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Abstract 

The entropic depletion force, in colloids, arises when large particles are placed in a solution of 
smaller ones, and sterically constrained to avoid them. We calculate the interaction between 
large spheres (of radius R) in a dilute solution of mutually avoiding small spheres (of diameter 
a ,~ R and volume fraction ~b), to third order in ~b. In addition to the well-known attractive force 
for 0 < h < a, we find a repulsive barrier at larger separations, and beyond that a secondary 
minimum. Except for unusually large size ratios (perhaps abetted by relatively high density qS), 
these features of the interaction potential are too small, compared to kBT, for kinetic stabili- 
zation (arising from the barrier) or flocculation into the secondary minimum, to be widespread, 
although such effects are possible in principle. For feasible size ratios, the same features should 
have observable consequences for the radial distribution function of the large spheres. Such 
effects can be viewed as precursors, at low density, of liquidlike structuring (solvation forces) 
expected at higher q~. Our third order calculation gives satisfactory agreement with a recent 
computer simulation at moderate density and size ratio (2R/a  = 10; ~b = 7z/15). 

1. Introduction 

The depletion force [1] is central to issues of  colloidal stability [2, 3, 4]; it arises 

between large spheres suspended in a dilute solution of  nonadsorb ing  polymers, 
micelles, or  smaller hard spheres. The last case is amenable  to detailed analysis (at 

least at low densities) [1, 5, 6], and serves as a model for the others. The basic effect is 

quite simple: for separations h < ~r, small particles of  diameter a are excluded from the 

gap between the larger ones. For  flat plates, this leads to an attractive force equal to 

the osmotic  pressure H of  the small spheres outside the plates. The forcefs between 
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large spheres of radius R ~ a/2 then follows by the Derjaguin approximation [2]: 

h 

fs(h) = - nR t fI(h')dh'  (1) 

o~ 

This attractive force can give rise to depletion flocculation and phase transition 
[2, 3, 4]. 

Napper and coworkers [7, 8] argued some time ago that depletion could, in 
addition, lead to a repulsive interaction at larger distances and higher depletant 
concentration. The resulting free energy barrier might be enough to kinetically 
stabilize the large colloidal spheres against flocculation. This claim, though partially 
supported by experiment [8, 9], was not considered theoretically convincing, and has 
since been disregarded by many experts. Indeed, recent monographs on colloids [2] 
and polymers at surfaces [3] describe in detail the depletion attraction, but do not 
discuss depletion stabilization. Very recently however [10], results have been given for 
the depletion interaction arising from small mutually avoiding spheres at volume 
fraction 4,, calculated in a virial expansion to order ~b 2. These results show a repulsive 
barrier (discussed further below) which could in principle be large compared to kRT 
for large size ratios. It seems clear, therefore, that the widespread consensus that the 
depletion force is purely attractive, now needs revision. 

In fact, the publication of [10] occurred after we had ourselves obtained the same 
result by a different method. In this paper we now take the calculation one stage 
further, to order q~3. At this order a secondary minimum appears in the interaction 
potential between large particles. This means that in principle a rich range of colloidal 
kinetics (reversible flocculation into the secondary minimum; slow barrier crossing to 
irreversible contact, etc.) could arise purely from depletion forces. In practice however 
this scenario would require exceedingly large values of the size ratio 2R/a. On the 
other hand, the depletion potential between two large spheres We(h) found below (at 
centre-to-centre separation r = R + h) is related by the Boltzmann distribution to the 
radial distribution function g(r) of the (dilute) large spheres: 

g(r) = const, x exp [ -- W~(r - R)/kBT ] ,  (2) 

which can be probed in principle by scattering experiments [11, 12]. Even when the 
new features of the depletion potential are too small to lead to large kinetic effects, 
they will lead to oscillations in g(r) with a characteristic period associated with the 
radius of the small spheres. The depletion barrier and the secondary minimum, which 
arises already at order ~b 2 and 4) 3 respectively, can thus be viewed as a limiting case of 
the layering-induced solvation repulsion predicted at liquid-like densities of the small 
spheres [13]. In fact, it can be shown that for hard sphere fluids the long-range 
depletion force is damped oscillatory regardless of density with the same wavelength 
and decay length as those of hard sphere radial distribution function [14]. 

