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1. Introduction

It is of no doubt that superstring theory has an underlying higher symmetry unifying

those of general relativity and Yang-Mills theory [1]. Furthermore, the current under-

standing of a web of dualities [2][3] imply that all known superstring theories including

11-dimensional supergravity should be di�erent weak-coupling limits of one underlying

quantum theory of some Mystery kind [3][4]. Unfortunately, the precise nature of such

an underlying theory still remains obscure. A strong hint pointing towards an underlying

geometrical principle of superstrings has emerged from the dramatic revival of D-branes by

Polchinski [5]. The description of D-branes, as originally pointed out by Witten, suggests

that the spacetime coordinates of strings should be treated as non-commuting matrices [6].

This consideration eventually led to the program of matrix theory originated from the

proposal of matrix M theory by Banks-Fischler-Shenker-Susskind [7]. More recently Motl

[8], Banks-Seiberg [9], and Dijkraaf-Verlinde-Verlinde [10] developed matrix string theory

by compactifying M(atrix) theory on a circle [7][11]. Those formulations may be viewed

as non-perturbative second quantized Green-Schwarz strings [12] in the light-cone gauge.

The purpose of this paper is to initiate a program toward M-theory closely related

with the manifestly covariant Ramond-Neveu-Schwarz (RNS) formulation of string [13].

We believe that the non-commutative nature of spacetime coordinates of strings is clearly

directing us to formulate superstring theory in a phase in which general covariance, as well

as other higher symmetry, is unbroken. The latter proposal was made by Witten almost

a decade ago after introducing a new type of generally covariant quantum �eld theory

called topological �eld theory (TFT) [14]. In fact, there are many similarities between

the RNS string and TFT. From the spacetime viewpoint, the world-sheet super-charges

transform as scalars, which property is a hall-mark of TFT. It is one of string magics

that the RNS formulation of string leads to space-time supersymmetry after the GSO

projection [15]. It is very natural to relate the non-commutative nature of \space-time"

coordinates with the strings in the unbroken phase of higher symmetry. The purpose of

this paper is to demonstrate that superstring theory can indeed be formulated starting

from the above two suggestions. Furthermore, our construction will naturally lead us to

an underlying model with manifest 11-dimensional covariance. Here the non-commutative

\space-time coordinates" of strings will be further generalized to non-commutative anti-

symmetric tensors. The usual space-time picture and the free superstrings appear in the

various limits of the model after compacti�cations.

In Sect. 4, we start from a system of ten N �N matrix functions X�(�+; ��) which

are functions of two parameters �� parameterizing a cylinder � = S1 � R with trivial
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canonical line bundle. They carry global SO(9; 1) vector indices � = 0; : : : ; 9. We endow

our system with the natural metric

jÆXj2 =

Z
d�+d��g��Tr (ÆX

�ÆX�) ;

where g�� is the Minkowski metric with signature (9; 1). Following the general idea of

topological �eld theory (TFT) [14], we will construct an almost unique theory by gauge

�xing the \world-sheet" and \spacetime" Poincar�e symmetries. In particular, the obvious

symmetry for arbitrary shifts X� ! X� + ÆX� in the \spacetime" viewpoint implies that

we are dealing with a topological �eld theory on the \world-sheet". Now the most natural

object to study in our system is the equivariant cohomology. It turns out that the most

suitable tool is the balanced equivariant cohomology formalized by Dijkraaf and Moore [16].

This is an extremely powerful and simple tool which leads to an almost unique construction

of corresponding TFT called Balanced TFT (BTFT). A typical example of a BTFT is the

twisted N = 4 super-Yang-Mills theory studied by Vafa and Witten [17]. Our equivariant

cohomology can be summarized by a transformation law Q�X
� = i �� and the following

commutation relations between the two generators Q�

Q2
+ = �i

@

@�+
� iÆ�++; fQ+; Q�g = �2iÆ�+�; Q2

� = �i
@

@��
� iÆ��� ;

where Æ� denote the U(N) transformation generated by �. One can regard Q� as the

BRST-like charges for the symmetry of the arbitrary shift of X� which are nilpotent mod-

ulo a U(N) gauge transformation and translations along ��. The \world-sheet" Lorentz

invariance will be realized by global ghost number symmetry, which should be anomaly-

free. We have a unique realization of the algebra and the action functional satisfying our

criterion. We will claim that the resulting theory describes a covariant second quantized

Ramond-Neveu-Schwarz (RNS) string in the unbroken phase.

Our model has a free string limit where the original RNS string is recovered. The

equivariant cohomology generators Q� will be the left and right world-sheet super charges.

The ghost �elds  �� for the shift X� ! X�+ ÆX� will be the left and right moving world-

sheet fermions. The direct relation of the RNS formalism rather than the space-time

supersymmetric Green-Schwarz (GS) formulation is not surprising. In fact, our formulation

is a natural and presumably unique generalization of the RNS superstring to incorporate

the non-commutative \spacetime" coordinates of strings. We will argue that the transition

between the unbroken and broken phases of general covariance should be explained by some

of the standard quantum properties of RNS superstring.

Our construction will inevitably lead us to introduce an anti-symmetric tensor of rank

2. We will argue that it is required and compatible with the existence of o�-diagonal parts
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of \space-time coordinates". Our construction will naturally lead to an underlying theory

with manifest eleven-dimensional covariance, discussed in Sect. 5. The theory is again

a stringy BTFT but with anti-symmetric tensors as \space-time coordinates" of strings.

We will show that the free RNS string appear in a limit after compactifying the model on

a circle. By compactifying further on a circle, we will show the emergency to two types

of string limits. The S-duality of type IIB string will be manifest in our formulations.

The anti-symmetric tensor \coordinates of strings" BIJ(�; � ) is somewhat analogous to

the membrane in M theory. This motivates us to introduce a new rank 5 anti-symmetric

tensor JIJKLM (�; � ) as the �ve brane in M theory. We again de�ne a unique extension

with the new degree of freedom. This will lead us to �nd the most important equations in

our paper,

[BIK; BJ
K ] + �[JIKLMN ; JJ

KLMN ] = 0;

[BIJ ; JJ
KLMN ] = 0:

Our conjecture will be that the moduli space of M theory is described by the above equa-

tions.

In Sect. 2 we discuss the case of constant matrices as the warm-up example, which has

some interests in its own right. We will review some relevant properties of the balanced

equivariant cohomology and construct, presumably, the simplest balanced topological �eld

theory. In Sect. 3, we will also consider four-dimensional settings of our constructions. We

will discuss some close relations with the balanced topological Yang-Mills theory, BTYMT

in short, (the Vafa-Witten model of twisted N = 4 SYM theory) in four-dimensions. We

will argue that BTYMT describes a certain sub-sector of four-dimensional strings in the

unbroken phase of general covariance. Here the anti-symmetric tensor �elds will play an

important role when relating with the monads (the ADHM) construction of instantons. We

will use some crucial results of DVV [10] for interpreting our model as a second quantized

superstring theory. In our viewpoint, they also demonstrated how some of the known

properties of strings can be seen to arise in the unbroken phase.

2. Almost Universal Monads

Throughout this paper we will consider a system (or space)W of ten matricesX� where

�; � = 0; : : : ; 9, in the adjoint of an U(N) group 1. There is a natural U(N) symmetry on

acting in this space

X� ! gX�g�1; g 2 U(N): (2:1)

1 In general we will allow a matrix X
� to degenerate. This is analogous to the extension of

vector bundles to sheaves.
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We postulate a SO(9; 1) global symmetry acting on the index �; � = 0; : : : ; 9. Under

SO(9; 1) the X� transform as components of a vector. On W there is a natural metric

which is invariant under U(N) � SO(9; 1)

jÆXj2 = Tr (���ÆX
�ÆX�) ; (2:2)

where ��� denotes the usual Minkowski metric with signature (9; 1).

We want to construct a theory with \spacetime" Poincar�e invariance as well as U(N)

symmetry. For the U(N) symmetry, we demand the system fX�g to be equivalent to the

system fX 0�g if they are related by X 0� = gX�g�1, for g 2 U(N). In general, we can

always associate a center of mass coordinate to the X� in R9;1 by x� = N�1TrX�. The

translations of the base spacetime R9;1 act on the matrices X� by X� ! X� + w�IN.

Together with the global SO(9; 1) symmetry, we interpret the above as the \spacetime"

Poincar�e symmetry. The actual spacetime picture emerges when all of the X� commute

with each other, hence can be simultaneously diagonalized asX� = diag(x�` ). By regarding

the eigenvalues x�` as coordinates of points (instantons) x` in R
9;1 we get indistinguishable

N-tuple of points in R9;1. In this limit, the U(N) symmetry is generically broken down

to U(1)N with the Weyl group acting on the eigenvalues. We will refer to this limit as

the broken phase. We should note that all we said above are exactly the properties of the

ADHM description [18] of Yang-Mills instantons.

2.1. Equivariant Cohomology

In the space of matricesW the most natural object is the U(N) equivariant cohomology.

