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Starting from scaled particle theory, compact expressions for sedimentation equilibrium and 
light scattering at zero angle for concentrated polydisperse solutions of colloidal hard 
spherocylinders are derived. These expressions are used to assess the influence of length and 
diameter polydispersity on the light scattering of dispersions of rod-like particles as a function 
of the volume fraction. 

1. Introduction 

Concepts of the theory of simple liquids have been very useful in the 
description and understanding of concentrated dispersions of colloidal particles 
[l-3]. For example in the analysis of experimental scattering data for colloidal 
dispersions, extensive use is made of the structure factors obtained in liquid 
state theory [4]. A difficulty which arises is that in practice colloidal systems 
virtually always exhibit some nonuniformity in the particle size. The effect of 
this polydispersity on the behaviour of a colloidal dispersion can be consid- 
erable. 

Starting from the Percus-Yevick approximation [4], which may be solved 
analytically for fluid multicomponent hard sphere systems, Vrij [5,6] and, 
independently, Blum and Stell [7] have shown how polydispersity influences 
the scattering intensity of hard sphere colloidal systems. This formalism has 
been successfully implemented in the analysis of light scattering [8], small angle 
X-ray (SAXS) [9] d an small angle neutron scattering (SANS) [lo] on disper- 
sions of colloidal particles with steep short ranged repulsive interactions [ll]. 

In this paper we consider dispersions of polydisperse hard rod colloids which 
can be seen as the simplest non-trivial extension of hard spheres. Recently Van 
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der Schoot and Odijk obtained accurate analytical expressions for the structure 
factor of monodisperse [12] and polydisperse [13] solutions of hard rod-like 
particles in the second virial approximation but no such results are known for 
the concentrated case. However, for the thermodynamic properties closed 
expressions can be obtained using the scaled particle theory (SPT), originally 
developed by Reiss et al. [14] for spherical particles. Cotter [15] solved the SPT 
for a system of monodisperse hard spherocylinders (cylinders capped at both 
ends with hemispheres) whereas the polydisperse results were given by Cotter 
and Wacker [16]. Starting from the SPT results for multicomponent hard 
spherocylinders (HSC) assemblies we derive here expressions that can be used 
directly in the analysis of light scattering intensities and sedimentation equilib- 
ria of dispersions of polydisperse rod-like particles. For the monodisperse case 
the SPT results have been used to interpret sedimentation equilibria and light 
scattering data from solutions of rod-like macromolecules [17,18]. However, 
these systems have at least a moderate level of polydispersity and therefore an 
analysis based on the assumption of monodispersity is not strictly valid. 

In section 2 we present the results of SPT for a polydisperse isotropic HSC 
system. In section 3 we briefly review the relevant equations describing 
sedimentation equilibrium and the intensity of scattered light at zero angle. 
The common quantities appearing here are the derivatives (d~$ap~), . In 
order to obtain these quantities from the SPT results, a matrix inversion is 
required (section 4). Guided by the work on hard spheres by Vrij [5], we were 
able to perform this matrix inversion analytically. In section 5 we illustrate the 
theoretical expressions by presenting the light scattering intensities at zero 
angle for different degrees of polydispersity and in section 6 we end with some 
concluding remarks. 

2. Scaled particle theory for a polydisperse assembly of hard spherocylinders 

In a remarkable paper, Rosenfeld [33] obtained the SPT expressions for the 
pressure and the chemical potentials for an isotropic fluid mixture of arbitrary 
hard convex particles in terms of what he refers to as “fundamental measures” 
of the particles. These expressions were shown to be in full agreement with 
known results for monodisperse hard spheres [14], polydisperse hard spheres 
[ 191 and monodisperse HSC [15]. Here we present the derivation of the SPT 
results for HSC-mixtures along the traditional lines [15,16] and find that they 
are also in accordance with the general equations of Rosenfeld. 

