∈Hm,V

N∑
i=1

[
(yi − θ)′V −1(yi − θ)

]
,

which leads to

θ̃m = arg min
θ∈Hm

N∑
i=1

[
(yi − θ)′

(
Ṽ m
)−1

(yi − θ)
]
, (5.2)

Ṽ m = N−1
N∑
i=1

[
(yi − θ̃m)(yi − θ̃m)′

]
.
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Since θ̃m depends on Ṽ m and Ṽ m on θ̃m, iterations are required to calculate them.
One could, for example, first set θ̃m equal to the vector of groups means (ȳ). Based on
these values, one can iterate between both components of (5.2) until convergence is
reached. To calculate values of θ̃m, one could employ a quadratic program algorithm
like the IMSL subroutine QPROG (Visual Numerics, 2003, pp. 1307–1310) in Fortran
90.

The statistical model to approximate f(y|θ, V ) corresponding to hypothesis Hm

is

f(y|ξm) = f(y|θ̃m, Ṽ m).

For fixed θ̃m and Ṽ m, the expected log-likelihood at (θ̃m, Ṽ m), where the expectation
is taken with respect to f(y|θ, V ), is

Ef(y|θ,V )

{
log f(y|θ̃m, Ṽ m)

}
=

∫ ∞
−∞

log
{
f(y|θ̃m, Ṽ m)

}
f(y|θ, V ) dy

= −Nk
2

log{2π} − N

2
log |Ṽ m|

−1

2
Ef(y|θ,V )

{
N∑
i=1

[
(yi − θ̃m)′

(
Ṽ m
)−1

(yi − θ̃m)

]}
. (5.3)

The goric is minus two times an approximation of (5.3). We explain next that, for
hypothesis Hm, the goric is written as

goricm = −2 log f(y|θ̃m, Ṽ m) + 2 PTm.

Since (5.3) depends on the unknown θ and V , it is ideally estimated by
log f(y|θ̃m, Ṽ m). However, this is not a good estimator, hence a bias results. To adjust
for this, the goric comprises a likelihood part and a penalty part (denoted by PTm),
where the latter is the infinum of the expectation of the bias. To derive an expression
for the penalty term, we need to following definitions. Let

V = σ2U,

Ṽ m = σ̃2
mU,

σ̃2
m = (Nk)−1

N∑
i=1

[
(yi − θ̃m)′U−1(yi − θ̃m)

]
, (5.4)

where U is known. In Section 5.6, we will return to the issue of U being unknown.
The expectation of the bias between log f(y|θ̃m, Ṽ m) and (5.3) with respect to

f(θ̃m, Ṽ m|θ, V ) (which is for ease of notation denoted by E) is
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Bm(θ, V ) = E
{

log f(y|θ̃m, Ṽ m)− Ef(y|θ,V )

{
log f(y|θ̃m, Ṽ m)

}}
= E

{
−1

2

N∑
i=1

[
(yi − θ̃m)′

(
Ṽ m
)−1

(yi − θ̃m)

]
+

1

2

[
Nk

σ2

σ̃2
m

+N(θ̃m − θ)′
(
Ṽ m
)−1

(θ̃m − θ)
]}

(5.5)

= −Nk
2

+
Nk

2
E

{
σ2

σ̃2
m

}
+

1

2
E

{
N(θ̃m − θ)′

(
Ṽ m
)−1

(θ̃m − θ)
}
, (5.6)

where to obtain the second part in (5.5) we used

Ef(y|θ,V )

{
N∑
i=1

[
(yi − θ̃m)′

(
Ṽ m
)−1

(yi − θ̃m)

]}
=

Ef(y|θ,V )

{
N∑
i=1

[
(yi − θ)′

(
Ṽ m
)−1

(yi − θ)
]}

+N(θ̃m − θ)′
(
Ṽ m
)−1

(θ̃m − θ),

and

Ef(y|θ,V )

{
N∑
i=1

[
(yi − θ)′

(
Ṽ m
)−1

(yi − θ)
]}

= trace

{(
Ṽ m
)−1

V N

}
= Nk

σ2

σ̃2
m

,

and to obtain the first part in (5.6) we used

E

{
N∑
i=1

[
(yi − θ̃m)′

(
Ṽ m
)−1

(yi − θ̃m)

]}
= Nk.

It holds true that Bm(θ, V ) ≥ Bm(θ0, V ) for all θ0 ∈ C0 = {θ ∈ Rk|θ1 = . . . = θk}
and all θ ∈ Cm and that Bm(θ0, V ) has the same value for all θ0 ∈ C0 (Anraku, 1999;
Robertson, Wright, & Dykstra, 1988, pp. 101–102). Hence,

PTm = infθ∈Cm Bm(θ, V ) = infθ∈C0 Bm(θ, V ) = Bm(θ0, V ). (5.7)

Bm(θ0, V ) is calculated by (5.6), where the expectation is now with respect to
f(θ̃m, Ṽ m|θ ∈ C0, V ) (for brevity, denoted by E) and θ is replaced by θ0, which
yields

Bm(θ0, V ) = −Nk
2

+
Nk

2
E

{
σ2

σ̃2
m

}
+

1

2
E

{
N(θ̃m − θ0)′

(
Ṽ m
)−1

(θ̃m − θ0)

}
. (5.8)

In the sequel, we use, without loss of generalization, H0 : θ = θ0 in lieu of H0 : θ ∈
C0 = {θ ∈ Rk|θ1 = . . . = θk}.
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To obtain Bm(θ0, V ) in (5.8), one requires to determine

E

{
σ2

σ̃2
m

}
≈ 1

E
{
σ̃2
m

σ2

} +
var
(
σ̃2
m

σ2

)
[
E
{
σ̃2
m

σ2

}]3 (5.9)

and

E

{
N(θ̃m − θ0)′

(
Ṽ m
)−1

(θ̃m − θ0)

}
=

E

{
N(θ̃m − θ0)′U−1(θ̃m − θ0)

σ2

/
σ̃2
m

σ2

}
, (5.10)

where (5.9) is based on a second order Taylor expansion of 1
x around E {x}, with

x = σ̃2
m/σ

2. We first need to rewrite σ̃2
m/σ

2 before we can obtain its null distribution
and expectation. It can be shown, using Theorem 1 in Appendix 5.A, that

σ̃2
m

σ2
=

1

Nk

∑N
i=1

[
(yi − θ̃m)′U−1(yi − θ̃m)

]
σ2

=
1

Nk

[∑N
i=1

[
(yi − θ0)′U−1(yi − θ0)

]
σ2

− N(θ̃m − θ0)′U−1(θ̃m − θ0)

σ2

]
. (5.11)

The first term in brackets in (5.11) has (assuming that H0 is true) a chi-square
distribution with Nk degrees of freedom (i.e., χ2

Nk) and, therefore, has an expectation
of E

{
χ2
Nk

}
= Nk. Consequently, we only require the null distribution and expectation

of the second term in brackets in (5.11) to compute E
{
σ̃2
m/σ

2
}

. The expression for

var
(
σ̃2
m/σ

2
)

in (5.9) is written down in Appendix 5.B. In addition, Appendix 5.B
demonstrates that (5.9) can be written as

E

{
σ2

σ̃2
m

}
=

1 +
2

Nk
+

1

Nk
E

{
N(θ̃m − θ0)′U−1(θ̃m − θ0)

σ2

}
+O((Nk)−2). (5.12)

Note that the part in the expectation equals the second term in brackets in (5.11).
Moreover, the two terms in the second expectation in (5.10) are equal to the second
term in brackets in (5.11) and to (5.11), respectively. As a consequence, to calculate
(5.12) and (5.10), we need the null distribution of the second term in brackets in
(5.11).

5.2.2 The Null Distribution and Expectation of
N(θ̃m − θ0)′U−1(θ̃m − θ0)/σ2

To obtain the null distribution of
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N(θ̃m − θ0)′U−1(θ̃m − θ0)

σ2
= (θ̃m − θ0)′ [V/N ]

−1
(θ̃m − θ0),

we require the following expression:

χ2(V/N, Cm)

= min
θ=θ0

N∑
i=1

[
(yi − θ)′V −1(yi − θ)

]
− min
θ∈Cm

N∑
i=1

[
(yi − θ)′V −1(yi − θ)

]
(5.13)

=

N∑
i=1

[
(yi − θ0)′V −1(yi − θ0)

]
−

N∑
i=1

[
(yi − θ̃m)′V −1(yi − θ̃m)

]
= N(θ̃m − θ0)′V −1(θ̃m − θ0)

= (θ̃m − θ0)′ [V/N ]
−1

(θ̃m − θ0),

where the one but last line is obtained by using Theorem 1 in Appendix 5.A. According
to Silvapulle and Sen (2005, pp. 75–77) and Robertson et al. (1988, pp. 70), the null
distribution of (5.13) is given by

Pr(χ2(V/N, Cm) ≤ x) =

k∑
j=1

wj(k, V/N, Cm)Pr(χ2
j ≤ x),

where wj(k, V/N, Cm) is the level probability / chi-bar-square weight for hypothesis

Hm. A level probability wj(k, V/N, Cm) is the probability that θ̃m has j levels
or, rather, the probability that the parameter space in accordance with the active
constraints in Cm is of dimension j. An explanation and the calculation of the level
probabilities are given in Section 5.5. Employing E

{
χ2
j

}
= j, gives

E

{
N(θ̃m − θ0)′U−1(θ̃m − θ0)

σ2

}
=

k∑
j=1

wj(k, V/N, Cm)j. (5.14)

5.2.3 The GORIC

Equations (5.12) and (5.14) amount to

E

{
σ2

σ̃2
m

}
= 1 +

2

Nk
+

1

Nk

k∑
j=1

wj(k, V/N, Cm)j +O((Nk)−2). (5.15)

From (5.14) it follows that, if j level sets are given, the second expression in brackets
in (5.11) and the term in brackets in (5.11) are conditionally independent and
are distributed as chi-square distributions with j and Nk − j degrees of freedom,
respectively (see Anraku, 1999; Robertson et al., 1988, pp. 69–74). Therefore,

N(θ̃m−θ0)′U−1(θ̃m−θ0)
σ2 /j

Nk
σ̃2
m

σ2 /(Nk − j)
=
Nk − j
Nk j

[
N(θ̃m − θ0)′U−1(θ̃m − θ0)

σ̃2
m

]
(5.16)
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has an F distribution with (j,Nk − j) degrees of freedom for θ0 ∈ C0. Hence, when
j level sets are given, the limit of j times (5.16) has a chi-square distribution with j
degrees of freedom for (Nk − j)→∞. Consequently, (5.10) can be written as

E

{
N(θ̃m − θ0)′U−1(θ̃m − θ0)

σ̃2
m

}
=

k∑
j=1

wj(k, V/N, Cm)j +O((Nk)−1). (5.17)

From (5.15) and (5.17), it follows that (5.8) can be rewritten as

Bm(θ0, V ) = 1 +

k∑
j=1

wj(k, V/N, Cm)j +O((Nk)−1).

Thus, the goric is calculated by

goricm = −2 log f(y|θ̃m, Ṽ m) + 2 PTm, where (5.18)

PTm = 1 +

k∑
j=1

wj(k, V/N, Cm) j.

Note that if V is unknown, the penalty term cannot be determined. We will elaborate
on this in Sections 5.5 and 5.6.

Now we have obtained the goric for a special type of models and not for
normal linear models in general. Examples of this special type of models are
models for multivariate one-sided testing and repeated measures analysis without
between-subject factors. In the next section, we will derive the goric that can be
applied to univariate normal linear models and multivariate normal linear models.

5.3 The GORIC for Extended Models

5.3.1 Univariate Normal Linear Models

The derivation of the goric in the previous sections elucidates the one that is feasible
for univariate normal linear models:

y|X ∼ NN (Xβ, V ),

where y ∈ RN×1, X ∈ RN×k, β ∈ Rk×1, and V ∈ RN×N . In Section 5.2, the
covariance matrix V is a k × k matrix, here it is a N ×N matrix.

The order-restricted maximum likelihood estimators, β̃m and Ṽ m, are obtained
by

min
β∈Hm,V

(y −Xβ)′V −1(y −Xβ).

From this it follows that

β̃m = arg min
β∈Hm

(y −Xβ)′
(
Ṽ m
)−1

(y −Xβ), (5.19)

Ṽ m = (y −Xβ̃m)(y −Xβ̃m)′.
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Since β̃m depends on Ṽ m and Ṽ m on β̃m, iterations are needed to calculate them.
One could, for example, first set β̃m equal to (X ′X)−1X ′y. Based on these values
one can iterate between both components of (5.19) until convergence is reached. To
calculate β̃m (in software), one could use a quadratic program algorithm like the IMSL
subroutine QPROG (Visual Numerics, 2003, pp. 1307–1310) in Fortran 90. It should
be stressed that if V is known (up to a positive constant), like in univariate regression
models (where V = σ2IN , with IN the N × N identity matrix), no iterations are
required. Namely, in univariate regression models, β̃m does not depend on V at all
and Ṽ m = σ̃2

mIN .
Analogous to Section 5.2, to derive an expression for the penalty term, let

V = σ2U,

Ṽ m = σ̃2
mU,

σ̃2
m =

[
(y −Xβ̃m)′U−1(y −Xβ̃m)

]
where U is known. Section 5.6 discusses the case where U is not known. Furthermore,
let

H0 : β ∈ C0,
Hm : β ∈ Cm,

with C0 = {β ∈ Rk|β1 = . . . = βk}. Without loss of generalization, we useH0 : β = β0,
with β0 ∈ C0, instead of H0 : β ∈ C0, as done in Section 5.2, in the sequel. The
derivation of the goric for univariate regression models resembles the derivation in
Sections 5.2 up to (5.13), only now we replace θ by Xβ, k by N , and N by 1. Thus,
the analogue of (5.8), (5.10), (5.12), and (5.13) are

Bm(β0, V ) =

−N
2

+
N

2
E

{
σ2

σ̃2
m

}
+

1

2
E

{
(Xβ̃m −Xβ0)′

(
Ṽ m
)−1

(Xβ̃m −Xβ0)

}
,

E

{
(Xβ̃m −Xβ0)′

(
Ṽ m
)−1

(Xβ̃m −Xβ0)

}
=

E

{
(Xβ̃m −Xβ0)′U−1(Xβ̃m −Xβ0)

σ2

/
σ̃2
m

σ2

}
,

E

{
σ2

σ̃2
m

}
=

1 +
2

N
+

1

N
E

{
(Xβ̃m −Xβ0)′U−1(Xβ̃m −Xβ0)

σ2

}
+O((N)−2),

and

χ2(V, Cm) = (Xβ̃m −Xβ0)′V −1(Xβ̃m −Xβ0),

respectively. The latter can be written as
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χ2(V, Cm) = (β̃m − β0)′W−1(β̃m − β0), (5.20)

where

W−1 = X ′V −1X ∈ Rk×k.

Equation (5.20) equals (5.13) with θ replaced by β and V/N by W . Consequently,
the remainder of the derivation resembles the derivation in Section 5.2 with these two
replacements. Hence, the null distribution of (5.20) is given by

Pr(χ2(V, Cm) ≤ x) =

k∑
j=1

wj(k,W, Cm)Pr(χ2
j ≤ x).

Thus, for Hm : β ∈ Cm in univariate normal linear models, it holds true that

goricm = −2 log f(y|Xβ̃m, Ṽ m) + 2 PTm, with

log f(y|Xβ̃m, Ṽ m) = −N
2

log{2π} − 1

2
log |Ṽ m| −

1

2

[
(y −Xβ̃m)′(Ṽ m)−1(y −Xβ̃m)

]
,

PTm = 1 +

k∑
j=1

wj(k,W, Cm) j.

We will discuss the calculation of the penalty term in Section 5.5. Bear in mind that
the penalty term cannot be obtained in case W , or rather V , is unknown; it should
be estimated then. We will elaborate on this in Section 5.6.

5.3.2 Multivariate Normal Linear Models

A multivariate normal linear model with t dependent variables can be written as y1

...
yt


∣∣∣∣∣∣∣X ∼ NtN

[It ⊗X]

β1

...
βt

 , V = Σ ⊗ U

 , (5.21)

where y =

 y1

...
yt

 ∈ RtN×1, It ⊗X = diag(X, . . . ,X) ∈ RtN×tk, β =

β1

...
βt

 ∈ Rtk×1,

with yh ∈ RN×1, X ∈ RN×k, and βh ∈ Rk×1 for h = 1, . . . , t, V ∈ RtN×tN , Σ ∈ Rt×t,
and U ∈ RN×N . When t = 1, so for univariate normal linear models, V reduces
to σ2U , as in Section 5.3.1. In addition, for regression models it holds true that
V = Σ ⊗ IN .

The order-restricted maximum likelihood estimators, β̃m and Ṽ m, are obtained
by

β̃m = arg min
β∈Hm,V

(y − [It ⊗X]β)′V −1(y − [It ⊗X]β).
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From this it follows that

β̃m = arg min
β∈Hm

(y − [It ⊗X]β)′
(
Ṽ m
)−1

(y − [It ⊗X]β), (5.22)

Ṽ m = (y − [It ⊗X]β̃m)(y − [It ⊗X]β̃m)′. (5.23)

Since β̃m depends on Ṽ m and Ṽ m on β̃m, iterations are needed to calculate them.
The iterations and calculations for multivariate normal linear models are analogous
to the ones for univariate normal linear models described in Section 5.3.1. As opposed
to univariate regression models, one does require to iterate between β̃m and Ṽ m =
Σ̃m ⊗ IN in multivariate regression models, since Σ̃m is a unknown matrix; Σ̃m is
calculated by (5.25) in Section 5.6 with B̂ replaced by B̃m, the k × t matrix where
column h equals β̃mh .

As in Sections 5.2 and 5.3.1, to derive an expression for the penalty term, let

V = σ2S ⊗ U,
Ṽ m = σ̃2

mS ⊗ U,

σ̃2
m =

[
(y − [It ⊗X]β̃m)′[S−1 ⊗ U−1](y − [It ⊗X]β̃m)

]
,

where in the last line we used that [S ⊗ U ]−1 = [S−1 ⊗ U−1]. Initially, analogous to
the previous sections, we assume that S ⊗ U is known, or rather both S and U are
known. In Section 5.6, we return to the case where S or U is unknown.

Let H0 : β ∈ C0 and Hm : β ∈ Cm, with C0 = {β ∈ Rtk|β1 = . . . = βtk}. In the
sequel, we employ H0 : β = β0, with β0 ∈ C0, instead of H0 : β ∈ C0, analogous to the
previous section and Section 5.2. The derivation of the goric modified for multivariate
normal linear models resembles the one in Section 5.2: We now replace θ by [It⊗X]β,
k by tN , and N by 1 in the formulas up to (5.13) and we use V = Σ⊗U = σ2[S⊗U ].
Then, (5.8) and (5.13) yield

Bm(β0, V ) =

− tN
2

+
tN

2
E

{
σ2

σ̃2
m

}
+

1

2
E

{
([It ⊗X]β̃m − [It ⊗X]β0)′

(
Ṽ m
)−1

([It ⊗X]β̃m − [It ⊗X]β0)

}
,

and

χ2(V, Cm) = ([It ⊗X]β̃m − [It ⊗X]β0)′[Σ−1 ⊗ U−1]([It ⊗X]β̃m − [It ⊗X]β0),

respectively. The latter can be rewritten as

χ2(V, Cm) = (β̃m − β0)′W−1(β̃m − β0), (5.24)

with

W−1 = [It ⊗X]′[Σ−1 ⊗ U−1][It ⊗X]

= Σ−1 ⊗ [X ′U−1X]

= [σ2S]−1 ⊗ [X ′U−1X],
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since [It⊗X]′ = [It⊗X ′] and [A⊗B][C⊗D] = [AC⊗BD]. For univariate regression
models (where V = σ2IN ), W = σ2[X ′X]−1, as can be seen in the previous section.
Here we have the same result (for t = 1 and U = IN ). Moreover, for U = IN , k = 1,
t = k, and X a vector of ones, the multivariate normal linear model simplifies to the
model discussed in Section 5.2. In that case, it evidently holds true that W = Σ/N ,
where the k × k matrix Σ in this section equals the k × k matrix V of Section 5.2.

Equation (5.24) equals (5.13) with θ replaced by β, k by tk and the k × k matrix
V/N by the tk × tk matrix W . Therefore, the remainder of the derivation resembles
the derivation in Section 5.2. As a result, the null distribution of (5.24) is given by

Pr(χ2(V, Cm) ≤ x) =

tk∑
l=1

wl(tk,W, Cm)Pr(χ2
l ≤ x).

Thus, for Hm : β ∈ Cm in multivariate normal linear models,

goricm = −2 log f(y|[It ⊗X]β̃m, Ṽ m) + 2 PTm, with

log f(y|[It ⊗X]β̃m, Ṽ m) = − tN
2

log{2π} − 1

2
log |Ṽ m| −

1

2

[
(y − [It ⊗X]β̃m)′

(
Ṽ m
)−1

(y − [It ⊗X]β̃m)

]
,

PTm = 1 +

tk∑
l=1

wl(tk,W, Cm) l.

When S and/or U are unknown, W and thus the penalty term cannot be calculated.
Importantly, for regression models, where U = IN is known, W cannot be calculated,
because S is unknown. In such cases, W needs to be estimated. We will elaborate on
this in Sections 5.5 and 5.6.

In Section 5.7, we establish how competing hypotheses for multivariate regression
models can be evaluated with the goric. In the next section, we demonstrate that
the goric can be used for restrictions of the form Hm : Rθ ≤ r, with θ the parameter
of interest.

5.4 Restrictions of the form Hm : Rθ ≤ r

Let θ be the parameter of interest. Until now, we have focussed on Hm : θ ∈ Cm. A
special case (according to Silvapulle & Sen, 2005) isHm : θ ∈ Cm = {θ ∈ Rk : Rθ ≤ 0},
where R is a cm × k matrix. When R is of full rank (after discarding the redundant
restrictions),

{θ ∈ Rk : Rθ ≤ r} = {θ ∈ Rk : Rθ − r ≤ 0} = {θ ∈ Rk : Rθ∗ ≤ 0},

where θ∗ = θ − q and Rq = r, with q ∈ Rk.
It should be stressed that q cannot be defined when R is not of full rank (after

discarding the redundant restrictions). For example, q cannot be determined for Hm :
θi ≥ r11, θi ≤ r12 when r11 6= r12. However, for r11 = r12, Hm : θi ≥ r11, θi ≤ r12
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simplifies to Hm : θi = r11. Then, q is defined and equals r11. Consequently, the
equality restrictions should be handled separately by examining Cm = {θ ∈ Rk :
R1θ ≤ r1, R2θ = r2}, where R1 is a cm1 × k matrix, r1 a vector of length cm1, R2 a
cm2 × k matrix, and r2 a vector of length cm2. In that case, Cm = {θ ∈ Rk : R1θ

∗ ≤
0, R2θ

∗ = 0} for [R′1, R
′
2]′q = [r′1, r

′
2]′. Now, q exists when [R′1, R

′
2]′ is of full rank

(after discarding the redundant restrictions).
Since {θ ∈ Rk : Rθ ≤ 0} is a closed convex cone, {θ ∈ Rk : Rθ∗ ≤ 0} =

{θ ∈ Rk : Rθ ≤ r} is too for the shifted data: both yi and θ are shifted by q.
But, only when R is of full rank (when discarding the redundant restrictions). Hence,
{θ ∈ Rk : Rθ ≤ r} is a closed convex cone with a relocated base, that is, the origin
(0, 0) is no longer the base of the cone. Therefore, we will refer to this cone as a
shifted or relocated closed convex cone. Previous result implies that the goric for
Hm : θ ∈ Cm = {θ ∈ Rk : Rθ ≤ r} has the same expression as the goric for
Hm : θ ∈ Cm = {θ ∈ Rk : Rθ ≤ 0} denoted in (5.18). Evidently, the same remains
valid for Hm : θ ∈ Cm = {θ ∈ Rk : R1θ ≤ r1, R2θ = r2} when [R′1, R

′
2]′ is of full rank

(after discarding the redundant restrictions).
The analogue remains true for t-variate normal linear models, where β is the

parameter of interest, since

{β ∈ Rtk : Rβ ≤ r} = {β ∈ Rtk : Rβ − r ≤ 0} = {β ∈ Rtk : Rβ∗ ≤ 0},

where β∗ = β − q and Rq = r, with q ∈ Rtk. Here, y is shifted by [It ⊗X]q and β by
q.

In the next section, we elaborate on the level probabilities for all discussed types
of models. We show how they can easily be calculated by simulation. Furthermore,
we give an interpretation of the penalty term.

5.5 Level Probabilities

Let ν be the parameter of interest of length L, with

ν =

{
θ for the model described in Section 5.2
β for the models described in Section 5.3

L =

{
k for the model described in Section 5.2
tk for the models described in Section 5.3.

Furthermore, let W = σ2W ∗, with W ∗ known and equal to

W ∗ =

{
U/N for the model described in Section 5.2
S ⊗ [X ′U−1X]−1 for the models described in Section 5.3.

A level probability wl(L,W, Cm) is the probability that there are l levels among the
L order-restricted maximum likelihood estimators (see also Anraku (1999); Silvapulle
and Sen (2005, pp. 77–83); Robertson et al. (1988, p. 69)). In other words, it is the
probability that the parameter space in accordance with the active constraints in
Cm is of dimension j. Bear in mind that the parameters ν emanate from the null
distribution which is the normal distribution with mean ν0 and covariance matrix W .
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Anraku (1999) laid out on page 149 that in general the calculation of the
level probabilities is difficult (see also Robertson et al., 1988, pp. 74–86). However,
Silvapulle and Sen (2005, pp. 78–81) point out that it can be done computationally
convenient via simulation. The simulation comprises 5 steps:

1. Generate z (of length L) from NL(ν0, σ2W ∗), with W ∗ a known matrix. Silvapulle
and Sen (2005, pp. 86) and Robertson et al. (1988, pp. 69) prove that the
calculation of the level probabilities does not depend on the value of ν0.
Furthermore, Robertson et al. (1988, pp. 69) show that the calculation of the level
probabilities is invariant for positive constants, like σ2 (and N). Consequently, one
can generate z from NL(0,W ∗) as well. One exception is discussed below.

2. Compute z̃m = arg minν∈Cm(z−ν)′W−1(z−ν) = arg minν∈Cm(z−ν)′ (W ∗)
−1

(z−
ν), where Cm is the set of parameters which is in accordance with the restrictions
in Hm, the hypothesis of interest.

3. Determine the the number of levels in z̃m, denote this by Lm. For Cm = {ν ∈ RL :
Rν ≤ 0}, where restriction a is denoted by Raν ≤ 0, this is done as follows: Let
A = {a : Raz̃m = 0} and φ = {ν : Raν = 0 ∀ a ∈ A}, then Lm is the dimension
of φ.

4. Repeat the previous steps T (e.g., T = 100, 000) times.
5. Estimate the level probability wl(L,W

∗, Cm) by the proportion of times Lm is
equal to l (l = 1, . . . , L).

To implement this in software, one requires a quadratic program algorithm. For
example, one can use the IMSL subroutine QPROG (Visual Numerics, 2003, pp.
1307–1310) in Fortran 90.

In case the restrictions are of the type Hm : Rν ≤ r, with r 6= 0, the data should
be shifted accordingly, as explained in Section 5.4. Notably, the calculation of the
level probabilities does not involve simulation of the data y, but only the parameters
ν. Therefore, we can just simulate the shifted parameters ν∗; denoted by z in the
simulation steps. All steps remain valid. Note that q does not need to be determined.

The level probabilities are invariant for the values of ν0 and σ2. However, there
is one exception, namely restrictions of the type ν ≤ r, including r = 0. When
the hypothesis of interest contains this type of restriction, one must use ν0 = 0. This
results in level probabilities that are invariant for the value of σ2. Observe that setting
ν0 equal to 0 yields the same result as for ν0 6= 0 with σ2 →∞.

The penalty term

PTm = 1 +

L∑
l=1

wl(L,W
∗, Cm) l

can be seen as the expected dimension of the parameters. In other words, the expected
dimension of ν plus 1 because of the unknown variance term σ2. When there are no
restrictions, the penalty is equal to the number of distinct parameter values. Hence,
in that case, the goric reduces to the aic. In case of analysis of variance models
with simple order restrictions, the penalty equals the expected number of distinct
parameter values and the goric simplifies to the oric. In the most general case, the
penalty does not only reflect the number of distinct parameter values, but it takes
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the order restrictions into account as well. When there are restrictions, the value of
the penalty is lower than the number of distinct parameter values and the penalty
becomes increasingly smaller when the restrictions become stricter.

The level probabilities can only be obtained when W ∗ is known or estimated, or
rather when U and S are known or estimated. In the next section, we will establish
how U and S can be estimated from the data. Furthermore, we briefly describe the
consequences of U or S being unknown.

5.6 U or S unknown

Until now, we have assumed that W = σ2W ∗ and that W ∗ is known in the calculation
of the penalty term. As mentioned in Section 5.5, the level probabilities are invariant
of positive constants (like σ2), which implies that wl(L,W

∗, Cm) = wl(L,W, Cm).
Consequently, if W ∗ is known, we will use W ∗ in the simulation steps discussed in
Section 5.5; otherwise, we will use an estimate of W instead of W ∗. For the model
described in Section 5.2 in (5.1) where W = V/N = σ2U/N , this implies that when
W ∗ or rather U is unknown, W or rather V should be estimated from the data. We
will use the maximum likelihood estimator of V :

V̂ = N−1
N∑
i=1

[(yi − ȳ)(yi − ȳ)′] ,

with ȳ a vector of the sample means of y. It should be stressed that E
{
V̂
}

= N−1
N V .

Because the level probabilities are invariant of positive constants, wl(L, V̂ , Cm) →
wl(L, V, Cm) for N →∞.

If V is estimated from the data, the dimension of V , which is the number of
unknown distinct variance terms, is (k+ 1)k/2 instead of 1. Since the restrictions are
always on the θ parameters and never on the variance terms, the number of unknown
variance terms is equal for all hypotheses of interest. Thus, although the penalty
should then be corrected, the correction is equal for all Hm, with m ∈M.

The analogue remains valid for t-variate normal linear models, which are described
in Section 5.3. To date, we have assumed that W ∗ = S ⊗ [X ′U−1X]−1 is known or
rather that S and U are known in the calculation of the penalty term. In this section,
we will only discuss t-variate regression models for which U = IN is known. For
univariate regression models, Σ = σ2S equals the positive scalar σ2, for which the
level probabilities are invariant. In contrast, S needs to be estimated from the data in
case of multivariate regression models. To calculate the maximum likelihood estimator
of Σ (Σ̂), we need to rewrite the multivariate regression model. Let Y be the N × t
matrix where column h equals yh for h = 1, . . . , t, B the k × t matrix where column
h equals βh, and D the N × t matrix where column h equals εh. One could write the
multivariate regression model as

Y = XB +D.

Let d′i be row i of D (for i = 1, . . . , N). The dependence of the dependent variables
is as follows: E{di} = 0, E{did′i} = Σ ∈ Rt×t, and E{did′i′} = 0 for all i 6= i′ for
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i, i′ = 1, . . . , N . Consequently, Σ̂ is determined by

Σ̂ = N−1(Y −XB̂)′(Y −XB̂), (5.25)

where B̂ is the unrestricted maximum likelihood estimator of B.
Analogous to the previous case, wl(L, Σ̂, Cm) → wl(L,Σ, Cm) for N → ∞. In

addition, if Σ is estimated from the data, the number of unknown distinct variance
terms is (t+1)t/2 instead of 1. Again, although the penalty should then be corrected,
the correction is equal for all Hm, since the restrictions are always on the β parameters
and never on the variance terms.

In the next section, we present the evaluation of hypotheses with the goric in a
multivariate regression model.

5.7 The GORIC Illustrated

In this section, we will illustrate the goric based on real data. This example shows the
data of Rencher (1995), originally presented by Box and Youle (1955). The descriptive
statistics of the data are given in Table 5.1.

Table 5.1: The Descriptive Statistics of the Dependent Variables (yh) and the
Predictors (xj)

Means and standard deviations Sample covariance
of yh of xj matrix of the yhs

h ȳh s.d.(yh) j x̄j s.d.(xj) h 1 2 3
1 20.18 9.70 1 167.32 6.05 1 0.06 -0.03 -0.07
2 56.34 4.59 2 27.18 4.12 2 -0.03 0.79 -0.40
3 20.78 6.55 3 6.50 1.59 3 -0.07 -0.40 0.36

Let there be t = 3 dependent variables, namely 1) y1, the percentage of unchanged
starting material, 2) y2, the percentage converted to the desired product, and 3)
y3, the percentage of unwanted by-product. These dependent variables are measured
in experiments involving a chemical reaction in which various combinations of the
temperature (x1), the concentration (x2 ), and the time (x3) were used. These three
are used as the predictors in a multivariate regression model. The data resulted
from N = 19 designed experiments. The multivariate regression model including the
constant can be written as y1

y2

y3

∣∣∣∣∣∣x1, x2, x3 ∼ N57

[I3 ⊗ [ι, x1, x2, x3]]

β1

β2

β3

 , V = Σ ⊗ I19

 ,

with ι a column vector of ones of size 19 and βh = [βh0, βh1, βh2, βh3]′ the parameter
assigned to yh for h = 1, 2, 3. The covariance matrix Σ is estimated from the data by
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Σ̂ =

 0.04 −0.03 −0.05
−0.03 0.62 −0.31
−0.05 −0.31 0.28

 .
This estimate is used in determining the level probabilities wl(tk,W, Cm). Namely, W
is estimated by Σ̂ ⊗ [X ′X]−1.