It is plausible to conjecture that each new maximum or minimum in the depletion 
potential requires a calculation to one higher order in q5 than the previous minimum 
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or maximum. If this is true, then almost all the qualitative physics of solvation forces is 
already present in principle in the virial expansion, a fact that has perhaps not been 
widely appreciated. In practice, however, the analytical calculation to third order 
presented below already involves serious difficulties, and the possibility of calculating 
higher terms appears remote. In any case, in the concentration range where these 
become important, an approach based on any of the many approximate liquid state 
theories [15] might be more appropriate; for example some results based on 
Percus-Yevick approximation can be found in Ref. [16]. 

In what follows (Sections 3) we calculate the force between plates (and hence, by the 
Derjaguin approximation, large hard spheres) arising from depletion by small, 
mutually avoiding hard spheres. As discussed above, our calculation is exact to order 
~b3; two checks in special cases to this order are contained in Appendix A. In Section 
4 we give a simple explanation for the maximum of the repulsive force between plates, 
and make a comparison of our perturbative results with a calculation of the depletion 
interaction by computer simulation, recently performed by Bladon and Biben [17]. 
We also discuss how the results might differ for other depletants, such as polymers, for 
which mutually-avoiding small hard spheres might or might not provide a good 
model. 

2. Depletion Force Between Plates 

It was shown by Henderson [18], in the context of solvation forces, that the net 
force per unit area on a hard plate immersed in a solution of spheres is given by the 
differential contact density of the solute particles: 

f =  kBT(n+ - n_) ,  (3) 

where n ÷, _ are the contact densities of particle on either side of the plate. (The contact 
density of hard spheres of diameter tr is defined as the limit n(a/2), as ~ ~ O, of the 
number per unit volume n of particle centres, evaluated at a distance a/2 + e from the 
plate.) 

This result can be explained as follows. The particle velocities are separable degrees 
of freedom and therefore always obey the Maxwell-Boltzmann distribution. The force 
per unit area on a confining hard plate is therefore given rigorously of elementary 
kinetic theory as f =  kBTn, where n is the number density of particle centres at 
a distance from the surface corresponding to the point of impact. This is, of course, the 
contact density. This argument applies whenever the interaction between the particles 
and the plate is of hard wall type. Ref. [19]. 

The Henderson formula reduces our problem of the depletion force to simply 
finding nin(h), the surface contact density inside a pair of parallel plates at separation h. 
For we already know that the pressure outside the plates is kBTnou,, with: 

nout= n b +  B2  n2 + B a n  3 + . . .  , (4) 
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where the Bs' are hard sphere virial coefficients for pressure: B 2 = 2~a3/3, 
B 3 = 5 / r 2 o ' 6 / 1 8 .  The depletion force per unit area on a plate is therefore simply: 

fp = kBT(n i .  - nout) (5) 

This offers a fundamental simplification over more direct approaches based, for 
example, on calculating the partition function of particles confined between the plates. 
We have pursued the latter to second order in q5 (with results that agree with those 
given below) but a third order calculation is probably not feasible by this method: it 
would involve integrating over particles with centres at three different positions. 
Using the Henderson formula, we may hold one of the three particles in contact with 
a plate- a substantial reduction in the integrals required. 

If the plate separation obeys h < a then no particle can enter, and the surface 
contact density nin between two plates is simply nin = 0. In this range of h, the 
depletion force is, to all orders in 05, simply the unbalanced osmotic pressure on the 
exterior of the plates. To find ni,(h) with h >~ a, is more subtle, however, and we 
introduce the following argument. Suppose we put our system of particles and parallel 
plates in contact with a hypothetical reservoir, in which particles are exempt from 
mutual hard sphere interactions. Then the particle density nre~ in the reservoir must be 
such that the chemical potential p is the same everywhere: 

In nres # In n b +  2B2nb 3 2 . -- -- + 7 B 3 n  b + ... (6) 
k B T  

This condition gives n ~  in terms of the bulk density nb in our system, as 

nre~ = nh[1 + 2B2nb + 2B2n~ + 3B3n2 /2  + O(n~)].  (7) 