We introduce a generator Q+ of the U(N) equivariant cohomology on W satisfying

Q2
+ = �iÆ�++ ; (2:3)

where Æ�++ denote U(N) transformation generated by �++, which is a N �N matrix in

the adjoint representation of U(N). We have the basic action of the algebra

Q+X
� = i �+; Q+ 

�
+ = �[�++;X

�]; Q+�++ = 0; (2:4)

where  �+ is a N �N matrix with anti-commuting matrix elements. We de�ne an additive

quantum number U and assign U = 1 to Q+. We restrict to the U(N)-invariant subspace

by setting Q2
++ = 0, which reduces to ordinary cohomology provided that U(N) acts freely.

More physically we can interpret the transformation law Q+X
� = i �+ as the BRST-like

symmetry for the invariance under the arbitrary shift X� ! X� + ÆX�. Thus  �+ is

nothing but a ghost. The second transformation law in (2.4) involves the redundancy of

our description. The general idea of TFT is to study a certain moduli problem using the
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action functional constructed by gauge �xing the symmetry denoted by Q+. The moduli

space is de�ned by the solution space, modulo gauge symmetry, of certain �eld equations

(matrices in our case). Then,  �+ is required to satisfy certain linearized equation as well

as to be orthogonal to the direction of the U(N) rotation.

We can extend our equivariant cohomology to its balanced version [16]. In the balanced

equivariant cohomology one introduces another fermionic charge Q� carrying U = �1 and

the corresponding copy of (2.4),

Q�X
� = i ��; Q� 

�
� = �[���;X

�]; Q���� = 0; (2:5)

satisfying

Q2
� = �iÆ��� : (2:6)

To make the algebra of our system complete we have to decide about the mutual com-

mutation relation between the two generators Q�. The simplest possibility might be

fQ+; Q�g = 0. This choice however is inconsistent. Thus we are led to introduce another

generator of the U(N) symmetry which has U = 0. We have to introduce a new matrix

�+� and postulate

fQ+; Q�g = �i2Æ�+�: (2:7)

The commutation relations (2.3) and (2.6) together with (2.7) determine the superalgebra

in a unique way. Note that the three separate U(N) symmetry generators (�++; �+�; ���)

carry U = (2; 0;�2). We will usually denote �++ = �, �+� = C and ��� = ��. To

complete the action of the generators Q� we further have to introduce auxiliary matrices

H�. They are introduced in the algebra as

Q+ 
�
� = +H� � [C;X�];

Q� 
�
+ = �H� � [C;X�];

(2:8)

which agrees with (2.7), i.e., fQ+; Q�gX� = �2i[C;X�]. To make the algebra closed, we

need to impose the following consistent conditions

Q+
��+ 2Q�C = 0;

Q��+ 2Q+C = 0;

Q2
+
�� = �i[�; ��];

Q2
�� = �i[ ��; �];

fQ+; Q�gC = 0: (2:9)

These may be seen as the Jacobi identities of the algebra. The solution is

Q+C = i�+;

Q�C = i��;

Q+
�� = �2i��;

Q�� = �2i�+;

Q+�� = +
1

2
[�; ��];

Q��+ = �
1

2
[�; ��];

Q+�+ = �[�;C];

Q��� = �[ ��;C];
(2:10)
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Finally consistency with the algebra leads to a transformation of the auxiliary �elds H�

given by

Q+H
� = �i[�; ��] + i[C; �+] + i[�+;X

�];

Q�H
� = +i[ ��; �+]� i[C; ��]� i[��;X

� ];
(2:11)

One can check that the algebra is closed.

Before proceeding we summarize the contents of our matrices. We have ten commuting

matricesX� and their fermionic partners  �+ and  ��, with U = 1 and U = �1 respectively

They carry an SO(9; 1) vector index � = 0; : : : ; 9. We have 10 bosonic auxiliary matrices

H� carrying U = 0 and an SO(9; 1) vector index. We also have three bosonic matrices �, C

and �� carrying U = 2, U = 0 and U = �2 respectively. Those matrices have superpartners

�+ and �� with U = 1 and U = �1, respectively. Note that our algebra has an internal

sl2 structure [17][16]. The matrices X� form ten copies of an sl2 singlet, ( �+;  
�
�) form

ten copies of an sl2 doublet, (�;C; ��) form an sl2 triplet and (�+; ��) form an sl2 doublet.

All this can be nicely summarized by the following diagram [16]

U = +2

U = +1

U = 0

U = �1

U = �2

�elds

 �+
% &

X� H�

& %
 ��

; consistency

�++

&
�+

%
�+�

&
��

%
���

(2:12)

The sl2 symmetry of our algebra is referred to as the balanced structure. The symmetry

under �lliping the signs of the U-number implies that the net U-number of fermionic

zero-modes is always zero. We will refer the �rst multiplet to a vector multiplet.

2.2. Action Functional

Now we have enough machinery to de�ne the action functional, which should have

SO(9; 1)�U(N) symmetry and is invariant under the N = 2 symmetry generated by Q�.

As a BTFT we also require the action functional to be invariant under the sl2 symmetry.

In particular, the action functional should have U = 0. The desired action functional turns

out to be almost uniquely determined.2 To begin with we de�ne

S1 = Q+Q�F1; (2:13)

2 This is a general property of BTFT [16].
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derived of a supersymmetry transformation of the action potential

F1 = �Tr
�
2 �+ �� + ���+

�
: (2:14)

Here F1 is uniquely determined by the global SO(9; 1) and sl2 symmetries. We �nd

S1 =Tr

�
2[�;X�][ ��;X� ] + 2i ��[�; ��] + 2i �+[ ��; �+] + 4i[C; �+] ��

+ 4i[X�;  �+]�� + 4i[X�;  ��]�+ � 2[C;X�][C;X�] + 2H�H�

� [�;C][ ��;C]� i��[�; ��]� i�+[ ��; �+] + 2i�+[C; ��]�
1

4
[�; ��]2

�
:

(2:15)

For our purpose the above action functional is not good enough. We need to generate

a potential term V = [X�;X� ]2 for the X� such that these matrices commute in the at

direction. To get this term we need a cubic action potential term F0. However there are no

sl2 and SO(9; 1) invariant combinations of the existing matrices X� such that Q+Q�F0

generates this potential. Consequently we have to introduce one more matrix multiplet.

We introduce a new adjoint matrix B�� carrying U = 0 which is anti-symmetric in the

SO(9; 1) indices. We have a corresponding algebra

Q+B
�� = i���+ ;

Q�B
�� = i���� ;

Q+�
��
+ = �[�;B��];

Q+�
��
� = +H�� � [C;B��];

Q��
��
+ = �H�� � [C;B�� ];

Q��
��
� = �[ ��;B�� ];

(2:16)

We will refer to the above multiplet as the anti-symmetric tensor multiplet. We de�ne

S0 + S2 = Q+Q�

�
F0 + F2

�
; (2:17)

with

F0 = �Tr

�
iB��

�
[X�;X� ] +

1

3
[B��; B�

�]

��
; F2 = �Tr

�
���+ ����

�
; (2:18)

which are again the only two sl2 and SO(9; 1) invariants, which do not introduce bare

mass.3

3 There are other combinations, which are redundant. We will consider the massive deformations

in a later section.

7



Working through the algebra, we obtain the complete action

S0 + S2 =Tr

�
[�;B�� ][ ��;B�� ] + i���� [�; ����] + i���+ [ ��; ���+] + 2i[C;���+ ]����

+ 2i[B��; �
��
+ ]�� + 2i[B��; �

��
� ]�+ � [C;B�� ][C;B��] +H��H��

�H��
�
[X�;X� ] + [B��; B�

�]
�
+ 2H�[B�� ;X

� ]� 2iB�� [ 
�
+;  

�
�]

� 2iB�� [���+; ���] + 2i���� [X�;  �+]� 2i���+ [X�;  ��]

�
:

(2:19)

Now we de�ne the total action S by

S = S0 + S1 + S2: (2:20)

We can integrate out the auxiliary matrices H� and H�� by setting

H� = �
1

2
[B�� ;X

� ]; H�� =
1

2
[X�;X� ] +

1

2
[B��; B�

�] (2:21)

to get

S = Tr

�
2[�;X�][ ��;X� ] + 2i ��[�; ��] + 2i �+[

��; �+] + 4i[C; �+] ��

+ 4i[X�;  �+]�� + 4i[X�;  ��]�+ � 2[C;X�][C;X�]� [�;C][ ��;C]

+ 2i�+[C; ��]� i��[�; ��]� i�+[ ��; �+]�
1

4
[�; ��]2 + [�;B�� ][ ��;B�� ]

+ 2i[C;���+ ]���� + i���� [�; ����] + i���+ [ ��; ���+] + 2i[B��; �
��
+ ]��

+ 2i[B��; �
��
� ]�+ � 2iB�� [ 

�
+;  

�
�]� 2iB�� [���+; ��

�
�]

+ 2i���� [X�;  �+]� 2i���+ [X�;  ��]� [C;B��][C;B��]

�
1

4

�
[X�;X� ] +

1

4
[B��; B�

�]

�2

�
1

2
[B��;X� ]

2

�
:

(2:22)

This action is invariant under the Q� symmetries after replacing H� in (2.8) with the

expression in (2.21). As a TFT, we study the �xed points of Q� symmetry. First of all,

from (2.8). (2.16) and (2.21), the �xed point equations Q� 
�
� = 0 and Q��

��
� = 0 imply

H� = H�� = 0, which is equivalent to

[X�;X� ] +
1

4
[B��; B�

�] = 0; [B�� ;X� ] = 0; (2:23)
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and

[C;X�] = [C;B��] = 0: (2:24)

We also have other �xed point equations

[�AB; �A0B0 ] = 0; [�AB;X
�] = [�AB; B

�� ] = 0: (2:25)

These are the equations for the localization which determine the moduli space we want to

study. The ���� ,  �� and �� equations of motion, modulo the U(N) symmetry generated

by �;C; �� are

[X�;  �� ]+[B��; ���
�] = 0; [���� ;X� ]+[B��;  �� ] = 0; ��� [X

�;  ��]+[B��; ����] = 0:

(2:26)

The �rst two equations can be interpreted as the linearization of (2.23) and the last equa-

tion can be interpreted as a kind of Coulomb gauge �xing condition.