We expect that the three predictors each have a negative impact on y1, the
percentage of unchanged starting material, and a positive effect on the changed
material measured by y2 and y3. Stated differently, we expect that β1j ≤ 0 and
βhj ≥ 0 for h = 2, 3 and j = 1, 2, 3. One theory could be that the effects of both
temperature (x1) and concentration (x2) are lower on the percentage converted to
the desired product (y2) than on that of unwanted by-product (y3), which yields
β2j ≤ β3j for j = 1, 2. Based on this, we can formulate two competing hypotheses,
namely H1 and H2 which are stated below. Moreover, we would like to know whether
H1 or H2 is the preferred hypothesis. Since both can be bad/weak, it is informative
to include the unconstrained hypothesis Hu in which there are no restrictions on the
parameters. For illustration purposes, we also include H0, in which the β parameters
regarding the predictors are restricted to zero, in the set of hypotheses:

H0 : βh0, βhj = 0, for h = 1, 2, 3 and j = 1, 2, 3,

H1 : βh0, β1j ≤ 0, βhj ≥ 0, for h = 2, 3 and j = 1, 2, 3,

H2 : βh0, β1j ≤ 0, βhj ≥ 0, for h = 2, 3 and j = 1, 2, 3, and

β2j ≤ β3j , for j = 1, 2,

Hu : βh0, βh1, βh2, βh3, for h = 1, 2, 3.

To compare the parameters β we have to standardize the dependent variables and the
predictors. In that case, the intercepts βh0 are zero.

In Table 5.2, the order-restricted maximum likelihood estimators of β (β̃m), the
log likelihood values (log f(y|[It ⊗ X]β̃m, Σ̃m ⊗ I19), the penalty terms (PTm), and
the goric values are given for the four hypotheses of interest. The hypothesis with
the lowest goric value is the preferred one. Hence, it is concluded that H2 is the
preferred hypothesis.

This example illustrates that the evaluation of a set of competing hypotheses is
done easily.

5.8 Discussion

In this chapter, we derived (based on the oric of Anraku (1999)) the goric,
an information criterion that evaluates competing hypotheses in univariate and
multivariate normal linear models, where the restrictions are of the type θ ∈ Cm,
with θ is a vector of length tk and Cm a closed convex cone. For univariate regression
models, evaluating hypotheses with the goric is simple and straightforward. In case
of multivariate regression models, the same remains valid when Σ is known (up to
a positive constant). When Σ is unknown, one has to estimate Σ to compute the
penalty term of the goric, but the calculation remains easy.
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Table 5.2: goric of the Four Specified Hypotheses (Hm)

Restricted β’s (β̃mhj)

m j β̃m1j β̃m2j β̃m3j log f(.) PTm goricm
0 0 0.00 0.00 0.00 -42.33 5.00 94.66

1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.00

1 0 0.00 0.00 0.00 -9.97 10.08 40.09
1 -0.96 0.53 0.84
2 -0.61 0.26 0.57
3 -0.37 0.36 0.28

2 0 0.00 0.00 0.00 -9.97 9.72 39.37
1 -0.96 0.53 0.84
2 -0.61 0.26 0.57
3 -0.37 0.36 0.28

u 0 0.00 0.00 0.00 -9.97 13.00 45.93
1 -0.96 0.53 0.84
2 -0.61 0.26 0.57
3 -0.37 0.36 0.28

Note. goric = generalized order-restricted
information criterion.
Bolding indicates the lowest value.

5.A Theorem 1

According to Silvapulle and Sen (2005, pp. 75), where θ0 = 0,

N∑
i=1

[yi − θ̃m]′V −1θ̃m = 0.

In other words, yi− θ̃m and θ̃m are V -orthogonal. Since θ0 is a constant, this property
remains valid when y and θ̃m are both shifted by θ0, that is

N∑
i=1

[(yi − θ0)− (θ̃m − θ0)]′V −1(θ̃m − θ0) = 0.

Using this property yields

N∑
i=1

(yi − θ0)′V −1(yi − θ0)

=

N∑
i=1

([yi − θ̃m] + [θ̃m − θ0])′V −1([(yi − θ̃m] + [θ̃m − θ0])

=

N∑
i=1

(yi − θ̃m)′V −1(yi − θ̃m) +N(θ̃m − θ0)′V −1(θ̃m − θ0).
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The analogue remains true for t-variate normal linear models, where θ should be
replaced by [It ⊗X]β and N by 1. Notably, in this case, y shifted by [It ⊗X]β0 and
β̃m by β0

5.B The Expression for var
(
σ̃2

m/σ
2
)

Let Q = −(θ̃m − θ0)′ (U/N)
−1

(θ̃m − θ0)/σ2. From (5.11), it follows that

E
{
σ̃2
m/σ

2
}

= 1− 1

Nk
E {−Q} , and

var

(
σ̃2
m

σ2

)
=

1

(Nk)2

[
var
(
χ2
Nk

)
+ var (Q)

]
,

with var
(
χ2
Nk

)
= 2Nk. Because Q = O(1),

var (Q) = E
{
Q2
}
− (E {Q})2

= O(1), and

var

(
σ̃2
m

σ2

)
=

1

(Nk)2
[2Nk + var (Q)] =

1

(Nk)2
[2Nk +O(1)]

=
2

Nk
+O((Nk)−2).

Using the power series expansion, it holds true that

1

1− 1
NkE {−Q}

= 1 +
1

Nk
E {−Q}+O((Nk)−2).

Now, it follows from (5.9) that

E

{
σ2

σ̃2
m

}
=

[
1 +

1

Nk
E {−Q}+O((Nk)−2)

]
+

2
Nk +O((Nk)−2)[

1 + 1
NkE {−Q}+O((Nk)−2)

]3
= 1 +

1

Nk
E {−Q}+

2

Nk
+O((Nk)−2),

which equals the expression in (5.12).
The analogue remains true for t-variate normal linear models, where θ should be

replaced by β, Nk by tN , and U/N by S ⊗ [X ′U−1X]−1.





CHAPTER 6

Model Selection under Inequality Constraints
in Small Samples

Kuiper, R. M.

Manuscript submitted.

The generalized order-restricted information-criterion is a modification of the
Akaike information criterion such that it can be applied to order restrictions in
univariate or multivariate regression models. However, a bias can occur in case of small
samples or when there are many parameters in comparison with the sample size. A
bias correction to the generalized order-restricted information-criterion is derived for
univariate and multivariate regression models. Simulation shows that the corrected
criterion has good frequency properties and that it outperforms the generalized
order-restricted information-criterion in regression models in case of small sample
sizes or rather when the number of parameters is moderate to large in comparison
with the sample size.

6.1 Introduction

An often used information criterion is the Akaike information criterion (Akaike, 1973).
Sugiura (1978) shows that the Akaike information criterion tends to overfit when the
number of parameters is moderate to large in relation to the sample size or when the
sample sizes are small. This bias is corrected in the small-sample Akaike information
criterion (Hurvich & Tsai, 1989; Sugiura, 1978) and is, like the Akaike information
criterion, of the form aicc = −2{maximum log likelihood − penalty}. For univariate
regression models, the penalty is calculated by

N(p+ 1)

N − p− 2
, (6.1)

where N is the sample size and p the number of distinct regression parameters. The
same remains valid in analysis of variance models with p distinct group means, k
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groups, and N =
∑k
j=1 nj number of observations. For multivariate regression models,

it is calculated by
tN dim(χ)

tN − dim(χ)− 1
, (6.2)

where dim(χ) is the number of distinct parameters, that is, the number of distinct
regression parameters and the number of distinct covariance elements. Bear in mind
that, in univariate regression models and analysis of variance models, t = 1 and
dim(χ) = p+1 in which case (6.2) reduces to (6.1). If the ratio N/dim(χ) is sufficiently
large, the Akaike information criterion and the corrected version will choose the same
model. Burnham and Anderson (2002) prefer the use of the aicc when N/dim(χ) <
40.

In this note, we derive the corrected penalty for the generalized order-restricted
information-criterion for univariate and multivariate regression models. We end with
a simulation study in which the generalized order-restricted information-criterion and
the corrected criterion are compared.

6.2 The small-sample generalized order-restricted information
criterion

A t-variate normal linear model can be written as

y|X ∼ NtN

[It ⊗X]

β1

...
βt

 , V = Σ ⊗ U

 ,

where y =

 y1

...
yt

 ∈ RtN×1, It ⊗X = diag(X, . . . ,X) ∈ RtN×tk, β =

β1

...
βt

 ∈ Rtk×1,

V ∈ RtN×tN , Σ ∈ Rt×t, and U ∈ RN×N , with yh ∈ RN×1, X ∈ RN×k, and βh ∈ Rk×1

for h = 1, . . . , t. Notably, the analysis of variance models and univariate regression
models are special cases of multivariate regression models.

The generalized order-restricted information-criterion is an estimate of the
Kullback–Leibler discrepancy or rather of minus two times the expected log-likelihood.
The difference with the Akaike information criterion or the order-restricted infor-
mation-criterion of Anraku (1999) is that it can evaluate more general restrictions,
namely all linear (order) restrictions except for range restrictions. It is of the form
goric = −2{maximum order-restricted log likelihood − penalty} (Kuiper et al., 2011;
Kuiper, Hoijtink, & Silvapulle, unpublished). The penalty is based on

Bm(β0, V ) = − tN
2

+
tN

2
E

{
σ2

σ̃2
m

}
+

1

2
E

{
([It ⊗X]β̃m − [It ⊗X]β0)′

(
Ṽ m
)−1

([It ⊗X]β̃m − [It ⊗X]β0)

}
.

According to Kuiper et al. (unpublished), the first and second expectations equal
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1 +
2

tN
+

1

tN

tk∑
l=1

wl(tk,W, Cm)l +O((tN)−2), (6.3)

tk∑
l=1

wl(tk,W, Cm)l +O((tN)−1), (6.4)

respectively, which results in

Bm(β0, V ) = 1 +

tk∑
l=1

wl(tk,W, Cm)l +O((tN)−1), (6.5)

where wl(.) is a level probability, also called chi square weight (Silvapulle & Sen,
2005). This yields, for model / hypothesis Hm,

goricm = −2 log f(y|[It ⊗X]β̃m, Ṽ m) + 2 PTm, with

log f(y|[It ⊗X]β̃m, Ṽ m) = − tN
2

log{2π} − 1

2
log |Ṽ m| −

1

2

[
(y − [It ⊗X]β̃m)′

(
Ṽ m
)−1

(y − [It ⊗X]β̃m)

]
,

PTm = 1 +

tk∑
l=1

wl(tk,W, Cm) l.

The small-sample bias correction is equal to the term O((tN)−1) in (6.5). Hence,
when the two expectations are not compressed to terms of order 1 and higher, we
obtain the small-sample generalized order-restricted information-criterion:

goriccm = −2 log f(y|[It ⊗X]β̃m, Ṽ m) + 2 Bm(β0, V ).

Equation (6.4) equals

tk∑
l=1

wl(tk,W, Cm)l

(
tN

tN − l − 2

)
and (6.3) can be derived in two ways, leading to goriccam (based on Bma (β0, V ))
and goriccbm (based on Bmb (β0, V )). It can be grounded on a second order Taylor
expansion of 1

x around E {x}, with x = σ̃2
m/σ

2. This leads to

E

{
σ2

σ̃2
m

}
=
tN
{

(tN − p(tk))2 + 2tN + q(tk)
}

(tN − p(tk))3
,

with

p(tk) =

tk∑
l=1

wl(tk,W, Cm)l,

q(tk) = −2p(tk) +

tk∑
l=1

wl(tk,W, Cm)l2 − {p(tk)}2 ,
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resulting in

Bma (β0, V ) = − tN
2

+
tN

2

tN
{

(tN − p(tk))2 + 2tN + q(tk)
}

(tN − p(tk))3
+

1

2

tk∑
l=1

wl(tk,W, Cm)l

(
tN

tN − l − 2

)
.

The other derivation is analogously to the one of Sugiura (1978) and Hurvich and
Tsai (1989). For a given level l,

σ2

σ̃2
m

=
tN

tN − l
1

(tN
σ̃2
m

σ2 )2/(tN − l)
.

Since the last ratio follows an F (1, tN − l) distribution,

E

{
σ2

σ̃2
m

}
=

tk∑
l=0

wl(tk,W, Cm)
tN

tN − l − 2
.

This yields

Bmb (β0, V ) = − tN
2

+
tN

2

tk∑
l=0

wl(tk,W, Cm)
tN

tN − l − 2
+

1

2

tk∑
l=1

wl(tk,W, Cm)l

(
tN

tN − l − 2

)

=

tk∑
l=0

wl(tk,W, Cm)
tN(l + 1)

tN − l − 2
.

For univariate regression models the same remains true, but evidently for t = 1.
For analysis of variance models, the same remains valid, but for t = k, k = 1, and
N =

∑k
j=1 nj .

6.3 Simulation

A simulation study was conducted to evaluate the performance of the generalized
order-restricted information criterion and the two small-sample versions. To obtain
a first insight in the difference between these two criteria, we will examine the
three criteria in an univariate regression model. We employ the simulation design
used by Hurvich and Tsai (1989), that is, the regression parameter vector equals
(1, 2, 3, 0, 0, 0, 0) and the variance is set to 1. Also here, the seven predictors each come
from a standard normal distribution. Logically, Hurvich and Tsai (1989) investigated
equality constrained models. We feel that the researcher is often not interested in
examining which predictors contribute, but in which contribute more (i.e., directional
effects). Therefore, we examined the following set of order-restricted models.



6.3 Simulation 103

H1 : θ1 > 0, θ2 > 0, θ3 = θ4 = θ5 = θ6 = θ7 = 0,

H2 : θ1 > 0, θ2 > 0, θ3 > 0, θ4 = θ5 = θ6 = θ7 = 0,

H3 : θ1 > 0, θ2 > 0, θ3 > 0, θ4 > 0, θ5 = θ6 = θ7 = 0,

H4 : θ1 > 0, θ2 > 0, θ3 > 0, θ4 > 0, θ5 > 0, θ6 = θ7 = 0,

H5 : θ1 > 0, θ2 > 0, θ3 > 0, θ4 > 0, θ5 > 0, θ6 > 0, θ7 = 0,

H6 : θ1 > 0, θ2 > 0, θ3 > 0, θ4 > 0, θ5 > 0, θ6 > 0, θ7 > 0.

Observe that H2 is the correct model. Table 6.1 displays the percentage of times, out
of 1,000 times, each model was chosen for N = 10 and 20. This table shows that the
two small-sample corrected versions (goriccam and goriccbm) outperform the goric
and that the difference are compelling. Comparably to the aic, the goric tends to
overfit the model and the small-sample corrected versions perform best.

Table 6.1: Percentage of times that the modelsH1,H2,H3,H4,H5 andH6 were chosen
by the generalized order-restricted information criterion and the two small-sample
versions for N = 10 and 20

N Method H1 H2 H3 H4 H5 H6

10 goricm 0 71 10 6 5 8
goriccbm 1 90 5 2 1 1
goriccam 1 88 6 3 1 1

20 goricm 0 74 10 6 5 4
goriccbm 0 85 8 4 3 1
goriccam 0 84 8 4 3 2

The computer program for computing the generalized order-restricted information
criterion and its two small-sample versions is available from http://staff.fss.uu

.nl/RMKuiper.

http://staff.fss.uu.nl/RMKuiper
http://staff.fss.uu.nl/RMKuiper




CHAPTER 7

Remaining Issues
regarding the Generalized Order-Restricted Information Criterion

Kuiper, R. M.

7.1 Normal Distributions with Known Variance Ratios

One of the assumptions of the analysis of variance model is that the group variances
are equal. When there is evidence for heterogeneity (using Levene’s test), one can
employ (analogously to Section 5.6) the sample estimates of the variance ratios as the
known variance ratios in calculating the goric.

Let the data yij be normally and independently distributed with means θi and
variances σ2

i = τiσ
2, that is, yij ∼ N (θi, τiσ

2) for i = 1, . . . , k and j = 1, . . . , ni, where
τi is known and σ2 unknown. Notably, this is a univariate normal linear model and
can be written as the model in Section 5.3.1, with y = (y′1, . . . , y

′
k)′, N =

∑k
i=1 ni,

β = θ, X = (d1, . . . , dk), where dih = 1 if observation h (h = 1, . . . , N) belongs to
group i and zero otherwise, hence di represents group membership and consists of ni
ones and N−ni zeros, and U = diag(τ1In1 , . . . , τkInk), where Ini is the ni×ni identity
matrix. Thus, in case of heterogeneity, one can use the expression of the goric on

page 88, with W = σ2(X ′U−1X)−1 = σ2diag
{
τ1
n1
, . . . , τknk

}
.

7.2 Generalized Order-Restricted Information Criterion
Weights

As can be seen from the four examples in Chapters 4, 5, and 13, the interest does
not lie in the goric values, but in their differences. Since the likelihood increases
with the number of observations, the goric values themselves are not interpretable.
To improve the interpretation, we introduce goric weights (wm), comparable to the
Akaike weights (Burnham & Anderson, 2002, p. 75), with
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wm =
exp{−1/2(GORICm −GORICmin)}∑

m′∈M exp{−1/2(GORICm′ −GORICmin)}
,

whereM is the set of (say, M) hypothesis indices and GORICmin is the lowest goric
value, that is, the goric value of the preferred model. Because the goric can be seen
as a likelihood for Hypothesis m, the goric weight represents the relative likelihood
(or, stated otherwise, the weight of evidence) of Hypothesis m given the data and the
set of M hypotheses.

Table 7.1: goric Weights of Four Examples
Example m goricm wm
Zelano et al. (1972, see Chapter 4) 0 90.73 0.06
n1 = n2 = n4 = 6, n3 = 5 1 86.23 0.54

2 87.25 0.32
u 90.03 0.08

Rencher (1995, see Chapter 5) 0 90.66 0.00
N = 19 1 40.09 0.40

2 39.37 0.58
u 45.93 0.02

Lievens and Sanchez (2007, see Chapter 13) 1 55.38 0.44
n1 = 21, n2 = 25, n3 = 26 2 55.50 0.42

u 57.70 0.14
Silvapulle and Sen (2005, see Chapter 13) 0 821.09 0.00
n1 = n2 = n3 = n4 = 10 1 808.66 0.07

u 803.61 0.93
Lucas (2003, see Chapters 3 and 12) 0 588.54 0.00
n1 = . . . n5 = 30 1 562.49 0.91

2 569.79 0.02
u 568.10 0.06

Note. goric = generalized order-restricted information criterion
and wm is the goric weight for Hypothesis m.

For the five examples in Chapters 3 (and 12), 4, 5, and 13, the goric weights are
given in Table 7.1. From these weights, one can also determine the relative evidence
for Hypothesis m compared to m′. For instance, in the example of Zelano et al. (1972),
H1 is 0.54/0.08 ≈ 6.75 more likely than Hu. Therefore, it is not a weak hypothesis.
Furthermore, H1 is 0.54/0.32 ≈ 1.67 more likely than H2. Thus, although H1 is
the preferred hypothesis in the set (and not weakly supported by the data), there
is no compelling evidence, since H2 receives quite some support as well. A similar
observation can be made for H2 and H1, respectively, in the example of Rencher
(1995). In the example of Lievens and Sanchez (2007), H1 and H2 receive (about) the
same amount of support (and are not weak). Therefore, both H1 and H2 are preferred
in this set. Bear in mind that in all three cases the second preferred hypothesis
is contained in the preferred one and that they strongly resemble each other. For
instance, in the third example, H2 : β1 ≥ β2 ≥ 2 β3 is contained in H1 : β1 ≥
β2 ≥ β3 and resembles it. In contrast, there is eminent support for one hypothesis
in both the examples of Silvapulle and Sen (2005) and Lucas (2003). In the first, Hu
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is preferred and it has 0.93/0.07 ≈ 12.49 times more support than H1. In the latter,
H1 is preferred and it has 0.91/0.06 ≈ 16.53 times more support than H1. For the
example of Lucas (2003), the posterior model probabilities are also calculated (see
Tables 3.5 and 12.4). Observe that (in this example) the goric weights resemble the
posterior model probabilities.

Note that, in the first three examples, the differences in goric values for H1, H2,
and Hu equal the differences in penalty term values, since the data are in accordance
with all three hypotheses (rendering the same likelihood). Hence, increasing the
number of observations does not affect the relative evidence (assuming that the data
are still in agreement with the hypotheses and, additionally for the second example,
that the covariance matrix estimate remains the same). One should perhaps take into
account the maximum value of the relative evidence for two hypotheses, when the
data are in accordance with these two or when their likelihood values are the same.
Guidelines for goric weights are not available yet. More research is required regarding
the performance of these weights, like Burnham and Anderson (2002, p. 75) did for
the Akaike weights.

7.3 Simulation Study of the Generalized Order-Restricted
Information Criterion and the Two Small-Sample Versions

In this section, we further examine the properties of the goric and its small-sample
versions goricca and goriccb. All three are of the form IC = −2 log f(y|[It ⊗
X]β̃m, Ṽ m) + 2 PT ICm , with

PT goric
m = 1 +

tk∑
l=1

wl(tk,W, Cm) l,

PT goricca

m = − tN
2

+
tN

2

tN
{

(tN − p(tk))2 + 2tN + q(tk)
}

(tN − p(tk))3
+

1

2

tk∑
l=1

wl(tk,W, Cm)l

(
tN

tN − l − 2

)
,

PT goriccb

m =

tk∑
l=0

wl(tk,W, Cm)
tN(l + 1)

tN − l − 2
,

where

p(tk) =

tk∑
l=1

wl(tk,W, Cm)l,

q(tk) = −2p(tk) +

tk∑
l=1

wl(tk,W, Cm)l2 − {p(tk)}2 .

We inspect ANOVA models where sets contain one, more than one, or none
order-restricted models / hypotheses. In ANOVA models, the small-sample versions

do not per se outperform the goric(since N =
∑k
i=1 ni is often not that low
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due to multiple observations for multiple groups). Therefore, we also inspect them
in regression models (with N observations). There, the small-sample versions do
outperform the goric.

ANOVA Model - One Order-Restricted Model

For this simulation study, we chose the design of a real data example for which goric,
goricca, and goriccb would be useful, namely the one of Berzonsky et al. (2003)
discussed in Chapter 4. We use here the same simulation design, choice of effect size
values, population means, and models of interest:

H0 : θ1 = θ2 = θ3 = θ4, θ5 = θ6 = θ7 = θ8,

H1 : θ1 ≥ {θ2, θ3, θ4}, θ5 ≥ {θ6, θ7, θ8}, θ1 ≥ θ5, θ2 ≥ θ6, θ3 ≥ θ7, θ4 ≥ θ8, and

θ1 − θ5 ≥ {θ2 − θ6, θ3 − θ7, θ4 − θ8},
Hu : θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 are unrestricted.

For each value of θ, we generated 1,000 independent samples. For each simulated data
set, we calculated the goric and the two small-sample versions for the three models
of interest. The percentage of times each model was chosen are given in Table 7.2 to
Table 7.6 for ni = n = 10 to 150, respectively. It should be stressed that the key focus
is the difference in performance between the three criteria. Tables 7.2 to 7.6 show
that the performances of goricca and goriccb are equal. For ni = 10, there are four
cells for which the difference was 0 · 1 and one cell with 0 · 2, and for ni = 20 there
was only one cell for which the difference was 0 · 1. Furthermore, the tables show that
the performances of goricca and goriccb resemble the one of the goric, especially
for ni ≥ 50. Moreover, the goricca and goriccb perform at least as good as the
goric in Case 1. For Case 2, this only remains valid for ni = 10 and ni = 20 when
ES = 0 · 4. In contrast, the goric outperforms the goricca and goriccb in Case 3.
It should be stressed that all differences in performance are small.

Table 7.2: Percentage of times that H0, H1, and Hu were chosen by the goric,
goricca, and goriccb in an ANOVA model with ni = n = 10

Case 1: H0 is true Case 2: H1 is true Case 3: Hu is ’true’
ES Method H0 H1 Hu H0 H1 Hu H0 H1 Hu

0 · 1 goricm 80 12 8 57 39 5 65 27 8
goriccam 85 11 4 63 35 2 72 23 5
goriccbm 85 11 4 63 35 2 72 23 5

0 · 25 goricm 87 4 9 19 78 3 41 34 25
goriccam 92 3 5 25 73 2 48 36 16
goriccbm 92 3 5 25 73 2 48 36 16

0 · 4 goricm 90 0 10 2 95 3 12 29 60
goriccam 95 0 5 3 96 1 18 35 47
goriccbm 94 0 5 3 96 1 18 35 48
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Table 7.3: Percentage of times that H0, H1, and Hu were chosen by the goric,
goricca, and goriccb in an ANOVA model with ni = n = 20

Case 1: H0 is true Case 2: H1 is true Case 3: Hu is ’true’
ES Method H0 H1 Hu H0 H1 Hu H0 H1 Hu

0 · 1 goricm 84 9 7 48 49 3 60 30 10
goriccam 87 8 5 52 47 2 63 29 8
goriccbm 87 8 5 52 47 2 63 29 8

0 · 25 goricm 91 1 9 7 92 1 18 35 47
goriccam 94 1 6 8 91 1 23 38 40
goriccbm 94 1 6 8 91 1 23 38 40

0 · 4 goricm 91 0 9 0 99 1 1 9 91
goriccam 94 0 6 0 99 1 1 11 88
goriccbm 94 0 6 0 99 1 1 11 88

Table 7.4: Percentage of times that H0, H1, and Hu were chosen by the goric,
goricca, and goriccb in an ANOVA model with ni = n = 50

Case 1: H0 is true Case 2: H1 is true Case 3: Hu is ’true’
ES Method H0 H1 Hu H0 H1 Hu H0 H1 Hu

0 · 1 goricm 91 4 5 37 63 1 49 33 19
goriccam 92 4 4 38 61 1 50 33 17
goriccbm 92 4 4 38 61 1 50 33 17

0 · 25 goricm 94 0 6 0 99 1 1 10 89
goriccam 95 0 5 0 99 1 1 11 88
goriccbm 95 0 5 0 99 1 1 11 88

0 · 4 goricm 94 0 6 0 99 1 0 0 100
goriccam 95 0 5 0 99 1 0 0 100
goriccbm 95 0 5 0 99 1 0 0 100
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Table 7.5: Percentage of times that H0, H1, and Hu were chosen by the goric,
goricca, and goriccb in an ANOVA model with ni = n = 100

Case 1: H0 is true Case 2: H1 is true Case 3: Hu is ’true’
ES Method H0 H1 Hu H0 H1 Hu H0 H1 Hu

0 · 1 goricm 93 2 5 22 78 0 26 36 38
goriccam 94 2 4 22 78 0 27 36 37
goriccbm 94 2 4 22 78 0 27 36 37

0 · 25 goricm 95 0 5 0 100 0 0 0 100
goriccam 95 0 5 0 100 0 0 0 100
goriccbm 95 0 5 0 100 0 0 0 100

0 · 4 goricm 95 0 5 0 100 0 0 0 100
goriccam 95 0 5 0 100 0 0 0 100
goriccbm 95 0 5 0 100 0 0 0 100

Table 7.6: Percentage of times that H0, H1, and Hu were chosen by the goric,
goricca, and goriccb in an ANOVA model with ni = n = 150

Case 1: H0 is true Case 2: H1 is true Case 3: Hu is ’true’
ES Method H0 H1 Hu H0 H1 Hu H0 H1 Hu

0 · 1 goricm 92 0 8 14 86 0 13 29 58
goriccam 92 0 7 15 85 0 13 30 57
goriccbm 92 0 7 15 85 0 13 30 57

0 · 25 goricm 92 0 8 0 100 0 0 0 100
goriccam 93 0 8 0 100 0 0 0 100
goriccbm 93 0 8 0 100 0 0 0 100

0 · 4 goricm 92 0 8 0 100 0 0 0 100
goriccam 93 0 8 0 100 0 0 0 100
goriccbm 93 0 8 0 100 0 0 0 100

ANOVA Model - Four Order-Restricted Models

In the simulation above, only one order-restricted model is included in the set. In this
section, we examine a set containing four order-restricted models namely the one of
the previous study and three subsets. The following six models were studied:

H0 : θ1 = θ2 = θ3 = θ4, θ5 = θ6 = θ7 = θ8,

H1 : θ1 ≥ {θ2, θ3, θ4}, θ5 ≥ {θ6, θ7, θ8}, θ1 ≥ θ5, θ2 ≥ θ6, θ3 ≥ θ7, θ4 ≥ θ8, and

θ1 − θ5 ≥ {θ2 − θ6, θ3 − θ7, θ4 − θ8},
H2 : θ1 ≥ {θ2, θ3, θ4}, θ5 ≥ {θ6, θ7, θ8}, θ1 ≥ θ5, θ2 ≥ θ6, θ3 ≥ θ7, θ4 ≥ θ8,

H3 : θ1 ≥ {θ2, θ3, θ4}, θ5 ≥ {θ6, θ7, θ8}, θ1 − θ5 ≥ {θ2 − θ6, θ3 − θ7, θ4 − θ8},
H4 : θ1 ≥ {θ2, θ3, θ4}, θ5 ≥ {θ6, θ7, θ8},
Hu : θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 are unrestricted.
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Table 7.7 shows the percentage of times each model was chosen for ni = n = 10. Bear
in mind that for higher group sizes the performance is more alike. Table 7.7 shows
that the performances of goricca and goriccb are equal. There are only a few minor
differences (not shown here). Furthermore, the goricca and goriccb outperform the
goric in Case 1. In contrast, the goric outperforms the goricca and goriccb in
Case 3. For Case 2, the three criteria perform about equal. It should be stressed that
all differences in performance are quite small. Notably, the same was observed in the
previous simulation.

Table 7.7: Percentage of times that H0, H1, H2, H3, H4, and Hu were chosen by the
goric, goricca, and goriccb in an ANOVA model with ni = n = 10

Case 1: H0 is true Case 2: H1 is true Case 3: Hu is ’true’
ES Method H0 H1 H2 H3 H4 Hu H0 H1 H2 H3 H4 Hu H0 H1 H2 H3 H4 Hu

0 · 1 goricm 76 6 2 7 5 4 54 28 10 4 2 1 63 19 4 7 2 6
goriccam 83 6 1 5 3 2 60 27 8 3 1 1 71 17 3 5 1 3
goriccbm 83 6 1 5 3 2 60 27 8 3 1 1 71 17 3 5 1 3

0 · 25 goricm 79 1 0 10 6 4 18 68 5 8 1 1 39 24 3 13 1 20
goriccam 85 1 0 7 4 2 23 67 4 5 1 0 49 24 2 11 1 13
goriccbm 85 1 0 7 4 2 23 67 4 5 1 0 49 24 2 11 1 13

0 · 4 goricm 80 0 0 10 6 4 3 86 1 10 0 1 10 22 1 14 1 52
goriccam 86 0 0 8 4 2 4 88 1 7 0 0 16 27 1 14 1 40
goriccbm 86 0 0 8 4 2 4 88 1 7 0 0 16 27 1 14 1 40

ANOVA Model - No Order-Restricted Model

In the previous situations, the small-sample versions do not outperform the goric in
general. Note that the goric reduces to the aic and goriccb to the aicc when there
are no order restrictions and Hurvich and Tsai (1989) show that the aicc outperforms
the aic for regression models. In this section, we examine whether this only holds true
for regression models or also for ANOVA models with the same features: i) (evidently)
in each of the models, the parameters are restricted to be zero or non-zero; ii) the
correct model is included in the set; iii) almost all models in the set include the correct
one and the exception does only exhibit one incorrect constraint out of seven. Observe
that our Case 1, where the goricca and goriccb perform better than the goric,
exhibits these three features, namely H0, containing only equality constrains, is true,
is included in the set, and is contained in the other two models. However, there are
a few exceptions: there is an order-restricted model, there are fewer competitors (in
the first simulation), and there are 8 instead of 7 parameters of interest. Therefore,
we also investigated an ANOVA model with 7 parameters of interest, with mean (1,
2, 3, 0, 0, 0, 0) and variance 1, and six models containing solely equality constrains:
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H1 : θ1, θ2, θ3 = θ4 = θ5 = θ6 = θ7 = 0,

H2 : θ1, θ2, θ3, θ4 = θ5 = θ6 = θ7 = 0,

H3 : θ1, θ2, θ3, θ4, θ5 = θ6 = θ7 = 0, (7.1)

H4 : θ1, θ2, θ3, θ4, θ5, θ6 = θ7 = 0,

H5 : θ1, θ2, θ3, θ4, θ5, θ6, θ7 = 0,

Hu : θ1, θ2, θ3, θ4, θ5, θ6, θ7 are unrestricted.

Note that these are the models that Hurvich and Tsai (1989) used (although for a
regression model) and that H2 is the correct model. Table 7.8 shows the percentage
of times, out of 100 times (instead of 1,000 in the previous two simulations), each
model was chosen for ni = n = 10 and 20. This table shows that the goricca

and goriccb outperform the goric, but all differences in performance are small.
Hence, the improvement of the goriccb = aicc on the goric = aic is small in
ANOVA models. This seems to imply that the biggest improvement of the goricca

and goriccb is found in regression models and not in ANOVA models, like for the
aicc. Note that the ANOVA model (with ni observations for Group i) is a special

case of the regression model (with N =
∑k
i=1 ni observations). Thus when ni is low,

N might not be due to the number of groups (k). Notably, in the inspected ANOVA

model N =
∑7
i=1 ni = 70 and 140. As a consequence, we inspect the regression model

(with N observations) in the next section.

Table 7.8: Percentage of times that H1, H2, H3, H4, H5, and Hu (hypotheses without
order restrictions) were chosen by the goric, goricca, and goriccb in an ANOVA
model with ni = n = 10 and 20

ni = n Method H1 H2 H3 H4 H5 Hu

10 goricm = aicm 0 72 12 8 4 4
goriccbm = aiccm 0 81 10 5 3 1
goriccam 0 80 11 5 3 1

20 goricm 0 69 18 4 4 5
goriccbm = aiccm 0 74 17 2 4 3
goriccam 0 74 17 2 4 3

Simulation Study: Regression Model

In this section, we examine the three criteria in an univariate regression model. We
employ the simulation design used by Hurvich and Tsai (1989), that is, the regression
parameter vector equals (1, 2, 3, 0, 0, 0, 0) and the variance is set to 1. The seven
predictors each come from a standard normal distribution. We first examine the
equality constrained models in Equation 7.1 and, subsequently, order-restricted ones.