Now consider an infinitesimal volume 6v, situated between the two plates, centred at 
a height z t> ~/2 from one of them (see Fig. 1). Due to the hard sphere interaction 
between particles, there will be no particle in 6v unless the sphere S. of radius a. 

centered on 6v, but excluding the infinitesimal volume 6v itself, is vacant. (By "vacant", 
we mean it does not contain the centres of other particles). If the sphere Sz is vacant, 
the density in 6v is the same as nre~. In other words, the density at height z may be 
written 

n(z) =- nresP(z), z ~> ~r/2, (8) 

where P(z)  is the probability of the sphere Sz being vacant. The contact density is then 
just n(a/2). Eq. (8) can be viewed as an example of the application of the potential 
distribution theorem due to Widom [20, 21]. 

Dividing S~ into small pieces, we may now write: 

P(z)  = 1-] I 1 -  n(r)d3r] (9) 
rESz 
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h 

Fig. 1. The geometric interpretation of O~(z). 

Expanding to second order in local density gives: 

f lff P(z)  = 1 - n(r)d3r  + ~ n(rl)n(r2 [rOd3rl d3r2, (10) 
S~ S~ S~ 

with n(r2 ]rl) the conditional density that a particle is at r2 given that one is already 
present at &. This is simply n(r2) if rl and rz do not exclude each other, and zero if they 
do. [Note that the truncation of(10) at second order in the density will be sufficient to 
calculate nin to third order, because of the extra factor nr~s on the right hand side in 
(8).] 

We now define expansion coefficients O1 (z), 02.  l(Z), 02.2 (z) in terms of the integrals 
appearing in P: 

f n ( r ) d 3 r  ==- ~t~l(z)n b ~- ~'- (1l) ~'-22.1 (z) n 2 O(n~), 

S~ 

~ f f n(rl)n(r2lrl)d3rl d3r2 =-- ~Q2.2(g)n2 + O(n3), (12) 

s~ sz 

so that the probability P that the sphere Sz is vacant has the expansion: 

P(z)  = 1 - f21(z)n b + t22(Z)nb 2 + O(n3), (13) 

where ~ 2  = - -  ~2 .1  "~ ~w~2.2. According to (8) the surface contact density between the 
two plates obeys: 

nin = nresP(a/2),  for h/> a; ni, -- 0, for h < tr. (14) 

This equation combined with (4), (7), (13), determines in principle the depletion force 
f =  kaT(nin - nout) to third order in bulk concentration nb. 
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3. Results 

3.1. Firs t  order  

The first order calculation is simple, nout = nh (unperturbed to this order by virial 
effects) and nin = 0 or nb according to whether the plate separation h, is larger or less 
than the diameter 0" of our small spheres. The depletion force per unit area is 0 for 

h > 0", and - n h k B T  otherwise. So the potential due to this force is linear for flat plates, 

and quadratic for spheres after the Derjaguin approximation,  which involves a further 

integration. Writing 2 = (h - 0")/0", the depletion potential W~ between large spheres 

of radius R, caused by small spheres of volume fraction qS, is then given as: 

W s ( 2 ) / k B T  = O, h >1 0", (15) 

W s ( 2 ) / k . T  = - (3Rck/a)22,  h < 0., (16) 

where ~b = nbrt0"3/6 is the volume fraction of the small particles. These are the classical 

results first derived by Asakura and Oosawa just over 40 years ago [1], and in most 
circumstances provide a simple and effective description of the depletion force 
between spheres. But for large enough size ratios, at even moderate concentrations, 

this is no longer satisfactory, as we discuss in what follows. 