We de�ne the partition function Z0 by

Z0 =
1

Vol(G)

Z
W
(Lie(G)
Lie(G)�)

DXD +D �DBD�+D��D�D ��DCD�+D�� � e�S0 : (2:27)

Note that we are dealing with a topological theory so that the stationary phase evaluation

is exact. In other words the path integral is localized to the space of supersymmetric

minima of the action given by (2.23). At this point we like to emphasis the distinction

between X� and �AB. Note that we introduced �AB as the generators of U(N) symmetry

of the matricesX�. In other words the matrices �AB are responsible for pure gauge degrees

of freedom. So the equations [�AB; �A0B0 ] = 0 de�ne the at directions. We can diagonalize

�AB simultaneously. Then the at direction can be identi�ed with SymN(R3). Now we

see that, from (2.24), the supersymmetric minimum con�guration is a multiply strati�ed

space parameterized by a point in SymN(R3). Note that the supersymmetric minimum

depends only on a particular stratum of SymN(R3) determined by the symmetry breaking

pattern of U(N). At generic points in SymN(R3) the U(N) symmetry is broken down to

U(1)N . In a diagonal some non-Abelian symmetry is restored.

The simplest solutions to (2.23) are given by the case where the ten matrices X� are

mutually commuting and B�� = 0. So fX�g can be simultaneously diagonalized. Such a

diagonalization depends on a point in SymN(R3). We can interpret the eigenvalues x�` ,

` = 1; : : : ;N , as the positions of N unordered points in a space-time R9;1. In other words,

we are describing a system of N point-like instantons in ten-dimensional Minkowski space-

time as the supersymmetric minimum. Now our abstract global symmetry group SO(9; 1)

can be interpreted as the Lorentz symmetry of R9;1.
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How about more general solutions of (2.23) ? For example, we can imagine solutions

with non-vanishing B�� , either commuting or non-commuting one. For non-commuting

B�� , leading to non-commutingX�, we may use some analogy with the monads (ADHM)

construction of Yang-Mills instantons. Those degrees of freedom may be attributed to the

size and relative degrees among instantons. For commuting and non-trivial solutions of B��

we certainly have problems in the space-time interpretations. Furthermore, we can allow

more general solutions which break our SO(9; 1) symmetry. Then some components of B��

can be interpreted as positions of instantons living in the lower dimensional space. Such

new matrices transform as vectors under the smaller Lorentz group de�ning another \non-

commuting" space-time coordinates of instantons. We will refer to all those solutions as

almost universal instantons. The systems we are describing can be interpreted as monads

of such instantons which we will refer to as almost universal monads.4

There are many other issues concerning the model constructed in the section. Since we

will have to repeat those in our description of monadic string, we will not discuss them here.

But we like to clarify the role of the anti-symmetric tensor B�� . It was not entirely clear, in

the treatment of this section, how we can interpret the eigenvalues of B�� . However, we had

to introduce B�� to de�ne a meaningful theory. Note that B�� was introduced because of

the non-commutative nature of \spacetime" coordinates of instantons and the requirement

ofcovariance. Thus we can naturally expect that the existence of \spacetime coordinates"

as antisymmetric tensors may be just the direct requirement for the covariant description

of the existence of o�-diagonal parts of \spacetime coordinates". In the next section, we

will discuss these issues for the similar description of instantons in four-dimensions. In

later sections, we will return to those points again.

3. Extended Monads and N = 4 SYM Theory in Four-Dimensions

In this section we will consider a system of four matrices Xi, i = 0; 1; 2; 3 rather than

ten matrices. To relate with Yang-Mills instantons we assume the Xi to transform as

the components of a vector for SO(4). We will repeat the construction of the previous

section in the new setting. We will �nd relations with the monads (the ADHM) description

of Yang-Mills instantons. We will discuss the interpretation of \space-time coordinates"

which transform as tensors or scalars. We also discuss close relations with the Vafa-Witten

model of twisted N = 4 SYM theory (or BTYMT) on a four-manifold [17][16]. Using the

structure of BTYMT, we will recall Witten's arguments on the unbroken phase of quantum

gravity.

4 Note that above spacetime interpretation are motivated from the ADHM description of Yang-

Mills instantons as well as Witten's description of D-instantons (D-branes in general). Witten

also mentioned the intriguing similarity between the two cases. This observation is, actually, the

starting point of our investigation.
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3.1. A Description of Instantons in four-dimensions

This sub-section can be viewed as a continuation of the paper [19], where the mon-

ads (the ADHM equation) construction of Yang-Mills instanton was extended in a way

motivated by the Vafa-Witten equation of N = 4 SYM theory and its relation with the

Seiberg-Witten equation. The equations of extended monads are simply the reduction of

the Vafa-Witten equations to zero-dimensions. We can repeat the same constructions as

in the two previous subsections.

It is possible to break half the supersymmetry maintaining only the symmetry gen-

erated by Q+. An important perturbation satisfying this constraint is given by adding

bare mass terms with non-zero U-number to the action. Since the theory in the bulk is

U-number anomaly free, such a perturbation does not change the theory unless we take

a very special limit. We may view such perturbations as looking to the system through

a magnifying glass. Essentially the same perturbation is discussed in [17] and [20]. The

resulting theory will be localized to the �xed point locus of this Q+ symmetry given by

1

2
[Xi;Xj ] +

1

2
[Bi`; Bj

`]� [C;Bij ] = 0;

[Xi; B
ij ] + [Xj ; C] = 0:

(3:1)

supplemented by the equations

[�; ��] = 0; [�; Ti] = 0: (3:2)

We can decompose the anti-symmetric tensor Bij under SO(4) into its self-dual and the

anti-self-dual parts

Bij = B+
ij +B�ij ; (3:3)

and the two components are orthogonal to each others. Now we can consider the self-dual

part of the the equations (3.1)

1

2
[Xi;Xj ]+ +

1

2
[B+i`; B+j

`]� [C;B+ij] = 0;

[Xi; B
+ij ] + [Xj ; C] = 0:

(3:4)

The above self-dual truncation is nothing but the Vafa-Witten equations reduced to zero-

dimensions [17]. In the paper [19], we referred to them as the equations for extended

monads. By using complex SO(4) indices we can rewrite the equations (3.4) as equations

for 4 complex N �N matrices Ta, a = 1; : : : ; 4;

[T1; T2] + [T3; T4] = 0;

[T1; T
�
1 ] + [T2; T

�
2 ] + [T3; T4] = 0;

(3:5)
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where T1 and T2 are build out of the Xi and T3 and T4 come from (C;B+
ij ). We only

wrote down the �rst of the equations (3.4). We certainly have solutions of (3.5) with all

of the Ta simultaneously diagonalized, UTaU�1 = ta, where the ta are diagonal matrices.

We might interpret the eigenvalues t`i of ti as the positions of N points in R8. There is

however an obvious problem to such an interpretation since T3 and T4 do not transform as

the components of a vector for SO(4). Note that we can still interpret the eigenvalues of

T1 and T2 as the positions of points in R
4. In fact, if we set T3 and T4 to zero, the equation

(3.5) is nothing but the ADHM equations of N point-like (Yang-Mills) instantons in R4.

A solution to the problem above was presented in the paper [19]. In [19] and [20], the

breaking of Q� to Q+ was realized by extending the Dolbeault version of the balanced

equivariant cohomology to incorporate the obvious global symmetry

(T3; T4)! (e�im�T3; e
im�T4): (3:6)

As a result, the �xed point equations (3.2) should be modi�ed to

[�; ��] = 0; [�; T1] = [�; T2] = 0;
[�; T3] = +mT3;

[�; T4] = �mT4;
(3:7)

wherem is the bare mass. Now it is obvious that there are no non-trivial diagonal solutions

for T3 and T4 form 6= 0. Their solutions are always o�-diagonal so that we will never be able

to interpret them as positions or coordinates in space-time! The situation was described

in detail in the paper [19]. We will recall two typical solutions. The solutions of (3.5) and

(3.7) are determined by the symmetry breaking pattern of U(N) (via the eigenvalues of �).