For the models in Equation 7.1, Table 7.9 depicts the percentage of times, out of
1,000 times, each model was chosen for N = 10 and 20. Notably, H2 is the correct
model. Here, one can see that goricca and goriccb = aicc outperform the goric
= aic and that the difference are now (more) compelling.
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Table 7.9: Percentage of times that H1, H2, H3, H4, H5, and Hu (hypotheses without
order restrictions) were chosen by the goric, goricca, and goriccb in a regression
model with N = 10 and 20

N Method H1 H2 H3 H4 H5 Hu

10 goricm = aicm 1 68 7 1 7 12
goriccbm = aiccm 1 89 1 0 0 0
goriccam 1 90 1 0 0 0

20 goricm 0 78 1 0 4 5
goriccbm = aiccm 0 94 0 0 0 0
goriccam 0 94 0 0 0 0

We feel that the researcher is often not interested in examining which predictors
contribute, but in which contribute more (i.e., directional effects). Therefore, we also
examined the following set of order-restricted models.

H1 : θ1 > 0, θ2 > 0, θ3 = θ4 = θ5 = θ6 = θ7 = 0,

H2 : θ1 > 0, θ2 > 0, θ3 > 0, θ4 = θ5 = θ6 = θ7 = 0,

H3 : θ1 > 0, θ2 > 0, θ3 > 0, θ4 > 0, θ5 = θ6 = θ7 = 0,

H4 : θ1 > 0, θ2 > 0, θ3 > 0, θ4 > 0, θ5 > 0, θ6 = θ7 = 0,

H5 : θ1 > 0, θ2 > 0, θ3 > 0, θ4 > 0, θ5 > 0, θ6 > 0, θ7 = 0,

H6 : θ1 > 0, θ2 > 0, θ3 > 0, θ4 > 0, θ5 > 0, θ6 > 0, θ7 > 0.

Observe that also here H2 is the correct model. Table 7.10 displays the percentage of
times, out of 1,000 times, each model was chosen for N = 10 and 20. This table shows
again that the goricca and goriccb outperform the goric and that the difference
are compelling.

Thus, in case of small samples in regression models, one should employ a corrected
version of the goric. We recommend the use of goriccb, since it performs a bit better
and has a simpler expression than goricca. It should be stressed that this simulation
study gives a first insight. More research is needed for better insight into the properties
of the small-sample versions of the goric. Research should, among others, be done
for several effect sizes and under several true models (like the first simulation in this
Chapter) for different numbers of observations.

Table 7.10: Percentage of times that H1, H2, H3, H4, H5, and H6 were chosen by the
goric, goricca, and goriccb in a regression model with N = 10 and 20

N Method H1 H2 H3 H4 H5 H6

10 goricm 0 71 10 6 5 8
goriccbm 1 90 5 2 1 1
goriccam 1 88 6 3 1 1

20 goricm 0 74 10 6 5 4
goriccbm 0 85 8 4 3 1
goriccam 0 84 8 4 3 2
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An important application of multiple regression is predictor selection. When there
are no missing values in the data, information criteria can be used to select predictors.
For example, one could apply the small-sample-size corrected version of the Akaike
information criterion (AIC), the AICC. In this chapter, we discuss how information
criteria should be calculated when the dependent variable and/or the predictors
contain missing values. Therewith, we extensively discuss and evaluate three models
that can be employed to deal with the missing data, that is, to predict the missing
values. The most complex model, that is, the model with all available predictors,
outperforms the other models. These results also apply to more general hypotheses
than predictor selection and also to structural equation modeling (SEM) models.

8.1 Introduction

When the goal is to estimate parameters, it is known how to deal with missing
data. See, among others, Little and Rubin (1987), Schafer (1997), Jamshidian (2004),
Schafer and Graham (2002), Scheffer (2002), Jamshidian and Bentler (1999), Hens,
Aerts, and Molenberghs (2006), and Liu, Wei, and Zhang (2006). For example, the
expectation-maximization (EM) algorithm or multiple imputation can be used. In
contrast, there is not much literature on handling missing data in model selection using
information criteria (ICs), like the Akaike information criterion (AIC; Akaike, 1973,
1974). Schafer (1997) and Little and Rubin (1987) discuss how the observed-likelihood
should be calculated. Cavanaugh and Shumway (1998) propose a penalty for the
AIC in presence of missing data for, among others, ANOVA and regression models.
Claeskens and Consentino (2008) developed model selection criteria that can be used
in regression models when the dependent variable is completely observed. These
authors do not discuss which model should be used to predict the missing values.
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This chapter will deal with predictor selection in regression models in the presence
of missing values in the dependent variable and/or the predictors. We will focus on
which model is assumed to be the underlying data model, since this model is used to
predict the missing values. As a consequence, its choice influences the value of an IC
and this might affect the result regarding the preferred hypothesis. Our findings also
apply to more general hypotheses and to structural equation modeling (SEM) models.
We will start with an introduction of the regression model and model selection.

8.1.1 The regression model

It is assumed that

y = Xβ + ε, with ε ∼ Nn(0, σ2In), (8.1)

where

y = [y1, . . . , yn]
′
,

X = [1,x] =

 1 x11 . . . x1k−1

...
...

...
1 xn1 . . . xnk−1

 ,

x =



x′1
...
x′i
...
x′n

 = [x1, . . . ,xj , . . . ,xk−1] , (8.2)

β = [β0, . . . , βk−1]
′
,

0 an n-vector with zeros, and In the n×n identity matrix. It should be stressed that
x1 is now defined twice, namely as x1 = [x11, . . . , x1k−1]′ and as x1 = [x11, . . . , xn1]′.
From the context and/or subscript it will be clear to which vector we refer to. To
deal with missing data in both the dependent variable y and the predictors x, it is
furthermore assumed that

xi ∼ Nk−1(µx,Σxx), (8.3)

with mean µx =
[
µx1 , . . . , µxk−1

]′
and covariance matrix Σxx.

From Equations (8.1) and (8.3), it follows that

zi = [yi,x
′
i]
′ ∼ Nk(µ,Σ), (8.4)

with mean µ = [µy,µ
′
x]
′

and covariance matrix Σ =

[
Σyy Σyx

Σ′yx Σxx

]
.

The density of the data z is

f(z|µ,Σ) =

n∏
i=1

1

(2π)k/2|Σ| 12
exp

{
−1

2
(zi − µ)′Σ−1(zi − µ)

}
.
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In the sequel, f(.) will be used as the notation for the probability density function
and the likelihood, since they are proportional to each other. Note that the values of
β, σ2, µx, and Σxx can be determined from the value of ξ = (µ,Σ). The latter two
follow directly from ξ. The first two can be determined as follows:

β = (Σ+
xx)−1Σ+′

yx

=

[
1 µ′x

µx Σxx + µxµ
′
x

]−1[
µy Σyx + µyµ

′
x

]′
, (8.5)

σ2 = Σyy + µyµy −Σ+
yxβ, (8.6)

where Σ+ is used to stress that the intercept is included in the set of parameters.
These equations will be used in the next subsection.

8.1.2 Model selection

In model selection, a set of hypotheses is evaluated with an IC. There are several
criteria, the two most familiar ones are the Bayesian IC (BIC; Neath & Cavanaugh,
2006) and the AIC. The first is designed to provide an asymptotic approximation
to a transformation of the so-called posterior model probability and does not
require the specification of priors. The latter originates from the so-called expected
Kullback-Leibler (K-L) distance, which measures the expected information loss when
the true data generating density is approximated by the density of the model /
hypothesis of interest. The interested reader is referred to Burnham and Anderson
(2002).

Let M be the set of hypothesis/model indices and let Hypothesis Hm have the
form

Hm : Cmβ = 0, (8.7)

for m ∈ M, where the rows in Cm ∈ Rcm×k are a permutation of [1, 0, . . . , 0],
rank(Cm) = cm ≤ k, and 0 is a vector of zeros with length cm.

An information criterion IC, like the AIC, can be used to select the best of a set
of hypotheses. For the model in Equation (8.4), it has the form

ICm = −2 log f(z|ξ̂Hm) + 2 pm, (8.8)

with log f(z|ξ̂Hm) the log-likelihood, ξ̂Hm the restricted maximum likelihood
estimator (restricted MLE) of ξ, that is,

ξ̂Hm = arg max
ξ∈Hm

f(z|ξ),

and pm the penalty part. For the AIC, pm equals the number of distinct parameters.
When there are no restrictions, pm = (k + 1)k/2 + k. It should be stressed that
restricting a parameter β to zero comes down to restricting the corresponding element
inΣyx and not in µx, µy norΣxx. Hence, for the model in Equation (8.4), the penalty
is equal to
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pm =
(k + 1)k

2
+ (k − cm). (8.9)

The preferred hypothesis is the one with the smallest IC value.
Let β̂Hm and σ̂2

Hm
be the restricted MLEs of β and σ2, that is, the MLEs in

accordance with the restrictions in Hm. The restricted MLEs β̂Hm and σ̂2
Hm

can,

analogously to Equations (8.5) and (8.6), be determined from ξ̂Hm = (µ̂Hm , Σ̂Hm):

β̂Hm = (Σ̂
+

Hm,xx)−1Σ̂
+′

Hm,yx,

σ̂2
Hm = Σ̂Hm,yy + µ̂Hm,yµ̂Hm,y − Σ̂

+

Hm,yxβ̂Hm .

Note that the likelihood can be written as

f(z|ξ̂Hm) = f(y|x, ξ̂Hm) f(x|ξ̂Hm)

= f(y|x, β̂Hm , σ̂
2
Hm)f(x|µ̂x, Σ̂xx). (8.10)

The restrictions in Hm : Cmβ = 0 come down to restricting the corresponding part
in Σyx and not in Σxx. For example, when Hm : β2 = 0, the second element in Σ̂yx

is adjusted, but µ̂x and Σ̂xx are unaffected. Thus, f(x|µ̂x, Σ̂xx) is constant over all
hypotheses. Therefore, the IC for Hypothesis Hm : Cmβ = 0 can also be calculated
by

ICm = −2 log f(y|x, β̂Hm , σ̂
2
Hm) + 2 pm. (8.11)

Note that this is the expression of an IC for model (8.1). In this case, the penalty of
the AIC equals

pm = 1 + (k − cm). (8.12)

In a regression model (8.1), only the conditional distribution of the response y given
the predictors x is relevant. As mentioned before, the model in Equation (8.4) is
required in the context of missing values, because it explicitly models the distribution
of the predictors. As a consequence, this results in an IC based on the joint density
of y and x, as in Equation (8.8). It is questionable whether this is appropriate in
the context of multiple regression. However, it will be shown that in the presence of
missing data the IC of the form (8.8) also reduces to an IC of the form (8.11) when
employing the preferred approach.

In the next section, we will show how ICs of the form (8.8) or (8.11) should be
calculated in presence of missing data. But first, we give some remarks about ICs
used in predictor selection. Burnham and Anderson (2002, §6.4) argue that the AIC
has theoretical advantages over the BIC. The AIC is an asymptotically unbiased
estimator of the approximation of the K-L distance (Burnham & Anderson, 2002,
p. 61). It should be stressed that the AIC does not assume that the true model is
subsumed in the set of candidate models (Burnham & Anderson, 2002, p. 65). Both
nested and non-nested models can be included in the set (Burnham & Anderson, 2002,
p. 88). One drawback is that the AIC tends to overfit, that is, tends to choose the
model with more parameters than present in the true model (Burnham & Anderson,
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2002, p. 417). Another drawback is that the AIC may perform poorly when there
are too many parameters in relation to the sample size (Burnham & Anderson, 2002,
p. 66), that is, n

1+k−cm > 40. In such cases in the context of regression models, one
should use the so-called AICC / second-order AIC / small sample AIC proposed by
Hurvich and Tsai (1989), which is calculated by Equation (8.11) with

pm =
1 + (k − cm)

1− (k−cm)+2
n

. (8.13)

8.2 Missing data

Let z = [y,x] correspond to the complete set of measurements, zobs = [yobs,xobs]
to the observed measurements, and zmis = [ymis,xmis] to the missing measurements.
Furthermore, let r ∈ Rn×k be the missingness indicator, that is,

rih =

{
1, if zih is observed,
0, if zih is missing,

where zih corresponds to element h in [yi, xi1, . . . , xi,k−1], for i = 1, . . . , n and h =
1, 2, . . . , k. Throughout the chapter, it is assumed that the missing data are missing
at random (MAR):

f(ri|zobs,i, zmis,i,φ) = f(ri|zobs,i,φ),

where φ is the parameter of the density of ri.
In the presence of missing data, two models should be distinguished: the analytical

model and the assumed underlying data model. This is comparable to the analyst’s
model and the imputation model in multiple imputation discussed in Schafer (1997).
The analytical model is the hypothesis of interest, that is, Hm. For example,

H1 : β1 = 0, that is, H1 : yi = β0 +

k−1∑
j=2

βjxij + εi for i = 1, . . . , n.

To deal with missing values, the so-called assumed underlying data model is needed.
In the sequel, this model will be used to predict the values of the missing data. For
example, one can assume that the hypothesis of interest is the underlying data model.
In that case, only the predictors which parameters are not hypothesized to be zero
and the dependent variable will be used in the prediction of the missing data. Let the
hypothesis of interest be H1 (see above) and let, for row i, only xij (j ≥ 2) be missing.
The prediction of the missing value xij comes from the regression of xj on the other
predictors and the dependent variable, that is, [x2, . . . ,xj−1,xj+1, . . . ,xk−1] and y.
This will be elaborated upon in the next section. A missing value can of course also
depend on a variable which parameter is set to zero in the hypothesis of interest or
even on a variable which is not included in x. Thus, the set of variables used for the
prediction of the missing values can consist, beside the dependent variable, of (i) the
predictors for y which coefficients are not set to zero in Hm, (ii) all the predictors
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for y, that is, x1 to xk−1, and (iii) all the predictors for y and additional variables,
which will be denoted by xk to xK−1. In the next section, we will use L − 1 as the
number of x-variables. Depending on the assumed underlying data model, L takes on
the value k − cm or K.

When two variables are correlated, they can be used in the prediction of the
missing values of each other. Let xj and xj′ be correlated and let xij be missing. In
that case, we say that xj′ is a relevant predictor for the missing value xij . When all
relevant predictors are used to predict a missing value, the prediction of the missing
value will be unbiased, that is, the expected value of the prediction equals the true
value. Hence, when missing a relevant predictor (like xj′ for xj) in the prediction of
a missing value xij , the prediction will be biased.

Using additional variables to predict a missing value xij has a downside. In case
variables are included in the prediction of xij that are not correlated with xj , the
standard deviation of the prediction of xij increases. In other words, the prediction
of xij will be less efficient. However, when all relevant variables are included, the
prediction of xij is still unbiased.

In summary, the predictions of the missing values and whether the predictions are
unbiased depend on the set of variables used for the prediction of the missing values,
which in turn depends on the assumed underlying data model. Consequently, the
choice of the assumed underlying data model is important. Three types of assumed
underlying data models will be distinguished: the analytical model, the unconstrained
model, and the restricted unconstrained model. These will be discussed in the next
section.

The following questions with respect to predictor selection in the presence of
missing data will be covered in this chapter:
1. How should the log-likelihood part of an IC be calculated when there are missing
values in y and/or x? This is addressed, for example, by Schafer (1997) and Little
and Rubin (1987).
2. Which assumed underlying data model should be used?
3. Should the log-likelihood be based on the observed data zobs or on the observed
data zobs and the observed missingness indicator r?

By addressing the three questions above in the next sections, we will discuss
calculating ICs, like the AIC and AICC, for predictor selection in regression models
in the presence of missing data being MAR. Subsequently, we illustrate the AIC and
AICC in the presence of missing data. We end with a discussion in which we also
elaborate on the proposed approach.

8.3 ICs in the presence of missing data

8.3.1 Maximizing the observed-data likelihood using the EM algorithm

A data point in z is either observed or missing (as indicated by the missingness
indicator r). Let the data consist of L variables, namely one dependent variable and
L − 1 predictors. Hence, the maximum number of missing data patterns is 2L. Note
that not all missing data patterns have to exist in the data z. Let S be the total
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number of missing data patterns in z and let I(s) denote all i for which zi has
missing data pattern s = 1, . . . , S. Furthermore, let zsi be the observed part of zi
with missing data pattern s. The likelihood of the observed data zobs is called the
observed-data likelihood:

f(zobs|ξ) =

S∏
s=1

∏
i∈I(s)

1

(2π)Ls/2|Σs| 12
exp

{
−1

2
(zsi − µs)′(Σ

s)−1(zsi − µs)
}
,(8.14)

where Σs and µs are the submatrix of Σ and the subvector of µ, respectively,
corresponding to the observed variables in pattern s and Ls is the number of observed
variables in pattern s (Schafer, 1997).

To obtain an estimate of ξ = (µ,Σ), when accounting for the missing data, the
EM algorithm (Dempster, Laird, & Rubin, 1977; Little & Rubin, 1987; Schafer, 1997)
can be used. Note that EM maximizes the complete-data likelihood. However, in
well-behaved problems like addressed in this chapter, the parameters maximizing
the complete-data likelihood equal the parameters maximizing the observed-data
likelihood (Schafer, 1997; Little & Rubin, 1987).

Expectation-maximization is an iterative procedure and consists of two distinct
steps: the E-step and the M-step. Since the data are normally distributed, the
E-step (for iteration t = 1, . . . , T ) comes down to determining the expectation of
the complete-data sufficient statistics

∑n
i=1 zih and

∑n
i=1 zihzig for h, g = 1, . . . , L

with respect to f(zmis|zobs, ξ) (Schafer, 1997):

E(zih) = zihI{rih=1} + ztihI{rih=0}, (8.15)

E(zihzig) = zihzigI{rih=rig=1} + ztihzigI{rih=0,rig=1} +

zihz
t
igI{rih=1,rig=0} + (γtshg+ztihz

t
ig)I{rih=rig=0},

with I{.} the indicator function which is one if the argument is true and zero otherwise
and ztih the predicted value of zih in iteration t = 1, . . . , T of the EM algorithm. For
every missing data pattern s, the variable which has a missing value in pattern s is
regressed on the variables which are observed in missing data pattern s. For example,
when zih is missing, zih is predicted using the regression of zh on {zg : rig = 1}:

ztih = γtsh0 +
∑

{g: rig=1}

γtshg zig for all i ∈ I(s), (8.16)

where γtshg denotes the regression coefficient in pattern s in iteration t of the EM

algorithm corresponding to zg, when zh is the dependent variable. The γtshgs can be

determined in iteration t from (µt−1,Σt−1), which are the values of (µ,Σ) determined
in the M-step in the previous iteration. These γtshgs can be calculated using the sweep
operator. We will not elaborate on this, the interested reader is referred to Schafer
(1997). In the M-step (for iteration t = 1, . . . , T ), µtzh and Σt

zhzg
for h, g = 1, . . . , L

are calculated by

µtzh =

∑n
i=1E(zih)

n
, (8.17)

Σt
zhzg

=

∑n
i=1E(zihzig)

n
− µthµtg.
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These steps are iterated until the complete-data likelihood reaches a stationary point.
As can be seen in Equation (8.16), the value of the prediction ztih depends on what

variables are included in zig. Which in turn depends on what model is assumed to be
the underlying data model. Hence, the choice of the underlying data model influences
Equations (8.15), (8.16), and (8.17). Three different types of assumed underlying data
models are discussed in the next section.

8.3.2 Three types of assumed underlying data models

Three types of underlying data models will be distinguished: the analytical model, the
unconstrained model, and the restricted unconstrained model. When the analytical
model is assumed to be the underlying data model, the following model is used

yi = β0 +
∑

{j: βj 6=0 in Hm}

βjxij + εi and xmi ∼ Nk−1−cm(µxm ,Σxmxm),

where µxm and Σxmxm denote the parameters corresponding to xm, the predictors in
Hm which coefficients are not restricted to zero. In this case, L = k− cm and the zihs
appearing in Equations (8.15), (8.16), and (8.17) stand for zih ∈ zmi = (yi,x

m
i ). Let

ξm be the subvector of ξ with respect to (y,xm). The estimate of ξm is determined
with the EM algorithm. When using the analytical model, EM results for Hypothesis
Hm in

ξ̂
m

Hm|An = (µ̂Hm|An, Σ̂Hm|An) = arg max
ξm

f(yobs,x
m
obs|ξ

m),

where xmobs is the observed part of xm. Analogously to Equations (8.5) and (8.6), the

restricted MLEs β̂
m

Hm|An and σ̂2
Hm|An can be determined from ξ̂

m

Hm|An. Since there

are only restrictions on β, the estimates µ̂Hm|An,xm and Σ̂Hm|An,xmxm follow directly

from ξ̂
m

Hm|An. Note that both the size and the values of µ̂Hm|An and Σ̂Hm|An and,

therefore, of µ̂Hm|An,xm and Σ̂Hm|An,xmxm differ per hypothesis. When using the
analytical model as assumed underlying data model, the IC of Hypothesis Hm is
determined by

ICAn
m = −2 log f(zmobs|ξ̂

m

Hm|An) + 2 pm, with (8.18)

f(zmobs|ξ̂
m

Hm|An) = f(yobs|xmobs, β̂
m

Hm|An, σ̂
2
Hm|An)f(xmobs|µ̂Hm|An,xm , Σ̂Hm|An,xmxm).

Since f(xmobs|µ̂Hm|An,xm , Σ̂Hm|An,xmxm) is not constant over all hypotheses, ICAn
m

cannot be written analogously to Equation (8.11). Hence, when using the analytical
model, the IC cannot be reduced to the form (8.11) which seems to be most
appropriate in regression models, because it focusses on the conditional distribution of
the response y given the predictors x. Consequently, the AICC cannot be calculated
when using this model.

When the unconstrained model is assumed to be the underlying data model, the
following model is used
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yi = β0 +

K−1∑
j=1

βjxij + εi and xi ∼ NK−1(µx,Σxx).

Here, the zihs appearing in Equations (8.15), (8.16), and (8.17) stand for zih ∈ zi =
(yi,xi). In case there are additional variables to predict the missing values, these will
be included, that is, x = [x1, . . . , xk−1, xk, . . . , xK−1] and L = K. All the predictors
of y, including those whose coefficient is restricted to zero, and additional variables
are used in the prediction of the missing values. The parameters of the additional
variables (i.e., βk, . . . , βK−1) will be set to zero in Hm, because these variables are
not predictors of y. For Hypothesis Hm, EM then results in

ξ̂Unc = (µ̂Unc, Σ̂Unc) = arg max
ξ

f(yobs,xobs|ξ). (8.19)

Note that ξ̂Unc does not depend on Hypothesis Hm. As a consequence, ξ̂Unc has the

same value for each hypothesis ξ̂Unc. When the unconstrained model is used, the
parameter estimates are adjusted afterwards such that they are in accordance with

Hm. Since the restrictions on β are of the form βj = 0, β̂
m

Hm|Unc and σ̂2
Hm|Unc can be

determined, analogously to Equations (8.5) and (8.6), from ξ̂
m

Unc, the subvector of ξ̂Unc

corresponding to xm. Because there are only restrictions on β, the estimates µ̂Unc,x

and Σ̂Unc,xx follow directly from ξ̂Unc. Note that µ̂Unc,x and Σ̂Unc,xx do not differ

per hypothesis. Let ξ̂Hm|Unc be the set of β̂
m

Hm|Unc, σ̂2
Hm|Unc, µ̂Unc,x, and Σ̂Unc,xx.

The IC of Hypothesis Hm is, in this case, determined by

ICUnc
m = −2 log f(zobs|ξ̂Hm|Unc) + 2 pm, with (8.20)

f(zobs|ξ̂Hm|Unc) = f(yobs|xmobs, β̂
m

Hm|Unc, σ̂
2
Hm|Unc)f(xobs|µ̂Unc,x, Σ̂Unc,xx).

Since f(xobs|µ̂Unc,x, Σ̂Unc,xx) is constant over all hypotheses, ICUnc
m can, analogously

to Equation (8.11), also be calculated by

ICUnc
m = −2 log f(yobs|xmobs, β̂

m

Hm|Unc, σ̂
2
Hm|Unc) + 2 pm. (8.21)

Thus, when using the unconstrained model, the IC based on the joint density is
proportional to the IC based on the conditional density, like in regression models
with completely observed data. Hence, for this model, the IC does reduce to the form
(8.11) which seems to be most pertinent in regression models, since it focusses on the
conditional distribution of the response y given the predictors x.

When the restricted unconstrained model is assumed to be the underlying data
model, the following model is used

yi = β0 +
∑

{j: βj 6=0 in Hm}

βjxij + εi and xi ∼ NK−1(µx,Σxx).

Like when using the unconstrained model, the zihs appearing in Equations (8.15),
(8.16), and (8.17) stand for zih ∈ zi = (yi,xi), where x can contain the additional
variables xk, . . . ,xK−1, that is, L = K. For this model, EM results in
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ξ̂Hm|Restr = (µ̂Hm|Restr, Σ̂Hm|Restr) = arg max
ξ∈Hm

f(yobs,xobs|ξ), (8.22)

for Hypothesis Hm. It should be stressed that an adjustment of the EM procedure
described in the previous section is needed. Since

f(zobs|ξ) = f(yobs|xobs,β, σ
2)f(xobs|µx,Σxx),

maximizing Equation (8.14) comes down to maximizing both f(yobs|xobs,β, σ
2) and

f(xobs|µx,Σxx). In maximizing the observed-data likelihood under Hm in iteration
t, the estimates for βHm , σ2

Hm
, µHm,x, and ΣHm,xx in iteration t are obtained. These

parameters can be transformed to µtHm and Σt
Hm . The estimates for µt−1

Hm,zh
and

Σt−1
Hm,zhzg

will be used, as in the previous section, to determine the γtshgs, which are

used to determine ztih. Let ξ̂Hm|Restr be the set of the estimates β̂
m

Hm|Restr, σ̂
2
Hm|Restr,

µ̂Hm|Restr,x, and Σ̂Hm|Restr,xx. When using the restricted unconstrained model as the
assumed underlying data model, the IC of Hypothesis Hm is determined by

ICRestr
m = −2 log f(zobs|ξ̂Hm|Restr) + 2 pm. (8.23)

Note that the values, but not the size, of µ̂Hm|Restr and Σ̂Hm|Restr and, therefore,

of µ̂Hm|Restr,x and Σ̂Hm|Restr,xx differ per hypothesis. Therefore, ICRestr
m cannot be

written analogously to Equation (8.11). Hence, when using the restricted uncon-
strained model, the IC cannot be reduced to the form (8.11) which seems to be most
relevant in regression models due to its focus on the conditional distribution of the
response y given the predictors x. As a consequence, the AICC cannot be calculated
when using this model.

Note that the three assumed underlying data models result in different predictions
for the missing values and, therefore, in a different restricted MLE ξ̂Hm . In the next
section, we will evaluate the three types of assumed underlying data models.

8.3.3 Evaluation of the analytical model

When the analytical model is assumed to be the underlying data model, the IC is
determined by Equation (8.18). Note that, in this case, the IC is based on a different
data set, namely zm, for every Hypothesis Hm. Consequently, non-comparable
densities f(.) are used to compare different hypotheses. This violates the proper use
of ICs, since proper implies using the same data for every hypothesis of interest.
Therefore, we will not discuss the analytical model as assumed underlying data model
anymore.

We will now elaborate on the difference between using the unconstrained and the
restricted unconstrained model as assumed underlying data model.

8.3.4 The unconstrained versus the restricted unconstrained model

To compare the restricted unconstrained model and the unconstrained model, we
will compare IC values resulting from both approaches. Here, we will use the
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analog of Equation (8.8), since the analog of Equation (8.11) is not defined for
the restricted unconstrained model. The maximum value of the observed-data
likelihood f(yobs,xobs|ξ̂) under Hm is per definition attained at ξ̂ = ξ̂Hm|Restr (see

Equation (8.22)). Thus, the observed-data likelihood for ξ̂Hm|Unc (or any other value)

will be smaller than or equal to the observed-data likelihood attained at ξ̂Hm|Restr.
Notably, the penalty for Hypothesis Hm : Cmβ = 0 is pm for both assumed
underlying data models. Therefore, the minimum value of the IC, which is based
on f(yobs,xobs|ξ̂), is also attained at ξ̂ = ξ̂Hm|Restr. From this it follows that

f(yobs,xobs|ξ̂Hm|Unc) ≤ f(yobs,xobs|ξ̂Hm|Restr), (8.24)

ICUnc
m ≥ ICRestr

m . (8.25)

Let, without loss of generalization, the set of hypotheses consist of three hypotheses

Hu : β0, β1, . . . , βk−1,

H1 : some βis are set to 0,

H2 : some βis are set to 0 (6= H1),

where Hu, the hypotheses with no restrictions on β, is referred to as the unconstrained
hypothesis. When the hypothesis of interest is Hu, both the restricted unconstrained
model and the unconstrained model lead to the same assumed underlying data model.
Hence, both approaches result in the same IC value (say b) for Hu (Table 8.1). Let
the IC value of H1 and H2, when using the restricted unconstrained model, be a
and d (Table 8.1), respectively. Due to Equation (8.25), the IC value of H1 and H2,
when using the unconstrained model, is a+ α and d+ δ, respectively, where α, δ ≥ 0
(Table 8.1).

Table 8.1: The IC values of the three hypotheses (Hu, H1, and H2) for the two types
of assumed underlying data models (AUDM)

AUDM: Unconstrained Restricted unconstrained

Hypothesis Hm: Hu H1 H2 Hu H1 H2

ICm: b a+ α d+ δ b a d

Note: α, δ ≥ 0.

When using the unconstrained model, the assumed underlying data model contains
all available reasonable data. Therefore, in case of MAR, it leads to unbiased estimates
of the missing values and, therefore, the regression parameters β. However, other
assumed underlying data models, when missing a relevant predictor, will result in
biased estimates. Bear in mind that the restricted unconstrained data model depends
on the hypothesis of interest. Hence, when the hypothesis of interest is equal to
(or embeds) the correct underlying data model, both the unconstrained and the
restricted unconstrained model will lead to unbiased estimates. In that case, both
types of assumed underlying data models will render the same estimates and IC
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values asymptotically. Hence, when H1, respectively, H2 (or a model embedded in this
hypothesis) is the true underlying data model, α, respectively, δ are asymptotically
zero.

When examining the performance of both models, two cases will be distinguished:
(i) Hu is the correct underlying data model and (ii) H1 (or H2) is the correct model.
First we inspect the case where Hu is the correct hypothesis (top panel Table 8.2).
When the use of the unconstrained model results in choosing Hu (Scenario 1), it holds
true that b < a+α and b < d+δ. This does not per se imply b < a and b < d, it could
also be the case that a < b < d or d < b < a, in which case H1, respectively, H2 is
selected. Hence, employing the restricted unconstrained model does not per se result
in choosing Hu when the use of the unconstrained model does. On the other hand,
when the restricted unconstrained model is used and it selects Hu (Scenario 2), the
use of the unconstrained model also results in preferring Hu. Namely, b < a and b < d
imply b < a+α and b < d+δ, respectively, for α, δ ≥ 0. Thus, when Hu is the correct
hypothesis, the unconstrained model outperforms the restricted unconstrained model.

Secondly, we examine the case where a constrained hypothesis, H1, is the correct
data model (bottom panel Table 8.2). It should be stressed that in this case α is
asymptotically equal to zero. When H1 is chosen when employing the unconstrained
model (Scenario 3), it holds true that a + α < b, a + α < d + δ. Then, when using
the restricted unconstrained model, H1 is selected if a < b, a < d and H2 is chosen if
a < b, d < a(< d+ δ). In contrast, when H1 is selected when employing the restricted
unconstrained model (Scenario 4), H1 is also chosen when using the unconstrained
model (at least, asymptotically, that is, for large enough observations). Hence, when
H1 is the correct hypothesis, the unconstrained model outperforms the restricted
unconstrained model (at least, asymptotically). The analog holds for H2 or any other
constrained hypothesis.

In summary, when employing the restricted unconstrained model results in
choosing the correct hypothesis, the use of the unconstrained model does too and,
when using the unconstrained model results in preferring the correct hypothesis, the
use of the restricted unconstrained model does not per se. Namely, when predicting
under Hm, the support for Hm increases, while it is not per se the correct model.
When the proportion of missing values is high enough, this could lead to selecting the
wrong model.

Hence, the unconstrained model outperforms the restricted unconstrained model.
Moreover, the IC for regression models based on the joint density reduces to an IC
based on the conditional density, as when the data are completely observed, solely for
the unconstrained model. Therefore, the unconstrained data model performs best.

8.4 The missingness is observed too

Until now, we have examined the log-likelihood of the observed data zobs. In the
presence of missing data, the missingness indicator r is observed too. In parameter
estimation, (zobs, r) should be the focus of interest instead of zobs, according to
Jamshidian (2004) and Little and Rubin (1987). They also state that in many
important applications ξ and φ are disjoint, which implies that
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Table 8.2: Scenarios of preferring the correct hypothesis for the two assumed
underlying data models (AUDM)

Hu is correct

AUDM: Unconstrained Restricted unconstrained

Scenario 1
Order of ICs: b < a+ α, b < d+ δ 6→ b < a, b < d
Preferred hypothesis: Hu could be Hu,

or H1 or H2

Scenario 2
Order of ICs: b < a+ α, b < d+ δ ← b < a, b < d
Preferred hypothesis: Hu Hu

H1 is correct (asymptotically α = 0)

AUDM: unconstrained restricted unconstrained

Scenario 3
Order of ICs: a+ α < b, a+ α < d+ δ → a < b, a < d+ δ

not per se a < d
Preferred hypothesis: H1 could be H1,

but also H2

Scenario 4
Order of ICs: a+ 0 < b, a+ 0 < d+ δ ← a < b, a < d
Preferred hypothesis: H1 H1

H2 is correct (asymptotically δ = 0) – analogously to H1 is correct

Note: a = ICRestr
1 , d = ICRestr

2 , b = ICRestr
u = ICUnc

u , a+ α = ICUnc
1 ,

d+ δ = ICUnc
2 , with α, δ ≥ 0.

f(zobs, r|ξ,φ) = f(zobs|ξ)f(r|zobs,φ).