3.2. Second  order 

To find the depletion force to second order in ~b, we have no,t = nh(1 + B2nb), and 
require the leading correction to ni, --- nresP(a/2).  Here nres can be found to order 
n 2 using (7), but we also need to find P ( a / 2 )  to order nb, i.e., we want to compute the 

leading correction O1(a/2 ) as defined in Eq. (13). In evaluating O1, we can take n(r) to 

be either nh, if the position r is accessible to a particle (i.e., not excluded by either 

plate), or zero if inaccessible. So the situation is till rather simple as shown in Fig. 1; we 
have P ( a / 2 )  = 1 - O l ( a / 2 ) n h  where O1 (a/2) is just the effective volume excluded by 
a particle at contact: 

Ox(a/2) = 2/1:0"3, h >~ 20", (17) 

01(0"/2) = 1/t0"3)~(3 _ )2), 2a > h > 0.. (18) 

Having by this procedure obtained ni, = nr~P(0"/2) to second order in nh, we can 
proceed to write down the depletion force. Again writing ~ = (h - 0")/0", we obtain for 
the total force per unit area fp between flat parallel plates: 

f p ( iO /kBT  = O, h >1 2 a ,  

fp ( )O/kBT = 2nb4)(2 -- 32 + )3), 2a > h/> a ,  

f p ( 2 ) / k B T  = - nb(1 + 4~b), a > h. 

(19) 

{20) 

{21) 
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This deplet ion force to second order  in ~b has recently been derived by Walz and  

S ha rma  by a somewha t  different me thod  [10]. No te  that  the force is repulsive, and of 
order  n 2 (since ~b = nbrccr3/6), at in termedia te  distances. Its m a x i m u m  value is 

fp . . . .  = 4nb(akBT, arising at  h = a + (just as the particles become fully excluded from 
between the plates). We give a simple explanat ion  of this value in Section 4 below. 

In tegra t ing  the force leads to the deplet ion potential ,  Wp, between fiat parallel 
plates1: 

Wp(2)/kBT = 0, h > 2 a ,  (22) 

Wp(2)/kBT = ½ nbaO(3 -- 82 + 622 -- 24), 2or > h ~> or, (23) 

Wp(2)/kBT = ½nba(22 + 3~b + 82~b), h < a .  (24) 

The  deplet ion force between spheres is given by the Der jaguin  approx ima t ion  as 

f~ = rcRWp, and one further  integrat ion gives us the potent ia l  between spheres: 

Ws(2)/kBT = 0, h > 2G, (25) 

Ws(2) = R~b 2 (12 - 452 + 6022 - 3023 + 325), for 2a  > h/> a (26) 
kB T 5a 

W~(2) 3R~b 22 + R~b 2 (12 - 452 - 6022), for h < a (27) 
ksT  = - ~ - ' -  ~ 

which has a posit ive m a x i m u m  value of: 

Ws, m,x/kBT = 12R492/5a, at h = a(1 - 3 ~ b ) ,  (28) 

and a m i n i m u m  value at  contact:  

Ws. min/kBT = - 3c~R/a - 3c~2R/5a. (29) 

These formulae  for Ws,  max/mi n a r e  accurate  to order  ~b 2. 
The  mos t  notable  feature is obviously  the barr ier  Ws . . . .  . To  take a somewhat  

ext reme example,  spherical micelles of  radius 5 nm, used as a depletant  [22-1 for large 
(10 Ixm) particles, gives a barr ier  of  24 k~T at ~b "-~ 0.1, see Fig. 2. (The third order  

correction,  calculated below, is also shown in the figure.) This would lead to a very 
s t rong kinetic stabil ization of the colloid. Fo r  less extreme size ratios, the effect will be 
much  weaker  but  there could still be a s t rong influence on the radial distr ibution 
function of the large spheres. 

3.3. Third order 

To this order,  nout = nb(1 + B2nb + B3n2). For  nin , we need all terms in Eq. (13). The 
evaluat ion  of the linear te rm 01(a/2) is just  as before, but 02(a/2  ) is more  tricky. 

1 It is appropriate, at this point, to correct a (printing) error in Ref. [10], where the last term on line 2 of 
Eq. (24) should read -3vp~. 
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Fig. 2. The calculated second and third order interaction energy W(h)/kaT against reduced separation h,/a 
between large spheres suspended in small spheres at volume fraction ~b = 0.1. The size ratio 2R/a = 2000. 