If the U(N) symmetry is unbroken T3 = T4 = 0 and T1 and T2 should be simultaneously

diagonalized. Then we get the ADHM description of N point-like instantons in R4. If the

U(N) symmetry is broken down to U(N � k)� U(k) we �nd

T1 =

�
t1 0
0 t01

�
; T2 =

�
t2 0
0 t02

�
; T3 =

�
0 �
0 0

�
; T4 =

�
0 0
� 0

�
; (3:8)

where � is k � (N � k) and � is (N � k)� k matrices. We have

(
[t1; t2] + �� = 0;

[t1; t
�
1] + [t2; t

�
2] + ��� � ��� = 0;

(
[t01; t

0
2]� �� = 0;

[t01; t
0�
1 ] + [t02; t

0�
2 ] + ��� � ��� = 0:

(3:9)

Note that the �rst and the second set of equations describe SU(N � k) and SU(k) Yang-

Mills instantons with instanton numbers k and (N � k) respectively. Now the role of T3
and T4 is clear. They carry information about the gauge group and the size of Yang-Mills

instantons in R4.
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In the above discussions we restrict our attention to the self-dual part B+
ij of Bij. This

restriction can easily be justi�ed. Recall that Bij is introduced to get the crucial potential

term Tr [Xi;Xj ][X
i;Xj ]. We can decompose [Xi;Xj ] into self-dual and anti-self-dual parts

and show that

Tr [Xi;Xj ][X
i;Xj ] = 2Tr [Xi;Xj ]

+[Xi;Xj ]+: (3:10)

Thus the anti-self-dual part B�ij of Bij is redundant. This implies that we are describing

essentially the same system with the self-dual anti-symmetric tensor multiplet only.

3.2. The Global N = 4 Super-Yang-Mills Theory

Now we consider N = 4 super-Yang-Mills theory [17][16]. Let M be an arbitrary

four-manifold where our SO(4) symmetry is acting. Let E be a U(N) bundle overM and

let Xi be the components of a connection. The BTYM theory is de�ned exactly as in

Sect. 2:1 with the same commutation relations (2.3). The only change is that the U(N)

gauge transformation acts on Xi by

Xi ! gXig
�1 + g@ig

�1; (3:11)

where g :M ! U(N). In the space of all connections X we have a natural metric

jÆXj2 =

Z
M

d�Tr
�
ÆXiÆXi

�
; (3:12)

where d� denotes the measure onM . Every other �eld transforms in the adjoint represen-

tation. The algebra is given by

Q�X
i = i i�; Q� 

i
� = Di���; Q� 

i
� = �Hi +DiC; (3:13)

where Di is the gauge covariant derivative. The remaining algebra is left unchanged.

The globalN = 4 (space-time) supersymmetry requires that the anti-symmetric tensor

multiplet is self-dual. Apart from the underlying space-time supersymmetry, as in the

previous subsection, the restriction to a self-dual anti-symmetric tensor multiplet is a very

natural requirement. Now the potential term becomes the usual kinetic term TrF ^ �F of

Yang-Mills theory. The well-known fact thatZ
M

TrF ^ �F = 2

Z
M

Tr
�
F+ ^ �F+

�
+ 8�2k; (3:14)

where k denotes the instanton number

k =
1

8�2

Z
M

Tr (F ^ F ) ; (3:15)
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implies that it is suÆcient to introduce the self-dual part of the anti-symmetric tensor

multiplet. We can freely add the topological term (3.15) to our action without spoiling

anything. The action functional is de�ned by [16]

S =
1

e2
Q+Q�

Z
M

d�

�
F+
0 + F1 + F

+
2

�
; (3:16)

where the F 's are given as in (2.18) and the superscript + denote that we only use the

self-dual part of the anti-symmetric tensors. Clearly [Xi;Xj ] in F0 should be replaced

with the �eld strength Fij . Here e2 denotes the Yang-Mills coupling constant which are

dimensionless.

4. Monad String Theory

In the previous section we extended the monad (ADHM) description of N point-like

instantons in R4 to R9;1 and construct, presumably the most natural, supersymmetric

theory out of it. In this section we will apply the same ideas to describe second quantized

superstring theory in R9;1. Throughout this section we will restrict our attentions to

classical aspects of the model.

4.1. The Algebra and Action Functional

To begin with we assume our ten matrices X� to be matrix functions X�(�+; ��) of

two world-sheet coordinates. Let W (�+; ��) be the space of N � N Hermitian matrix

functions. We endow the space W (�+; ��) with the natural metric

jÆXj2 =

Z
d�+d��Tr (���ÆX

�ÆX�) : (4:1)

This metric is invariant under local U(N) symmetry X� ! gX�g�1 for g 2 G such that

g : �! U(N), where � denotes the \world-sheet" which is the space of parameters ��. As

mentioned in the introduction we want to construct a theory by gauge �xing the \space-

time" and \world-sheet" Poincar�e symmetry as well as the local U(N) gauge symmetry.

By the \spacetime" Poincar�e symmetry, we mean the invariance under the global SO(9; 1)

symmetry acting on the \spacetime" vector index � and the invariance under arbitrary

shift X� ! X� + ÆX�. Clearly they are symmetries of our metric (4.1). From the view-

point of two-dimensional U(N) gauge theory, the \spacetime" Lorentz covariance is just

a global symmetry among the �elds X�. The \spacetime" translation invariance implies

that the two-dimensional gauge theory is a TFT.
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To get de�ne a system with these properties we can simply extend our balanced G-

equivariant cohomology to include translations along the internal directions. We de�ne

the commutation relations

Q2
+ = �i

�
@

@�+
+ Æ�++

�
;

Q2
� = �i

�
@

@��
+ Æ���

�
:

fQ+; Q�g = �iÆ�+� : (4:2)

This immediately leads to the following basic algebra

Q+X
� = i �+;

Q�X
� = i ��;

Q+ 
�
+ = �D+X

�;

Q� 
�
� = �D�X

�:
(4:3)

The above extension is indeed a very natural step. For Q�X� = i ��, we can interpret

 �� as the ghosts for the topological symmetry of the arbitrary shift X� ! X� + ÆX�.

This description clearly has a redundancy which is the U(N) symmetry and the shift of

parameters �� as indicated in (4.2). We may interpret Q� as the balanced equivariant

cohomology generators of U(N)�P�� . We will see shortly that the explicit realization of

(4.2) requires that the canonical line bundle of � is trivial. Naturally, we will consider � to

be a two-dimensional cylinder. This �ts nicely with the description of closed string. We can

identify �� with \world-sheet" light-cone coordinates, i.e., �� = 1
2
(��� ). For consistency

we see from (4.2) that ��� should transform as the components of an U(N) connection. So

we can identify �++ and ��� with the left and right components of the U(N) connection.

The global sl2 symmetry of the balanced equivariant cohomology can be identi�ed with

the \world-sheet" Lorentz symmetry. To put it di�erently, we are just extending the

world-sheet supersymmetry to include the U(N) symmetry - the G-equivariant extension

of world-sheet supersymmetry.

>From the construction in the previous section, it is straightforward to get the modi�ed

algebra. The algebra (4.3) is supplemented by

Q+ 
�
� = +H� � [C;X�];

Q� 
�
+ = �H� � [C;X�];

(4:4)

and the algebra of consistency (2.10) should be modi�ed to

Q+C = i�+;

Q�C = i��:

Q+�++ = 0;

Q��++ = �2i�+;

Q+��� = �2i��;

Q���� = 0:

Q+�+ = �D+C;

Q+�� = +
1

2
F+�;

Q��+ = �
1

2
F+�;

Q��� = �D�C;

(4:5)
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where F+� is the Yang-Mills curvature of the U(N) connection ���.5 Note also that the

U numbers of the covariant derivatives D� are �2. The triviality of the canonical line

bundle is required since we relate the \world-sheet" vector ��� with a \world-sheet" scalar

C via (4.5). The transformation laws for the auxiliary �elds H� are

Q+H
� = �iD+ 

�
� + i[C; �+] + i[�+;X

�];

Q�H
� = +iD� 

�
+ � i[C; ��]� i[��;X

�]:
(4:6)

A di�erence with the previous section is that (�++; ���) become an sl2 doublet and C

becomes an sl2 singlet.

For reasons explained in the previous section we introduce a multiplet (B�� ; ���� ;H�� )

with the transformation laws

Q+B
�� = i���+ ;

Q�B
�� = i���� ;

Q+�
��
+ = �D+B

�� ;

Q+�
��
� = +H�� � [C;B��];

Q��
��
+ = �H�� � [C;B�� ];

Q��
��
� = �D�B

�� ;

(4:7)

and
Q+H

�� = �iD+�
��
� + i[C;���+ ] + i[�+; B

�� ];

Q�H
�� = +iD��

��
+ � i[C;���� ]� i[��; B

�� ]:
(4:8)

The scaling dimensions of (B�� ; ���� ;H��) are (0; 1
2 ; 1).

The action functional can be de�ned through a procedure similar to Sect. 2. Only now

we have to replace the U(N) trace Tr with
R
d�+d��Tr . The action functional can hence

be written in the form

S = Q+Q�

�Z
d�+d��

�
F0 + F1 + F2

��
; (4:9)

where the action potential terms are given by

F0 = �Tr

�
iB��

�
[X�;X� ] +

R2

3
[B��; B�

�]

��
;

F1 = �Tr

�
2 �+ �� +R2���+

�
;

F2 = �Tr

�
R2���+ ����

�
:

(4:10)

5 Under the local gauge transformation the connection A transform as Æ"A = dA".
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We made a slightly more general choice for our action potential than in the previous

section by introducing a free parameter R. Since our construction is the unique non-

Abelian generalization of the RNS string theory, we certainly expect to get the free RNS

string in a suitable limit, where the U(N) symmetry breaks down to U(1)N and all �elds

can be simultaneously diagonalized. Without introducing the free-parameter R, we do not

get the free RNS string. Instead we get a superconformal theory consisting of both the

X� and B�� multiplets. Only after introducing R and in the limit R = 0, we get the free

RNS string.