Since f(zobs|ξ) and f(r|zobs,φ) are independent, it does not matter whether one
maximizes the log-likelihood of the observed data zobs or of (zobs, r), when the aim is
the estimation of ξ. In model selection, (zobs, r) should also be the focus of interest.
Fortunately, as described below, when assuming that the unconstrained model is
the true underlying data model the focus of interest is arbitrary, like in parameter
estimation.

In case the analytical model is assumed to be the true underlying data model, the
IC for HypothesisHm : Cmβ = 0 should actually be based on f(zmobs, r

m|ξmHm|An,φ
m)

= f(zmobs|ξ
m
Hm|An) f(rm|zmobs,φ

m). Since rm and zmobs = (yobs,x
m
obs) will differ per

hypothesis, f(rm|zmobs,φ
m) differs per hypothesis. Consequently, the focus of interest

is not arbitrary.
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In case the unconstrained model is used to be the true underlying data model, the
IC for Hypothesis Hm should be based on

f(zobs, r|ξHm|Unc,φ) = f(zobs|ξHm|Unc)f(r|zobs,φ),

∝ f(zobs|ξHm|Unc) for all Hm.

Note that ξHm|Unc denotes the set of βmHm|Unc, σ2
Hm|Unc, µUnc,x, and ΣUnc,xx. In this

case, f(r|zobs,φ) has no hypothesis-dependent components. Therefore, the focus of
interest is arbitrary. Analogously, the focus of interest is arbitrary, when using the
restricted unconstrained model.

8.5 Illustration

As an example, we use the data reported in Table 7.4 on page 154 of Little and
Rubin (1987), see Table 8.3, first printed by Woods, Steiner, and Starke (1932). They
examined how “the heat evolved during setting and hardening” of cement depends on
its composition. “The compounds comprised in this analysis are tricalcium aluminate
[...], tricalcium silicate [...], tertracalcium aluminoferrite [...], and β-dicalcium silicate
[...].” The results are analyzed by Equation (8.1) “for the contribution of each percent
of each compound to the total heat evolution on the assumption that there exists
a linear relationship between the compound composition of a cement and its heat
evolution.” The dependent variable y is the heat involved in calories per gram of
cement. There are four predictors: the amount of tricalcium aluminate (x1), the
amount of tricalcium silicate (x2), the amount of tertracalcium alumino ferrite (x3),
and the amount of dicalcium silicate (x4). In summary, the data are modeled by
yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi for i = 1, . . . , 13 with εi ∼ N1(0, σ2).

In the data reported in Table 8.3 some predictors have missing values. It should
be stressed that the dependent variable may also have missing values. One should
predict the missing values based on the other predictors and the dependent variable.
To deal with missing data, we employ Equation (8.4), where the estimates of µ and
Σ are assessed by the EM algorithm. When the unconstrained model is assumed to
be the true underlying data model, µ̂ and Σ̂ are the same for each model. When the
restricted unconstrained model is used, µ̂ and Σ̂ differ per model. These equal the
estimates under the unconstrained model when evaluating the unconstrained model
Hu.

Normally, a researcher has a few competing theories and one should evaluate those
(including the unconstrained model to safeguard for weak hypothesis). To give insight
into the difference between employing the unconstrained model and the restricted
unconstrained model as underlying data model, we will first examine all possible
models of the form (8.7). Second, we will demonstrate how one should evaluate a set
of hypotheses with the AIC or AICC based on the unconstrained model.

8.5.1 Illustration of the unconstrained versus the restricted
unconstrained model

To compare the unconstrained model with the restricted unconstrained model, we
will examine all 16 possible models of the form (8.7), depicted in Table 8.4. Bear in
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Table 8.3: Example data

i yi xi1 xi2 xi3 xi4
1 78.5 7 26 6 60
2 74.3 1 29 15 52
3 104.3 11 56 8 20
4 87.6 11 31 8 47
5 95.9 7 52 6 33
6 109.2 11 55 9 22
7 102.7 3 71 17 -
8 72.5 1 31 22 -
9 93.1 2 54 18 -
10 115.9 - - 4 -
11 83.8 - - 23 -
12 113.3 - - 9 -
13 109.4 - - 8 -

Note: The missing values are
represented by “-”.

mind that the IC based on the joint density does not reduce to an IC of the form
(8.11) for the restricted unconstrained model. As a consequence, the AICC which
is based on the conditional density cannot be employed when using the restricted
unconstrained model. Therefore, we inspect Equation (8.8) with Equation (8.9), that
is, the AIC based on the joint density, to examine the difference between the two
assumed underlying data models.

Table 8.4 shows, among others, the differences between the AICs for these two
types of underlying data models. Here one can see that not only the AIC values
differ for most models but also the ordering of the models. When using the restricted
unconstrained model, the missing values are predicted under Hm. Then, the fit of
Hm increases, as can be seen from the likelihood values in Table 8.4. This induces
an increase in the support for Hm, as can be seen from the AIC values in Table 8.4.
But, Hm is not per se the correct model. As a consequence, using the restricted
unconstrained model could lead to selecting the wrong model when the proportion of
missing values is high enough.

8.5.2 Illustration of the unconstrained model

A theory could be, for example, based on previous research, that the amount of
tricalcium aluminate has no effect on the heat of cement. Another theory could be
that the amount of dicalcium silicate does not either. As a safeguard we include
the unconstrained model. Namely, when the other two hypotheses are weak, the
unconstrained will be selected. Let the hypothesis of interest be
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Table 8.4: The number of distinct parameters pm, the joint observed-data log-likelihood
fm(yobs, xobs|µ̂Hm , Σ̂Hm), the AIC values, and the order of the AIC values for each
model of interest for both the unconstrained (Unc) and restricted unconstrained model
(Restr)

Unc Restr Difference

m Hm pm fm(.) AIC Rank fm(.) AIC Rank in AICs in rank
0 β1 = β2 = β3 = β4 = 0 16 -160.5 353.0 16 -160.5 353.0 16 0.0 0
1 β1, β2 = β3 = β4 = 0 17 -158.7 351.4 15 -156.7 347.3 13 -4.1 -2
2 β2, β1 = β3 = β4 = 0 17 -153.9 341.7 10 -153.2 340.3 11 -1.4 1
3 β3, β1 = β2 = β4 = 0 17 -158.3 350.6 14 -158.3 350.6 15 0.0 1
4 β4, β1 = β2 = β3 = 0 17 -156.5 347.1 12 -156.2 346.5 12 -0.6 0
5 β1, β2, β3 = β4 = 0 18 -142.9 321.9 3 -141.1 318.2 4 -3.7 1
6 β1, β3, β2 = β4 = 0 18 -156.5 349.0 13 -156.5 349.0 14 0.0 1
7 β1, β4, β2 = β3 = 0 18 -151.5 339.0 9 -146.3 328.5 8 -10.5 -1
8 β2, β3, β1 = β4 = 0 18 -147.6 331.2 6 -147.6 331.2 9 0.0 3
9 β2, β4, β1 = β3 = 0 18 -154.3 344.7 11 -151.9 339.7 10 -4.9 -1
10 β3, β4, β1 = β2 = 0 18 -149.3 334.6 7 -144.5 325.0 6 -9.6 -1
11 β1 = 0, β2, β3, β4 19 -144.9 327.8 5 -143.9 325.7 7 -2.0 2
12 β2 = 0, β1, β3, β4 19 -148.3 334.6 8 -142.7 323.4 5 -11.2 -3
13 β3 = 0, β1, β2, β4 19 -143.0 324.1 4 -141.1 320.2 3 -3.9 -1
14 β4 = 0, β1, β2, β3 19 -141.1 320.1 2 -141.1 320.1 2 0.0 0
u β1, β2, β3, β4 20 -132.9 305.9 1 -132.9 305.9 1 0.0 0

H11 : β1 = 0, that is, H11 : yi = β0 + β2xi2 + β3xi3 + β4xi4 + εi,

H9 : β1 = β3 = 0, that is, H9 : yi = β0 + β2xi2 + β4xi4 + εi,

Hu : β0, β1, β2, β3, β4, that is, Hu : β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi.

It should be stressed that the IC based on the joint density does reduce to an IC
of the form (8.11) when applying the unconstrained model. Hence, in this case, the
AICC can be employed to evaluate the set of hypotheses. As mentioned before, µ̂ and
Σ̂ are the same for each model when the unconstrained model is assumed to be the
true underlying data model. From these estimates, β̂Hm and σ̂2

Hm
are determined,

which are the estimates in accordance with the restrictions in Hm; reported in
Table 8.5. Based on these values, one can calculate the conditional log-likelihood
for y|x, denoted by fm(yobs|xobs, β̂Hm , σ̂

2
Hm

); displayed in Table 8.5. The number of

distinct parameters with respect to β̂Hm equals k− cm. Note that σ2 is unknown too.
Based on Equations (8.11) and (8.13), the AICCm can be calculated; these values
are depicted in Table 8.5. From the results, it is concluded that Hu is the preferred
model.
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Table 8.5: The restricted maximum likelihood estimators of β and σ2, the observed-
data log-likelihood fm(.), the number of distinct parameters 1 +k− cm, and the AICC
values for each model of interest

H1 H2 Hu

β̂Hm,0 157.2 5.7 -196.7

β̂Hm,1 0.0 0.0 4.5

β̂Hm,2 -0.3 1.5 3.1

β̂Hm,3 -1.6 0.0 3.6

β̂Hm,4 -1.0 0.6 2.3
σ̂2
Hm

7.7 38.1 0.3

fm(yobs|xobs, β̂Hm , σ̂
2
Hm

) -37.6 -47.0 -25.6
1 + k − cm 5 4 6
AICCm 93.7 107.0 77.2

8.6 Discussion

An important principle has been discussed: In case of missing data in the dependent
variable y and/or the predictors x of the regression model, one should carefully choose
the assumed underlying data model. The values of the regression parameter estimates
and of the employed IC depend on which underlying data model is used. Three choices
can be made: the analytical model, the unconstrained model, and the restricted
unconstrained model. When using the analytical model as the assumed underlying
data model, the ICs for the hypotheses of interest are based on different data sets.
In this case, the ICs cannot be compared. Therefore, the analytical model should not
be used. When comparing the unconstrained model and the restricted unconstrained
model, the performance of the first approach is better than the performance of the
second: when assuming that the restricted unconstrained model is the underlying
data model results in selecting the correct hypothesis, the same holds true for
the unconstrained model and, when employing the unconstrained model results in
choosing the correct hypothesis, the use of the restricted unconstrained model does
not per se. Namely, when predicting under the hypothesis of interest, its support is
strengthened and may lead to selecting an incorrect model/hypothesis. Therefore,
the unconstrained model should be used as the assumed underlying data model in
calculating an IC in the presence of missing data for predictor selection and model
selection in regression models.

It should be stressed that these results also apply to structural equation modeling
(SEM) models and/or to hypothesis of the form HG

m : Cmβ = am, with Cm ∈ Rcm×k,
rank(Cm) = cm ≤ k, and am ∈ Rcm . Namely, Equation (8.24) and, therefore,
Equation (8.25) still hold true. For restrictions of the type HG

m, when using the
unconstrained model, the EM procedure remains the same, only the calculations
of the parameter estimates β̂Hm|Unc and σ̂2

Hm|Unc changes. They should be derived

from ξ̂Unc = (µ̂Unc, Σ̂Unc) using the method of Lagrange multipliers (see Johnston &
DiNardo, 1997):
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β̂Hm|Unc = β̂ + (Σ̂
+

xx)−1C ′m[Cm(Σ̂
+

xx)−1C ′m]−1(am −Cmβ̂),

σ̂2
Hm|Unc = σ̂2 + (am −Cmβ̂)′[Cm(Σ̂

+

xx)−1C ′m]−1(am −Cmβ̂).

In conclusion, we strongly recommend the use of an IC based on the unconstrained
model, since it outperforms the restricted unconstrained model. Moreover, solely
for the unconstrained model, the IC based on the joint density reduces to one
appropriate for regression models, that is, the one based on the conditional density. As
a consequence, the AICC can only be calculated when using this model. In addition,
for this model it holds true that the IC based on the observed data is proportional to
the IC based on both the observed data and the missingness indicator.

To deal with missing data in both the dependent variable y and the predictors x
of the regression model, one can use PredictorSelectionInMissingData.exe (http://
staff.fss.uu.nl/RMKuiper). This software can only be used for predictor selection
in regression models with one dependent variable and renders AIC and AICC values.

http://staff.fss.uu.nl/RMKuiper
http://staff.fss.uu.nl/RMKuiper


CHAPTER 9

Remaining Issues
regarding Information Criteria in the Presence of Missing Data

Kuiper, R. M.

9.1 The Complete-Cases Information Criterion in Case of
MCAR

Chapter 8 describes how information criteria (ICs) should be calculated in case of
MAR. When the missing data are assumed to be MCAR, that is, fR(r|zobs, zmis,φ) =
fR(r|φ), one could calculate an IC based on the completely observed cases, since these
cases are representable for all the cases.

Let, without loss of generalization, the first nobs observations be completely
observed, zCC = (yCC ,xCC) denote the set of complete cases in z, and ξ̂CC =

(µ̂CC , Σ̂CC) the maximum likelihood estimator (MLE) of ξ for the complete

cases. Due to MCAR, it asymptotically yields that (µ̂CC , Σ̂CC) = (µ̂, Σ̂) and

fZ(zi|µ̂CC , Σ̂CC) = fZ(zi|µ̂, Σ̂) for all zi, where (µ̂, Σ̂) is the MLE of (µ,Σ).
Moreover, since

fZCC (zCC |µ̂CC , Σ̂CC) =

nobs∏
i=1

fZ(zi|µ̂CC , Σ̂CC),

the likelihood of the complete cases is asymptotically equal to nobs
n times the likelihood

of the complete data (as if all the data were observed).
Because the complete-cases IC (ICCC) is easy to determine, we recommend the

use of it in case of MCAR:

ICCC = −2 log fZCC (zCC |ξ̂CC) + 2 pm,

where pm is the penalty, which equals the number of distinct parameters in case of
the AIC. In other MAR cases, the IC described in Chapter 8 should be used.
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9.2 AIC in Mplus and AMOS

This section evaluates how today’s software handles missing data in model selection.
Horton and Lipsitz (2001) discuss how several software programs (like SAS and S-plus)
handle missing data in regression models. Since it is assumed that both y and x have a
distribution, two structural equation software programs are examined: Mplus (Muthén
& Muthén, 2007) and AMOS (Arbuckle, 2007). Mplus can use EM (as discussed in
Little & Rubin, 1987) to handle missing data and AMOS employs FIML, where the
observed-data log-likelihood is maximized.

The following example is used to demonstrate the calculation of the AIC in Mplus
and AMOS. We have generated data x = [x1,x2] from a bivariate normal distribution
and an error term ε from a standard normal distribution: x′i ∼ N2([2 3], I2) and
εi ∼ N (0, 1), for i = 1, . . . , 100. We created y by employing yi = β0+β1xi1+β2xi2+εi,
with β0 = −16, β1 = 1, and β2 = 5. Then we created 30% missing values, by means
of the procedure described next. In this example, there are 8 missing data patterns
(Table 9.1). First, we assign each row in the data to a missing data pattern with use
of “the assigning probability” Ps (Table 9.1) when applying the following rule: row i,

that is, [yi, xi1, xi2], belongs to missing data pattern s′, when Ui1 <
∑s′

s=1 Ps, where
Ui1 is a random variable that is uniformly distributed on the interval [0,1]. Let r∗i
denote the assigned missing data pattern for row i, that is, when r∗ij = 0, zij is missing
in the assigned missing data pattern. For example, when row i belongs to missing data
pattern s′ = 4, r∗i = [r∗i1, r

∗
i2, r

∗
i3] = [1, 1, 0]. Subsequently, it is determined whether

row i actually has missing values (in accordance with missing data patterns s′). This
probability of having missing values depends on the weighted sum of the values of the
observed variables in pattern s′. In this example, yi = zi1 has a weight of w1 = 1

10 ,
xi1 = zi2 of w2 = 1, and xi2 = zi3 of w3 = 1000, when they are observed in pattern
s′ (i.e., r∗ij = 1 for j = 1, 2, 3). Now, [yi, xi1, xi2] has missing values (in accordance

with missing data patterns s′), when Ui2 < φ((
∑3
j=1 wj rij zij/

∑3
j=1 wj rij) + c),

where Ui2 is a random variable that is uniformly distributed on the interval [0,1], φ
is the cumulative standard normal distribution function, and c is a parameter that
controls the expected proportion of missing data, with c =

√
2φ−1(π). To generate

30% missing values (with the assigning probabilities of Table 9.1), we set π equal to
π = .54.
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Table 9.1: Missing Data Patterns (0 = missing, 1 = observed) and the Assigning
Probability (Ps)

s yi xi1 xi2 Ps
1 0 0 0 0
2 0 1 0 2

9
3 1 0 0 2

9
4 1 1 0 1

9
5 0 0 1 2

9
6 0 1 1 1

9
7 1 0 1 1

9
8 1 1 1 0

Let the hypotheses of interest be

H1 : β0, β1, β2 = 0 or, stated otherwise, H1 : yi = β0 + β1xi1 + εi,

Hu : β0, β1, β2 or, stated otherwise, Hu : yi = β0 + β1xi1 + β2xi2 + εi.

From the literature, it is not clear what type of assumed underlying data
model is employed in Mplus or AMOS. Therefore, we have constructed a software
program, called “PredictorSelectionInMissingData.exe”, where the AIC is calculated
for predictor selection in regression models when using the unconstrained model as the
assumed underlying data model. We have made the software in Fortran 90, therefore,
we refer to our software in the tables as “Fortran”.

In Table 9.2, the estimates of ξUnc can be found for our software. Since the

unconstrained model is employed, ξ̂Unc is the same for H1 and Hu. From ξ̂Unc, the
estimates of βHm|Unc and σ2

Hm|Unc for both H1 and Hu can be determined (Table 9.3).
Furthermore, the observed-data log-likelihood and AIC values are reported for both
the model of y|x and the model of (y,x). The results with respect to (y,x) are
displayed in Table 9.4. Furthermore, this software uses the number of distinct µ and
Σ values as penalty for the model with respect to (y,x) (see Table 9.4).

When employing Mplus, one should be aware of which variables you use as input
and what hypothesis/model constraints you declare (if any). For example, in Mplus,
the analytical model can be employed as the assumed underlying data model for H1

by specifying:

VARIABLE: NAMES ARE y x1;

MODEL: y ON x1(b1)

But, the analytical model should not be used. It is possible to specify H1 differently
in Mplus:

VARIABLE: NAMES ARE y x1 x2;

MODEL: y ON x1(b1)



138 9 Remaining Issues

Table 9.2: The estimates of µ and Σ in our Fortran software, Mplus, and AMOS for
H1 and Hu

Mplus & Fortran AMOS

H1 & Hu H1 Hu

y x1 x2 y x1 x2 y x1 x2

µ̂ 1.911 2.011 3.212 - 2.082 3.207 - 2.011 3.212

Σ̂ y 29.911 - -
x1 1.645 0.859 - 0.915 - 0.859
x2 5.965 0.191 1.256 - 0.315 1.256 - 0.191 1.256

Note. In AMOS, the estimated values of µ and Σ with respect to y are not given.
with respect to y are not given.

Table 9.3: The restricted MLEs of β and σ2 in our Fortran software, Mplus, and
AMOS for H1 and Hu

H1 Hu

Fortran Mplus AMOS

β̂Hm,0 -1.937 -3.394 -3.627 -14.699

β̂Hm,1 -1.914 2.238 2.331 0.888

β̂Hm,2 0.000 0.000 0.000 4.615
σ̂2
Hm

26.764 27.039 26.490 0.922

Table 9.4: The observed-data log-likelihood fm(.), penalty pm, and AICm values for
our Fortran software, Mplus, and AMOS for H1 and Hu

H1 Hu

Fortran Mplus AMOS Fortran Mplus AMOS
fm(.) -404.739 -403.365 159.661

2 -322.242 -322.242 0
pm 8 3 8 9 4 9
AICm 825.478 812.731 175.661 662.484 652.484 18

Note. AMOS does not give the observed-data log-likelihood but two times
the discrepancy of the observed-data log-likelihood with respect to the
observed-data log-likelihood of Hu.

x2(b2);

MODEL CONSTRAINT: b2 = 0;

To inspect Hu, the same code can be employed, but the last line should be deleted.
Mplus gives the same ξ̂ as our Fortran software (Table 9.2). This seems to imply that



9.2 AIC in Mplus and AMOS 139

the unconstrained model is used as the underlying data model. However, as can be
seen from Table 9.3, the restricted MLEs of β and σ2 given by Mplus differ from
the restricted MLEs given by our Fortran software (which can also be determined by
hand). This implies that Mplus does not employ the unconstrained model. Table 9.4
displays the observed-data log-likelihood, the penalty, and the AIC values reported
by Mplus, where Mplus uses the number of distinct β and σ2 values as penalty.

In AMOS, both the analytical and the restricted unconstrained model can be
employed as the assumed underlying data model, but not the unconstrained model.
Which one is used depends on how a model is declared in AMOS (see Figure 9.1).
Figure 9.1a represents the case where H1, that is, β2 = 0, is inspected and the
analytical model is employed. However, the analytical model should not be used.
To evaluate hypotheses employing the restricted unconstrained model, one should
include all available variables (i.e., (y, x)), add the relations between y and xm,
and add all the possible covariances between all the predictors as in Figure 9.1b.

The resulting parameter estimate value ξ̂
Restr

for both H1 and Hu are displayed
in Table 9.2. As expected when using the restricted unconstrained model, the
parameter estimate values differ per hypothesis. The restricted MLEs of β and σ2

are displayed in Table 9.3 for each hypothesis. Furthermore, AMOS gives two times
the difference between the observed-data log-likelihood of the hypothesis of interest
and the observed-data log-likelihood of the unconstrained hypothesis. The AIC is also
based on this discrepancy instead of the observed-data log-likelihood itself. Table 9.4
shows the discrepancy of the observed-data log-likelihood and of the AIC based on
this discrepancy and the penalty, where AMOS employs the number of distinct µ and
Σ values as penalty.

(a) (b)

Fig. 9.1: specification of H1 in AMOS, (a) when using the analytical model as assumed
underlying data model and (b) when using the restricted unconstrained model as
assumed underlying data model.

In Table 9.3, it can be seen that the parameter estimates of AMOS resemble the
parameter estimates of Mplus. Mplus renders results which are more in agreement
with the results of AMOS than with the results of our Fortran software. Therefore,
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it seems that Mplus employs the restricted unconstrained model as the underlying
data model. Note that the results of Hu are the same for the unconstrained model
(used in our own software) and the restricted unconstrained model (used in Mplus
and AMOS).

Since both AMOS and Mplus do not (yet) employ the unconstrained data model,
we recommend to use PredictorSelectionInMissingData.exe. However, it should be
noted that both Mplus and AMOS could easily make this option available in their
software. Our software is available free of use, but can only be used for predictor
selection for a regression model with one dependent variable. It calculates the
AIC for both the models y|x and (y,x) and the AICC for the model y|x, when
employing the unconstrained model as assumed underlying data model. The software
PredictorSelectionInMissingData.exe can be found at http://staff.fss.uu.nl/

RMKuiper.

9.3 Penalty Part

In Chapter 8, we used the conventional penalty term (pm); for the AIC this
equals the number of distinct parameters. But, this is not the correct expression,
when minimizing the Kullback-Leibler discrepancy (Kullback & Leibler, 1951) and
employing the observed-likelihood.

Cavanaugh and Shumway (1998) derived the AIC from the Kullback-Leibler
distance in the presence of missing data for several kind of models, like regression
and ANOVA models. However, it is derived for the case where the analytical or
the restricted unconstrained is used as the assumed underlying data model. For the
unconstrained data model, another penalty has to be derived.

Moreover, this penalty is (most probably) a function of the parameter estimates.
It should be stressed that these differ per assumed underlying data model and that,
therefore, the penalty values for Hm do as well. Since the comparison of the restricted
unconstrained and unconstrained model is based on having the same penalty for each
model, one should compare the restricted unconstrained and unconstrained model
again. This is beyond the scope of this dissertation. Hence, more research is required.

9.4 Confirmatory Model Selection in Presence of Missing Data

In Chapter 8, we showed that, in the presence of missing data, one should carefully
choose the assumed underlying data model, since the values of the regression
parameter estimates depend on it. There, the preferred assumed underlying data
model is the unconstrained model, that is, the most complex model. In that chapter,
we examined model selection without order restrictions. But, what should be done in
constrained model selection?

As the other information criteria, the generalized order-restricted information
criterion (GORIC) is based on a likelihood and penalty part. Because of the
order-restricted hypotheses, the likelihood of the GORIC uses order-restricted MLEs
instead of restricted MLEs and the penalty is calculated differently, as can be seen in

http://staff.fss.uu.nl/RMKuiper
http://staff.fss.uu.nl/RMKuiper
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(13.4). The penalty depends, among others, on the unrestricted MLE of the covariance
matrix with respect to the dependent variables (denoted by Σ̂ in Equations (5.25)
and (13.6)). It should be stressed that this will differ per type of underlying data
model due to the different parameter estimates. Hence, not only the likelihood, but
also the penalty of the GORIC varies for the different types of assumed underlying
data models. Thus, for constrained model selection, we cannot conclude (yet) that
the unconstrained model outperforms the restricted unconstrained model. Therefore,
more research is required for calculating the GORIC in presence of missing data.
Moreover, the GORIC should be derived from the Kullback-Leibler distance in the
presence of missing data for the three types of assumed underlying data models (see
Section 9.3).

Nevertheless, the restricted unconstrained model has some disadvantages over the
unconstrained model. Firstly, when predicting under the hypothesis of interest, its
support is strengthened, which may lead to selecting an incorrect model/hypothesis.
Secondly, the likelihood part of an information criterion must now be the joint density
and cannot be the conditional density. More details can be found in Chapter 8.
Therefore, one can choose to employ the unconstrained model as the assumed
underlying data model. In that case, the missing values are implied by the covariance
structure of the data and not by a specific model (which differs per hypothesis).

Chapter 8 describes how information criteria like the small-sample corrected
version of the Akaike information criterion should be calculated in univariate
regression models when the dependent variable and/or the predictors contain missing
values. This section extends this to the GORIC which can be applied to hypotheses
with order restrictions in multivariate regression models. The multivariate regression
model with t dependent variables is described in Section 13.2.1. The derivation of the
expression is analogously to Chapter 8. One of the differences is (evidently) that sizes
of most the vectors and matrices change. For example, z and the missingness indicator
are now n× (t+ k− 1) matrices and L = t+K − 1. Another difference is (evidently)
the form of the hypotheses. The form and more details are given in Chapter 5 or 13.
The expression for the GORIC and its penalty term can also be found there, as well
as the calculation of the order-restricted maximum likelihood estimators B̃m and
S̃m (when there is no missing data present). Note that in multivariate regression
an iteration process is required to obtain the latter (see for example Section 13.3).
Analogously to Chapter 8, in presence of missing data, the GORIC can be calculated
by the observed-data likelihood (f(zobs|ξ̃m)) and a penalty term. Also here, the
restrictions come down to restricting the corresponding part in Σyx and not in Σxx

or µ̂x. Note that f(xobs|µ̂x, Σ̂xx) is constant over all hypotheses, when using the
unconstrained model. Thus, the GORIC (in presence of missing data and when using
the unconstrained model) can be written as a likelihood part where the dependent
variables are conditional upon the predictors, as when there are no missing data
present, and a penalty part analogously to, for example, Section 13.4:

GORICUncm = −2 log f(yobs|xobs, β̃m, S̃m) + 2 pUncm , (9.1)

with
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f(yobs|xobs, β̃m, S̃m) =
S∏
s=1

∏
i∈I(s)

1

(2π)Ls/2|S̃sm|
1
2

exp

{
−1

2
(ysi − (B̃

s

m)′xsi )
′
(
S̃
s

m

)−1

(ysi − (B̃
s

m)′xsi )

}
,

pUncm = 1 +

tk∑
l=1

wl(tk,W
Unc, Cm) l,

WUnc = Ŝ ⊗ (Σ̂
+

xx)−1.

where S̃
s

m, ysi , B̃
s

m, and xsi are the submatrices of S̃m, yi, B̃m, and xi, respectively,
corresponding to the observed variables in pattern s, Ls is the number of observed
dependent variables in pattern s (since we examine yobs|xobs in lieu of zobs =

(yobs,xobs)), and Ŝ and (Σ̂
+

xx)−1 are given below.
The observed-data likelihood f(yobs|xobs, β̃m, S̃m) is obtained in three steps:

1. The (unrestricted / unconstrained) MLEs of µ andΣ (i.e., µ̂ and Σ̂, respectively)
are obtained via EM, where the unconstrained model is employed as assumed
underlying data model, see Chapter 8.

2. From these estimates, the (unrestricted / unconstrained) MLEs of B and S are
calculated:

B̂ = (Σ̂
+

xx)−1Σ̂
+′

yx ,

=

[
1 µ̂′x

µ̂x Σ̂xx + µ̂xµ̂
′
x

]−1[̂
µy Σ̂yx + µ̂yµ̂

′
x

]′
,

Ŝ = Σ̂yy + µ̂yµ̂
′
y − Σ̂

+

yxB̂m.

3. These estimates are used in the iteration process in Section 13.3 to determine
the constrained / restricted MLEs B̃

s

m and S̃
s

m. This last step is done for every
hypothesis.

Bear in mind that more research is required to conclude which assumed underlying
data model (the unconstrained model or the restricted unconstrained model) is the
preferred one. Nevertheless, Equation (9.1) presents the expression for the GORIC
in the presence of missing data and when using the unconstrained model as assumed
underlying data model. Software for the GORIC and the two small-sample corrected
versions handling missing data (with use of the unconstrained model) is available from
http://staff.fss.uu.nl/RMKuiper.

http://staff.fss.uu.nl/RMKuiper
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CHAPTER 10

Combining Statistical Evidence from Several Studies:
A Method Using Bayesian Updating and an Example from

Research on Trust Problems in Social and Economic Exchange

Kuiper, R. M., Buskens, V., Raub, W., and Hoijtink, H.

Manuscript accepted for publication in Sociological Methods and Research.

The effect of an independent variable on a dependent variable is often evaluated
with hypothesis testing. Sometimes, multiple studies are available that test the same
hypothesis. In such studies the dependent variable and the main predictors might
differ, while they do measure the same theoretical concepts. In this chapter, we
present a Bayesian updating method that can be used to quantify the joint evidence
in multiple studies regarding the effect of one variable of interest. We apply our
method to four studies on how trust in social and economic exchange depends on
experience from previous exchange with the same partner. In addition, we examine
five hypothetical situations in which the results from the separate studies are less
clear cut than in our trust example.

10.1 Introduction

Researchers may have several data sets that can be used to address a research question
with respect to the relation between two variables. The main variables of interest may
be operationalized in different ways, be measured on different scales, and the statistical
model used to relate both variables may differ between studies. This chapter shows
how Bayesian updating can be used to summarize the evidence in the data sets for
hypotheses on the relation between the two variables. Before introducing our method,
we briefly present a case study that we use for illustrative purposes and we sketch the
limitations of meta-analysis if studies address the same relation, but employ different
variables and models.
Research in economic sociology and social dilemma research on trust problems in
exchange relations (see Raub & Buskens, 2008; Buskens & Raub, 2010, for overviews)
often studies how trust depends on prior exchange and interactions between the
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partners. For example, Batenburg, Raub, and Snijders (2003) study the extent to
which buyers of IT products trust their sellers using a survey on about 1000 buyers of
IT products. One of their hypotheses is that if the buyer has had positive experiences
with the seller from transactions in the past, the buyer trusts the seller more in the
present transactions. To test this hypothesis, they analyze the effect of the variable
“past” (a measure for the amount of positive past experiences) on the dependent
variable “lack-of-trust”, which is measured by the extent to which the buyer invests
in management of the relation such as writing a contract to prevent the seller
from untrustworthy behavior. Batenburg et al. (2003) use a linear regression model
with additional independent variables to test this hypothesis. Rooks, Raub, Selten,
and Tazelaar (2000) and Buskens and Raub (2002) test the same hypothesis with
similar variables, using a vignette experiment with hypothetical transactions. In this
experiment, purchase managers decide how much time and effort they want to invest
to prevent untrustworthy behavior of their seller, while the past experiences of the
buyer with the seller are one of the variables describing the hypothetical transactions.
They use a linear regression model, too. Two further studies have been used to test
the same hypothesis. Buskens and Weesie (2000) use another vignette experiment to
test whether past experiences have an effect on trust of students in a second-hand
car dealer. Here, trust is measured by the choice between two dealers. Thus, trust is
measured as a dichotomous variable. Consequently, Buskens and Weesie use a probit
analysis to test the hypothesis. Finally, Buskens, Raub, and van der Veer (2010) test
whether past experiences have an effect on trust in a laboratory experiment in which
subjects have to decide whether or not to trust another subject. Because subjects play
a series of these interactions with the same partner, subjects can make their behavior
conditional on the partner’s behavior in the past. The choice between trusting or
not trusting is again a dichotomous variable and is analyzed via a three-level logistic
regression. Table 10.1 provides an overview of the studies.
In each study, the authors are interested in whether past has a positive effect on trust.
In null hypothesis testing, one usually tests whether past has no impact on trust versus
it has a (positive/negative) effect. Another method to evaluate a positive (or negative)
effect is by quantifying evidence for the three effects/hypotheses H0 : β1 = 0, H> :
β1 > 0, and/or H< : β1 < 0. Royall (1997) describes how evidence for the hypotheses
at hand can be quantified using the likelihood ratio test. In Bayesian model selection,
one can also quantify evidence for several hypotheses at hand using the Bayes factor
(BF), which is equal to the likelihood ratio test for point hypotheses (like H0) and
can be seen as a generalization of the likelihood ratio test for other hypotheses. The
BF gives the relative support for each hypothesis, enabling statements of the type
“H> is ten times as likely as H<”.