Firstly we need to find ~22.1 (0"/2) a s  defined in Eq. (11), which involves knowing n(r) 
to order  n 2 for a general posi t ion r within the plates. Clearly n(r) depends on z only, 

and  can as before be writ ten as [see Eq. 8)]: n(r) = n~e~P(z) for h >~ tr and 0 for h < or. 

To  find f22. l (t7/2) here, we need to k n o w  P(z) for all z (not just z = ty/2) though  only to 

first order  in the bulk density rib. 
From Eq. (13), P(z) can be found in terms of f21 (z) which is s imply the volume of the 

t runcated sphere shown in Fig. 1. The  result may  be written: 

Q2.1(0"/2) = ~ [2B2 -- ~ l ( z ) ]  d3r ,  (30) 

S~,'2 

which can be evaluated to give: 

~'~2.1 ~-- --27120"6, h ~> 3a , (31) 

Q2.1 = ~ o / r 2 0 " 6 ( 2 0 0  - -  1922 + 8023 - 30}ff + ,,[6), 3a > h ~> 2tr, (32) 

f22.1 = ~o8olt2a6(2402 - 18022 - 8023 + 9024 - 1126), 2tr > h >~ a .  (33) 

To  complete  the th i rd-order  calculation,  we need to find Q2.2(O'/2)  a s  defined by (12): 

n~Q2.2 = ~ n(rl)n(r2lrl)d3rl  d3r2. (34j 

Sn~2 Sa~2 
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Here, we can set n(r) = nb since the integral is already of order n z. Also, as discussed 
previously, n(r2 It1) is also nb unless r 2 and rl are mutually excluding, in which case it 
is zero. Thus: 

az.2(0-/2)=fd3r, fdar2, (35) 
g g, 

which is the (6-dimensional) volume available to two mutually excluding spheres 
within the excluded volume g of a hypothetical particle contacting the plate. For 
h >~ 20- the volume S is a hemisphere, and for 20- > h > 0-, S is a truncated hemisphere. 
In both cases, S' is the incomplete hemisphere available to a second particle; the 
algebra involved is accordingly rather complicated. 

The integral is, however, similar to that treated by Fischer [23, 24], who studied the 
particle density near an isolated wall as a power series in the bulk density. For our 
problem, the integration limits have to be changed, and the calculations are very 
involved. We therefore only quote the answer: 

~c22. 2 = ~-2~20- 6, h > 20-, (36) 

(22.2 = 1 7 r 2 0 - 6 ( - - 1 0  + 3 8 2  - -  3022  + 1024  - -  326) ,  20->~h>l(x/3/2+ 1)0-, 

7"/;0 -6 - -  - - 2 - 0  - -  - - 2 - +  3 ~ 7"/7 

+ ~ ( - 1 8 0  + 9022 - l124)arccos 2 

22)2 arccos ( --1 + 22=) -] 192 /" 2 "~ 10(3 --2 + 222]0 + - i 5  - arctan/-\x/3 "~-5-~" ~ 2 / _  422J \ 

1 [  f 3 - 4 2  "] ( 3 + 4 2  ) ]  
+ ~  a r c t a n \ ~ ]  + a r c t a n \ ~ ] j  

120 arctan il + 2 2 ~ - ~ }  

- arctan\((1 3 + 22 - 222 ] ]  
+ 22) 4 V/ 

- 2 16 - 302 + 1023 - -  325 [-arctan/ - 3  + 22 + 222 "~ 
120 ] \(1 2- 2 2 - ) ~ J  

( - - 3 - 2 2 + 4 2  z ~ l  
- arctan \(1 -- 2 2 ) ~ , ] ]  ' 0- < h < (x/3/2 + 1)0-. 

(37) 

(38) 
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Combined with the previous results, we obtain finally the depletion force between flat 
plates as: 

fp /kBT = nres[l -- ~l(a/Z)nb -- [~2.,(tU2) -- (22.2(a/2)]nb 2] 

-- rib(1 + Bznb + B3n2), (39) 

with nres as given in Eq. (7), and O1, Q2.1, Q2.2 from (17, 18), (31)-(33) and (36) (38) 
respectively. The maximum of the repulsive force remains at h = a + (as in the second 

order calculation) but the value is shifted tofp . . . .  = nbkBT(4O + 37q~2). In addition, 
this force changes from repulsion to attraction as separation increases from a to 2a, 
and it is purely attractive at separations between 2a and 3a, with a maximum 
attraction in this region of ~-nbO2kBT. This gives a secondary minimum in the 
interaction potential between flat plates. 