Although this looks arbitrary, our choice is very natural since the RNS string action

entirely comes from the term Tr ( �+ ��) in the action potential F1. We will see in a later

section that the above form of the action-potential originates from eleven-dimensional

covariance. It will become clear that our construction is directing us to an underlying

theory with eleven dimensional covariance.

The explicit form of the action functional is

S =

Z
d�+d��Tr

�
2D+X

�D�X� + 2i ��D+ �� + 2i �+D� �+ + 4i[C; �+] ��

+ 4i[X�;  �+]�� + 4i[X�;  ��]�+ � 2[C;X�][C;X�] +R2H��H�� + 2H�H�

�R2D+CD�C � iR2��D+�� � iR2�+D��+ + 2iR2�+[C; ��]�
R2

4
F 2
+�

�H��
�
[X�;X� ] +R2[B��; B�

�]
�
+ 2H�[B

�� ;X� ] +R2D+B
��D�B��

+ iR2���� D+���� + iR2���+ D����+ + 2iR2[B�� ; �
��
+ ]�� + 2iR2[B��; �

��
� ]�+

+ 2iR2[C;���+ ]���� �R2[C;B�� ][C;B��]� 2iR2B�� [���+; �
�

��]

� 2iB�� [ 
�
+;  

�
�] + 2i���� [X�;  �+]� 2i���+ [X�;  ��]

�
:

(4:11)

We can integrate out the auxiliary �elds H�� and H� by setting

H�� =
1

2R2

�
[X�;X� ] +R2[B��; B�

�]
�

H� = �[B��;X
� ]: (4:12)
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After this replacement we get

S0 =

Z
d�+d��Tr

�
2D+X

�D�X� + 2i ��D+ �� + 2i �+D� �+ + 4i[C; �+] ��

+ 4i[X�;  �+]�� + 4i[X�;  ��]�+ � 2[C;X�][C;X�]

�R2D+CD�C � iR2��D+�� � iR2�+D��+ + 2iR2�+[C; ��]�
R2

4
F 2
+�

�
1

4R2

�
[X�;X� ] +R2[B��; B�

�]
�2
�

1

2
[B�� ;X

� ]2 +R2D+B
��D�B��

+ iR2���� D+���� + iR2���+ D����+ + 2iR2[B�� ; �
��
+ ]�� + 2iR2[B��; �

��
� ]�+

+ 2iR2[C;���+ ]���� �R2[C;B�� ][C;B��]� 2iR2B�� [���+; �
�

��]

� 2iB�� [ 
�
+;  

�
�] + 2i���� [X�;  �+]� 2i���+ [X�;  ��]

�
:

(4:13)

The resulting action is Q� invariant after modifying (4.4) and (4.7) using the replacement

(4.12).

4.2. The Free RNS string Limit

As a TFT, the path integral is localized to the �xed point locus of global supersymmetry

generated by Q�. From (4.5), we can read o� one important equations, the �xed point

equation Q��� = 0;

F+� = 0: (4:14)

Thus the path integral is always localized to the moduli space of at U(N) connections.

This will signi�cantly simplify our analysis since the connection can be gauged away.

Consider a Wilson line for the at connection

U = P exp

Z �0+2�

�0

A�d�; (4:15)

which can be non-trivial. Associating a Wilson line  ! U to a non-contractable loop

 de�nes a homomorphism �1(S1) ! U(N), since the parallel transformation along 

depends only on the homotopy class of �. Conversely a homomorphism (or representation)

� : �1(S1) ! U(N) determines a rank N at vector bundle E. Thus the moduli space

of at connections can be identi�ed with the representation variety modulo isomorphisms.

Of course �1(S1) = Z, as paths are classi�ed by their winding number. A representation
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(a U(N) connection) can be either irreducible or reducible. In the latter case the vector

bundle decomposes into irreducible factors,

E = E1 � � � � �Ek: (4:16)

Of course such a decomposition is parameterized by the partition N =
P
�k of the rank of

the gauge group. Equivalently, non-trivial Wilson lines break the U(N) symmetry (U(N)

is broken down to the subgroup that commutes with U).

The other important �xed point equations, Q��
��
� = 0, lead to the at directions

[X�;X� ] +R2[B��; B�
�] = 0; [B�� ;X

� ] = 0; [C;X�] = [C;B��] = 0: (4:17)

We can also examine the equations for fermionic zero-modes from the action functional. By

standard arguments in TFT, we see that those equations are nothing but the linearization

of the �xed point equations and the Coulomb gauge conditions. Since our model is a BTFT,

we do not have net U-number violation in the path integral measure. In the present context

the U-number symmetry is just a part of \world-sheet" Lorentz invariance.

In the limit R2 = 0 we get the desired equations [X�;X� ] = 0. This corresponds to the

free RNS string limit. All the R2 dependent terms can be thrown away and the theory is

localized to con�gurations of commuting matrices. Our balanced equivariant cohomology

generators Q� can be identi�ed with the left and right \world-sheet" supersymmetry.

We can rewrite the action functional S de�ned in (4.9) as a one-parameter family of

BTFT's

S(R) = �Q+Q�

�Z
d�+d��

�
iB�� [X�;X� ] + 2 �+ ��

��
+R2Q+Q�

�Z
d�+d��V

�
;

(4:18)

where

V = �Tr

�
iB�� [B��; B�

�] + ���+ ���� + ���+

�
: (4:19)

We can regard S(0) as the action functional of N copies of the free RNS string, given by

S(0) =

Z
d�+d��Tr

�
2D+X

�D�X� + 2i ��D+ �� + 2i �+D� �+ + 4i[C; �+] ��

+ 4i[X�;  �+]�� + 4i[X�;  ��]�+ � 2[C;X�][C;X�] + 2H�H� + 2H�[B
�� ;X� ]

�H�� [X�;X� ]� 2iB��[ 
�
+;  

�
�] + 2i���� [X�;  �+]� 2i���+ [X�;  ��]

�
:

(4:20)
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Here the anti-symmetric tensor multiplets are treated as purely auxiliary �elds. The inte-

gration over H�� gives the delta-function like constraints

[X�;X� ] = 0; (4:21)

so that our string coordinates fX�g commute. The ���� integration give further delta

function constraints

[X�;  �� ] = 0; (4:22)

which are the linearizations of (4.21) We can also treat (C; ��) in a similar way. The ��

integrations give another delta-function gauge constraint

[X�;  ��] = 0: (4:23)

Finally the B�� together with C integrations give the constraints

[ �+;  
�
�] = 0; [H�;X� ] = 0: (4:24)

The constraints (4.22) and (4.23) are the linearization of (4.21) and the Coulomb gauge

conditions respectively. The last condition (4.24) is just the consistency condition.

>From (4.21), we see that U(N) symmetry is generically broken down to U(1)N . Fur-

thermore, the �xed point equations Q� 
�
� = �iD�X� = 0 imply that the U(N) connec-

tions should be reducible to have non-trivial solutions.6 We can conclude that the action

S(0) is the straightforward formulation of a gas of free RNS string. In this formulation the

o�-diagonal part of X� plays almost no role, except giving rise to a one-loop determinant

from to the localization.

We can gauge away our connection provided that we allow modi�ed periodicity condi-

tions

X�(�; �0 + 2�) = UX
�(�; �0)U

�1
 : (4:25)

We can diagonalize X� = Ux�U�1. Then the above action of the Wilson line can be

identi�ed with conjugation hx�h�1 of the Weyl group h on the eigenvalues x� of X�.

Equivalently twisted sectors are parameterized by the moduli space of at connections.

Now we can follow the general arguments of DVV to interprete our model as second-

quantized free-string theory [10]. As far as the bosonic �elds are concerned, their arguments

essentialy apply also to our model. The fermionic �elds are much more diÆcult to treat.

Especially the GSO projection we now need to impose gives some diÆculties.

6 Note that the X� are adjoint scalars.
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4.3. Monad String as a Deformation of the RNS String Gas

Now we can regard S(R) as a deformation of S(0) parameterized by R. Naively, such

a deformation does not change the theory since it is a pure Q� commutator. However,

the theory with S(R) is only independent of R, as clari�ed by Witten [21], if (i) S(R) has

a non-degenerate kinetic energy for all R; (ii) if there are no new �xed point to ow in

from in�nity. Our choice of V clearly does not satisfy the above criterium. Turning on R

introduce the kinetic terms for the anti-symmetric tensor multiplets (via Tr (���+ ��� )) and

the gauge multiplets (via Tr (�+��)), as well as extra potential terms and Yukawa couplings

for B�� (via Tr (B�� [B��; B�
�])). Furthermore it changes the �xed points (4.21) via the

cubic term in B�� . Then the o�-diagonal parts of X� will start to play an important role

due to the cubic term.