10.2 Combining Effect Sizes Versus Updating Evidence

To combine multiple studies, one can employ (Bayesian) meta-analysis (among
others, Cooper, Hedges, & Valentine, 2009; Lipsey & Wilson, 2000). We briefly
discuss meta-analysis and its limitations. Subsequently, we describe our own method.
Table 10.2 provides an overview of the differences between the methods.
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Table 10.2: Meta-Analysis Versus Bayesian Updating

meta-analysis Bayesian updating
Effect size required not required
Design equal across studies equal or unequal across studies
Main results estimate of effect size (or parameter) evidence; i.e., posterior

and corresponding p value or model probabilities
confidence interval

* Our method uses the parameter estimates and their standard errors of each
study, but it does not require that they can be transformed into one effect size,
like Cohen’s d or R2.

Meta-analysis can be based on the parameter estimate and its standard error or
on a corresponding effect size for each study. When one is interested in the parameter
β1, the hypotheses to be tested are H0 : β1 = 0 versus HA : β1 6= 0, HA : β1 > 0
or HA : β1 < 0. Meta-analysis results in a parameter estimate or an estimate of
effect size based on all studies and a corresponding p value. This estimate is only
interpretable when the parameters or effect sizes are comparable. Hence, one cannot
use parameters from another type of model. Also, one cannot use effect sizes that
cannot be transformed into one type (e.g. the hazard ratio and the odds ratio). In
addition, the design of the model should be the same in all studies, that is, the
predictors in the model should be the same for all studies. Namely, the parameter
estimate or effect size is a conditional one and, therefore, it might change when
adding or discarding predictors. Thus, parameter estimates and effect sizes cannot
be compared Combining multiple studies with different models can also be based on
p values. However, a drawback of this method is, among other things, that p values do
not only reflect effect size but also the number of observations (Cooper et al., 2009;
Lipsey & Wilson, 2000).

Note that the types and designs of the models employed in our case study differ
in various ways (see Table 10.1). Each of the studies tests (among other things)
whether there is an effect of the variable past (a measure for the amount of positive
past experiences) on trust. In every study, trust and past are measured by different
variables. Actually, in the first two studies, the effect of past on lack-of-trust is
inspected. Consequently, we multiplied the estimates of the first two studies by minus
one. Also, trust is measured on a different scale in each model. Therefore, the studies
employ different models. Each model also includes different sets of other predictors.
Despite all these differences, the predictor past measures the same concept in all
studies. Nevertheless, meta-analysis cannot be employed to combine the four studies
regarding trust.

To combine multiple studies of different types and designs, but regarding one
theoretical concept, we introduce a Bayesian updating method. In this method, as
opposed to meta-analysis, the hypotheses do not address the specific parameter β1,
a parameter that is the same in all studies. Instead, it covers an underlying effect
and uses the parameters βt1 (for t = 1, . . . , T ) of the T studies, since they may not
be comparable. Nevertheless, they are indicative for the same underlying effect. The
method can be employed to evaluate the following hypotheses:
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H0 : no effect,

H> : positive effect, (10.1)

H< : negative effect.

Notably, our method does not combine estimates but the evidence for a positive
(H>), negative (H<), and null effect (H0) of the predictor of interest (which measures
one theoretical concept, say, past) on the dependent variable (which measures one
theoretical concept, say, trust).

The input for our method is the estimate of the parameter of interest (β̂1) and its
standard error (σ̂β1

). This input can be obtained in two ways, from the data or by
simply using the values of the parameter estimates reported in the studies. Note that
all the necessary information in the data with respect to β is adequately summarized
by using β̂1 and σ̂β1 . For the four studies that we use as an example, the parameter

estimates corresponding to past (β̂1) and the standard errors (σ̂β1
) are provided in

Table 10.3. Thus, this method does not require an effect size, like Cohen’s d, R2 or
odds ratio, or comparable parameter estimates, and different types of models as well
as different sets of predictors may be used in each study.

Table 10.3: The Parameter Estimates (β̂t1 and σ̂tβ1
for Study t) and Corresponding

One-sided p values of the Four Studies for Trust

t Study t β̂t1 σ̂tβ1
p

1 Batenburg et al. (2003) 0.090 0.029 .001
2 Buskens and Raub (2002) 0.140 0.054 <.001
3 Buskens and Weesie (2000) 1.090 0.093 <.001
4 Buskens et al. (2010) 1.781 0.179 <.001

It should be stressed that the researcher has to make sure that the βt1s do reflect
comparable relationships between the two key variables. Although adding a control
variable usually affects only the magnitude of βt1, it sometimes renders a change in the
sign of βt1. Hence, one should pay attention to the model specification. For instance,
if in one study the relation between trust and past is examined in a regression model
and in a second study this relation is examined with a logistic regression and is also
modeled as being conditional on various predictors that characterize the network of
the exchange partners with third parties, one should be careful that both models
do inspect the same theoretical relationship between trust and past. It is up to the
researcher to decide whether the βt1s reflect the same theoretical relationships.

Figure 10.1 shows how all the parameter estimates of all studies are used for
updating the evidence/support for the three hypotheses. We now briefly sketch the
updating (a more detailed discussion follows in a subsequent section). First, we assume
that all three hypotheses are equally likely and initialize the so-called prior model
probabilities (π0

m) of each hypothesis Hm to be 1/3 for m ∈ {0, >,<}; that is, m
can take on one of the values in the set {0, >,<} comprising the subscripts of H0,
H>, and H<. The prior model probability (PrMP) is a number on a scale of zero to
one, which quantifies the weight attached to the current hypothesis. Subsequently, we
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start with one study and use its parameter estimate and standard error to calculate
or approximate the likelihood. Based on the likelihood, the BF for each hypothesis
is determined. Bear in mind that the BF quantifies the support of the data of a
pair of hypotheses. We employ BFmu, that is, the BF of Hm (i.e., H0, H<, or H>)
versus a hypothesis without constraints on the parameter of interest. If, for instance,
BF0u equals 10, then H0 has 10 times more support than the hypothesis without
constraints. Since the unconstrained hypothesis is not of importance in this chapter,
BFmu is just a useful technical tool. Based on these BFs and the initial PrMPs,
the PMPs (π1

1,m) for the three hypotheses (m ∈ {0, >,<}) can be assessed, which
reflects the evidence/support in the data for the three hypotheses when evaluating
solely Study 1. Then, these PMPs are used in the calculation of the PMPs for the
evaluation of two studies (π1

2,m). This process is repeated for all T studies (resulting
in π1

T,m).

Fig. 10.1: Bayesian updating in case of T studies, where π0
m represents the prior model

probability, π1
t,m the posterior model probability after evaluating t studies, β̂1

1 and σ̂1
β1

are the parameter estimates for Study 1, and BF tmu is the Bayes factor for Hypothesis
Hm versus the unconstrained hypothesis in Study t, with m ∈ {0, >,<}

In the remainder of this chapter, we firstly elaborate on the concepts likelihood,
prior, posterior, BFs, and PMPs. Secondly, we describe our proposed method of using
multiple studies to quantify the evidence for H0, H>, and H<. Thirdly, we illustrate
how to apply the method by combining the evidence from the studies on how trust
depends on previous experience. Additionally, we inspect five hypothetical situations
in which the results from the separate studies are less clear cut than in our example
on trust where the results in each study consist of significant positive effects (see the
p values in Table 10.3). Moreover, we investigate the sensitivity of the method with
respect to the prior distribution that is needed as input for computing the BF and
introduce ways to deal with sensitivity.

10.3 Information in the Data

The method proposed here can be applied when different models are used in different
studies (e.g., a regression model and a logistic regression model), provided that a
function of µ, the expectation of y, can be written as a linear combination of the
predictors in all these models (see McCullagh & Nelder, 1989; McCulloch & Searle,
2005)
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g(µi) = α+

k∑
j=1

βjxij , for i = 1, . . . , n and j = 1, . . . , k,

where g(µi) is a function of µi, α denotes a constant, βj the parameter that
corresponds to xij , xij the jth predictor for observation i, n the number of
observations, and k the number of predictors. In regression models, g(µi) = µi, and
in logistic regression models, g(µi) = log( µi

1−µi ).

There is one key variable among the k predictors, namely, x1 = (x11, . . . , xn1).
In our example, the key variable is “past”. Thus, we are interested in β1, the
parameter corresponding to x1. Observe that the β1s of different studies might not
be comparable, but they do all reflect the effect of the key variable on the same
theoretical concept. For each of the studies, we know or can calculate the estimate
β̂1 and the standard error σ̂β1 (see Table 10.3). This enables us to approximate the

true likelihood L∗(.) of β1 by L(.), which is a normal distribution with mean β̂1 and
variance σ̂2

β1
:

L∗(β1|y, x) ≈ L(β1|y, x) = N (β̂1, σ̂
2
β1

). (10.2)

More details on large-sample inference and normal approximations can be found in,
for example, Chapter 4 of Gelman, Carlin, Stern, and Rubin (2004). Bear in mind that
many distributions can be approximated by a normal distribution for a large number
of observations and some even for a moderate number of observations. Related to this,
a maximum likelihood estimator follows asymptotically a normal distribution (under
some regularity conditions and when the conditions for consistency of maximum
likelihood estimator are satisfied: Ferguson, 1996). Furthermore, the central limit
theorem states that (under some conditions) the mean of a sufficiently large number
of independent random variables will be approximately normally distributed (Rice,
1995).

Note that the likelihood quantifies the support in the data for each value of β1. In
the next section, it will be shown how a combination of prior and likelihood renders
the posterior distribution, where the prior will be used to quantify the complexity and
the posterior the fit of a hypothesis. Hence, as in model selection using information
criteria, like the AIC (Akaike, 1973, 1974), Bayesian model selection employs a
trade-off between fit and complexity. To simplify notation, the dependence on x is
implied throughout below.

10.4 Prior and Posterior

To evaluate the hypotheses of interest in (10.1), one first needs to specify a prior
distribution for Hm for m ∈ {0, >,<}. We use a so-called conjugate prior (more
details can be found in Gelman et al., 2004). This implies that the prior distribution
of the parameter β1 is a normal distribution, since the likelihood of β1 is approximately
a normal distribution, and will result in a normal posterior as discussed below. To
determine the prior distribution for Hm (m ∈ {0, >,<}), we first need to specify the
prior distribution of the parameter β1 for the case where there are no restrictions. We
refer to this as the unconstrained prior, which is defined by
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p(β1) = N (β0, σ
2
0). (10.3)

Subsequently, the prior distribution for Hm (m ∈ {0, >,<}) is determined by

p(β1|Hm) = p(β1)
Iβ1∈Hm∫∞

−∞ p(β1)Iβ1∈Hmdβ1

∝ N (β0, σ
2
0) Iβ1∈Hm ,

where the indicator function Iβ1∈Hm equals one if the argument is true, that is, if
the parameter value is in accordance with the constraints imposed by Hm, and zero
otherwise. Thus, the prior for Hm is proportional to the unconstrained prior when the
parameters are in accordance with Hm and otherwise it is zero. Note that the integral
in the denominator is a normalizing constant, which is needed to make p(β1|Hm) a
density, that is, to let p(β1|Hm) integrate to 1. One needs to specify the parameters
of the prior distribution (10.3), that is, β0 and σ2

0 .
We want the a priori belief in β1 > 0 and β1 < 0 to be the same. Therefore,

we choose β0 = 0 such that 50% of the prior is in agreement with H< and 50%
with H> (more details can be found in Mulder, Hoijtink, & Klugkist, 2010; Jeffreys,
1961; Berger & Mortera, 1999). Bear in mind that this implies that the complexity
of both hypotheses is the same, namely 50%. According to the authors mentioned,
BFs computed based on such a prior are well calibrated for the selection between H<

and H>. Subsequently, we need to deal with σ2
0 , the variance of the prior. The prior

variance should be chosen such that the prior is vague / non-informative, that is, such
that it has little influence on the results. But, it should not be too vague, because
then H0 will receive the highest support also when it is not true. This is known as
the Lindley paradox (Lindley, 1957). Grounding the prior variance on the data avoids
having too vague priors (Berger & Pericchi, 2004, 1996). In our method, a value for
σ2

0 is determined using the confidence intervals of β1 for all the studies, analogous
to the approach proposed in Klugkist, Laudy, and Hoijtink (2005) and Kuiper and
Hoijtink (2010). In each of the studies one can compute the 99% confidence interval
of β1. The 99% confidence interval in Study t is

β̂t1 ± 2.576 σ̂βt1 ,

where β̂t1 is the parameter estimate of β1 in Study t and σ̂βt1 the standard error of β̂1

in Study t. The 99% prior credibility interval of β1 is given by

0 ± 2.576 σt0,

since βt0 = 0 for all t, where βt0 is the prior parameter estimate of β1 in Study t

and σt0 the prior standard error of β̂1 in Study t. To let the prior credibility interval
include the confidence interval based on the data of one study, the bounds of the prior
credibility interval must embed the most extreme bound of the confidence interval of
this study. Figure 10.2 depicts the 99% confidence intervals of β1 for all four studies
in our example. Here, one must set 2.576σt0 equal to 0.165, 0.279, 1.330, and 2.242
for t = 1, 2, 3, and 4, respectively, which leads to σt20 = 0.004, 0.012, 0.266, and 0.758,
respectively. In the section “Example”, we will show that this method to determine
σ2

0 has satisfactory properties.
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Fig. 10.2: The 99% confidence interval of β1 for each of the four studies and the four
resulting 99% prior credibility interval

The posterior is proportional to the prior times the likelihood. It can be used to
quantify the fit of hypotheses. If, for example, the posterior has a mean of 1.5 and a
variance of 1, 93% of the posterior is in agreement with H> and 7% with H<. This
implies that the data support H> more than H<. Stated otherwise, the fit of H>

to the data is better than that of H<. Since both the prior and the likelihood are
normal distributions, the posterior is a normal distribution as well (Gelman et al.,
2004). To determine the posterior distribution for Hm (m ∈ {0, >,<}), we first need
to specify the posterior distribution of the parameter β1 for the case where there are
no restrictions. We refer to this as the unconstrained posterior, which is defined by

p(β1|y) = L(β1|y, x)p(β1)

≈ N (β̃, σ̃2), (10.4)

with

β̃ =

1
σ̂2
β1

β̂1 + 1
σ2
0
β0

1
σ̂2
β1

+ 1
σ2
0

,

σ̃2 =
1

1
σ̂2
β1

+ 1
σ2
0

.

The posterior for Hm (m ∈ {0, >,<}) is then given by
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p(β1|y,Hm) ≈ p(β1|y)
Iβ1∈Hm∫∞

−∞ p(β1|y)Iβ1∈Hmdβ1

(10.5)

∝ N (β̃, σ̃2) Iβ1∈Hm .

Thus, the posterior for Hm equals the unconstrained posterior when the parameters
are in accordance with Hm and otherwise it is zero. Bear in mind that the integral in
the denominator is a normalizing constant.

In the next section it will be shown how the prior and posterior distribution can
be used to compute BFs and PMPs.

10.5 Bayes Factors and Posterior Model Probabilities

To quantify the evidence for the hypotheses at hand, one can calculate BFs or PMPs.
The BF gives the support of a hypothesis relative to another hypothesis. Thus, BFmu
quantifies the relative support of Hm with respect to the unconstrained hypothesis. If
BF>u equals 1, the data do not support H> more than the unconstrained hypothesis.
If BF>u is larger (smaller) than one, the data support H> more (less) than the
unconstrained hypothesis. Evidently, the more extreme (above or below one) the value
of the BF is, the stronger the evidence (for or against, respectively, the hypothesis of
interest). The BF is calculated by the ratio of marginal likelihoods of two hypotheses
(e.g., Kass & Raftery, 1995; Chib, 1995), where the marginal likelihood for Hm is the
normalizing constant in (10.5). From (10.5) it follows that

marginal likelihood for Hm =
L(β1|y)p(β1|Hm)

p(β1|y,Hm)
,

for any value of β in agreement with Hm, where p(β1|Hm) and p(β1|y,Hm) are the
prior and posterior distribution of the parameter β1 for hypothesis Hm, respectively,
which are described in the previous section. Thus, for Hm and Hm′ (m,m′ = 0, >,<),

BFmm′ =
L(β1|y)p(β1|Hm)/p(β1|y,Hm)

L(β1|y)p(β1|Hm′)/p(β1|y,Hm′)

=

L(β1|y)p(β1|Hm)/p(β1|y,Hm)
L(β1|y)p(β1)/p(β1|y)

L(β1|y)p(β1|Hm′ )/p(β1|y,Hm′ )
L(β1|y)p(β1)/p(β1|y)

(10.6)

=
BFmu
BFm′u

,

where BFmu and BFm′u are convenient vehicles for the computation of BFmm′ . As is
elaborated in, for example, Klugkist, Laudy, and Hoijtink (2005), BFmu is the BF for
a constrained hypothesis (like H>) with respect to the unconstrained hypothesis, that
is, the case where there are no restrictions on the parameters. As already mentioned,
since the unconstrained hypothesis is not of importance in this chapter, BFmu is just
a useful technical tool.

Klugkist, Laudy, and Hoijtink (2005) derive a simple form of BFmu for m ∈ {>
,<}, namely
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BFmu =
fm
cm

,

where cm and fm are the proportions of the unconstrained prior in (10.3) and the
unconstrained posterior in (10.4), respectively, in agreement with the constraints of
hypothesis Hm for m ∈ {>,<}. As elaborated above, since β0 = 0, cm = 1/2 for
m ∈ {>,<}, because half of the prior distribution is in agreement with H> : β1 > 0
and the other half with H< : β1 < 0. If, for instance, the posterior has a mean of 1.5
and a variance of 1, f> = .93.

The Savage-Dickey representation (Dickey, 1971) offers an easy way of calculating
BF0u (i.e., m = 0), namely

BF0u =
p(β1 = 0|y)

p(β1 = 0)
.

One only has to evaluate the unconstrained posterior and prior density at β1 = 0 to
compute BF0u.

A PMP for hypothesis Hm, π1
m, gives the relative support for Hm in a finite set

of hypotheses (Kass & Raftery, 1995). For m ∈ {0, >,<},

π1
m =

π0
mBFmu

π0
0BF0u + π0

>BF>u + π0
<BF<u

,

where π0
m is the PrMP of hypothesis Hm, which represents the degree of belief of a

researcher in each hypothesis before observing the data. An uninformative choice is
to set the PrMPs equal for all hypotheses. In the example, π0

m then equals 1/3 for
m ∈ {0, >,<}. When BF0u = 0.5, BF>u = 8.5, and BF<u = 1, the PMP values for
the three hypotheses (with equal PrMPs) are π1

0 = 0.5
0.5+8.5+1 = .05, π1

> = .85, and

π1
< = .10. Note that it can also be seen from the PMPs, among other things, that the

support for H> is .85
.10 = 8.5 times higher than the support for H<. Another choice, in

case there is previous research, is to set the PrMPs equal to the PMPs of a previous
study. We will elaborate on this in the next section, where we explain how one can
combine several studies.

10.6 Updating Evidence from Multiple Studies

The results of several studies, that is, the evidence for the hypotheses at hand, can
be combined/updated by setting the PrMP of Study t equal to the PMP of Study
t − 1. In the first study, the PrMP will be set equal for all hypotheses (i.e., π0

m = 1
3

for m ∈ {0, >,<}). Let π0
t,m and π1

t,m represent the PrMPs and PMPs, respectively,
for hypothesis Hm in Study t, let BF tmu be BFmu for Study t, and let T be the total
number of studies to combine. Then, for m ∈ {0, >,<},

π0
1,m =

1

3
,

π0
t,m = π1

t−1,m, for t = 2, . . . , T,

π1
t,m =

π0
t,mBF

t
mu

π0
t,0BF

t
0u + π0

t,1BF
t
1u + π0

t,2BF
t
2u

, for t = 1, . . . , T.
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When the T studies are combined, this results in an overall PMP for Hm (π1
T,m). It

can be shown for π0
1,m = 1

3 that π1
T,m is calculated by

π1
T,m =

π0
1,m

∏T
t=1BF

t
mu∑

m′∈{0,>,<} π
0
1,m′

∏T
t=1BF

t
m′u

=

∏T
t=1BF

t
mu∑

m′∈{0,>,<}
∏T
t=1BF

t
m′u

.

From this it can be seen that the order of the studies does not influence the outcome
of the method.

Having discussed how the method of quantifying evidence for the hypotheses
of interest works in general, we illustrate this method in the following section
by combining the four studies described in the introduction and summarized in
Tables 10.1 and 10.3. In addition, we will study the sensitivity of the method with
respect to σ2

0 .

10.7 Example

In the illustration, we use the studies of Batenburg et al. (2003), Buskens and Raub
(2002), Buskens and Weesie (2000), and Buskens et al. (2010). Each of these studies
tests (among other things) whether there is an effect of the variable past (a measure
for the amount of positive past experiences) on trust. As mentioned before, because
of the different types and designs of the models (Table 10.1), meta-analysis cannot
be employed to combine the four studies regarding trust. But, we can combine these
studies via Bayesian updating. Notably, our method does not combine estimates but
evidence for null, positive, and negative effects. In all studies, the parameter estimate
and the standard error of the coefficient of past is calculated (see Table 10.3). Hence,
we can implement our method.

For this example, the optimal values of the prior variance for Studies t = 1, 2, 3, and
4 are σt20 = 0.004, 0.012, 0.266, and 0.758, respectively. The panel “σt20 ” in Table 10.4
shows, for the different steps of the method, the updated PMPs for hypothesis Hm

after adding Study t (π1
t,m) for m ∈ {0, >,<}, t = 1, . . . , 4, and the optimal σt20 values

for Studies 1, 2, 3, and 4. The column for t = 1 displays the PMPs for only one study,
namely Study 1, and employs equal PrMPs of the three hypotheses. Here, the support
for H> is high and that for H0 is low. The column for t = 2 displays the PMPs for
Study 2 and uses the PMPs of t = 1 as the PrMPs. Like for t = 1, the support for
H> is high. When the third study is added, there is full support for H> and none
for H0 and H<, namely π1

4,> = 1 and π1
4,0 = π1

4,< = 0. The same remains valid when
including the fourth study. From the overall PMP value for H> (π1

4,1), it follows that
we favor H> over H0 and H<. Furthermore, it can be said that support for H> is
π1
4,>

π1
4,m
≈ 1

near 0 times higher than the support for Hm for m ∈ {0, <}. In the example,

the support for H> is infinitely huge, since in all studies a (large) positive effect of
past on trust was found. Note that when one combines studies with mixed effects,

that is, not solely positive effects, the value of
π1
4,m′

π1
4,m

(for m′,m ∈ {0, >,<}) is more

illustrative.
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Table 10.4: π1
t,m Values for Hypothesis Hm in Study t for 1

2σ
t2
0 , σt20 , and 2σt20

π1
t,m

m / t 1 2 3 4
1
2σ

t2
0

0 0.030 0.003 5.671e-31 1.536e-50
> 0.966 0.997 1.000 1.000
< 0.004 7.809e-05 0.000 0.000

σt20
0 0.022 0.002 6.212e-32 3.659909e-52
> 0.976 0.998 1.000 1.000
< 0.002 2.418e-05 0.000 0.000

2σt20
0 0.020 0.002 2.787e-32 8.596e-53
> 0.978 0.998 1.000 1.000
< 0.002 1.139e-05 0.000 0.000

To increase confidence in the conclusions obtained, one could elaborate with a
sensitivity study using 1

2σ
t2
0 and 2σt20 for Study t. As can be seen in Table 10.4, the

results for these values are for all practical purposes the same. The conclusion is that
H> is the preferred hypothesis when combining the four studies and has much more
support than H0 and H<.

In general, the following guidelines will be employed. First, examine the results for
σt20 . When one of the hypotheses renders the highest overall PMP value, the sensitivity
of the results with respect to the prior specification should be checked (see the next
step). Otherwise, the studies under investigation cannot distinguish between some or
all the hypotheses. Hence, more studies are required. Second, inspect the stability of
the results by examining the results for 1

2σ
t2
0 and 2σt20 . When the results are stable,

one can conclude that the hypothesis with the highest PMP value is the preferred
one. In case the results are not stable, more studies are needed to draw conclusions.
These decision rules will be applied in the next section to situations that are less clear
cut than in the example above.

10.8 An Examination of Hypothetical Situations

The example illustrates that combining four studies with persuasive evidence for H>

(namely p ≤ .001 for all four studies) renders high to full support for H>. Since
this is to be expected, we will additionally examine five hypothetical situations,
that is, situations based on artificial data. They are depicted in Table 10.5, where
p represents the one-sided p value (regarding H>) corresponding to the reported

parameter estimates (β̂t1 and σ̂tβ1
for Study t). Effects for which β̂t1 is larger than

zero are called positive effects and those smaller than zero, negative effects. Positive
effects with a p value smaller than .05 are called significant positive effects, those
with a p value larger than .05 and smaller than .10, small positive effect, and those
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Table 10.5: The Parameter Estimates (β̂t1 and σ̂tβ1
for Study t) and Corresponding

One-sided p values for Five Hypothetical Situations

Mixed effects

No effects Small effects 1 2 3

t σ̂tβ1
β̂t1 p β̂t1 p β̂t1 p β̂t1 p β̂t1 p

1 0.029 0.007 0.400 0.045 0.060 0.055 0.030 0.068 0.010 0.009 0.378
2 0.054 0.014 0.400 0.084 0.060 -0.102 0.970 -0.084 0.940 -0.084 0.940
3 0.093 0.078 0.400 0.175 0.060 0.153 0.100 0.175 0.060 0.175 0.060
4 0.179 0.151 0.400 0.337 0.060 0.151 0.400 0.337 0.060 0.337 0.060

with a p value larger than .10 and smaller than .50, positive null effects. Negative
effects with a p value larger than .95 are referred to as significant negative effects,
those with a p value smaller than .95 and larger than .90, small negative effect, and
those with a p value smaller than .90 but larger than .50, negative null effects. Five
hypothetical situations are distinguished: 1) Positive null effects: all effects, although
not significant, are positive, namely, p = .40 for each study. 2) Insignificant positive
effects: all effects are small and positive with p = .06 for each study. 3) - 5) Mixed
effects (situations with positive, negative, and null effects). In the first mixed effect
situation, there is a significant positive effect (p = .03), a significant negative effect
(p = .03 leading to p = .97 for a H>), a small positive effect (p = .1), and a positive
null effect (p = .4). In the second mixed effect situation, there is a significant positive
effect (with a lower p value, namely p = .01), a small negative effect (p = .06 leading
to p = .94 for H>), and two small positive effects (p = .06). The third one resembles
the second, the only difference is that the significant positive effect is replaced by a
positive null effect with p = .38. In all situations, the standard errors of β̂t1 are set
equal to the ones of the example. The p values were chosen based on the type of
situation, which resulted in the β̂t1 values depicted in Table 10.5.

Table 10.6 displays the overall PMPs for these five situations for σt20 , 1
2σ

t2
0 , and

2σt20 . The latter two are inspected to examine the sensitivity of the conclusions
obtained due to the choice of the prior. The σt20 values are given in Table 10.6.

Table 10.6 shows that combining four studies with a positive null effect lead to
support for both H0 and H>. This is supported by the results for 1

2σ
t2
0 , but not by

that for 2σt20 , where H0 receives most support. Since our results are not supported by
the sensitivity analysis, more studies should be collected and added. Moreover, the
support for H0 is 1.27 higher than for H>, which is not compelling evidence.

Combining four studies with a small positive effect (each not significant at α =
0.05) renders profound support for H>. The sensitivity analysis shows stability, that
is, H> is preferred over the other two hypotheses for 1

2σ
t2
0 and 2σt20 as well. Thus,

even though the four studies did not find a significant positive effect, combining them
does lead to compelling support for a positive effect, since all four studies comprise
small positive effects.

In the first mixed effect situation, where there is a significant positive effect, a
significant negative effect, a positive null effect, and a small positive effect, H> has
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the highest support. The sensitivity analysis shows that the support for H> decreases
and that for H0 increases for increasing prior variances. The support for H> is about
3, 2, and 1 times higher than for H0 for 1

2σ
t2
0 , σ

t2
0 and 2σt20 , respectively. Because

of this variability, more studies should be collected and added to be able to draw
conclusions.

In the second mixed effect situation, where there is a small negative effect and
two small positive effects besides a positive effect, H> has the highest support for all
three σt20 values. In this situation, one can conclude that H> has profoundly more
support than H0 or H<.

In the third mixed effect situation, which equals the second one except that the
significant positive effect has a lower p value, H> renders high(est) support for all the
prior variance values. For σt20 and 1

2σ
t2
0 , the support for H> is 2.45 and 3.37 higher

than for H0, respectively. For 2σt20 , this is only 1.26. Nevertheless, we conclude that
H> has highest support and has 2.45 and 50 times more support than H0 and H<,
respectively.

In sum, it evidently depends on the types of effect (positive, negative, null) and
their p values which effect / hypothesis receives the highest support. When the results
are not sensitive for the prior variance, one can conclude that the support for Hm′

is
π1
4,m′

π1
4,m

as large as for Hm (for m′,m ∈ {0, >,<}). In other situations, more studies

should be collected and added.

Table 10.6: π1
4,m Values for Hypothesis Hm for 1

2σ
t2
0 , σt20 , and 2σt20

No effects Small effects Mixed effects 1 Mixed effects 2 Mixed effects 3
σ12

0 0.001 0.002 0.003 0.003 0.001
σ22

0 0.004 0.008 0.009 0.008 0.008
σ32

0 0.015 0.026 0.023 0.026 0.026
σ42

0 0.056 0.096 0.056 0.096 0.096

m No effects Small effects Mixed effects 1 Mixed effects 2 Mixed effects 3
1
2σ

t2
0

0 0.427 0.016 0.250 0.038 0.223
> 0.524 0.984 0.717 0.960 0.752
< 0.050 1.160e-04 0.033 0.000 0.024

σt20
0 0.544 0.015 0.320 0.040 0.286
> 0.429 0.985 0.661 0.959 0.700
< 0.027 3.116e-05 0.019 0.001 0.014

2σt20
0 0.715 0.021 0.482 0.065 0.440
> 0.272 0.979 0.507 0.935 0.552
< 0.012 1.248e-05 0.010 2.842e-04 0.008
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10.9 Conclusion

This chapter introduces a Bayesian updating method to quantify the evidence for the
hypotheses of interest (i.e., H0 : no effect, H> : positive effect, and H< : negative
effect) from multiple studies with possibly different types of models and designs.
Specifically, one obtains an overall posterior model probability for each hypothesis
of interest (i.e., H0, H>, and H<), which reflects the relative support and allows
statements of the type “H> is ten times more likely than H<”.

In terms of the example of the effect of positive past experiences on trust, we
see that combining the four studies increases the confidence in the hypothesis that
there is indeed a positive effect of past on trust. Although the example is illustrative,
the result might not be surprising, given that the hypothesis under consideration is
supported in all separate studies. The evaluations of the five hypothetical situations
show that also with limited or mixed evidence in individual studies our method helps
to distinguish between situations with more and less convincing evidence if different
studies are combined.

From the results of the illustration, one can see that our Bayesian updating method
is useful for choosing the best of a set of hypotheses in case of multiple studies
regarding one theoretical concept. The method is practical because it can be used
even when only parameter estimates and standard errors from the different studies
are available. It is not necessary that the original data are available and even if the data
would be available, this would not lead to better evaluation of the hypotheses because
all the information our Bayesian updating needs is incorporated in the parameters
and the related standard errors. To facilitate using our Bayesian updating method,
we provide software that implements the method in R as described in more detail in
the Appendix.

10.A Software

We offer software in R (to be found at http://staff.fss.uu.nl/RMKuiper) that
implements our method. The software enables the user to combine several studies.
The computer package R is open-source software that can be freely downloaded from
www.stats.bris.ac.uk/R. To use our software, one needs to make a working directory
in which to save the software. The software consists of one .r file and two .txt files.
The two .txt files should not be modified.

To employ our software, one should open R and open the .r file in R. This .r file
should be modified such that it fits the data of the studies one wants to combine.
Running the software renders overall posterior model probabilities for the optimal
prior variance (σt20 ; in the software denoted by sigmaˆ{t2} 0). As described in this
chapter, the overall posterior model probabilities for 1

2σ
t2
0 and 2σt20 provide insight

into the sensitivity of the overall PMPs for σt20 .

http://staff.fss.uu.nl/RMKuiper
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CHAPTER 11

Overview of Software

For every technique mentioned in this dissertation, software is made, which can be
found on http://staff.fss.uu.nl/RMKuiper. Table 11.1 gives an overview of the
software regarding the type of model it can be applied to and the type of restrictions
it can analyze. In the next two chapters, Confirmatory ANOVA and GORIC-General
are discussed more extensively.

http://staff.fss.uu.nl/RMKuiper
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There are different confirmatory techniques to compare means, like hypothesis
testing and (Bayesian) model selection. However, there is no software package in
which these techniques are available. A Fortran 90 program is written, which enables
researchers to apply these techniques to their data. Besides traditional hypotheses,
like H0 : µ1 = µ2 = µ3 and Hu : µ1, µ2, µ3, order-restricted hypotheses, like
µ1 > µ2 > µ3 or µ1 > µ2 = µ3 or µ1 > µ2 < µ3, can be evaluated.