The above completes our calculation of the depletion force between plates to third 
order in nb. Two further integrations are then performed numerically to give W~(h), 
the interaction potential between large spheres or radius R in a sea of small ones of 
diameter a and bulk density n b. The results may be written: 

Ws(h) _ 2R [Al(h)(rlbff3 ) + Az(h)(nba3)2 + A3(h)(nba3)3 + O((nbo .3)4) ]  ' (40) 
kBT a 

where nba 3 is the dimensionless density, and the functions A~(h), A2(h), A3(h) are 
plotted in Fig. 3. (This data allows the third order prediction for the interaction 
potential to be reconstructed for any chosen q<) 
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Fig. 3. The coemoents in the expansion of the depletion force, Eq. (40). 
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4. Discussion 

We give first a direct physical argument for the origin of the repulsive part of 
depletion force, and explain its maximum magnitude (between plates), 
fp . . . .  = nbkBT(4(9 + 37q~2), which arises for 2 = h - rr ~ 0 +. The key idea is that, for 
small 2, the mutual repulsion of spheres within the gap is substantially reduced. Such 
spheres are very rarely close to each other: to first order in concentration their 
voluminal number density within the allowed region for particle centres (which is of 
thickness 2) is simply nb, the same as outside the plates. However the areal density is 
nb2, which vanishes as 2 ~ 0. In this limit the spheres between the plates become 
noninteractin9: their density must therefore approach nfes as defined in Eq. (7). To 
cubic order in nb, this yields an enhanced ideal-gas [18] osmotic pressure within the 

gap of 

l/in = kBTnr~s = k~Tnb(1 + 2B2nb + (2Bz z + 3B3/2)n2). (41) 

The osmotic pressure outside is also enhanced (by interactions), but as usual obeys 

//out = kBTnb(1 + Bznb + B3n2). (42) 

The difference between these two pressures gives for 2 ~ 0 + a repulsive depletion 

force 

fp . . . .  = kBZ[B2 n2 + (2B22 + B3/2)n3] ,  (43) 

precisely as found in Section 3.2 and [10] (to second order in ~b), and in Section 3.3 (to 
third order). 

We have shown already in Fig. 2 the interaction curves at second and third order 
for a (rather extreme) size ratio and volume fraction that might correspond to 
depletion by micelles of large colloidal particles. For  less extreme size ratios, the 
flocculation barrier will be weak, at least in the range where the theory is reliable, and 
the main effect of higher order corrections may then be to alter the depth and, to some 
extent the width, of the primary attractive minimum. However, there may still arise 
a significant barrier at higher q~. This prospect is implicit in the prediction of Attard 
[13], of a pronounced minimum in the radial distribution function 
9(h) oc exp [ - Ws(h)/kBT] of two large spheres in a dense fluid of small ones, which, 
in that work, was intended as a model of a molecular solvent. Indeed, the depletion 
repulsion can be viewed, in this light, as simply the repulsive part of a solvation 
interaction mediated by the small spheres. This is usually interpreted as a layering 
effect arising from crowding [13], but the results here show that a repulsion arises, in 
principle, even at very low ~b. In fact, at order 4) 2, a sort of layering is already present: 
the density of small particles near a large one has an 'enhancement zone' (at distances 
r obeying a/2 < r < 3a/2). Here particles are more likely to be found since they are 
then adjacent to the usual "depletion zone" (0 < r < a/2), and are thus partially 
relieved of their excluded volume interaction with other small spheres 1-23, 25]. 
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Fig. 4. A comparison of our calculations with computer simulation results. The small sphere volume 
fraction is ~b = 7r/15 and the size ratio 2R/a  = 10. Simulation data courtesy of P. Bladon and T. Biben (Ref. 
[17]). 