We consider an isotropic HSC-system consisting of n components with 
number densities pk (k = 1,2, . . . , n). A particle of the kth component has a 
length L,, diameter D, and an orientation characterized by solid angle 0. The 
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basic idea of SPT is to obtain the excess chemical potential by calculating the 
work W,(0) needed to insert an additional particle of the kth component with 
orientation R into the system. This work is calculated by expanding (scaling) 
the added particle from zero to its final size [14,19]. In the case of a HSC of 
component k with orientation 0 this expansion can be described by the scaling 
parameters A, and vk for the length and the diameter respectively, such that the 
scaled particle has a length A,L, and a diameter vkDk. 
The work is easily calculated by realising that exp(- W,(O) lkT) is equal to the 
probability that the added particle does not overlap with any of the other 
particles [20]. In the limit A,, v, + 0, the added particle is a mere point and 
cannot be in contact with more than one particle at the same time and 
therefore this probability is equal to the accessible volume fraction, 

exp[-W,W; A,, k v )lkT] = 1 - i I pjf,(.n’) o,(J2, 0’; A,, v/J dR’ 
j=l 

Here, &(a) is the orientation distribution of the jth component and 
~,(a, R’; A,, v~) refers to the excluded volume of the added scaled particle of 
the kth component with 
orientation 0’, 

orientation 0 and a HSC of the jth component with 

$lr(Dj + v~D,)~ -t- $n(Dj + v&)‘(Lj + A,L,) 

+ (Dj + v,D,)A,L,Ljlsin ~(0, 0’)l , (2) 

where r(Q0’) is the angle between the axes of the two particles. 
For large values of the scaling parameters A, and v~, the work required to 

insert an additional particle is just equal to the work needed to create a hole 
with a volume equal to that of the scaled particle against the pressure P exerted 
by the fluid, 

w,(fi; A k, Vk) = ($rv:D: + 1 4~v;D;A,L,)P (Ak, vk + 1). (3) 

For intermediate values of the scaled particle parameters it is assumed that 
the work Wk(J2; k,, vk) can be found from a Taylor expansion around A, = 
vk = 0, with the terms beyond the quadratic being replaced by the expression 
given in eq. (3), 

w,(~;A,, vk)= i ’ a P+qw 

- k A$$ 
p,q=o p!t~! aA; av; 

+ (&w$: + $w~D~A,L,)zJ. (4) 
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The excess chemical potential of a particle of kth component is obtained by 
setting the parameters A, and vk in the above expression for the work equal to 1 
and integrating over all possible orientations with the orientation distribution 
function, 

(5) 

Since in this derivation an isotropic solution is considered, all orientation 
distribution functions have the value 1/4rr and therefore the average of the sine 
of the angle between two HSC’s equals n/4. This leads to the following 
expression for the excess chemical potential: 

(1) (2) 
@,q = _ln(l _ 5’3’) + “2’“i”-‘,t;, Rk + c5 

(2) 2 (2) 
) Rk 

8~(1 - ,$‘3’)2 
+ PRY’P. 

(6) 

Here, /3 = 1 lk,T and the quantities Rr’ represent the fundamental measures 
for HSC introduced by Rosenfeld [33]: 

R(O) = 1 
k 7 Ri” = ;D, + aLk, 

Ry’ = ~0; + nD,L, , Rp’ = $rD; + +nD;L, . 
(7) 

These quantities have a simple geometric meaning: Ry’ is the radius of 
curvature integrated over the surface, RF’ is the surface area and R(k3) is the 
volume of a particle of the kth component. The quantities 5’“’ are defined by 

[‘“’ = k$l pkR’,“’ . (8) 

By using the Gibbs-Duhem relation, one finally obtains the equation of 
state, 

pp=-$)+ 
(1) (2) 

E 5 (1 - ((392 + 

( tC2Q3 
127F(l - t(3))3 . 

(9) 

The equations for the excess chemical potentials (6) and the pressure (9) are 
indeed identical with the expressions given by Rosenfeld [33]. 

3. Light scattering at K = 0 and sedimentation equilibrium of HSC mixtures 

Thermodynamic properties of colloidal dispersions can in principle be ob- 
tained from light scattering intensities [21] and sedimentation equilibrium data 
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[22]. Starting from the fluctuation theory of light scattering, developed by 
Zernike [23,24], it is possible to separate the contributions of the solvent and 
the solutes [25]. This leads to the following expression for the normalized 
scattering intensity (Rayleighratio) of the solution, minus that of the solvent, 
for vertically polarized indicent light and extrapolated to zero scattering angle 
0: 

R,=, = 4.ir2n2Ai4 
’ 

I 

(10) 

Here, n is the refractive index of the dispersion, A, is the wavelength of the 
light used in vacua and yi = (anla~~)~~,~ is the refractive index increment by 
the particles of the ith component. The appearance of the quantities (api/ 
a/.~), in the light scattering intensity expression originates from their con- 
nection with concentration fluctuations in a volume V, which, according to 
thermodynamic fluctuation theory, are given by [26]: 