12.1 Introduction

Often researchers have a theory with respect to the ordering of the means in the
experiment. These theories can be written as order-restricted hypotheses (e.g., µ1 >
µ2 > µ3) and can be tested with confirmatory methods. In the context of comparing
independent means, that is, analysis of variance (ANOVA), three approaches are
distinguished:

• Silvapulle and Sen (2005, pp. 25–42) present the F̄ test. There are two types
of F̄ tests. Namely the ordered alternative and the ordered null. In the ordered
alternative, the classical null (H0) is tested against an order-restricted hypothesis,
for example, H1 in (12.2). In the ordered null, an order-restricted hypothesis, like
H1, is tested against the classical alternative (Hu).

• Anraku (1999) introduces the order-restricted information criterion (ORIC). The
ORIC can be used to select the best of a set of order-restricted hypotheses, like
the hypotheses in (12.2).

• Klugkist, Laudy, and Hoijtink (2005) present a Bayesian model selection (BMS)
criterion, which can be used in the same context as the ORIC.

For these approaches, user-friendly software is not available. In this chapter, software
is introduced with which the three confirmatory approaches can be executed.
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The model used in this chapter and in the software is the ANOVA model:

yij = µi + εij , (12.1)

where i = 1, . . . , k, j = 1, . . . , ni, yij is the jth observation of the dependent variable
for Group i, which has ni observations, µi is the mean of Group i, and εij is an error
term. The error terms are independently and normally distributed with expected value
0 and variance σ2, that is, εij ∼ N (0, σ2).

As an example, consider the simple ANOVA with five groups, presented by Lucas
(2003). In Section 12.3, the theoretical background of his research will be elaborated.
Lucas expresses clear theories with respect to the ordering of means, leading to the
following specific hypotheses:

H0 : µ1 = µ2 = µ3 = µ4 = µ5,

H1 : µ5 = µ3 > {µ1, µ4} > µ2, (12.2)

H2 : µ3 > µ1 > µ4 = µ5 > µ2,

H3 : µ1, µ2, µ3, µ4, µ5.

The hypotheses H0 and H3 are the classical hypotheses, the other two are order-re-
stricted hypotheses. It is also possible to specify a set of models/hypotheses without
the classical null H0 : µ1 = . . . = µk and/or the classical alternative Hu : µ1, . . . , µk.
We recommend to includeHu (when doing model selection) as a safeguard for choosing
a weak hypotheses (Kuiper & Hoijtink, 2010). Furthermore, one should include H0

only when there is real interest in H0.
Although software for exploratory approaches is widely available – e.g., classical

hypothesis testing in SPSS (SPSS Inc., 2006) and model selection using information
criteria, like AIC, in R with the package nlme (Pinheiro, Bates, DebRoy, Sarkar, &
R Development Core Team, 2009) – this is not the case for confirmatory approaches,
that is, for evaluation of the four hypotheses in (12.2). The software presented in
this chapter can evaluate different types of hypotheses which can be formulated by
Aµ ≥ 0, for some matrix A in which each row is a permutation of the k-vector
(−1, 1, 0, . . . , 0) and µ = (µ1, . . . , µk)>.

Note that also factorial ANOVA models fit in the framework presented. For
instance, a 2×3-design can be represented by (12.1) with k = 6. Specific hypotheses
about the six group means can again be formulated by Aµ ≥ 0 (as explained earlier).
In a standard two-way ANOVA, three hypotheses are tested concerning the presence
of a main effect of the first factor, a main effect of the second factor, and the presence
of an interaction effect. If one or more of these effects are found, further evaluation
is required to describe the direction of the effects (making the approach exploratory).
In a confirmatory approach, in contrast to a exploratory approach, expected patterns
are specified beforehand. For instance, H : {µ1 = µ2 = µ3}, {µ4 < µ5 < µ6} is a
prespecified and specific interaction effect. Competing (interaction) effects can also
be specified.

In the next section, subsequently, the F̄ test, the ORIC, and Bayesian model
selection will be shortly explained. In Section 12.3, a practical example is provided
and analyzed using each of the three approaches. The appendix contains a user manual
for the software.
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12.2 Three confirmatory techniques for comparing means

12.2.1 Hypothesis testing using the F-bar (F̄ ) statistic

In classical statistical testing, the hypothesis all means are equal is tested against
the alternative not all means are equal. This is usually tested with an F test using a
one-way ANOVA. However, often researchers want to test a certain order restriction,
because of a theory with respect to the order of the means in the experiment. See, for
example, H1 and H2 in (12.2).

In Silvapulle and Sen (2005, pp. 25–42), the F test is modified such that an
order-restricted hypothesis can be tested. This test is called the F-bar (F̄ ) test. It
is possible to test the null hypothesis all means are equal (H0) against an ordered
alternative, like H1, and it possible to test an ordered null (H1) against the alternative
all parameters are free (Hu).

The F̄ test statistic is calculated by: F̄ = RSS(Hnull )−RSS(Halt )
S2 , where RSS (H)

is the residual sum of squares under hypothesis H and S2 = (n1 + · · · + nk −
k)−1

∑
i

∑
j(yij − ȳi)

2 is the mean square error, with n1 + · · · + nk − k the error
degrees of freedom. This is applied to the two types of test. For each of the two tests,
the RSS (Hnull) and RSS (Halt) will be elaborated on.

The first test is the ordered alternative, in this test H0 : µ1 = . . . = µk is tested
against an order restriction of the form H1 : Aµ ≥ 0, for some matrix A in which
each row is a permutation of the k-vector (−1, 1, 0, . . . , 0) and µ = (µ1, . . . , µk)>. In
this test,

RSS (Hnull) =
∑
i

∑
j

(yij − ȳ)2,

where ȳ is the overall mean, and

RSS (Halt) =
∑
i

∑
j

(yij − µ̃i)2,

where
µ̃ = (µ̃1, . . . , µ̃k)> = argminµ∈H1

∑
i

∑
j

(yij − µi)2.

Since
∑
i

∑
j(yij − µi)2 can be rewritten as∑

i

∑
j

(yij − µi)2 =
∑
i

∑
j

(yij − ȳi)2 +
∑
i

ni(ȳi − µi)2 = C(y) + q(µ),

where ȳi is the ith group/treatment mean, y is the matrix consisting of the elements
yij , and

q(µ) =
∑
i

ni(ȳi − µi)2 = (ȳ − µ)> diag{n1, . . . , nk} (ȳ − µ),

it holds that

µ̃ = argminµ∈H1 q(µ). (12.3)
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This constrained minimization problem, where the objective function q(µ) is quadratic
in µ and the (equality and inequality) constraints are linear in µ, is a quadratic
programming problem. There are efficient computer algorithms for this minimization
problem, here the IMSL subroutine QPROG (Visual Numerics, 2003, pp. 1307–1310)
is used in the Fortran 90 program.

The second test is the ordered null in which a null of the form H1 : Aµ ≥ 0 (as
explained earlier) is tested against the alternative no restrictions on the µi ∀i, that
is, Hu : µ1, . . . , µk. Then,

RSS (Hnull) =
∑
i

∑
j

(yij − µ̃i)2

and
RSS (Halt) =

∑
i

∑
j

(yij − ȳi)2.

As with classical hypothesis testing, p values must be determined. The exact
p value, for the F̄ , can be obtained via simulation. In the ANOVA model, the errors
are normally distributed, that is εj ∼ N (0, σ2). Therefore, the simulation consists of
the following three steps (Silvapulle & Sen, 2005, pp. 32–33 and 40):

1. Generate independent observations zij (i = 1, . . . , k and j = 1, . . . , ni) from the
standard normal distribution N (0, 1).

2. Compute the F̄ for the generated data.
3. Repeat the previous two steps Rp times. In the program, the default value of Rp

is Rp = 100, 000. Calculate the number of times the F̄ statistic, calculated in Step
2, exceeds the sample value of the F̄ statistic, this number is denoted by M . The
p value is calculated by M/Rp.

When the p value is smaller than the nominal α-level, often set equal to 0.05, the null
hypothesis is rejected. Thus, in the ordered alternative, when p < α, H0 is rejected
and, in the ordered null, when p < α, the order-restricted hypothesis is rejected.

12.2.2 Model selection using order-restricted information criterion

Anraku (1999) proposes the order-restricted information-criterion (ORIC). It can be
used to select the best of a set (M) of models/hypotheses Hm, m ∈ M. The set of
hypotheses can contain H0, Hu, and order-restricted hypotheses of the form Aµ ≥ 0,
for some matrix A in which each row is a permutation of the k-vector (−1, 1, 0, . . . , 0)
and µ = (µ1, . . . , µk)>.

Like other information criteria, the ORIC is based on the log likelihood (logL)
and a penalty term (PT ): ORIC = −2 logL+2PT . The hypothesis with the smallest
ORIC value is the preferred hypothesis.

The maximum likelihood estimators (mle’s) µ̂m and σ̂2
m for Hm with m ∈M are

the values of µ and σ2, respectively, that maximize the log likelihood for Hm:

logL(µ̂m, σ̂
2
m|y)=−N

2
log(2π)− N

2
log(σ̂2

m)− 1

2σ̂2
m

k∑
i=1

ni∑
j=1

(yij − µ̂mi)2, (12.4)
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where σ̂2
m = 1

N

∑
i

∑
j(yij − µ̂mi)2 and N =

∑
i ni. Because of the order restrictions,

the order-restricted mle µ̃m must be found (Anraku, 1999). Since the term σ̂2
m cancels

out the term
∑k
i=1

∑ni
j=1(yij − µ̂mi)

2, the maximization of the likelihood actually

comes down to minimizing log(σ2
m), subject to µi − µi′ ≥ 0, for i, i′ = 1, . . . , k

(Silvapulle & Sen, 2005, pp. 42–43). Which results in the order-restricted mle µ̃m
as defined in (12.3).

The penalty term of Hm (PTm) is equal to:

PTm = 1 +

qm−1∑
l=1

LPml(qm − 1, Vm) l,

where Vm is explained below, LPml(qm − 1, Vm) is a level probability, that is, the
probability that there are l distinct mean values / levels among the order-restricted
means, and qm − 1 ≤ k the number of distinct µi’s in Hypothesis m. The distinct
number of parameter values equals qm, because of the unknown variance term. For
example, in case k = 5 and the hypothesis is H1 : µ5 = µ3 > {µ1, µ4} > µ2, there
are 4 distinct mean values, namely µ5 and µ3 are a distinct value and µ1, µ4 and µ2

are each a distinct value, and an unknown variance term. Thus, q1 = 5. Note that the
number of observations of the four distinct mean values are: ñ1 = n3 + n5, ñ2 = n1,
ñ3 = n4 and ñ4 = n2. The computation of the level probabilities (corresponding
to the restrictions) can be done via simulation (Silvapulle & Sen, 2005, pp. 78–81),
consisting of 5 steps (where for convenience the subscript m is left out):

1. Generate Z (of dimension q − 1) from N (0, V ), where q − 1 equals the number
of distinct µi values in the hypothesis. It holds that V = diag{1/ñ1, . . . , 1/ñq−1},
where ñl is the number of observations of Group l (l = 1, . . . , q − 1).

2. Compute Z̃ via (12.3), that is, Z̃ = argminµ∈H(Z − µ)TV −1(Z − µ), where H
is the order-restricted hypothesis.

3. Determine the number of distinct values in Z̃, called levels, denote this by s.
4. Repeat the previous steps RPT times. In the program, the default value of RPT

is RPT = 100, 000.
5. Estimate the level probability LPl(q− 1, V ) by the proportion of times s is equal

to l (l = 1, . . . , q − 1).

The penalty term can thus be seen as the expected number of distinct parameters,
that is, the expected number of distinct mean values plus 1 (because of the unknown
variance term).

12.2.3 Bayesian model selection

Klugkist, Laudy, and Hoijtink (2005) present the (Bayesian) encompassing prior
approach for order-restricted hypotheses in ANOVA. The model selection criterion
used is the Bayes factor (Kass & Raftery, 1995; Chib, 1995), which is the ratio of
marginal likelihoods of two hypotheses, say Hm and Hm′ :

BFmm′ =
L(µ, σ2|y)p(µ, σ2|Hm)/p(µ, σ2|y, Hm)

L(µ, σ2|y)p(µ, σ2|Hm′)/p(µ, σ2|y, Hm′)
, (12.5)



170 12 A Fortran 90 Program for Confirmatory Analysis of Variance

where p(µ, σ2|Hm) and p(µ, σ2|y, Hm) are the prior and posterior distribution of the
model parameters, respectively, which will be elaborated upon next.

In the encompassing prior approach, a prior p(µ, σ2|Hu) is specified for the
unconstrained hypothesis Hu : µ1, . . . , µk. The prior distribution of any hypothesis
Hm nested in Hu follows from the encompassing prior, using:

p(µ, σ2|Hm) = p(µ, σ2|Hu)

(
Iµ∈Hm∫

p(µ, σ2|Hu)Iµ∈Hmdµdσ2

)
, (12.6)

where the indicator function Iµ∈Hm has the value one if the argument is true, that is,
if the parameter values are in accordance with the constraints imposed by Hm, and
zero otherwise.

The encompassing prior is specified as follows (Klugkist, Laudy, & Hoijtink, 2005):

• All model parameters are a priori considered to be independent, that is,

p(µ, σ2) = p(µ1)× . . .× p(µk)× p(σ2).

• The prior distributions for all means are equal, that is,

p(µ1) = . . . = p(µk).

• As will be shown in the sequel, for each parameter a relatively uninformative,
conjugate prior will be specified, that is, p(µi) ∼ N (µ0; τ2

0 ) for i = 1, . . . , k, and
p(σ2) ∼ Inv-χ2(1;σ2

0).

In sum, the encompassing prior for the ANOVA model is:

p(µ, σ2|Hu) =

k∏
i=1

N (µ0; τ2
0 )× Inv-χ2(1;σ2

0). (12.7)

Combination of (12.6) and (12.7) gives the prior distribution (up to proportionality)
of any order-restricted hypothesis Hm:

p(µ, σ2|Hm) ∝
k∏
i=1

N (µ0; τ2
0 )Iµ∈Hm × Inv-χ2(1;σ2

0). (12.8)

In a similar way as in (12.6), the posterior of any hypothesis Hm is

p(µ,σ2|y,Hm) = p(µ,σ2|y, Hu)

(
Iµ∈Hm∫

p(µ,σ2|y,Hu)Iµ∈Hmdµdσ2

)
. (12.9)

The posterior distribution is proportional to the density of the data times the prior
distribution, that is

p(µ,σ2|y,Hm) ∝ L(µ, σ2|y)×
k∏
i=1

N (µ0;τ2
0 )Iµ∈Hm×Inv-χ2(1;σ2

0). (12.10)

The encompassing posterior p(µ, σ2|y, Hu) is (12.10) where the indicator function
always equals one.
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Klugkist, Laudy, and Hoijtink (2005) have shown that (12.5) when using the prior
in (12.6) and subsequent posterior in (12.9) leads to a simple form for the Bayes factor
for a nested hypothesis Hm with the unconstrained hypothesis Hu:

BFmu =
cm
dm

, (12.11)

where cm and dm are the last terms (between the large brackets) of (12.6) and (12.9),
respectively. The inverse of these constants, that is, c−1

m and d−1
m are the proportions of

the encompassing prior and posterior, respectively, in agreement with the constraints
of hypothesis Hm. Estimation of these proportions is straightforward using sampling.
This means that in the context of order-restricted ANOVA, Bayes factors can be
obtained without the – often burdensome – estimation of marginal likelihoods.

Specification of the encompassing prior

To complete the specification of the prior distribution, values must be assigned
to the hyper-parameters µ0, τ2

0 , and σ2
0 . Klugkist and Hoijtink (2007) showed

that Bayes factors for hypotheses formulated using inequality constraints among
parameters are insensitive to the exact specification, as long as the encompassing
prior is relatively vague. However, the results for hypotheses containing equality
constraints are sensitive to the choice of τ2

0 . Although we want relatively uninformative
priors, that is, a large τ2

0 , too large values result in Bartlett’s or Lindley’s paradox
(cf. Lindley, 1957; Bernardo & Smith, 1994). Hence, to obtain reasonable values
for the hyper-parameters, the prior specification is data-based. A Gibbs sample
(Smith & Roberts, 1993) is drawn from the unconstrained posterior p(µ,σ2|y, Hu) =
L(µ, σ2|y)× p(µ, σ2|Hu), where p(µ, σ2|Hu) ∝ 1. Summaries of the posterior sample
provide values for the hyper-parameters according to the following choices:

• For σ2
0 , the posterior mean of σ2 is used. This provides a value that is reasonable

for the data at hand and, with 1 degree of freedom, a posterior that is hardly
affected by the prior.

• To obtain µ0 and τ2
0 , the information about each of the µ’s in the posterior sample

is combined as follows: Based on the posterior sample, a credibility interval for
each µi (i = 1, . . . , k) is determined by: µ̄i±pv ·sµi , where µ̄i and sµi are the mean
and standard deviation of the sampled values for µi, respectively, and pv stands
for prior vagueness. With the pv value it is specified which interval is used (e.g.,
pv = 2 provides the 95% credibility interval) and allows the user a choice for the
amount of vagueness in the encompassing prior. Subsequently, the smallest lower
bound (lb) and the largest upper bound (ub) of the k intervals define one broad
interval containing all reasonable values for each of the µ’s. From this interval,
µ0 = (lb+ ub)/2 and τ0 = (ub− lb)/2 are specified.

For hypotheses containing equality constraints, the value specified for pv will affect
the resulting Bayes factors. Larger pv values provide more support for hypotheses
containing equality constraints (i.e., Lindley’s paradox). Specification of the pv value
by the user also provides the option to investigate prior sensitivity by running the
program several times with different values. This is recommended if one or more of
the hypotheses contain equality constraints among the means.
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Estimation of the Bayes factor

The computation of Bayes factors of order-restricted hypotheses versus the uncon-
strained hypothesis is straightforward by taking a sample from the unconstrained
prior (12.7) and a sample from the unconstrained posterior, that is, (12.10) with
Iµ∈Hm = 1 for all µ. Samples are obtained by application of the Gibbs sampler (Smith
& Roberts, 1993). The proportions of prior and posterior iterations in agreement
with the order-restricted hypotheses provide estimates for c−1

m and d−1
m , respectively.

However, for a hypothesis containing at least one strict equality (e.g., µ1 = µ2), the
direct application of this approach would result in the problematic outcome d−1

m = 0
and c−1

m = 0. Therefore, the program evaluates ‘about equality’ constraints instead,
that is, |µ1−µ2| < δ for a positive small δ. Two options are provided in the software:
Researchers have the opportunity to investigate ‘relevant differences’ between means
by specifying a non-zero δ, or strict equality constrained hypotheses can be evaluated,
in which case δ approaches zero in a stepwise method. The latter requires an extension
of the basic approach and includes constrained sampling. This will be elaborated in
the next section.

For hypotheses that only require unconstrained sampling, estimation of Bayes
factors in the software is based on a minimum of RBMS iterations from both prior
and posterior. The default value of RBMS is RBMS = 500, 000. The posterior sample
is taken after discarding 1,000 iterations that serve as burn-in. Note that, sampling
from the unconstrained prior does not require a burn-in period, since all parameters
are a priori independent.

For highly constrained hypotheses, the default value of RBMS = 500, 000 iterations
may be insufficient to obtain stable estimates of dm and cm. Therefore, some additional
rules are incorporated in the program, when the default setting is chosen: For more
than 6 groups, the number of iterations from prior and posterior are doubled; for
more than 10 groups, the number of iterations from prior and posterior are set at
5 million. Furthermore, another additional rule is incorporated (whether the default
setting is used or not): if a minimum of 100 prior ‘hits’ (iterations in agreement with
the constraints) is not reached for each hypothesis in the set, more iterations are added
until this is the case. For an elaboration on the investigation of the stability and Monte
Carlo errors of Bayes factors computed via (12.11), see Klugkist and Hoijtink (2007).

Stepwise estimation for small δ

For small values of δ, the estimation as just described would be rather inefficient.
Furthermore, for δ = 0 it would give the result c−1

m = d−1
m = 0. Therefore, a procedure

is applied where the unconstrained samples are evaluated with a not too small initial
δ value, denoted δ0, followed by a procedure that decreases δ0 in a stepwise way, using
δr = δr−1/3, for steps r = 1, . . . , R (see also Klugkist, 2008).

The stepwise procedure is based on the following product rule for the Bayes factor
of Hm with the unconstrained Hu:

BFmu ≈ BFmδ0u
× BFmδ1mδ0

× . . .× BFmδRmδR−1
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=
cmδ0u

dmδ0u
×
cmδ1mδ0
dmδ1mδ0

× . . .×
cmδRmδR−1

dmδRmδR−1

. (12.12)

Consider the case where Hm includes both inequality and strict equality (δ = 0)
constraints. The notation mδr is used to denote the constraints of Hm, where the
desired value δ = 0 is replaced by a larger value δr (r = 0, . . . , R).

The first Bayes factor in (12.12), BFmδ0u
=

cmδ0u

dmδ0u
, requires sampling from the

unconstrained prior and posterior and counting the number of iterations in agreement
with all constraints in mδ0 , that is, the order restrictions as well as the equalities
evaluated with δ0. The second and subsequent steps require constrained sampling, that

is, sampling from (12.8) and (12.10). Consider, for instance, BFmδ1mδ0
=

cmδ1mδ0
dmδ1mδ0

,

where (cmδ1mδ0 )−1 denotes the proportion of iterations, sampled from the prior of
Hm with δ replaced by δ0, that are in agreement with Hm with δ replaced by δ1
(δ1 < δ0). Similarly, dmδ1mδ0 is based on a sample from the posterior constrained
to the area that complies with the constraints of mδ0 . Constrained sampling is also
done by application of the Gibbs sampler, with inverse probability sampling to obtain
samples in agreement with the constraints (see Gelfand, Smith, & Lee, 1992).

In each step, Hm is evaluated with a smaller δr value. The stepwise Bayes factors
represent change in the estimated BFmu, as a consequence of the decrease in δr. At
a certain point, a further decrease of the value for δr no longer changes the Bayes
factor, that is, for large enough R, BFmδRmδR−1

→ 1 (Berger & Delempady, 1987).

This implies that a good approximation of BFmu with exact equalities is obtained.
To obtain an efficient estimation procedure, it is important to start with a large

enough δ0. In the software, the starting value is prior-based and equals τ0/2 (τ0 for
more than 8 groups) unless this value is smaller than the user-specified δ in which
case δ is evaluated directly. Sampling from the unconstrained prior and posterior (first
step) is as explained in the previous section. In each subsequent step (r = 1, . . . , R),
samples are drawn from the constrained priors and posteriors after a burn-in of 100
iterations. The number of iterations from each constrained prior is minimally 500,000.
If necessary, up to 1 million iterations are done until the number of hits reaches 500.
If after 1 million iterations the number of hits is below 100, more samples are drawn
until 100 hits are obtained. From each constrained posterior, samples are drawn until
500 hits are obtained, with a maximum of 1 million iterations.

The number of steps, R, is determined by one of two stopping rules: convergence
of the estimate of the final Bayes factor is assumed if two subsequent BFmδrmδr−1

values deviate less than 0.05 from 1. When δ 6= 0, the last step of the procedure is
performed as soon as δr ≤ δ (if δr < δ, it is set at δ).

Interpretation of the results

The software estimates Bayes factors for each order-restricted hypothesis with
the unconstrained hypothesis using (12.11) or (12.12). The Bayes factor for the
comparison of two order-restricted hypotheses, say Hm and Hm′ can be computed,
using:

BFmm′ =
BFmu

BFm′u
.
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A Bayes factor provides the amount of support of one hypothesis compared to another.
If, for instance BFmm′ = 6, the support forHm is 6 times as large as forHm′ . Likewise,
BFmm′ = 0.5 shows that the support for Hm is 2 times as small as the support for
Hm′ .

Furthermore, the software provides posterior model probabilities (pmp), repre-
senting the relative support for each hypothesis in a finite set of hypotheses (M).
To obtain pmp’s from Bayes factors, prior model probabilities must be specified,
representing the degree of belief in each hypothesis before observing the data. A usual
– objective – choice are equal prior probabilities for all hypotheses, that is, p(Hm) =
1/M , for m ∈ M, where M denotes the total number of hypotheses. This prior
specification, which is also adopted in the software, leads to the following equation
for pmp(Hm):

pmp(Hm) =
BFmu∑

m∈M BFmu
.

Posterior model probabilities can be computed including or excluding the uncon-
strained hypothesis. As an example, consider H0, H1 and H2 from (12.2). In the
software, the user can specify the presence of just these 3 hypotheses (i.e., M = 3)
and the pmp’s are computed excluding the unconstrained hypothesis:

pmp(Hm) = BFmu/ (BF 0u + BF 1u + BF 2u) .

Alternatively, one can also explicitly add the unconstrained hypothesis as a hypothesis
of interest (M = 4). The resulting pmp values, denoting the unconstrained hypothesis
by H3, are:

pmp(Hm) = BFmu/ (BF 0u + BF 1u + BF 2u + BF 3u) ,

for m ∈M and with BF 3u = 1.

12.3 Example based on Lucas (2003)

The three approaches for confirmatory ANOVA will be illustrated using data from
the research of Lucas (2003). In this study, the interest lies in the amount of influence
a leader has on his/her group members. The experiment contained five experimental
groups: (1) a group with a randomly selected male leader, (2) a group with a randomly

Group Mean influence SD n

1 2.33 1.86 30
2 1.33 1.15 30
3 3.20 1.79 30
4 2.23 1.45 30
5 3.23 1.50 30

Table 12.1: Group means and standard deviations (SD) of influence (Lucas, 2003).
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selected female leader, (3) a group with a male leader selected on ability, (4) a group
with a female leader selected on ability, and (5) a group with a female leader selected
on ability after institutionalization of female leadership. The institutionalization is
done by showing the participants a film in which it is normal to have female leadership
and females do well as leaders. The resulting group means and standard deviations
of the influence of the leader are shown in Table 12.1.

The research question of Lucas (2003) is: “Can institutionalization of female
leadership reduce the influence gap between woman and men by legitimating
structures of female leadership?” The expectations of Lucas (2003) are in short:

• Male leaders (Groups 1 and 3) have higher influence over participants than female
leaders (Groups 2 and 4, respectively), ceteris paribus.

• Leaders appointed on ability (Groups 3 and 4) have higher influence over
participants than leaders appointed randomly (Groups 1 and 2, respectively),
ceteris paribus.

• Institutionalized female leaders selected on ability (Group 5) have higher influence
over participants than ‘normal’ female leaders selected on ability (Group 4), or
than randomly selected female leaders (Group 1).

• Institutionalized female leaders selected on ability (Group 5) have (almost) the
same influence over participants as male leaders appointed on ability (Group 3).

These expectations can be represented by the hypothesis H1 : µ5 = µ3 > {µ1, µ4} >
µ2, where µi represents the mean influence of the leader in Group i.

Another hypothesis of interest can be:

• Leaders chosen on basis of ability score higher than leaders selected at random
(so, Group 3 scores higher than Group 1 and Group 4 scores higher than Group
2).

• Male leaders selected at random (Group 1) have an higher influence than female
leaders selected on competence (Group 4).

• There is no difference in influence of female leaders selected on competence in case
of institutionalization (Group 5) or in the ‘normal’ case (Group 4).

This can be represented by H2 : µ3 > µ1 > µ4 = µ5 > µ2.
In addition, the traditional null and alternative hypothesis, H0 and H3 from (12.2),

respectively, will be used to illustrate the F̄ test, the order-restricted information
criterion and Bayesian model selection.

12.3.1 Results using the F̄ test

Using the F̄ test for the evaluation of the four hypotheses specified in the Lucas’
example (see (12.2)), five tests are performed (Table 12.2). First, H0 is tested against
H3. This test results in a p value smaller than 0.001, rejecting H0. Second, two tests
are done with respect to H1: H0 is tested against the order-restricted H1 and H1

is tested against the unconstrained hypothesis H3. These tests result in a p value
smaller than 0.001 and a p value of 0.995, respectively, both favoring H1. Third, two
tests are done with respect to H2: H0 is tested against H2 and H2 is tested against
H3. The resulting p values are a p value smaller than 0.001 and a p value of 0.07,
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respectively, both favoring H2. So, both H1 and H2 are preferred. Since no direct
comparison between order-restricted hypotheses is possible with the F̄ test, nothing
can be concluded with respect to an overall preferred hypothesis.

Hypotheses tested F̄ p value

H0 against H3 30.27 < 0.001

H0 against H1 30.26 < 0.001
H1 against H3 0.01 0.995

H0 against H2 22.91 < 0.001
H2 against H3 7.36 0.070

Table 12.2: The F̄ tests of the four specified hypotheses.

12.3.2 Results using ORIC

The ORIC consists of a fit/likelihood part and a complexity/penalty part. In
Table 12.3 the likelihood, penalty term, and ORIC values are given for H0, H1, H2

and H3. The penalty for H0 equals 2, because there are two distinct parameters:
all means are equal, which represents one distinct parameter, and the parameter σ2.
Analogously, the penalty for H3 is 6: there are five distinct means (since there are
no restrictions among the means) and one variance parameter. In hypotheses H1 and
H2 there are also five means, but these hypotheses contain inequality constraints,
as opposed to H0 and H3. The penalties of these order-restricted hypotheses are
calculated as explained earlier. The values of the penalties are respectively 3.20 and
3.13. The hypothesis with the smallest value for the ORIC is the preferred hypothesis.
Thus, in the example, H1 is the preferred hypothesis according to the ORIC.

Hypothesis logLm Penalty ORIC

H0 : µ1 = µ2 = µ3 = µ4 = µ5 −292.27 2.00 588.54
H1 : µ5 = µ3 > {µ1, µ4} > µ2 −278.05 3.19 562.49
H2 : µ3 > µ1 > µ4 = µ5 > µ2 −281.76 3.14 569.79
H3 : µ1, µ2, µ3, µ4, µ5 −278.05 6.00 568.10

Table 12.3: The ORIC values of the four specified hypotheses.

12.3.3 Results using BMS

The results using BMS are presented in Table 12.4. For each hypothesis, the Bayes
factor comparing that hypothesis with the unconstrained hypothesis (H3) is presented
for three different values of pv. The equality constraints are evaluated as strict
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equalities, that is, δ = 0 is approximated using the stepwise approach explained
in Section 12.2.3.

pv = 1 pv = 2 pv = 3

Model BF pmp BF pmp BF pmp

H0 : µ1 = µ2 = µ3 = µ4 = µ5 0.0 0.00 0.0 0.00 0.0 0.00
H1 : µ5 = µ3 > {µ1, µ4} > µ2 57.8 0.96 67.9 0.96 80.6 0.97
H2 : µ3 > µ1 > µ4 = µ5 > µ2 1.4 0.02 1.5 0.02 1.8 0.02
H3 : µ1, µ2, µ3, µ4, µ5 1.0 0.02 1.0 0.01 1.0 0.01

Table 12.4: Bayes factors (BF ) and posterior model probabilities (pmp) for different
prior specifications.

As was explained in Section 12.2.3, the encompassing prior is specified to be low
informative and is based on the observed data. The resulting encompassing prior for
the Lucas data and pv = 1 is:

p(µ1, µ2, µ3, µ4, µ5, σ
2|H3) =

5∏
i=1

N (2.28; 1.53)× Inv-χ2(1; 2.50).

The priors using pv = 2 and pv = 3 differ only with respect to the variance of the
normal distributions, with values 2.32 and 3.27, respectively.

Irrespective of the choice made for the prior, H1 is clearly the most supported
order-restricted hypothesis. The corresponding posterior probabilities (using equal
prior model probabilities) for the four hypotheses are (about) 0.00, 0.97, 0.02 and
0.01, respectively (for each pv value). These results again lead to the conclusion that
H1 is the best of the four models/hypotheses considered, as was also concluded when
using the ORIC. Comparison of the three prior specifications shows that, for the
hypotheses at hand, the results are not very sensitive to the specification of the prior.

12.A ConfirmatoryANOVA.exe user manual

This user manual will describe and illustrate the options available in Confirmatory-
ANOVA.exe (published along with this manuscript and also available at http://

staff.fss.uu.nl/RMKuiper). This program is made in Fortran 90 using the Intel
Visual Fortran Compiler 9.1 for Windows. This compiler uses IMSL 5.0.

To make the program more user-friendly, an interface is made with use of C# in
Microsoft Visual Studio 2005 (Appendix 12.B). The interface calls the exe file made in
Fortran 90 and it makes the appropriate input file needed for the Fortran 90 program.
The input for the Fortran 90 program is described in this appendix. Those interested
in only the interface are referred to Appendix 12.B.

ConfirmatoryANOVA.exe is free of use. However, when results obtained with this
program are published, please refer to Kuiper et al. (2010). In the program, the
following methods can be performed:

http://staff.fss.uu.nl/RMKuiper
http://staff.fss.uu.nl/RMKuiper
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• the F̄ test,
• the order-restricted information criterion (ORIC),
• Bayesian model selection (BMS).

12.A.1 Modification input files

No matter what analysis should be performed two text files have to be modified (such
that they apply to your data), namely Input.txt and Data.txt.

It should be noted that:

• The names of the text files are fixed and cannot be changed. These files have to
be text files (also known as ASCII files).

• The format of these files should not be changed, that is, do not add empty lines
and do not delete lines containing labels.

• The data in Data.txt should be complete, that is, missing data are not allowed.

First half of Input.txt

First of all, you must denote which analyses should be performed. This has to be done
in Input.txt. A certain analysis will be performed if in the line below the name of that
analysis a 1 is filled in. It will not be performed, when a 0 is filled in.