The above discussions also indicate that our construction of the monad string is very

natural, once we choose to generalize the string coordinates to matrices. We will see that

it also directing us a more general theory with 11-dimensional covariance. It is also more

natural to regard the theory with S(0) as a special limit of more fundamental as general

theory with S(R). Thus we can interpret the (ten-dimensional) monad string theory as an

one-parameter family of theories, which reduces to the RNS string in a special limit.

Remark that the terms in the action arising from V in (4.19) lead to a well de�ned

theory already by themselves, but only for the �elds from the tensor and gauge multiplets.

Really a similar action will be the starting point in the next section.

4.4. A Brief Comparison with the Matrix String Theory

At this point, it will be usefull to compare with matrix string theory. For example

we can regard S(0) as the covariant RNS version of the free string limit of matrix string

theory. In matrix string theory, as beautifully demonstrated by DVV [10], the inverse of

the two-dimensional Yang-Mill coupling constant plays the role of type IIA string coupling

constant.7 In the monad string a similar role is given by R2. However, there are some

di�erences.

i) We will see that turning on R2 directly leads to a theory with 11-dimensional covari-

ance. In the matrix string theory the relation with 11-dimensional theory is less direct.

ii) Turning on R2 implies that the free monad strings start to couple with the anti-

symmetric tensor multiplets, which are dynamical. In matrix string theory only the o�-

diagonal parts of X� are new contributions.

7 Note that matrix string theory is two-dimensional N = 8 physical super-Yang-Mills theory.

One the other hand, monad string is a TFT in two-dimension and the Yang-Mill coupling play

no role. Note also that monad string is not a twisted version of matrix string.
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Considering the fact that matrix string theory is de�ned in the light-cone gauge, it is

certainly possible that monad string theory in the light-cone gauge is equivalent the matrix

string theory.8 We should also be very careful about the role of anti-symmetric tensor

multiplets, which is absent in matrix string theory. Note that the Yukawa and potential

terms are closely related. We introduced the anti-symmetric tensor multiplet to have

the necesssary potential term while maintaining 10-dimensional covariance. In the matrix

string (and in the light-cone GS formalism) the counterparts of  �� transform as space-time

spinors. Thus the covariant (at least in the light-cone gauge) form of Yukawa coupling can

be easily written down with the help of the soldering form ia _a. The appearance of those

crucial central charges in the superalgebra is also due to the space-time gamma matrices

[22]. Clearly the anti-symmetric tensor multiplet plays a similar role in our model. Thus,

it seems to be reasonable to believe that the anti-symmetric tensor multiplet is the cost for

a world-sheet supersymmetric formulation and 10-dimensional covariance. On the other

hand, we will see that the anti-symmetric tensor multiplet is very important and more

fundamental in the 11-dimensional viewpoints.

In the next subsection, we will briey examine a possible interpretation of the anti-

symmetric tensor multiplet from in the ten-dimensional view-point.

4.5. Another Perturbation

As shown earlier, the anti-symmetric tensor multiplet can be regarded as purely aux-

iliary �elds as long as we set R = 0. However, we have seemingly mysterious equations

[X�; B
�� ] = 0; (4:26)

from (4.20) even in the free string limit. We also note that free monad string theory can

not be de�ned without the B��-multiplet. However, we can de�ne a free theory of B��

without the help of the X�-multiplet. The action functional can be de�ned as

SB = �Q+Q�

Z
d�+d��V; (4:27)

where V is given by (4.19). This can be regarded as a clue that something described by

the anti-symmetric tensor multiplet is more fundamental than string itself.

Now we will consider yet another deformation. We consider

S(R;m) = S(R) �mQ+Q�

Z
d�+d��Tr

�
i

2
B��B��

�
; (4:28)

8 This point was suggested to us by H. Verlinde.
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where m plays the role of a bare mass for the anti-symmetric tensor multiplet. We have

S(R;m) =

Z
Tr
�
R2H��H�� �H��

�
[X�;X� ] +R2[B��; B�

�]�mB��

�
+ im���+ ����

�
+ : : : :

(4:29)

We can eliminate H�� by setting

H�� =
1

2

�
[X�;X� ] +R2[B��; B�

�]�mB��

�
; (4:30)

we get

S0(R;m) =S0(R) +

Z
d2�Tr

�m
2
B��

�
[X�;X� ] +R2[B��; B�

�]
�
+ im���+ ����

�

�
m2

4

Z
d2�Tr (B��B��) ;

(4:31)

where S0(R) is given by (4.13). It is also understood that we integrated out H� by setting

H� = �[B��;X
� ]: (4:32)

This simple looking perturbation is very interesting. The theory is localized to the at

directions given by H�� = H� = 0;

[X�;X� ] +R2[B��; B�
�]�mB�� = 0;

[X�; B�� ] = 0;
(4:33)

Combining these equations, we also have

1

m
[X�; [X�;X� ]] +

R2

m
[X�; [B��; B�

�]] = 0: (4:34)

Now we will consider two examples.

i) Consider a particular sector of our moduli space such that fX�g commutes with

each others. We have
[X�;X� ] = 0;

[X�; B�� ] = 0;

[B��; B�
�] =

m

R2
B�� :

(4:35)

ii) For R = 0 we can eliminate B�� from S(0;m) by setting

B�� =
1

m
[X�;X� ]: (4:36)
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Then the at direction is given by

[X�; [X�;X� ]] = 0: (4:37)

We can also eliminate ���� by the simple algebraic equation of motion. Then the action

functional S(0;m) can be written as

S(0;m) = �
1

2
(Q+Q� �Q�Q+)

�Z
d�+d��Tr

�
�

1

2m
[X�;X� ][X�;X� ] +  �+ ��

��
:

(4:38)

where the replacement of H� in (4.4) with (4.32) is understood. For �nite N S(0;m) is

equivalent to the unperturbed theory S(0; 0). For N ! 1 and if we want to change the

commutators to Poisson brackets we will have higher critical points in (4.37).

With an analogy to the matrix theory, the relation (4.36) seems to suggest that B��

is somehow related to membrane.

5. Eleven Dimensional Covariance

In this section we will provide a more fundamental description. The starting point is

an observation that the two multiplets (X�;  ��;H
�) and (B�� ; ���� ;H�� ) can be naturally

combined into a single multiplet, which transform as an anti-symmetric second rank tensor

under SO(10; 1). We will suggest that the resulting theory is a formulation of the sought

for M theory.

5.1. The Algebra

Let � be a (1 + 1)-dimensional cylinder S1 � R with light-cone coordinates �� =
1
2 (� � � ). Let I; J;K;L = 0; 1; : : : ; 10. We introduce an adjoint \world-sheet" scalar �eld

BIJ(�+; ��), which transforms as an anti-symmetric second rank tensor under SO(10; 1).

We denote by gIJ the usual Minkowski metric in R10;1. The U(N) local gauge symmetry

acts on BIJ as

BIJ ! gBIJg�1; g : U(N) ! �: (5:1)

In the space of all �elds BIJ we introduce a natural gauge invariant and SO(10; 1) invariant

metric

jÆBj2 =

Z
d�+d��Tr

�
BIJBIJ

�
: (5:2)

Although the direct geometrical interpretation is obscure, we will still refer to BIJ as the

\space-time" coordinates of \strings" in eleven-dimensions. With the above basic setting,

we will construct the unique theory in an unbroken phase of the 11-dimensional covariance.
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Note that we are not imposing the \space-time" super-Poincar�e symmetry. The G � P��-

equivariant cohomology algebra is given by

Q+B
IJ = i�IJ+ ;

Q�B
IJ = i�IJ� ;

Q+�
IJ
+ = �D+B

IJ ;

Q+�
IJ
� = +HIJ � [C;BIJ ];

Q��
IJ
+ = �HIJ � [C;BIJ ];

Q��
IJ
� = �D�B

IJ ;

(5:3)

satisfying the commutation relations

Q2
�B

IJ = �i@�B
IJ � i[���; B

IJ ]; fQ+; Q�gB
IJ = �i[C;BIJ ]: (5:4)

We can interpret i�IJ� as ghosts associated with the symmetry under arbitrary shift BIJ !

BIJ + ÆBIJ . As usual Q2
� = 0 modulo the gauge transformation generated by ��� as

well as the \world-sheet" translation along the �� directions, i.e., modulo the redundancy

of our system. fQ+; Q�g = 0 modulo gauge transformation generated by �+� = C. As

earlier �� are the left and right components of an U(N) connection and C is an adjoint

scalar on the \world-sheet" with the Q� algebra given by (4.5). The auxiliary �elds HIJ

transform as
Q+H

IJ = �iD+�
IJ
� + i[C;�IJ+ ] + i[�+; B

IJ ];

Q�H
IJ = +iD��

IJ
+ � i[C;�IJ� ]� i[��; B

IJ ]:
(5:5)

We have sl2 symmetry and an associated additive quantum numberU of the above algebra,

which can be summarized as usual

U = +1

U = 0

U = �1

�elds

�IJ+
% &

BIJ HIJ

& %
�IJ�

; (5:6)

We will call the above multiplet the 11-dimensional anti-symmetric tensor multiplet.