A secondary depletion zone, brought about by the exclusion interaction with particles 
in the enhancement zone, first appears in the ~b 3 calculation. 

The density profile of particles between confining plates is given by Antonchenko 
et al. [26] using Monte-Carlo method, and also analytically by Glandt [27]. Glandt 
gave the density between plates in a virial expansion to third order, but not for the 
crucially important region of a < h < 20-. Otherwise the results in Ref. [27] agrees 
with that found in Section 3 for the contact density. 

The oscillatory nature of the depletion interaction has been measured directly with 
a surface force apparatus [28]. The experimental results can not be directly compared 
to our theoretical predictions because of the presence of charged double layers in the 
experimental system. Our results can, however, be directly compared with recent 
computer simulations [17] in which the interaction potential was itself calculated. For 
a particular size ratio of 2 R / a  = 10, and volume fraction ~b = ~/15 the predictions to 
various orders in ~b are plotted in Fig. 4 and compared with the simulation data. 
Clearly the shape of the primary attraction, and also the depletion barrier, are 
qualitatively described by the second order calculation and reproduced very well at 
third order. (This is despite use of the Derjaguin approximation2.) The third-order 

2We have made a numerical estimate of the depletion force to second order in density without the 
Derjaguin approximation which shows the error to be of order a few percent for this size ratio. 
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calculation also predicts the secondary minimum, though this is at too large separ- 
ations and somewhat too deep. The simulation shows also a second maximum, which, 
as mentioned in Section 1, one would expect in principle to recover at fourth order in 
~b. Considering the magnitude of q5 in this example, the perturbative results are 
probably better than one could reasonably have anticipated. As mentioned above, it 
does seem that much of the physics of solvation forces [18], as well as the depletion 
force, is already contained in the perturbation expansion to the first few orders in ~b. 

Finally, it is important to consider to what extent our hard-sphere results could be 
applicable to other depletants, such as charged spheres or polymers. The nature of the 
depletion for interacting spheres confined between symmetric walls was considered by 
Henderson [29]. For polymers in a good solvent, there might arise a repulsive 
depletion barrier at volume fractions below but close to the overlap threshold: such 
polymers have a strong tendency to mutual avoidance. However, the presence of the 
barrier (and the subsequent secondary minimum) arises for spheres in part because the 
attractive interaction for short distances cuts off abruptly at h = tr. For polymers this 
contribution would fall off more slowly because of fluctuations in coil shape. This 
smearing of the (order 4) attraction could easily wipe out the rather delicate higher 
order features of the interaction curve. Analytic calculations for mutually avoiding 
chains seem extremely formidable. Work in progress is instead addressed to the case 
of depletion by rigid rods, where similar considerations apply, with the smearing in 
this case arising from the orientational distribution of the particles [30]. Polydisper- 
sity, which has not been addressed so far, is also the subject of ongoing research. 
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Appendix A 

Here we present two checks on our results, including equation (39), by comparing 
with limiting cases. 

A.1. Check with surface tension 

As we bring two plates close together to a distance cr, two particle-wall interfaces 
disappear. Therefore W~,~ates(a)= --27, where 7 is the surface tension. The virial 
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expansion for this quantity was given by Bellemans [31, 32] more than 30 years ago, 

70 "2 9 1341 
q52 - - -  q53 . (44) 

kBT - 2rr 70re 

Combining the above two equations we find 

2kBT ( 9 ~b 2 1341 q~3"] 
Wplates(°') = - ~ -  ~ q- 70rc J"  (45) 

We have checked numerically to high precision that this result agrees with that given 
by Eq. (39). 

A.2. Check with small ;t limit 

It follows from the work of Henderson-  Ref. [18], Eqs. (10), (21) - that for the limit 
o f 0 < ; t ~ l ,  wehave 

ni,(2) = nb[1 + (8 -- 62)q5 + (47 -- 962)~b2], (46) 

This expression for surface contact density in between plates has been verified as 
a special case of Eqs. (13), (14) with: 

Q1 = rra32 + O(22), (47) 

~c~ 2 = --  492O'6]L "}- O(A2) .  (48) 
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