When the ORIC and the F̄ test should be performed and BMS should not, the
first half of Input.txt should look as follows (when using the default values for the
seed value and number of iterations):

Seed value and number of iterations (>0) for Fbar test, ORIC, and BMS

123 100000 100000 500000

Perform F bar test, ORIC, BMS (1 = yes, 0 = no)

1 1 0

We will come back to the seed value and number of iterations in Section 12.A.5.

Data.txt

Second of all, group membership and the corresponding data must be given in
Data.txt, where in the first column the group numbers must be given and in the
second column the corresponding data point yij . The order of the group numbers and
data points does not matter as long as the group number corresponds to the data
point in the same row. The following are three examples of how Data.txt could look:
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1 3.58 1 3.58 3 1.39
1 -0.15 2 1.67 2 1.85
· · · · · · 3 1.39 5 4.58
2 1.67 4 1.57 5 1.38
2 1.85 5 1.38 3 4.53
· · · · · · 1 -0.15 4 2.97
3 1.39 2 1.85 1 -0.15
3 4.53 3 4.53 2 1.67
· · · · · · 4 2.97 4 1.57
4 1.57 5 4.58 1 3.58
4 2.97 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
5 1.38 · · · · · · · · · · · ·
5 4.58 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

The group numbers do not need to be sequential. For example, if you have a SPSS or
Excel file with data for 10 groups and in the current analysis you want to compare only
5 groups (which are not the first five). In that case, you can just copy the appropriate
data from the SPSS or Excel file to a text file without adjusting the group numbers.
In the software, the group numbers will be made sequential and the output will be
given for these adjusted sequential group numbers. For example, if you have data
with group numbers 1, 4, 5, 6, and 8 (whether the data are in order or not), these
will become group numbers 1, 2, 3, 4, and 5, respectively. Note that, in specifying
the restrictions (see the next sections), you need to use the adjusted sequential group
numbers.

From the data, the number of groups and the number of observations per group
are determined.

12.A.2 Basic elements of writing constraints

In performing an F̄ test, in determining the ORIC or in doing BMS, all the hypotheses
of interest, like H0 to H3 in (12.2), must be given explicitly. Note that it is also possible
to specify a set of hypotheses without the classical null H0 : µ1 = . . . = µk and/or
alternative Hu : µ1, . . . , µk. However, we recommend to include the alternative Hu

(when doing model selection), since it can be used to protect against choosing a weak
hypothesis (Kuiper & Hoijtink, 2010). Note that one should include H0 only when
there is real interest in H0.

When using the ORIC or doing BMS several models/hypotheses are compared to
each other. In the F̄ test, the order-restricted hypotheses (likeH1 andH2 in (12.2)) are
tested against H0 and Hu. If the classical null and/or the alternative are included in
the set of hypotheses, the classical null will be tested against the classical alternative.

The basic elements, for writing down the hypotheses of interest are:

1. Representation of an equality sign (=)
Suppose the hypothesis of interest is µ5 = µ3, that is, µ5 = µ3, µ1, µ2, µ4. The
ordering of the group numbers in this restriction is represented by: 5 3 1 2 4. The
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restriction is represented by: 1 1 0 0 0, where the 1s indicate that mean 5 and
3 belong to Set 1 and are equal to each other, and where 0 indicates that the
corresponding mean is unrestricted. N.B. in a restriction the first set is always
labeled as 1, the second as 2 (and so on).

2. Representation of a greater than sign (>)
Suppose the hypothesis of interest is µ1 > µ3, µ2, µ4, µ5. The ordering of the
group numbers in this restriction is represented by: 1 3 2 4 5. The restriction is
represented by: 1 -3 0 0 0, where -3 means that mean 3 is smaller than mean 1.
Thus, it represents µ3 < µ1, which is equal to µ1 > µ3. Here again 1 indicates
that mean 1 belongs to Set 1. Because of the inequality restriction between mean
1 and 3, mean 3 belongs to Set 2 (the importance of this will be made clear in
the next section).

3. Representation of a smaller than sign (<)
Suppose the hypothesis of interest is µ1 < µ2, µ3, µ4, µ5. The ordering of the
group numbers in this restriction is represented by: 1 2 3 4 5. The restriction is
represented by: 1 -1 0 0 0, where -1 means that mean 2 is greater than mean 1.
Thus, it represents µ2 > µ1, which is equal to µ1 < µ2.

Every hypothesis can be represented by these basic elements in one or more
restrictions. For example, µ5 > µ3 < µ1, µ2 < µ4, can be represented by the
restrictions:
µ5 > µ3, µ1, µ2, µ4,
µ5, µ3 < µ1, µ2, µ4,
µ2 < µ4, µ5, µ3, µ1,
which can be represented by:

Ordering of means in restriction

5 3 1 2 4

5 3 1 2 4

2 4 5 3 1

(Order) Restrictions

1 -3 0 0 0

0 1 -1 0 0

1 -1 0 0 0

12.A.3 Combinations of basic elements

Often the hypothesis of interest can be represented in a smaller number of restrictions
than when using only the basic elements. The following shortcuts can be used:

1. µ5 = µ3 = µ1, µ2 = µ4

Because of the equality constraints (“=”), means 5, 3 and 1 belong to Set 1.
Therefore, means 2 and 4 belong to Set 2. Thus, this hypothesis can be represented
by the following ordering of the group numbers and corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 1 2 2
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2. {µ5 = µ3 = µ1} > {µ2 = µ4}
Because of the equality constraints, mean 5, 3 and 1 belong to Set 1, and means
2 and 4 belong to Set 2. Because of the constraint between mean 1 and 2, mean
2 belongs implicitly to Set 2. This hypothesis can be represented by the following
ordering of the group numbers and corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 1 -3 2

The 1s indicate the equality constraints between mean 5, 3 and 1, the -3 represents
the inequality constraint “>” between mean 1 and 2, and the 2 indicates the
equality constraints between mean 2 and 4 (because mean 2 implicitly belongs
to Set 2). Notably, the restrictions µ5 = µ1, µ5 > µ2, µ3 > µ2, µ5 > µ4, µ3 >
µ4, µ1 > µ4 do not have to be formulated explicitly, these will hold since it holds
that µ5 = µ3, µ3 = µ1, µ1 > µ2 and µ2 = µ4.

3. µ5 = µ3 > µ1 > µ2 = µ4

This hypothesis can be represented by the following ordering of the group numbers
and corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 -3 -3 3

The 1s indicate the equality constraint between mean 5 and 3. The -3s represents
the inequality constraint “>” between mean 3 and 1 and between 1 and 2. Note
that mean 1 implicitly belongs to Set 2 and mean 2 implicitly to Set 3. Therefore,
the equality constraint between mean 2 and 4 is represented by the 3, because
mean 2 and 4 belong to Set 3.

4. µ5 = µ3 > µ1 < µ2 = µ4

Likewise, this hypothesis can be represented by the following ordering of the group
numbers and corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 -3 -1 3

5. µ5 = µ3 > µ1 > µ2, µ4

This hypothesis can be represented by the following ordering of the group numbers
and corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 -3 -3 0
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Note that, mean 4 is a free parameter, that is, a mean which is not restricted at
all. The free parameters are denoted by a “0” and no set numbers are assigned
(directly or indirectly). Here, as in the previous two examples, mean 2 belongs
to Set 3 and mean 4 belongs to another set. However, this is not Set 4. Another
example is given next.

6. µ5 = µ3, µ4, µ1 > µ2

This hypothesis can be represented by the following ordering of the group numbers
and corresponding restriction:

Ordering of means in restriction

5 3 4 1 2

(Order) Restrictions

1 1 0 2 -3

The 1s indicate the equality constraint between mean 5 and 3. Note that, as
mentioned in the previous example, no set number is assigned to free parameters.
So, mean 4 belongs to another set than all the other means, but no set number
is assigned. A 0 is filled in. Mean 1 belong to the next set, that is, Set 2. The -3
represents the inequality constraint “>” between mean 1 and 2. Note that mean
2 indirectly belongs to Set 3.

7. µ5 = µ3 > µ1 < µ2 = µ4

This hypothesis can be represented by the following ordering of the group numbers
and corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 -3 -1 3

8. µ5 = µ3 > µ1 = µ2 > µ4

This hypothesis can be represented by the following ordering of the group numbers
and corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 -3 2 -3

The 1s indicate the equality constraints between mean 5 and 3, the -3s represents
the inequality constraint “>” between mean 3 and 1 and between 2 and 4. Note
that mean 1 implicitly belongs to Set 2. Therefore, the equality constraint between
mean 1 and 2 is represented by the 2.
In the program ConfirmatoryANOVA.exe, error messages are built in to detect
erroneously stated hypotheses. But sometimes wrongly reported hypotheses
are not detected, because the expressed hypothesis represents another existing
hypothesis. When accidently a 3 is given instead of a 2, another existing hypothesis
is formulated. Namely, the restriction “1 1 -3 3 -3” represents the hypothesis
µ5 = µ3 > µ1, µ2 > µ4. So, care must be taken in writing down the hypothesis
of interest.
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9. µ5 = µ3 > µ1, µ2 > µ4

This hypothesis can be represented by the following ordering of the group numbers
and corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 -3 3 -3

12.A.4 Equalities and about equalities in BMS

In the F̄ -test, in the ORIC and in BMS for strict equalities (δ = 0), the two hypotheses
µ1 = µ2 = µ3 (specified by 1 restriction, with ordering of means 1 2 3, and (order)
restrictions 1 1 1) and µ1 = µ2, µ2 = µ3 (specified by 2 restrictions, both with ordering
of means 1 2 3, and (order) restrictions 1 1 0 and 0 1 1) are equivalent.

However, the BMS approach in the program also provides the option to specify
about equality constraints (δ > 0). In that case, the second hypothesis is evaluated
using |µ1 − µ2| < δ and |µ2 − µ3| < δ, whereas the first hypothesis adds a third
constraint: |µ1 − µ3| < δ. The results of the first and second hypothesis may differ
and therefore careful consideration of the formulation of hypotheses is important.

12.A.5 Set the seed value and number of iterations

The calculation of the p value of the F̄ , the penalty of the ORIC (i.e., PT ), and BMS
are sampling based approaches. For example, when generating data from a normal
distribution (to determine the p value of the F̄ or the penalty of the ORIC), a seed
value is needed. When using the same seed value, the same data will be ‘sampled’.
When looking at another seed value in a rerun of the same problem, one can also see
how stable the results are. Thus, the p value of the F̄ , the penalty of the ORIC (i.e.,
PT ), and the results of BMS can differ for various seed values.

In case a result is not stable, the number of iterations needs to be set higher. In the
F̄ test, the p value depends on the number of iterations Rp. When using the ORIC, the
penalty is dependent on the number of iterations RPT . When doing BMS, the Gibbs
sampler is used, which is based on a minimum of RBMS iterations. These values can
also be set in the input, namely in the second line of Input.txt (see Section 12.A.1).
The default values of the number of iterations in each method are: Rp = 100, 000,
RPT = 100, 000, and RBMS = 500, 000.

Note that the higher the number of iterations the higher the computing time.
If one lowers the number of iterations (to lower the computing time), one must be
aware that this probably affects the stability of the results. Furthermore, when the
initial number of iterations for BMS (i.e., RBMS ) is lowered, the computing time is
not necessarily decreased, because of the requirement of a minimum of 100 prior hits
(see subsections “Estimation of the Bayes factor” and “Stepwise estimation for small
δ” in Section 12.2.3).
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12.A.6 Error messages

In the program ConfirmatoryANOVA.exe, error messages are built in to detect
incorrectly stated hypotheses. However, it does not detect all erroneously formulated
hypotheses, since the reported hypothesis can represent another existing hypothesis,
as is made clear in Section 12.A.3.

It is also possible to state other input wrongly. For example, an improper number
of restrictions is given. When making a mistake, an informative warning will be given.

However, it is possible to make a mistake that we have not foreseen. In that case,
check the input and compare it to the data. If you cannot solve the problem, send
the input and data file to R.M.Kuiper@uu.nl.

12.A.7 Modification of the second half of Input.txt

For all three methods (i.e., the F̄ test, the ORIC, and BMS), all hypotheses of interest
must be given explicitly. In case BMS is performed, two additional specifications need
to be made: The desired δ (for exact equalities specify, δ = 0, and for an about
equality, any positive number can be specified) and the prior vagueness pv (default
recommendation pv = 2; any positive number may be specified). This must be done
in the second half of Input.txt. If the hypotheses of interest are the set of hypotheses
of Lucas stated in (12.2), Input.txt has the following format (where “< . . . >” is not
part of the format, but is used to give remarks):

Number of models to be compared
<Fill in the number of models / hypotheses you want to compare; e.g.,>
4
Number of restrictions per model
<Fill in, for every model / hypothesis, the number of restrictions that represent
that model / hypothesis; e.g.,>
1
2
1
1
Ordering of means in restriction
<Fill in the ordering of the means / group numbers for each restriction for every
model / hypothesis. The orderings per restrictions are separated by an “enter”. The
ordering consists of the numbers 1 to “the total number of groups”. For more
details see “Basic Elements of Writing Constraints” and “Combinations of Basic
Elements”; e.g.,>
1 2 3 4 5
5 3 1 2 4
3 4 2 1 5
3 1 4 5 2
1 2 3 4 5

mailto:R.M.Kuiper@uu.nl
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(Order) Restrictions
<Fill in the restrictions. This must be done in a certain manner, which is
explained in “Basic Elements of Writing Constraints” and “Combinations of Basic
Elements”; e.g.,>
1 1 1 1 1
1 1 -3 -3 0
1 -3 -3 0 0
1 -3 -3 3 -3
0 0 0 0 0
When BMS is performed, an interval for equality relations (delta) is needed and a
parameter for prior vagueness (pv)
<Fill in δ ≥ 0 and pv > 0; e.g.,>
0.0 2.0

12.A.8 Save and close

When you have modified Input.txt (such that it applies to your data), you should save
and close it.

12.A.9 Run ConfirmatoryANOVA.exe

When ConfirmatoryANOVA.exe is run, the output file Output.txt will be created in
the folder you are working in.

Output.txt

Output.txt gives the results of the requested analyses. In Section 12.B.5, the output
is given when using the interface for the Lucas example described in this chapter
(provided that all three analyses, that is, the F̄ test, the ORIC, and BMS, are
performed).

In case the interface is not used, the output will be a bit different, namely in two
ways:
1) The hypotheses of interest will be displayed in the way they are filled in Input.txt.
When using the interface, the hypotheses of interest are formulated in terms of “µi”,
“>”, “<”, “=”, and “,”.
2) The numbering of the hypotheses is different.

When using the interface and when H0 is included in the set of hypotheses, H0 will
become Hypotheses 1 in the output. When Hu is included in the set of hypotheses,
Hu will become Hypotheses 2, when H0 is also included, and Hypothesis 1, when
H0 is not included. The other hypotheses will also be adjusted to the appropriate
hypothesis number. So, an order-restricted hypotheses H1 will become Hypotheses
3 (when both H0 and Hu are specified) or Hypotheses 2 (when only H0 or Hu is
specified); et cetera.
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12.B User manual of ConfirmatoryANOVA.exe with interface

12.B.1 Read, write or copy data

First of all, the data should be entered. Press on the Data button in the Confirmato-
ryANOVA.exe form (see Figure 12.1) to go the DataInput form (see Figure 12.2). The
data can be entered manually, by copying it from a file (say an SPSS or Excel file) or
by reading it from a text (i.e., .txt) file. See also Section 12.A.1 for a description of
the data format.

Fig. 12.1: ConfirmatoryANOVA.exe form.

When the data are read from a file or, otherwise, after clicking on the OK button,
the data are validated. In case of invalid data (e.g., in case no number is entered or
in case a row has only a group number or has only a data point), the corresponding
lines are made red. The invalid data should be corrected (by adjusting the data in the
textbox/field or by adjusting the .txt file and rereading the adjusted file) or deleted
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(e.g., when all lines should be deleted, by clicking on the Clear Invalid Data button).
After the adjustments, press the OK button. The data will be validated again. Note
that, in case of deleting data, the number of observations per group (which is shown in
the ConfirmatoryANOVA.exe form) will be adjusted automatically. In case the data
are valid, you return to the ConfirmatoryANOVA.exe form (see Figure 12.1).

Fig. 12.2: DataInput form.

12.B.2 Specify methods

From the data (and group membership), the number of groups and number of
observations per group are determined. Then, you must denote which analyses should
be performed. A certain analysis will be performed if the corresponding checkbox is
checked.

In case BMS is performed, two additional specifications need to be made (in a
popup-panel): The desired δ and the prior vagueness pv. It holds that δ ≥ 0 and
pv > 0. When specifying exact equality restrictions in BMS, δ must be set to δ = 0.
When specifying about equality restrictions in BMS, δ must be set to δ > 0. In the
latter case, one should carefully specify the restrictions (see Section 12.A.4). The
default recommendation of pv is pv = 2.

For all three methods, the hypotheses of interest must be given explicitly (in the
then appearing panel). Specifying the order-restricted hypotheses will be explained in
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the next section. When you do not want to specify any order-restricted hypothesis, you
should uncheck the Add (order-restricted) hypothesis/-es checkbox (see Figure 12.1).
One should also specify whether one wants to evaluate the classical null hypothesis
(i.e., H0 : µ1 = . . . = µk) and the classical alternative (i.e., Ha : µ1, . . . , µk), here
also called the unconstrained hypothesis (see Figure 12.1).

As discussed in Section 12.A.5, the values for the seed value and the number
of iterations can be specified. This is done in the Settings form (see Figure 12.3)
appearing when pressing the Settings button.

Fig. 12.3: Settings form.

More details on specifying the restrictions are given next.

12.B.3 Specifying the order-restricted hypotheses

An (order-restricted) hypothesis, say H1, can be specified in the panel appearing when
clicking on the Add button in the Edit Hypothesis 1 panel (see Figure 12.4). Then fill
in the hypothesis, that is, fill in the group numbers and the corresponding constraints
between the means of these group. Note that a hypothesis can consist of multiple
‘restrictions’. To add another restriction in, say H1, you must press the Add button
in the Edit restriction(s) in H1 panel (see Figure 12.4).

As mentioned before, the numbers in a certain restriction always consists of the
numbers 1 to “the number of groups” (in the example, 5) and each number is used
precisely once. It should be noted that in case of 5 means and you want to evaluate
H1 : µ3 > µ1 > µ4, you should fill in H1 : µ3 > µ1 > µ4, µ2, µ5 or, better,
“3 > 1 > 4, 2, 5”. If the entry is a number greater than “the number of groups”
or the entry is not an integer, then the corresponding textbox will be made red and
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an error message is given in the ConfirmatoryANOVA.exe form. The check on using
every number only once is done after pressing the Run button. In that case, an error
message will be given in the Progress Report panel and in Error.txt (see also the next
subsection).

One can also specify the classical H0 and/or the classical Ha as a hypothesis of
interest. Note that one should includeH0 only when there is real interest inH0 (Kuiper
& Hoijtink, 2010). We recommend to include Ha (when doing model selection) as a
safeguard for choosing a weak hypotheses (Kuiper & Hoijtink, 2010). H0 and Ha do
not need to be specified explicitly, one can just check the corresponding checkboxes
(see Figure 12.1 and Figure 12.4).

Fig. 12.4: Specifying H1.
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12.B.4 Error messages

Before pressing the Run button, one should check whether the requirements are
met. When not all requirements are met and you press the Run button, a popup
appears with the text “Not all requirements are met yet.”. The requirements are
that the data are valid, the specification of δ and pv (if needed) is correct, and that
the hypotheses (if any) are specified correctly. In case a requirement is met, the
checkbox is checked; otherwise, it is not checked and an error message is given in the
ConfirmatoryANOVA.exe form.

Furthermore, error messages are built in to detect other wrongly reported input
(e.g., when not using every number precisely once in a (order) restriction). A popup
will appear with the text “Error in input. ... This run will be stopped.”. These error
messages will be given in the Progress Report panel in the ConfirmatoryANOVA.exe
form (see Figure 12.1 and Figure 12.4) and in Error.txt (which will be created in the
folder where ConfirmatoryANOVA.exe is saved in). In most cases, the methods will
not be performed and no output will be given.

When, for some reason, the error is not detected, a popup will appear with the
text “The program has stopped. No methods are performed. Check input. . . .”. In
that case, no output will be given. One should look at the input again, especially the
input needed for the method during which the error occurred. When looking at the
Progress Report panel one can obtain a better idea of during which method the error
has occurred. It should be noted that the methods are performed in a fixed order: the
F̄ test is performed first, then the ORIC and the program ends with BMS (when all
methods are performed). The progress report tells you when the method has started
(e.g., “The Fbar test is running...”) and when it is ended (e.g., “Fbar is performed”).

12.B.5 Output

Let the hypotheses of interest be the set of hypotheses specified in (12.2). As
mentioned before, in the output, these hypotheses will be referred to as H1, H3,
H4, and H2 corresponding to H0, H1, H2, and H3, respectively, in (12.2).

When ConfirmatoryANOVA.exe is done, the output file Output.txt (or the name
you entered in the Name of output file textbox) will be created in the folder where
ConfirmatoryANOVA.exe is saved in. The output file gives the results of the requested
analyses. In the example, the output for the three methods (i.e., F̄ , ORIC, and BMS),
with δ = 0.3 and pv = 2, is:

This program is free of use. However, when results obtained with this program are
published, please refer to:

Rebecca M. Kuiper, Irene Klugkist, and Herbert Hoijtink (2010).
A Fortran 90 Program for Confirmatory Analysis of Variance.
Journal of Statistical Software, 34(8), 1-31.
URL http://www.jstatsoft.org/v34/i08/.
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N.B. This paper is available upon request (R.M.Kuiper@uu.nl).

Summary of observed data

Group number, means, standard deviations, and sample sizes per group
1 2.33 1.86 30
2 1.33 1.15 30
3 3.20 1.79 30
4 2.23 1.45 30
5 3.23 1.50 30

Restricted means

Group number: 1 2 3 4 5
Sample means: 2.33 1.33 3.20 2.23 3.23

Hypothesis 1 2.46 2.46 2.46 2.46 2.46
Hypothesis 2 2.33 1.33 3.20 2.23 3.23
Hypothesis 3 2.33 1.33 3.21 2.23 3.21
Hypothesis 4 2.60 1.33 3.20 2.60 2.60

The hypotheses of interest are stated below.

– Fbar test –
<See Section 12.2.1>

Results of the Fbar test for the null hypothesis 1 and the unconstrained
hypothesis 2

Hypotheses numbers Fbar value p-value
1 versus 2 30.27 0.00

Results of the ordered alternative Fbar test

Ordered-hypothesis number Fbar value p-value
H0 versus 3 30.26 0.00
H0 versus 4 22.91 0.00
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Results of the ordered null Fbar test

Ordered-hypothesis number Fbar value p-value
3 versus Hu 0.01 1.00
4 versus Hu 7.36 0.07

Residual sum of squares

Hypothesis 1 432.53
Hypothesis 2 0.00
Hypothesis 3 357.85
Hypothesis 4 375.99

The hypotheses of interest are stated below.

– ORIC –
<See Section 12.2.2>

The value of the Order-Restricted Information Criterion (ORIC) =
-2 * log likelihood + 2 * penalty:

for Hypothesis 1, ORIC = -2 * -292.27 + 2 * 2.00 = 588.54
for Hypothesis 2, ORIC = -2 * -278.05 + 2 * 6.00 = 568.10
for Hypothesis 3, ORIC = -2 * -278.05 + 2 * 3.19 = 562.49
for Hypothesis 4, ORIC = -2 * -281.76 + 2 * 3.14 = 569.79

The preferred hypothesis, according to the Order-Restricted Information
Criterion, of the hypotheses to be compared is hypothesis number 3.

The hypotheses of interest are stated below.

– BMS –
<See Section 12.2.3>

The resulting Bayes factor values (of the order-restricted hypothesis
and the posterior model probabilities (with respect to the whole set of models)
are:

Hypothesis 1 0.00 0.00
Hypothesis 2 1.00 0.01
Hypothesis 3 67.94 0.96
Hypothesis 4 1.52 0.02
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The preferred hypothesis, according to Bayesian model selection,
of the hypotheses to be compared is hypothesis number 3.

The hypotheses of interest are stated below.

Specification of the encompassing prior:

For all means, the same normal prior with mean
2.28

and variance
2.32

is used.

For the residual variance, a scaled inverse chi-square with
degrees of freedom
1.00

and scale parameter
2.50

is used.

– The hypotheses of interest –

Hypothesis 1 (= ‘H0’)

Restriction 1: mu1 = mu2 = mu3 = mu4 = mu5

Hypothesis 2 (= ‘Ha’)

Restriction 1: mu1 , mu2 , mu3 , mu4 , mu5

Hypothesis 3

Restriction 1: mu5 = mu3 > mu1 > mu2 , mu4
Restriction 2: mu3 > mu4 > mu2 , mu1 , mu5

Hypothesis 4

Restriction 1: mu3 > mu1 > mu4 = mu5 > mu2
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A Fortran 90 Program
for the Generalized Order-Restricted Information Criterion
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The generalized order-restricted information criterion (GORIC) can evaluate
hypotheses that are closed convex cones for multivariate normal linear models. It
can examine the traditional hypotheses H0 : β1,1 = · · · = βt,k and Hu : β1,1, . . . , βt,k
and hypotheses containing simple order restrictions Hm : β1,1 ≥ . . . ≥ βt,k, where any
“≥” may be replaced by “=”, βh,j denotes a parameter for the hth dependent variable
and the jth predictor in a t-variate regression model with k predictors (which might
include the intercept), and m is the model/hypothesis index. But, the GORIC can
also be applied to restrictions of the form Hm : R1β ≥ r1, R2β = r2, with β a vector
of length tk, R1 a cm1 × tk matrix, r1 a vector of length cm1, R2 a cm2 × tk matrix,
and r2 a vector of length cm2. It should be noted that [R′1, R

′
2]′ should be of full rank

when [r′1, r
′
2]′ 6= 0. A Fortran 90 program is presented, which enables researchers to

compute the GORIC for hypotheses in the context of multivariate regression models.

13.1 Introduction

Anraku (1999) proposes the order-restricted information criterion, ORIC. The ORIC
is applied to models of the form yij = βj + εij , where yij is observation i (with
i = 1, . . . , Nj) for group j (with j = 1, . . . , k), βj is the mean for group j, and
εij is the error term, which follows a normal distribution with mean 0 and variance
σ2. This model selection criterion can only be used to select the best of a set of
hypotheses that can be written as simple order restrictions (e.g., H1 : β1 ≥ . . . ≥ βk
and H2 : β1 = . . . = βk′ ≥ . . . ≥ βk). Kuiper et al. (2011) propose a generalization
of the ORIC, called the GORIC, that can be applied to a more general form of order
restrictions, namely Hm : Rβ ≥ 0 for m ∈ M, where M is the set of hypothesis
indices, β a vector of length k, and R a cm × k matrix. Special cases of these matrix
order restrictions are the simple order (i.e., Hm : β1 ≥ . . . ≥ βk) and the tree order
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(i.e., Hm : β1 ≥ β2, . . . , β1 ≥ βk). Kuiper et al. (unpublished) extend the use of the
GORIC to univariate and multivariate normal linear models with hypotheses of the
type Hm : β ∈ Cm, where Cm is a closed convex cone or a relocated one and β is a
vector of length tk containing the parameters in a t-variate normal linear model, with
k the number of predictors (which can include an intercept) as elaborated below. The
hypotheses of interest and therewith the closed convex cones are further discussed in
Section 13.2.2.

In the next section, the GORIC will be presented in the context of multivariate
regression models. The GORIC comprises a likelihood part and a penalty part.
The likelihood is computed using order-restricted maximum likelihood estimators.
The iteration process employed to obtain the order-restricted maximum likelihood
estimators is described in Section 13.3. In Section 13.4, we will elaborate on the
penalty part. Section 13.5 illustrates the application of the GORIC in the context
of univariate and multivariate analysis of variance. Appendix 13.A contains a user
manual for the software.

13.2 The GORIC

In this section, we provide the GORIC applicable to hypotheses of the form Hm : β ∈
Cm formulated for a t-variate regression model. The derivation is shown in Kuiper
et al. (2011). First, we briefly discuss the t-variate regression model. Then, we give
the expression of the GORIC. Finally, we elaborate on the hypotheses that can be
evaluated by it.

13.2.1 The t-variate regression model

A multivariate regression model with t dependent variables can be written as

y1i = β1,1d1i + . . .+ β1,k′dk′i + β1,k′+1xk′+1,i + . . .+ β1,kxki + ε1i
...

yti = βt,1d1i + . . .+ βt,k′dk′i + βt,k′+1xk′+1,i + . . .+ βt,kxki + εti

(13.1)

where yhi denotes the score of the ith person on the hth dependent variable for
i = 1, . . . , N and h = 1, . . . , t. The d variables are the predictors that represents
group membership. When dji = 1, person i belongs to group j for j = 1, . . . , k′. The
mean of dependent variable h of group j (conditional upon the x variables) is denoted
by βh,j . The x variable are continuous predictors, where xji reflects the score of the
ith person on the jth predictor for j = k′ + 1, . . . , k. The relationship between xji
and yhi (controlled for the other predictors) is denoted by βh,j . Finally, it is assumed
that  ε1i...

εti

 ∼ Nt

 0

...
0

 , Σ =

 σ
2
1 · · · σ1t

...
. . .

...
σ1t · · · σ2

t


 .

It is noteworthy that the βs associated with x variables regarding the same
dependent variable are only comparable when the corresponding x variables are



13.2 The GORIC 197

standardized. Moreover, βs associated with x variables belonging to different de-
pendent variables can solely be examined if both the dependent variables and the
x variables are standardized.

13.2.2 The hypotheses of interest

Let β = (β1,1, . . . , β1,k, . . . , βt,1, . . . , βt,k) and βl the lth element of β for l = 1, . . . , tk.
The GORIC can be applied to hypotheses that are closed convex cones or relocated
ones; both denoted by Cm. In this chapter, we will focus on

Hm : R1β ≥ r1, R2β = r2, (13.2)

where R1 is a cm1 × tk matrix, R2 a cm2 × tk matrix, r1 a vector of length cm1, and
r2 a vector of length cm2. For closed convex cones it holds true that r1 = r2 = 0.
Special cases of closed convex cones are the simple order, the tree order, and the
matrix order (Silvapulle & Sen, 2005, pp. 82). In case of a relocated closed convex
cone, that is, for [r′1, r

′
2]′ 6= 0, a requirement is needed (see Kuiper et al. (2011) and

Section 13.4): R = [R′1, R
′
2]′ is of full rank. Note that full rank of R may be obtained

by discarding redundant restrictions. For example, a set of restrictions containing
βl ≥ r11, βl ≤ r12 is not a relocated closed convex cone for r11 6= r12, since R is not of
full rank and there are no redundant restrictions. For βl ≥ r11, βl′ ≥ r12, βl+βl′ ≥ r13

for l 6= l′, R is not of full rank either. However, when r11 + r12 ≥ r13, βl + βl′ ≥ r13 is
redundant. In case this redundant restriction is discarded, R is of full rank, that is,
Hm : βl ≥ r11, βl′ ≥ r12 is a relocated closed convex cone.

13.2.3 The GORIC

Let

Y =

 y11, . . . , yt1
...

...
y1N , . . . , ytN

 ,
yi = [y1i, . . . , yti]

′,

X =

 d11, . . . , dk′1, xk′+1,1, . . . , xk1

...
...

...
...

d1n, . . . , dk′n, xk′+1,n, . . . , xkn

 , (13.3)

xi = [d1i, . . . , dk′i, xk′+1,i, . . . , xki]
′,

B =

 β1,1, . . . , βt,1
...

...
β1,k, . . . , βt,k

 .
According to Kuiper et al. (unpublished), it holds true for t-variate regression models
with Hm : β ∈ Cm that
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GORICm = −2 log f(Y |X, B̃m, Σ̃m) + 2 PTm, (13.4)

with

log f(Y |X, B̃m, Σ̃m) = − tN
2

log{2π} − N

2
log |Σ̃m| − 1

2

N∑
i=1

ε′i

(
Σ̃m

)−1

εi,

and

PTm = 1 +

tk∑
l=1

wl(tk,W, Cm) l,

where log f(Y |X, B̃m, Σ̃m) is the log-likelihood, B̃m and Σ̃m are the order-restricted
maximum likelihood estimators of B and Σ, respectively, PTm is the penalty part,
wl(tk,W, Cm) denotes the level probability for level l, and

εi = yi − (B̃m)′xi,

W = Σ̂ ⊗ [X ′X]−1, (13.5)

with

Σ̂ = N−1(Y −XB̂)′(Y −XB̂) (13.6)

and

B̂ = (X ′X)−1X ′Y.

Hence, Σ̂ and B̂ are the (unrestricted) maximum likelihood estimators of Σ and B,
respectively. The derivation of the penalty can be found in Kuiper et al. (unpublished).
In that, Σ is assumed to be known up to a positive constant, that is, Σ = σ2S with
S a known t× t matrix and σ2 a constant which represents the variance when t = 1.
Since Σ is often not known, it is estimated by Σ̂, see Equation (13.6). The GORIC
is easily applied, namely the hypothesis/model Hm (see Equation (13.2)) with the
lowest GORIC value (see Equation (13.4)) is the preferred one.

In the next two sections, we will subsequently elaborate upon the order-restricted
maximum likelihood estimators B̃m and Σ̃m and the penalty term PTm.

13.3 Order-Restricted maximum likelihood estimators

The order-restricted maximum likelihood estimators, B̃m and Σ̃m, are obtained by

min
β∈Hm,Σ

N∑
i=1

(yi − (B̃m)′xi)
′Σ−1(yi − (B̃m)′xi).