5.2. The Action Functional

Now we de�ne an almost unique SO(10; 1) and sl2 as well as gauge invariant action

functional by

S11 = �Q+Q�

Z
d+�d��Tr

�
i

3
BIJ [BIK; BJ

K ] + �IJ+ �IJ� + ���+

�
: (5:7)
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The global SO(10; 1) and sl2 symmetries may be interpreted as the \space-time" and

\world-sheet" Lorentz symmetries, respectively. One can regard the above action func-

tional as a BRST quantized version of an underlying theory with unbroken 11-dimensional

general covariance. We have

S11 =

Z
d�+d��Tr

�
D+B

IJD�B
IJ + i�IJ� D+�IJ� + i�IJ+ D��IJ+ + 2i[C;�IJ+ ]�IJ�

+ 2i[BIJ ; �
IJ
+ ]�� + 2i[BIJ ; �

IJ
� ]�+ � [C;BIJ ][C;BIJ] +HIJHIJ

�HIJ [BIK; BJ
K ]� 2iBIJ [�IK+; �

K
J� ]�D+CD�C

� i��D+�� � i�+D��+ + 2i�+[C; ��]�
1

4
F 2
+�

�
:

(5:8)

Integrating out HIJ by setting

HIJ =
1

2
[BIK ; BJ

K ]; (5:9)

we have

S11 =

Z
d�+d��Tr

�
D+B

IJD�B
IJ + i�IJ� D+�IJ� + i�IJ+ D��IJ+ �D+CD�C

� i��D+�� � i�+D��+ + 2i[BIJ ; �
IJ
+ ]�� + 2i[BIJ ; �

IJ
� ]�+ + 2i[C;�IJ+ ]�IJ�

+ 2i�+[C; ��]� 2iBIJ [�IK+; �J�
K ]�

1

4
[BIK ; BJK ][BIL; B

JL]

� [C;BIJ ][C;BIJ]�
1

4
F 2
+�

�
:

(5:10)

Now the transformation law (5.3) should be changed to

Q+�
IJ
� = +

1

2
[BIK ; BJ

K ]� [C;BIJ];

Q��
IJ
+ = �

1

2
[BIK ; BJ

K ]� [C;BIJ ];

(5:11)

The above modi�cation preserves our commutation relations, i.e., Q2
��

IJ
� = �iD��IJ� ,

provided that
iD��

IJ
+ � i[BIK ; � J

K�]� i[C;�IJ� ]� i[��; B
IJ ] = 0;

iD+�
IJ
� + i[BIK ; � J

K+]� i[C;�IJ+ ]� i[�+; B
IJ ] = 0;

(5:12)

which are just the equations of motion of �IJ� . The BIJ equation of motion is

i

2
D+D�B

IJ �
i

2
[BIK ; [BKL; B

JL]] + [�IK+ ; � K
J� ] + [�+; �

IJ
� ] + [��; �

IJ
+ ] = 0; (5:13)

which is a supersymmetry variation of (5.12).
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5.3. Back to Ten Dimensions

Now we will break the eleven-dimensional covariance down to the ten-dimensional one.

From now on we will label the SO(10; 1) vector indeces I; J;K;L = 1; : : : ; 11. We �x the

11-dimensional metric gIJ =

�
g�� 0
0 g11 11

�
with g1111 = 1=R2. Then we de�ne a 10-

dimensional (non-commutative) coordinate by X� = B11�. Similarly, we set  �� = �11��

and H� = H11�. The supersymmetry algebras (4.3), (4.4), (4.6), (4.7), and (4.8) follow

from (5.3) and (5.5). Then the action (5.7) reduces to

SR = �Q+Q�

Z
d2�Tr

�
iB��

�
[X�;X� ] +

R2

3
[B��; B�

�]

�

+R2���+ ���� + 2 �+ �� +R2���+

�
;

(5:14)

where we scaled the action by an overall factor R2. The above action is exactly the same as

(4.9), for which the explicit form is given by (4.11) and (4.13). As discussed in Sect. 4:3 and

4:4, perturbation away from free strings directly lead us the eleven dimensional picture.

At �rst sight the free string limit looks counter intuitive. It corresponds to the in�nite

radius 1=R of 11th direction of the background 11-dimensional space. Furthermore, it is

natural to identify the string coupling constant with R2. Since however we do not have

11-dimensional string coordinates, the above problem should be reexamined.

First we need to clarify our usage of \compacti�cation" to a circle. For practical pur-

pose the equation (5.14) is the de�nition of compacti�cation on a circle of our eleven dimen-

sional theory (5.7). In any \world-sheet" formulation of superstring theory, the space-time

Lorentz invariance is detected by global symmetry. In terms of SO(9; 1) acting on indices

�; � = 1; : : : ; 10, B11� transform as a vector and B�� transforms as an anti-symmetric

tensor. Since we do not have the 11-th component of the vector (or string coordinates),

we can not impose any other conditions apart from the form of the background metric.

As for 10-dimensional vectors B11�(�; � ) we may use those as certain \string coordinates"

in \space-time". From our viewpoint, any space-time interpretation is just an e�ective

description. The most reasonable description of the model de�ned by (5.14) is to regard

it as a family of theories parameterized by R2.

Note that we have manifest 11-dimensional covariance. However, we do not have the

usual coordinate interpretation of 11-dimensional space-time. Only after the reduction to

10 dimensions we get (non-commutative) coordinates of strings. Now the most diÆcult

question is if our model has a particular limit where an 11-dimensional space-time picture

appears. Provided that our model describes M theory, we should certainly expect this

[3]. Finding the free string theory as an e�ective description is very easy in our approach.
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However, the appearance of 11-dimensional supergravity can be a very diÆcult quantum

mechanical problem. At this point, we will just leave the diÆcult problems for the future.

Our approach has another diÆcult problem. Up to now we did not worry about the

GSO projection. It is of no doubt that we need the GSO projection in the free string

limit. We expect that the quantum mechanical consistency of our model may determine

a particular projection for a particular free string limit. We do not know any direct

justi�cation for the above wishful thinking. In the next subsection, we will study our model

after compactifying further down to a circle. We will show that our model has two types

of string limits, which behave as type IIA and type IIB strings, as well as the predictions

based on M theory viewpoints [23]. We may use the examples as the evidence for that

our model after proper quantization automatically decide a particular GSO projection at

a particular limits.

5.4. A Further Compacti�cation

We can compactify our model further. We will now study the model when compacti�ed

on a T 2 in the 10� 11 direction. The background metric is given by

gIJ =

0
B@
gij 0 0
0 1

R2
10

0

0 0 1
R2
11

1
CA (5:15)

The index i will refer to the �rst 9 uncompacti�ed directions. Then we have 2 \space-time

coordinates" of strings instead of the one Xi from the last section. These we denote

Xi
(11) = B11i; Xi

(10) = B10i: (5:16)

They will have superpartners  i(1)� and  i(2)� respectively. Furthermore there is a 9 di-

mensional scalar � = B10 11 with superpartners ��. We can summarize the supersymmetry

by the following diagram

 i(a)+
% &

Xi
(a) Hi

(a)

& %
 i(a)�

;

�ij+
% &

Bij Hij

& %
�ij�

;

�+
% &

� H
& %

��

:

(5:17)

Note that we can combine the �-multiplet either with the Xi
(11) or with Xi

(10) multiplet

to get ten-dimensional multiplets X�

(11) and X
�

(10), respectively, at the decompacti�cation

limit of one of the directions.
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The action will then depend on the parameters R10 and R11 as

S9 = �Q+Q�

Z
d2�Tr

�
2R2

10 
i
(11)+ 

(11)
i� + 2R2

11 
i
(10)+ 

(10)
i� + (R10R11)

2�ij+�ij�

+ iBij

�
R2
10[X

i
(11);X

j

(11)] +R2
11[X

i
(10);X

j

(10)] +
(R10R11)2

3
[Bik; Bj

k]

�

+ 4i�[Xi
(11);X

(10)
i ] + �+�� + (R10R11)

2���+

�
:

(5:18)

This action has one obvious symmetry by exchanging the �rst and the second 9-dimensional

vector multiplets accompanied with R10 $ R11. This symmetry came from the underlying

eleven-dimensional covariance of our model.

We can regard the action S(R10; R11) as describing the two-parameter family of theo-

ries. To explore the moduli space we consider the potential term

V11 =
1

4
Tr

�
[BIK ; BJK ][BIL; B

JL]

�
; (5:19)

and the at directions V11 = 0. In nine dimensions we have

V9 =Tr

�
1

4

�
R11

R10
[X

(10)
i ;X

(10)
j ] +

R10

R11
[X

(11)
i ;X

(11)
j ] +R10R11[B

ik; Bjk]

�2

+
1

2

�
1

R11
[�;X

(11)
i ]�R11[Bik;X

k
(10)]

�2

+
1

2

�
1

R10
[�;X

(10)
i ] +R10[Bik;X

k
(11)]

�2

+
1

2
[Xi

(11);X
(10)
i ]2

�
;

(5:20)

leading to the following at directions

R11

R10
[X

(10)
i ;X

(10)
j ] +

R10

R11
[X

(11)
i ;X

(11)
j ] +R10R11[B

ik; Bjk] = 0;

1

R11
[�;X(11)

i ]�R11[Bik;X
k
(10)] = 0;

1

R10
[�;X

(10)
i ] +R10[Bik;X

k
(11)] = 0;

[Xi
(11);X

(10)
i ] = 0:

(5:21)

Now we examine special points in our moduli space where the usual string pictures

appears.