(ApiApk) = +$ (3) . 
k 3 

(11) 

Under the influence of an external field, the spatial distribution of the 
particles becomes inhomogeneous. For example, in an (ultra) centrifuge the 
equilibrium concentrations at a distance x will depend on the centrifugal field 
with strength w2x, where x is the distance from the center of rotation and w the 
angular rotation speed. This, in turn, leads to a gradient of the refractive index 
in the centrifuge cell which can be written as [27] 

d(n - no) 

dx 
= -w’x i: Y,Ek(3)p . 

i,k=l k I 
(12) 

Here IZ’ is the refractive index of the solvent and &k = (&Oapk)4,p with d the 
mass density of the dispersion. 

From eqs. (10) and (12) it follows that both light scattering at zero angle and 
sedimentation equilibrium of polydisperse colloidal systems depend on the 
derivatives (61p~lap~)~~. However, the quantities (apilapk)pi are directly pro- 

vided by SPT as given in eq. (6). Therefore a matrix inversion is necessary in 
order to calculate the light scattering and sedimentation equilibrium. 

4. Inversion of the matrix (aPi”Pk)q 

Using the factorization procedure introduced by Baxter [28] to solve the PY 
integral equations, Vrij [5,27] was able to invert the matrix (a~J~3p~)~~ for hard 
sphere systems analytically. 
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The same strategy cannot be applied directly to HSC systems because no 
factorization procedure that allows the PY equations to be solved analytically is 
available for these systems. Nevertheless we found that the SPT expressions 
which apparently have the same roots as the PY approximation [33], are 
amenable to a similar analysis. 

Starting from the SPT expressions for the chemical potentials p; (eq. (6)), 
the derivatives with respect to the densities can be written in the form 

where 

Qji = Sji + (PjPi)“*Zji 

and 

uikz(l (*,l) - & 5”‘) YiYk(pipk)“* ) 

(13) 

(14) 

(15) 

with 

R;.“Rj3’5(*) 

+ (l-& ’ 
(16) 

R!2’ Rj3)5w 

F = * + t1 _ +)2 9 

5 (“. @) = 2 p,R:“)R;‘“) . 

(17) 

Finally 4 = t(3) denotes to the total volume fraction. Written in terms of the 
fundamental measures Rr’, the form of the Q and 2 matrices is identical to the 
hard sphere case. However, for HSC systems the factorization is not complete. 
A correction term Ui, arises, due to the fact that for non-spherical particles the 
square of Rr’ is not equal to R, ‘*‘/4n The desired inverse of the matrix is . 
given by 

(__l)i+kl(QTQ _ u)(i;k)I 

lQTQ-Ul ’ (19) 

where QT is the transpose of Q. Further ]QTQ - U( denotes the determinant of 
the matrix QTQ - U and the superscript (i; k) indicates that the ith row and the 
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kth column are deleted from the matrix, i.e. ](Q’Q - U)(i’k)l is a minor of 
QTQ - u. 

Due to the extra term Uik in eq. (13), one cannot simply adapt the results for 
the case of hard spheres. Fortunately, as is clear from eq. (15), the elements 
Uik are bilinear products and therefore the matrix U has rank 1. This leads 
immediately to a considerable reduction in the expansion of the determinant 
appearing in eq. (19) which can be written as 

lQTQ - U] = ]QTQ] - i,$I (-i)i+kUik](QTQ)(i’k)] (20) 

and 

I(QTQ _ u)(i;k)I = J(QTQ)(i;k)l _ 2 (_l)i+luj,l(QTQ)(i.i;k~‘)l . (21) 
(j#i,l#k) 

By using the Binet-Cauchy formula [29], the determinant and minors of the 
productmatrix QTQ can be written as follows: 

(QTQI = IQ\‘, (22) 

l(QTQ)(i;k)l = :I (Qhi)( IQ(J';k)l , (23) 

I(QTQ)(i,i;k,t) 1 = lsp$q 
=z 

n lQ(P.s;i,i)l IQ(P,q;k.l)( . (24) 

The next step is to express the determinant and the minors of Q in terms of 
the Z-matrices. Again a considerable simplification occurs, this time due to the 
fact that Z is a matrix of rank two, 

(25) 