From this it follows that

B̃m = arg min
β∈Hm

N∑
i=1

(yi −B′xi)′
(
Σ̃m

)−1

(yi −B′xi), (13.7)

Σ̃m = N−1(Y −XB̃m)′(Y −XB̃m). (13.8)

It should be stressed that in univariate regression (i.e., for t = 1) the β parameters
do not depend on Σ̃m = σ̃2

m. In multivariate regression (i.i., t > 1), B̃m depends on
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the unknown Σ̃m and Σ̃m on the unknown B̃m. Therefore, iterations are required to
calculate them. The iteration process comprises the following steps:

1. Set B̃m0 equal to B̂ = (X ′X)−1X ′Y , the (unrestricted) maximum likelihood
estimator of B. Note that any value for B̃m0 can be chosen. We employ B̂ to
increase the speed of convergence and, therefore, to reduce computing time.

2. Optimize Σ̃m
p by substituting B̃m for B̃mp−1 in Equation (13.8) for p = 1, . . . , P .

3. Optimize B̃mp by replacing Σ̃m with Σ̃m
p in Equation (13.7) for p = 1, . . . , P . For

the calculation of B̃m, one can use a quadratic programming algorithm like the
IMSL subroutine QPROG (Visual Numerics, 2003, pp. 1307–1310) in Fortran 90.

4. Continue steps 2 and 3 until convergence is reached (at step P ) and set B̃m and
Σ̃m equal to B̃mP and Σ̃m

P , respectively. We base the convergence criterion on the
values of the parameter estimates. Namely, we stop iterating when the absolute
values of the elements of B̃mp − B̃mp−1 and Σ̃m

p − Σ̃m
p−1 are less than 1e− 10.

13.4 The penalty part

In this section, we elaborate on the calculation of the penalty term. First, we briefly
describe level probabilities in case Σ is known up to a positive constant. In that case,
Σ̂ in Equation (13.5) is replaced by Σ. Moreover, we give an interpretation of the
penalty term. Then, we discuss the consequences of estimating Σ from the data by Σ̂.

A level probability wl(tk,W, Cm) is the probability that there are l levels among
the tk order-restricted maximum likelihood estimators, which are in accordance with
Cm, given that the parameters β are generated from a normal distribution with a
mean vector of zeros and covariance matrix W (see also Anraku (1999); Silvapulle
and Sen (2005, pp. 77–83); Robertson et al. (1988, pp. 69)). Stated otherwise, a level
probability is the probability that the parameter space in accordance with the active
constraints in Cm is of dimension l.

According to Kuiper et al. (unpublished), all closed convex cones (r1 = r2 = 0) and
relocated ones (r = [r′1, r

′
2]′ 6= 0) can be written in the form Hm : R1β

∗ ≥ 0, R2β
∗ = 0,

with β∗ = β when r1 = r2 = 0 and β∗ = β − q and [R′1, R
′
2]′q = r when r 6= 0. Note

that q only exist when [R′1, R
′
2]′ is of full rank (after discarding redundant restrictions).

Let Cm = {β ∈ Rtk : R1β
∗ ≥ 0, R2β

∗ = 0}.
Below, we first assume that Σ is known up to the positive constant σ2: Σ = σ2S

with S a known matrix. After that, we discuss the consequences of Σ being estimated
from the data. The calculation of the level probabilities can be done via simulation
(Silvapulle & Sen, 2005, pp. 78–81). The simulation consists of 5 steps:

1. Generate z (of length tk) from Ntk(β0 = 0,W ), with W = σ2S⊗ [X ′X]−1, where
S is a known matrix. Silvapulle and Sen (2005, pp. 86) and Robertson et al. (1988,
p. 69) prove that the calculation of the level probabilities does not depend on the
mean value β0 for closed convex cones. Furthermore, Robertson et al. (1988, p. 69)
demonstrate for closed convex cones that the calculation of the level probabilities
are invariant for positive constants like σ2 and N . However, there is one exception,
which is discussed below.
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2. Compute z̃m via z̃m = arg minβ∗∈{β∗∈Rtk:R1β∗≥0,R2β∗=0}(z − β∗)′W−1(z − β∗),
such that the parameters are in accordance with R1β

∗ ≥ 0, R2β
∗ = 0, the

hypothesis of interest.
To implement this in software, one requires a quadratic programming algorithm.
For example, one can use the IMSL subroutine QPROG (Visual Numerics, 2003,
pp. 1307–1310) in Fortran 90.

3. Determine the number of levels in z̃m and denote this by Lm. Let restriction a be
denoted by R1aβ

∗ ≥ 0 for a = 1, . . . , cm1, A = {a : R1az̃m = 0}, that is, the set
of restriction indices for which the restriction is binding, and φ = {β : R1aβ

∗ =
0 ∀ a ∈ A,R2β

∗ = 0}. Then, Lm is the dimension of φ.
4. Repeat the previous steps T (e.g., T = 100, 000) times. To examine the stability

of the penalty term, one could calculate it a second time with another seed value.
If the two penalties are dissimilar, one should increase the value of T .

5. Estimate the level probability wl(tk,W, Cm) by the proportion of times Lm is
equal to l (l = 1, . . . , tk) in the T simulations.

As discussed in the first simulation step, the level probabilities are invariant for the
mean value β0 and the variance term σ2. This holds almost always true for closed
convex cones Hm : R1β ≥ 0, R2β = 0 and relocated ones Hm : R1β ≥ r1, R2β ≥ r2

where [r′1, r
′
2]′ 6= 0 and [R′1, R

′
2]′ is of full rank after discarding redundant restrictions.

There is one exception, namely restrictions of the type βl ≥ r11 (including r11 = 0)
for l = 1, . . . , tk. When the hypothesis of interest contains this type of restriction, one
must use β0 = 0. This results in level probabilities that are invariant for the value of
σ2.

Notably, the level probabilities for Hm : βl ≥ r11 are the same as for Hm : βl ≥ 0,
that is, here is no difference in complexity for these two hypothesis. When sampling
z from N1(0,W ) with W a scalar, half of the time Hm : z ≥ 0 is valid and z̃m has
one level; the other time Hm : z ≥ 0 will be invalid and z̃m has zero levels. As a
consequent, the expected dimension of βl for Hm : βl ≥ r11 is a half.

The penalty term

PTm = 1 +

tk∑
l=1

wl(tk,W, Cm) l

can be seen as the expected dimension of the parameters. That is, the expected
dimension of β values plus 1 because of the unknown variance term σ2 in Σ = σ2S
with S a known matrix.

Until now, we have assumed in the calculation of the level probabilities that Σ is
known up to the constant σ2. Often Σ is unknown, in that case one should estimate
it to determine the level probabilities. However, when t = 1, no estimation of Σ = σ2

is required, since the level probabilities are invariant of positive constants like σ2 (see
Step 1). In contrast, Σ needs to be estimated for t > 1. One can estimate Σ by Σ̂,
see Equation (13.6); as is done in the software.

If Σ is estimated from the data, the dimension of Σ, which is the number of
unknown distinct elements of Σ, is (t + 1)t/2 instead of 1. Since the restrictions are
always on the β parameters and never on the elements of Σ, the number of unknown
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distinct elements is equal for all hypotheses of interest (Hm). So, although the penalty
should then (perhaps) be corrected, the correction is equal for all Hm for m ∈M.

In the next section, we will demonstrate evaluating hypotheses with the GORIC
for different types of models.

13.5 The GORIC illustrated

13.5.1 Analysis of variance (ANOVA)

In this section, we will illustrate the GORIC supported by real data for which the
descriptive statistics are available in Lievens and Sanchez (2007). They investigated
the effect of training on the quality of ratings made by consultants. One variable of
interest is the signal detection accuracy index, which “refers to the extent to which
individuals were accurate in discerning essential from nonessential competencies for
a given job” and is measured by “standardized proportion of hits - standardized
proportion of false alarms” (Lievens & Sanchez, 2007, p. 817). Three groups of
consultants are distinguished: 1) expert, 2) training, and 3) control. There are 21
raters in the expert group, 25 in the training group, and 26 in the control group.
Hence, the ANOVA model can be written as Equation (13.1) with t = 1, k′ = 3, and

N =
∑k
j=1 nj = 21 + 25 + 26 = 72, where d1, d2, and d3 denote group membership

variables. Since t = 1, we will drop the first subscript in the index for ease of notation
and use βj instead of β1,j . Note that for t = 1 no iteration is required between B̃m

and Σ̃m (see Section 13.3), and that Σ does not need to be estimated to calculate
the level probabilities (see Section 13.4).

The authors expected that accuracy of competency ratings would be higher among
experts and trained raters than among raters in the control group (i.e., β1 ≥ β3

and β2 ≥ β3) and furthermore, that it would be highest among raters who already
had competency modeling experience (i.e., β1 ≥ β2). These expectations can be
represented by the hypothesis H1 : β1 ≥ β2 ≥ β3. Another theory could be that
the accuracy of the training group is at least twice as high as the one in the control
group and that that of the export group is higher than that of the training group.
This leads to H2 : β1 ≥ β2 ≥ 2 β3. Since both can be bad/weak hypotheses, it is
informative to evaluate the unconstrained hypothesis (Hu) as well, in which there
are no restrictions on the parameters. Namely, its inclusion ensures that no weak
hypothesis is selected, since Hu will be preferred if the other two hypotheses are weak
/ do not fit the data. The set of hypotheses, therefore, consists of

H1 : β1 ≥ β2 ≥ β3,

H2 : β1 ≥ β2 ≥ 2 β3,

Hu : β1, β2, β3.

Table 13.1 displays the order-restricted means β̃mj (Equation (13.7)), the log

likelihood values log f(Y |X, B̃m, Σ̃m), the penalty terms PTm, and the GORIC values
(Equation (13.4)), for the three hypotheses of interest. Since the sample means are in
accordance with the restrictions in all the three hypotheses, the order-restricted means
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of these hypotheses are equal to the sample means. Therefore, the three hypotheses
have the same log likelihood and the distinction between the three is based on the
penalty, that is, the complexity of the hypotheses. Since H1 is less complex than H2

and Hu (i.e, PT1 < PT2 and PT1 < PTu), H1 is the preferred hypothesis. As a result,
the first theory is preferred over the second and it is not a weak theory.

m β̃m1 β̃m2 β̃m3 log f(Y |X, B̃m, Σ̃m) PTm GORICm
1 0.79 0.64 0.29 -24.85 2.84 55.38
2 0.79 0.64 0.29 -24.85 2.90 55.50
u 0.79 0.64 0.29 -24.85 4.00 57.70
Note. Bolding indicates the lowest value.

Table 13.1: GORIC of the three specified hypotheses.

13.5.2 Multivariate analysis of variance (MANOVA)

In this section, we will illustrate the GORIC supported by real data which are available
on page 10 of Silvapulle and Sen (2005) and in a report prepared by Litton Bionetics
Inc in 1984. These data were used in an experiment to find out whether vinylidene
fluoride gives rise to liver damage. Since increased levels of serum enzyme are inherent
in liver damage, the focus is on whether enzyme levels are affected by vinylidene
fluoride.

Hence, the variable of interest is the serum enzyme level. Three types of enzymes
are inspected, namely SDH, SGOT, and SGPT. To study whether vinylidene fluoride
has an influence on the three serum enzymes, four dosages of this substance are
examined. In each of these four treatment groups, ten male Fischer-344 rats received
the substance. The ANOVA model can be written as Equation (13.1) with t = 3,
k′ = 4, and N = 10. Hence, (y1i, y2i, y3i)

′ denotes the observations on the three
enzymes for rat i, d1 to d4 are the group membership variables, and βh,j denote the
mean response for dose j and dependent variable h.

If vinylidene fluoride induces liver damage, we expect that each serum level
increases with the dosage of the substance, see H1 below. Another theory could be that
there is no effect of dosage, see H0 below. Since both can be bad/weak hypotheses,
it is informative to evaluate the unconstrained hypothesis (Hu) in which there are no
restrictions on the parameters. The set of hypotheses, therefore, comprises

H0 : βh,1 = βh,2 = βh,3 = βh,4 for all h = 1, 2, 3,

H1 : βh,1 ≥ βh,2 ≥ βh,3 ≥ βh,4 for all h = 1, 2, 3,

Hu : βh,1, βh,2, βh,3, βh,4 for all h = 1, 2, 3.

Note that there are twelve parameters in total.
Since the covariance matrix Σ is unknown, it is estimated from the data by the

maximum likelihood estimator of Σ:
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Σ̂ =

 10.79750 −0.85750 −0.07000
−0.85750 226.75750 21.00500
−0.07000 21.00500 24.67500

 .
The formula of Σ̂ is displayed in Equation (13.6). This estimate, Σ̂, is used in
determining the level probabilities (see Section 13.4).

Table 13.2 displays the order-restricted means β̃mh,j in Equation (13.7). Further-

more, Table 13.3 presents the log likelihood values (log f(Y |X, B̃m, Σ̃m)), the penalty
terms (PTm), and the GORIC values in Equation (13.4), for the three hypotheses of
interest. The penalty values for both H0 and H1 are low(er), whereas the fit of Hu is
high(er). The support in the data for Hu is that much higher that it renders the lowest
GORIC value. Therefore, it is concluded that Hu is the preferred hypothesis. Notably,
although H1 is preferred over H0, H1 is a weak theory, since it is not preferred over
the unconstrained hypothesis Hu.

SDH SGOT SGPT

m β̃m1,1 β̃m1,2 β̃m1,3 β̃m1,4 β̃m2,1 β̃m2,2 β̃m2,3 β̃m2,4 β̃m3,1 β̃m3,2 β̃m3,3 β̃m3,4
0 24.13 24.13 24.13 24.13 105.38 105.38 105.38 105.38 59.70 59.70 59.70 59.70
1 24.13 24.13 24.13 24.13 105.37 105.37 105.37 105.37 63.00 63.00 60.64 52.16
u 22.70 22.80 23.70 27.30 99.30 108.40 100.90 112.90 61.90 63.80 60.20 52.90

Table 13.2: The order-restricted means (β̃mh,j) for dependent variable h, predictor j,
and Hypothesis Hm.

m log f(Y |X, B̃m, Σ̃m) PTm GORICm
0 -406.54 4.00 821.09
1 -396.85 7.48 808.66
u -388.80 13.00 803.61
Note. Bolding indicates the lowest value.

Table 13.3: The GORIC values of the three specified hypotheses.

13.A GORIC.exe user manual

This user manual will describe and illustrate the options available in GORIC.exe
(published along with this chapter and also available at http://staff.fss.uu.nl/

RMKuiper). It also includes a directory with the input and output files of the ANOVA
and MANOVA example given in this chapter. This program is made in Fortran

http://staff.fss.uu.nl/RMKuiper
http://staff.fss.uu.nl/RMKuiper
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90 using the Intel Visual Fortran Compiler 10.0 for Windows. This compiler uses
IMSL 5.0.

GORIC.exe is free, however, when results obtained with this program are
published, please refer to (the article based on) this chapter, Kuiper et al. (2011),
and Kuiper et al. (unpublished).

13.A.1 GORIC.exe

In the software, the notation differs a bit from the one in Equation (13.1). First,
all the d and x variables are combined, resulting in a N × k matrix X, like in
Equation (13.3). Note that a variable of group membership is obtained by filling
in ones and zeros at the appropriate places in a predictor/vector. Furthermore, the
order of the predictors is not of importance, that is, the group membership variables
do not need to come first. In addition, when there are no group variables, one
should include an intercept by adding a vector ones in X. Second, the parameters
are taken together as well, leading to a vector of tk parameters β with indices 1
to tk. Notably, when k = 0, they will be denoted by θ, a vector of t variable
/ group means. The order of the parameters corresponds to the order of the k
predictors and the order of the t dependent variables. Namely, the first k parameters
belong to the first dependent variable, · · · , and the last k parameters belong to
the last one. Stated differently, (β1, . . . , βk, . . . , β(t−1)k+1, . . . , βtk) corresponds to
β = (β1,1, . . . , β1,k, . . . , βt,1, . . . , βt,k). Bear in mind that β1, βk+1, . . . , β(t−1)k+1 reflect
the intercepts when the first column of X consists of ones.

As discussed in Step 4 in Section 13.3, we stop iterating when the absolute values
of the elements of B̃mp − B̃mp−1 and Σ̃m

p − Σ̃m
p−1 are less than C = 1e − 10. But,

to increase computing time, C is lowered to C = 1e − 9 after 50, 000 iterations
and to C = 1e − 8 after 100, 000 iterations. When still no convergence is achieved
after 200, 000 iterations, the program uses the current estimates B̃mP and Σ̃m

P and
displays these estimates together with B̃mP−1 and Σ̃m

P−1 in the dos box and the output
file. The consequence of lowering C is that the procedure might not result in good
approximations of B̃m and Σ̃m. However, slow convergence only occurs when the
hypothesis of interest does not fit the data.

13.A.2 Modification input files

No matter what analysis should be performed, two text files have to be modified (such
that they apply to your data), namely Input.txt and Data.txt.

It should be noted that:

• The names of the text files are fixed and cannot be changed. These files have to
be text files (also known as ASCII files).

• The format of these files should not be changed, that is, do not add empty lines
and do not delete lines containing labels.

• The data in Data.txt should be complete, that is, missing data are not allowed.
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Data.txt

The file Data.txt looks as follows (in the MANOVA example):

18 101 65 1 0 0 0

...

27 88 56 1 0 0 0

25 113 65 0 1 0 0

...

27 98 65 0 1 0 0

22 88 54 0 0 1 0

...

21 107 61 0 0 1 0

31 104 57 0 0 0 1

...

29 99 48 0 0 0 1

In the data file, a N×(t+k) matrix must be given. The t dependent variables must
be given first, followed by the k predictors. In this example, the predictors only consist
of group membership variables, denoted by d in Equation (13.1). In case there are no
group membership variables, a vector of ones should be included, which represents
the intercept. This can be done by specifying it in the input (see below) or by adding
a column of ones to your data file.

It should be stressed that a dot (“.”) should be used as decimal separator. When
a comma (“,”) is used, only the number proceeding it is read (e.g., “1,9” is read as
“1”). Furthermore, text or extra hard returns/enters should not be added to Data.txt.

Input.txt

The file Input.txt looks as follows (in the MANOVA example):

t k intercept N Stand x Stand y

3 4 0 40 0 0

Seed T

123 100000

M

3

Number of Equality (c_2) and Order (c_1) Restrictions for Each Model

(resulting in M lines with 2 numbers)

9 0

0 9

0 0

R for Model 1
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1 -1 0 0 0 0 0 0 0 0 0 0

...

0 0 0 0 0 0 0 0 0 0 1 -1

R for Model 2

1 -1 0 0 0 0 0 0 0 0 0 0

...

0 0 0 0 0 0 0 0 0 0 1 -1

R for Model 3

r for Model 1

0

...

0

r for Model 2

0

...

0

r for Model 3

t, k, and N: t is the number of dependent variable, k the number of predictors, and
N the number of observations, see Section 13.2.1; for k see also the item below.

intercept: This should be a 1 if you want the software to incorporate the intercept
and a 0 when you do not.
When you want the software to include a vector of ones to the set of predictors,
the software will change k into k + 1. Consequently, the restrictions should be
given for t(k+ 1) parameters as opposed to tk. Note that the first parameter (for
every dependent variable) will represent the intercept.
When your data (represented by the N × k matrix X) includes a vector of ones,
the number of predictors (k) should include the intercept (see Section 13.2.1).
In that case, “intercept” should be set to 0, otherwise the program will fail to
continue.

Stand x and Stand y: If you set “Stand x” to 1, the predictors (X) will be standar-
dized. The analogue hods true for “Stand y”.
The parameters regarding the same dependent variable are only comparable when
the x variables are standardized (see Section 13.2.2). Additionally, the parameters
belonging to different dependent variables can solely be examined if both the
dependent variables and the corresponding x variables (if any) are standardized.

Seed and T: The seed value is represented by “Seed” and the number of iterations
required for computing the penalty part of the GORIC by T . These are discussed
in Simulation step 4 in Section 13.4.

M, c 2, and c 1: M denotes the number of models/hypotheses, and c 2 = c2 and c 1 =
c1 the number of equality and order restrictions, respectively, see Section 13.2.2.

R and r: R is the restriction matrix and equals [R′2, R
′
1]′ and r the right hand side

and equals [r′2, r
′
1]′ (see Sections 13.2.2).

The models are of the form Hm : R2β = r2, R1β ≥ r1. It should be stressed that
the order of the restrictions are of importance: the c2 equality restrictions must
be given first and the c1 order restrictions second.
One must give a restriction matrix (R = [R′2, R

′
1]′) and a right hand side (r =
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[r′2, r
′
1]′) for each model. Hence, you need to fill in M restriction matrices with

each a heading and then M right hand side vectors with each a heading. Note
that there is only a heading when there are no restrictions, that is, in case of
the unconstrained model. Bear in mind that the ordering of the columns in the
restriction matrix depend on the ordering of the parameters. In the software, the
first k parameters belong to the first dependent variable (h = 1), · · · , and the last
k to the last dependent variable (h = t). Hence, in the example, β1 corresponds
to β1,1, β2 to β1,2, · · · , β5 to β2,1, · · · , and β12 to β3,4.

As in Data.txt, text or extra hard returns/enters should not be added to Input.txt,
except for headings for additional models.

13.A.3 Error messages

In the program GORIC.exe, error messages are incorporated to detect wrongly stated
input. However, it is possible to make a mistake that we have not foreseen. In that
case, check the input and compare it to the data. If you cannot solve the problem,
send the input and data file to R.M.Kuiper@uu.nl.

The requirement that R = [R′2, R
′
1]′ should be of full rank when r = [r′2, r

′
1]′ 6= 0

(see Kuiper et al. (2011) and Section 13.4) is investigated in the software. However,
note that R is not examined on redundant restrictions. Therefore, the software does
not detect hypotheses that are no relocated closed convex cones. A warning appears
when R is not of full rank when r 6= 0 and the user is asked to investigate whether
the additional restrictions are redundant. By pressing the enter button, the program
proceeds. It should be stressed that the program stops without a warning in case of
conflicting restrictions (e.g., Hm : βl ≤ −r11, βl ≥ r11 for r11 > 0). Moreover, the
GORIC is calculated in presence of non-redundant restrictions, like range restrictions
(e.g., Hm : βl ≥ −r11, βl ≤ r11 for r11 > 0), which is not a (relocated) closed
convex cone. In that case, the GORIC should be interpret with care for two reasons.
First, the GORIC is not (yet) defined for these types of restrictions. Second, the level
probabilities are now no longer invariant for β0 and σ2. In the software, we use β0 = 0.
As a consequence, Hm : βl = 0 is examined in determining the penalty.

13.A.4 Save and close

When you have modified Input.txt and Data.txt (such that it applies to your data),
you should save and close it.

13.A.5 Run GORIC.exe

When GORIC.exe is completed, the output file Output.txt will be created in the folder
you are working in.

Output.txt

The output is given in Output.txt and will look as follows (in case of the MANOVA
example):

mailto:R.M.Kuiper@uu.nl
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This program is free. However, when results obtained with this program

are published, please refer to:

Rebecca M. Kuiper, Herbert Hoijtink, and Mervyn J. Silvapulle (2011).

An Akaike-type Information Criterion for Model Selection under

Inequality Constraints.

Biometrika, 98 (2), 495-501.

Rebecca M. Kuiper, Herbert Hoijtink, and Mervyn J. Silvapulle

(unpublished).

Generalization of the Order-Restricted Information Criterion for

Multivariate Normal Linear Models.

Rebecca M. Kuiper and Herbert Hoijtink (unpublished).

A Fortran 90 Program for the Generalization of the Order-Restricted

Information Criterion.

N.B. The latter is included in this software and the second is

available upon request (R.M.Kuiper@uu.nl).

-- Summary of observed data --

- Number of observations (N) -

N = 40

- Sigma estimated from the data -

h, estimated Sigma

1 10.79750 -0.85750 -0.07000

2 -0.85750 226.75750 21.00500

3 -0.07000 21.00500 24.67500

- Order-restricted betas -

Note that the first 4 parameters belong to the first dependent

variable, ..., and the last 4 to the last dependent variable.

Group number: 1 2 3 4 5 6 7 8 9 10 11 12
Sample betas: 22.70 22.80 23.70 27.30 99.30 108.40 100.90 112.90 61.90 63.80 60.20 52.90

Hypothesis 1 24.13 24.13 24.13 24.13 105.38 105.38 105.38 105.38 59.70 59.70 59.70 59.70
Hypothesis 2 24.13 24.13 24.13 24.13 105.37 105.37 105.37 105.37 63.00 63.00 60.64 52.16
Hypothesis 3 22.70 22.80 23.70 27.30 99.30 108.40 100.90 112.90 61.90 63.80 60.20 52.90

-- GORIC --

The value of the Generalized Order-Restricted Information Criterion

(GORIC) = -2 * log likelihood + 2 * penalty:
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for Hypothesis 1, GORIC = -2 * -406.54 + 2 * 4.00 = 821.09

for Hypothesis 2, GORIC = -2 * -396.85 + 2 * 7.48 = 808.66

for Hypothesis 3, GORIC = -2 * -388.80 + 2 * 13.00 = 803.61

According to the Generalized Order-Restricted Information Criterion,

out of the set of hypotheses the preferred one is number 3,

which is the unconstrained model, that is, the model without

restrictions on the parameters.

Number of observations (N): See Section 13.2.1.
Sigma estimated from the data: In the software, Σ is estimated by Σ̂ (Equation

(13.6)), the maximum likelihood estimator of Σ. Bear in mind that Σ is only
estimated when t > 1.
For more details see Section 13.4.

Order-restricted betas: The order-restricted βs can be found in Equation (13.7) see
also Sec-tion 13.A.1. Note that the subscripts are 1 to 12 in the software, where
β̃m1 corresponds to β̃m1,1, β̃m2 to β̃m1,2, · · · , β̃m5 to β̃m2,1, · · · , and β̃m12 to β̃m3,4 in
Equation (13.1).

GORIC: The expression of the GORIC is displayed in Equation (13.4).
The model/hypothesis with the lowest GORIC value is the preferred one:
Hypothesis “number 3”, that is, Hu : β1, β2, β3, β4, β5, β6, β7, β8, β9, β10, β11, β12.
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Dutch summary: Samenvatting

Menig onderzoeker heeft op voorhand een verwachting over de onderlinge relatie
tussen model parameters, bijvoorbeeld groepsgemiddelden. Zo verwachten Lievens
and Sanchez (2007) voor hun drie groepen dat de groepsgemiddelden afnemen over
de groepen, zie pagina 11. Dit kan worden weergegeven door de hypothese H1 :
θ1 > θ2 > θ3. Restricties met een groter-dan-teken (>) en/of een kleiner-dan-teken
(<) worden ongelijkheidsrestricties genoemd. Ondanks dat er vaak hypothesen zijn
te formuleren met betrekking tot de relatie tussen de parameters, wordt veelal de
klassieke nulhypothese (in het voorbeeld: θ1 = θ2 = θ3) getoetst. In nulhypothese
toetsen kan alleen de nulhypothese verworpen worden. Ongeacht het resultaat, geeft
dit nog steeds geen inzicht in de verwachting van de onderzoeker. Namelijk, wanneer
de nulhypothese niet wordt verworpen, weet de onderzoeker helemaal niets over de
relatie tussen de parameters; indien het wel wordt verworpen, weet de onderzoeker
alleen maar dat niet alle parameters gelijk zijn. De onderzoeker zal dus nog meer
toetsen (namelijk, paarsgewijze toetsen) moeten uitvoeren om er achter te komen
welke parameters niet gelijk zijn. Let wel, meerdere keren toetsen verhoogt de
Type I fout, dat is, de kans dat een nulhypothese verworpen wordt terwijl deze
correct is. Daarnaast geeft paarsgewijs toetsen paren/groepen van parameters die
wel of niet significant van elkaar verschillen. Dit geeft vaak nog steeds weinig inzicht
in de hypothese waarin je gëınteresseerd bent. Daarom zou een onderzoeker zijn
verwachtingen direct moeten evalueren. In dit proefschrift zijn meerdere methoden
die hypothesen evalueren met elkaar vergeleken en zijn sommigen van hen uitgebreid
zodat ze toepasbaar zijn op meer algemene restricties en/of meerdere typen modellen.
Verder wordt er ingegaan op het omgaan met missende waarden in de data en op het
combineren van resultaten uit meerdere onderzoeken.

In Part I zijn verscheidene methoden met elkaar vergeleken die toegepast
kunnen worden op het variantie-analyse (ANOVA) model. Hierbij is gekeken naar
hypothese toetsen en model selectie technieken. Een ander onderscheid dat gemaakt
is is exploratieve en confirmatieve methoden. Met de eerste worden alle mogelijke
gelijkheidsrestricties bekeken, dat is, restricties zonder een groter-dan-teken (“>”)
en een kleiner-dan-teken (“<”); oftewel restricties waarin een groepsgemiddelde wel
(“=”) of niet (“,” of “6=”) gelijk aan een ander gemiddelde is. Met de tweede
worden specifieke hypothesen geëvalueerd die op voorhand door de onderzoeker
zijn gespecificeerd. Hoofdstuk 2 en 3 laten zien dat confirmatieve model selectie de
voorkeur verdient boven de andere methoden. De twee confirmatieve model selectie
technieken zijn het ongelijkheidsgerestricteerde informatie criterium (order-restricted
information criterion; oric) en Bayesiaanse model selectie (BMS). Let wel, indien



220 14 Dutch Summary: Samenvatting

geen zinnige hypothesen kunnen worden gespecificeerd, zal er exploratief te werk
moeten worden gegaan. Verder zijn in Hoofdstuk 3 de eigenschappen van confirmatieve
technieken onderzocht wanneer niet aan de homogeniteitsassumptie voldaan wordt,
dat is, wanneer de groepsvarianties niet gelijk zijn. Indien de groepsgroottes gelijk
zijn, is er geen (noemenswaardig) effect van de schending op het functioneren van
de confirmatieve methoden. In de andere gevallen is er wel een effect. De richting en
de grootte van het effect hangen af van de grootte van de verschillen in gemiddelden
(effectgrootte) en van de verhouding tussen de groepsvariantie en groepsgroottes.
Wanneer de groepen met de kleinste varianties behoren tot de groepen met de grootste
groepsgroottes, is het effect van de schending op het functioneren van de confirmatieve
methoden het grootst.

In Part II is het oric van Anraku (1999) uitgebreid. Het oric kan namelijk alleen
worden toegepast in ANOVA modellen op simpele ongelijkheidsrestricties (simple
order restrictions): θ1 ≤ . . . ≤ θk waarbij “≤” vervangen mag worden door “=”.
In Hoofdstuk 4 is het oric zo aangepast dat het kan worden toegepast in ANOVA
modellen op hypothesen met meer algemene restricties: R1θ ≤ 0, R2θ = 0 met R1 en
R2 restrictiematrices. Met deze uitbreiding, genoemd het goric (generalized oric),
kunnen alle lineaire combinaties van gemiddelden onderzocht worden. Een simulatie
studie laat zien dat het goric een goede methode is om de beste uit een verzameling
van hypothesen te selecteren. In Hoofdstuk 5 is het goric uitgebreid zodat het (meer)
algemene restricties in multivariate lineaire modellen kan evalueren. Verder is er een
goric afgeleid (genaamd de goricc) die toegepast kan worden indien er een kleine
steekproef is. Deze werkt met name goed in regressie modellen. In ANOVA modellen
kan wanneer er weinig data zijn ook het goric zelf gebruikt worden.

Tot Part III zijn methoden besproken die toepasbaar zijn op compleet geobser-
veerde data sets, maar vaak zijn niet alle data punten geobserveerd en zijn er dus
missende waarden. Er bestaan methodes en software programma’s om met missende
waarden om te gaan bij het schatten van parameters. Er is echter weinig bekend over
het omgaan met missende waarden in model selectie op basis van informatie criteria.
Hoofdstuk 8 beschrijft hoe een onderzoeker dit kan doen. Het meest belangrijke is het
model dat wordt aangenomen als onderliggend data model, welke wordt gebruikt om
de missende waarden te schatten. Men moet het meest ruime model nemen, dat is, het
model met alle mogelijke verklarende variabelen / voorspellers, zodat de schattingen
van de missende waarden zuiver zijn. Indien de schattingen worden gebaseerd op de
te onderzoeken hypothese, zijn de schattingen van de missende waarden vaak niet
zuiver en geven ze meer steun aan die hypothese dan wanneer het meeste ruime
model wordt gebruikt. Wanneer er veel missende waarden zijn, kan dit leiden tot
het verkiezen van de verkeerde hypothese. Let daarom goed op hoe er in bestaande
software programma’s wordt omgegaan met missende waarden en met name welk
onderliggend data model wordt gebruikt om de missende waarden te schatten.

Naast model selectie op basis van informatie criteria kan men ook BMS gebruiken
om ongelijkheidsrestricties te evalueren. BMS staat bekend om het meenemen van
voorkennis en om het kwantificeren van het bewijs voor een hypothese. Hoofdstuk 10
in Part IV laat zien hoe je het bewijs voor een teken van een parameter (positief
of negatief) uit meerderde onderzoeken kan combineren, waarbij de variabelen in elk
onderzoek hetzelfde concept meten. Dit is een praktische methode aangezien er geen
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originele data sets beschikbaar hoeven te zijn, maar alleen twee parameterschattingen
per onderzoek. De evaluatie van een voorbeeld gebaseerd op echte studies en van vijf
hypothetische situaties laat zien hoe de methode werkt en dat het goed werkt.

Om de beschreven methoden toegankelijk te maken voor de onderzoeker, is er voor
iedere methode een software applicatie gemaakt. De applicaties met betrekking tot de
confirmatieve ANOVA methoden en het goric zijn uitgebreid beschreven in Part V.
De software applicaties van alle methoden beschreven in dit proefschrift is te vinden
op

http://staff.fss.uu.nl/RMKuiper

http://staff.fss.uu.nl/RMKuiper
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