1) We consider the limit R11 = 0 and R10 !1. This reduces to the free string limit

discussed in the previous subsection. From the second equation in (5.21), we see that �
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commutes with Xi
(11) to form the string coordinates represented by X�

(11)
. Similarly in the

limit R11 =1 and R10 = 0, we get another ten-dimensional strings with coordinatesX�

(10)
.

In both cases the Bij-multiplets are completely decoupled. Those should correspond to

the limits for two equivalent IIA strings.

2) Now we consider limit that R10; R11 ! 0 while taking R10=R11 arbitrary. Then our

crucial equations (5.21) reduce to

R11

R10
[X

(10)
i ;X

(10)
j ] +

R10

R11
[X

(11)
i ;X

(11)
j ] = 0;

[�;X
(11)
i ] = 0;

[�;X
(10)
i ] = 0;

[Xi
(11);X

(10)
i ] = 0:

(5:22)

Now � commutes with both X
(11)
i and X

(10)
i . But it is in either the R10=R11 ! 0 or

the R10=R11 ! 0 limit that one of these coordinates describes free strings. The action

functional is e�ectively given by

S9 =�Q+Q�

Z
d2�Tr

�
2R2

11 
i
(10)+ 

(10)
i� + 2R2

10 
i
(11)+ 

(11)
i� + �+��

�

+
1

4

Z
d2�Tr

�
R10

R11
[X(10)

i ;X
(10)
j ] +

R11

R10
[X(11)

i ;X
(11)
j ]

�2

+
1

2

Z
d2�Tr

�
1

R2
11

[�;X
(11)
i ]2 +

1

R2
10

[�;X
(10)
i ]2

�
+ Y ukawa

(5:23)

where the Yukawa term has a pattern similar to the potential term. It is also clear that

one system is strongly coupled if the other is weakly coupled. Because of the obvious

symmetry X
(10)
i $ X

(11)
i and R10 $ R11, we have manifestly self-dual system. Whatever

system we are describing we �nd one with manifest and non-perturbative S-duality. These

limits of our model should correspond to the type IIB strings. Perturbatively we will only

see the usual string action, arising from only one of the sets of coordinates. But in general

we �nd contributions from both of them, and the usual space-time interpretation breaks

down.

It will be interesting to see how our approach can be generalized so to give rise to the

heterotic and type I strings [24]. This may be done using procedures similar to those in

matrix string theory [25].
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5.5. A Further Generalization

As argued earlier, it seems that BIJ (�; � ) is related to the membrane of M theory.

Here we merely refer to the membrane M theory as certain degrees of freedom which

are required to produce the string theoretic degrees of freedom in lower dimensions after

double compacti�cation. >From the viewpoint of an observer living in the lower dimensions,

certain components of BIJ behave as \space-times coordinates" of strings.

We also expect to have the �ve-branes of M theory in 11-dimensions. Following the pre-

vious discussions, we mean by a �ve-brane in eleven dimensions an object which transforms

as an anti-symmetric 5 rank tensor under SO(10; 1). After breaking the 11-dimensional

covariance down to the 7-dimensional one, for example, it can be identi�ed with the \space-

time" coordinates of strings. We introduce a rank 5 anti-symmetric tensor JIJKLM (�; � )

which are \world-sheet" adjoint scalars. We have the usual supermultiplet

 IJKLM
+

% &
JIJKLM HIJKLM

& %
 IJKLM
�

; (5:24)

and the corresponding super-algebra.

Now we are looking for a cubic action potential term to write down the potential term

for JIJKLM . There is no SO(10; 1) invariant cubic terms for JIJKLM . The only possibility

is to couple with the cubic action potential of BIJ . So we have a more or less unique choice

as usual, given by

S11(�) = �Q+Q�

Z
d�+d��Tr

�
i

3
BIJ

�
[BIK; BJ

K ] + 3�[JIKLMN ; JJ
KLMN ]

�

+ �IJ+ �IJ� + � IJKLM
+  IJKLM� + ���+

�
;

(5:25)

where � is a new coupling constant.
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If we write down the action explicitely, we have

S11(�) =

Z
d�+d��Tr

�
D+B

IJD�BIJ + i�IJ� D+�IJ� + i�IJ+ D��IJ+ + 2i[C;�IJ+ ]�IJ�

+ 2i[BIJ ; �
IJ
+ ]�� + 2i[BIJ ; �

IJ
� ]�+ � [C;BIJ ]2 + �D+J

IJKLMD�JIJKLM

+ i� IJKLM
� D+ IJKLM� + i� IJ

+ D� IJKLM+ + 2i�[C; IJKLM
+ ] IJKLM�

+ 2i�[JIJKLM ; 
IJKLM
+ ]�� + 2i�[JIJKLM ; 

IJKLM
� ]�+ � �[C; JIJKLM ]2

+HIJHIJ �HIJ
�
[BIK ; BJ

K ] + �[JIKLMN ; JJ
KLMN ]

�
+ �H2

IJKLM

+ 2�HIKLMN [B
IJ ; JJ

KLMN ]� 2i�BIJ [ IKLMN+; J
KLMN

J� ]

+ 2i��IJ� [ IKLMN+; JJ
KLMN ]� 2i��IJ+ [ IKLMN�; JJ

KLMN ]

� 2iBIJ [�IK+; �
K

J� ]�D+CD�C � i��D+�� � i�+D��+

+ 2i�+[C; ��]�
1

4
F 2
+�

�
:

(5:26)

We integrate out HIJ and HIJKLM by setting

HIJ =
1

2
[BIK ; BJ

K ] +
�

2
[JIKLMN ; JJ

KLMN ];

HIKLMN = �[BIJ ; JJ
KLMN ]

(5:27)

5.6. Universal Monads and M Theory

Now the two equations

[BIK; BJ
K ] + �[JIKLMN ; JJ

KLMN ] = 0;

[BIJ ; JJ
KLMN ] = 0;

(5:28)

which de�ne the at directions, are the most important equations we have. We will call

a set of matrices (B;J) satifying (5.28) a universal monad. For a constant monad, we

may associate a universal instantons. The equation (5.28) is the end point of our gener-

alization of the simple matrix equations [X�;X� ] = 0 describing point-like instantons in

10-dimensions.

Our model is classi�ed by the space of solutions, modulo gauge equivalence, of (5.28).

Our conjecture that we are describingM-theory means that the moduli space is identical
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to that of M theory. According to our conjecture all the information of strings and other

extended objects should be encoded in (5.28). Furthermore, as the moduli space of theories,

we should be able to �nd special points where the known string theories are the e�ective

descriptions. We also expect the web of string dualities to be manifest as the symmetry in

the bulk. After compacti�cation to lower dimensions we will get a much richer structure

of the moduli space. By examining the corresponding reduction of the equation (5.28) we

should be able to �nd numerous theories and mutual relations with eachother.

The detailed examination of the entire moduli space de�ned by (5.28) is beyond the

scope of this paper. We merely want to point out that the theory compacti�ed on T 4

should be very interesting. It is the �rst dimension where some components of JIJKLM

transform as SO(6; 1) vectors which give rise to new a set the \space-time coordinates" of

strings. Compactifying further down to T 5, we have 5-sets of string coordinates from BIJ

and another 5-sets of string coordinates from JIJKLM . By examining the corresponding

reduction of (5.28), which describe a 5-dimensional space of theories, we will be able to

discover the various di�erent theories. The mutual relations between those theories should

follow from a very easy analysis. This may be related with new phenomena in M theory

compacti�ed on T 4 and T 5 [26].

6. Further Points to Examine

There are several important issues we ignored in our analysis. First of all, what is

the underlying geometrical interpretation of BIJ(�; � ) and JIJKLM (�; � )? We already

mentioned a possible connection with the membrane and �vebrane of M theory. How this

relation comes about we do not know at the moment.

We restricted our attention to classical considerations. The quantization surely will

introduce some delicate issues:

1) The spacetime supersymmetry and GSO projection; For the free string limit we

certainly have spacetime supersymmetry. However it is not obvious that the spacetime

supersymmetry is a generic property of our model in any situation. Our construction

indicates that the spacetime interpretation itself is an e�ective description. Even in the

free string limit we need to impose a GSO projection to obtain spacetime supersymmerty.

Since the free strings are embbedded into a bigger picture in our model there should be a

generalized notion of GSO projection. We speculated that a proper GSO projection could

arise via certain quantum consistencies at a particular point in the moduli space. If our

speculation is correct, the spacetime supersymmetry itself can be viewed as an e�ective

description. These issues are closely related with the notions of the unbroken and broken

phases of general covariance. According to a purely classical argument, our model should
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not contain gravitons. However, we found special points corresponding to free strings

where gravitons certainly exist. All these issues seem to be subtle and diÆcult quantum

mechnical properties.

2) The critical dimension; It is only the 11-dimensional model, as constructed in this

paper, that gives rise to crtitical strings. Since the string appears as an e�ective description,

the usual notion of critical dimension can be meaningless. At least classically, our model

can be formulated in arbitrary dimensions with arbitray �eld contents. Hopefully, the

conditions for a consistent quantum theory lead us to the correct dimension for our model.
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