(-Qi+j(Q(jii)( = IQls, - S, , (26) 

t-11 i+j+p+qpfp,q;iJ) _ I - IQI<‘p,aqj - ‘pjaqi) - ‘qjs, - ‘pisjq + ‘qisjp 

‘ip zjp 

+ ‘pj’iq + (PiPjPpPq)1’2 z, I I z, 3 

rq 14 

(27) 

where 
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s, = ( pipj)l’* ( ‘ij+z, Pki; 21) 
= (PiPj)“’ 

(1 _ 4)2 uy(~ 
(1.2) + 1 - 4) + ~;y~~” - p”)] 

The desired quantity (apJa~~)~, now follows from eqs. (13)-(28) after 
tedious but straightforward algebra: 

kT 
(“) 

(P;P$‘* ‘pk 4 

= (p,pk)‘~2[ (2 - (g3’ + @3’) + ,(3.3)) 

+ [(I _ 4 + 5(1,*))* _ (t(1.1) _ ~(*)/4nr)~*.*)~-1 

x { 5(22)(@) _ p39(@) _ 5’1.3’) 

_ (1 _ + + 5(l.2))[(~y) _ p.3qR;) _ p1,3)) 

+ (Ry’ - 
5(2.3))(Rj1) _ st1x3))l 

+ (p”) - t(*)/4T)(~j*) _ 5(*,3))(~y) _ 5(*q] . (29) 

Although more elaborate, the above expression has the same structure as the 
one for polydisperse hard sphere systems [30]. In fact the results obtained here 
are not limited to HSC mixtures only, but apply quite generally to mixtures of 
arbitrary hard convex bodies as long as the appropriate expressions for the 
fundamental measures are used [33]. 

A quantity of interest for which one can now also obtain a compact 
expression is the determinant of the matrix [( p~~k)1’2/kT](aCL,lapk)~, , 

,(pQ _ “, = (1 - f#J + [(1,2))2 - (@l”) - .p/47r)p“’ 

(I- +>” 

Note that for hard spheres 5 (I**’ = 34 and the final term in the numerator is 
zero. The resulting expression for the determinant then indeed reduces to the 
well known result for a multicomponent system of hard spheres in the SPT or 
equivalently the Percus-Yevick compressibility approximation [5]. 

5. Light scattering at zero angle for lognormal length and diameter 
distributions 

Taking the refractive index increment in eq. (10) proportional to the volume 
of a HSC, 
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(31) 

eq. (26), the following closed expression for the Rayleigh 

R,=, = 4a2n2h,“A2(1 - 4)’ 

5’*.*‘( 5(1,3))2 _ ~(1 _ 4 + ~(1.*))~(1.3)~(*.3) + (~‘1.1’ _ @2),q,~(~(2.3))2 

(1 - 4 + p2))2 _ (p1.1) _ 5(2)/4T)5w) > 

(32) 

To get a feeling for the influence of polydispersity on the light scattering 
intensity, we evaluate the Rayleigh ratio (32) using a log-normal distribution 
for the length and diameter of HSC. The distribution for the HSC lengths and 
diameters can then be written as 

P(X) = i (21r In z)-~” exp 
( 

ln2(Xz1’2/ (x)) 
- 

1 2lnz ’ 

where 

(33) 

(34) 

and x refers to the length L or diameter D. 
The normalized moments for a log-normal distribution can be expressed in 

terms of the average (x) and variance cXx, 

(L”) - = (1+ gJW’2 ) 
(L)” 

U’“) 
0” = (1 + o;)+-r)‘2 . (36) 

(35) 

The above expressions can be used to evaluate the quantities 5’“‘“’ in terms 
of the averages (L) and (0) and variances aL and aD. This in turn allows one 
to calculate the Rayleigh ratio which will be expressed in terms of the 
dimensionless quantity, 

fi= RO=ll 
4~~rz~A,~A%r( 0)’ ’ (37) 
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4 

Fig. 1. Intensity of scattered light of a system of hard spherocylinders with diameter D and a 
log-normal distribution of the lengths with (L) lD =5 and relative standard deviation u, = 0 

(- ), 0.2 (- - - -) and 0.4 (- - - ) as a function of the total volume C#J of the hard spherocylinders. 

In figs. 1-3, representative results are given for the effect of polydispersity 
on the Rayleigh ratio. Notice that polydispersity in the diameter D has a far 
more pronounced effect than polydispersity in the length. Some insight in the 
effect of polydispersity on the light scattering intensity can be obtained by 
realizing that the concentration fluctuations of the colloidal species can be 
divided in two distinct contributions [30,31]. On the one hand, the concen- 
tration fluctuations are caused by overall density fluctuations which are accom- 
panied by fluctuations in the osmotic pressure. Further, the exchange of 
different species at constant osmotic pressure also contributes to concentration 
fluctuations. The light scattering caused by these two kinds of fluctuations can 
be calculated quantitatively by adapting the fluctuation variables, introduced 
by Kirkwood and Goldberg [32], to a colloidal system [30,31]: 



P. G. Bolhuis, H. N. W. Lekkerkerker I Light scattering of hard rod dispersion 385 

0.16 

0.1 

2 0.08 

0.06 

0.04 

0.02 

0 

I 

I 

i _--_ 

f_+ 

0:1 0:2 0:3 

cp 

4 

Fig. 2. Intensity of scattered light of a system of hard spherocylinders with diameter L and a 
log-normal distribution of the diameters with (L ) lD = 5 and relative standard deviation a, = 0 

(- ), 0.2 (- - - -) and 0.4 (-- -) as a function of the total volume I$ of the hard spherocylinders. 

The mean square of the overall density fluctuations is related to the osmotic 
compressibility, 

(39) 

Further it can be shown that the exchange fluctuations A,, A,, . . . , A,, are 
statistically independent from the overall density fluctuations A,, 

(A,‘j) =O 7 j=2,3 ,..., n. (40) 

This property makes it possible to write the light scattering intensity as a sum 
of the contribution of the overall density fluctuations R+ and the exchange 
fluctuations R -, 

R,=, = R+ + R- . 

Using eqs. (38) and (39) one obtains for R+ the following result: 

(41) 

R+ = (0) 
41r*n*A,~A*4( 1 - 4)” 

5 (1 - 4)’ + Q-(l)~@)(l - 4) + ( r(*Q3/4r * (42) 
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Fig. 3. Intensity of scattered light of a system of hard spherocylinders with independent log-normal 
distributions for the lengths and diameters with (L) /(D) = 5 and relative standard deviation 
0; = 0.4, 0, = 0 (- ), oL = 0.4, a, = 0.2 (- - - -) and aL = 0.4, on = 0.4 (---) as a function of 
the total volume 6 of the hard sperocylinders. 
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Fig. 4. Relative contribution of the exchange fluctuations to the total light scattering intensity as a 
function of the volume fraction C#I of the hard spherocylinders for a log-normal distribution of the 
lengths with (L) lD = 5 and relative standard deviation a, = 0.1,0.2,0.3,0.4 and for a log-normal dis- 
tribution of the diameters with Ll (D) = 5 and relative standard deviation og = 0.1, 0.2, 0.3, 0.4. 
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Note that since the length of the particles only appears linearly in 5’“’ 
(ZJ = 0, 1,2,3), th e quantity R+ only depends on the average length and not on 
the variance. In fig. 4 we present the contribution of the exchange fluctuations 
to the light scattering intensity, relative to the total light scattering intensity for 
a log-normal distribution for the length and diameter of HSC. Note that 
whereas for polydispersity in length the contribution of exchange fluctuations 
to the light scattering intensity is quite small, in case of polydispersity in 
diameter it is considerable. In fact, for a variance a0 2 0.3 the contribution R- 
becomes even larger than R+ with increasing volume fractions. The completely 
different relative contributions of R- in the case of length and diameter 
polydispersity, respectively, can be understood by the fact that the effect of 
length polydispersity only appears in the form of ( L2), whereas for diameter 
polydispersity moments up to ( 0”) play a role. 

6. Concluding remarks 

Starting from the SPT results for the chemical potential, we have derived 
expressions for the light scattering and sedimentation equilibrium for an 
isotropic polydisperse solution of HSC. This requires the inversion of the 
matrix (a~~/ap~)~, which, like in the case of polydisperse hard spheres, could 
be performed analytically. This inverse matrix can be expressed in terms of 
what Rosenfeld [33] refers to as fundamental measures and averages thereof. 
According to Rosenfeld the SPT results for the pressure and chemical poten- 
tials, expressed in terms of fundamental measures, are valid for all polydisperse 
convex hard body fluids. This would in turn imply that the results obtained 
here are also generally valid for polydisperse convex hard body fluids within 
the SPT. 
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