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Abstract. We provide a proof of the following "folk" theorem in (three-
dimensional) VLSI-theory: given a v x w X 1 rectilinear block of the
three-dimensional grid (v £ w £ 1), its minimum bisection width is

at least vw.
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1. Introduction. A VLSI-circuit can be defined as a finite graph of

nodes (gates) and edges (wires) that satisfy certain additional con-
straints. Thompson's model of a 2-layered VLSI-chip assumes that cir-
cuits are laid out in a 2-dimensional grid, with nodes occupying single
cells of the grid and wires running horizontally or vertically (ninety-
degree bends allowed). At most two wires can cross in a single cell,

and only "orthogonal" crossings are allowed. For details see Thompson
[2]. The model is easily extended for multilayered ("three-dimensional)
VLSI-chips, leading to embeddings in the 3-dimensional grid. For details
see e.g. Rosenberg [1].

Lowerbound proofs for VLSI~circuits typically make use of the fol-
lowing argument. Consider a cutset D consisting of (say) d edges, and
let it dissect the circuit in two parts Y and B. {This means that every
path between a Y-node and a B-node must contain an edge in D.} If one
can determine or estimate the information transfer I (in bits) required
for Y and B in the course of the computation, then under reasonable
assumptions I/d will be a lowerbound oﬁ the computation time of the
circuit. Traditionally one tries to find a cutset of a smallest possible

number of edges that dissects the circuit in two balanced halves.



Definition. Let G = <V,E> be a finite (undirected) graph and S < V.
We say that D € E bisects S in G if there are Y,B € V such that
(i) YUB=SandYNB =¢,
(i1) || £ |B| £ |y|+1,
(iii) every path between a Y-node and a B-node contains an edge
of D.
The minimum bisection width of S in G, notation: mbw(G,S), is the num-

ber of edges in the smallest D that bisects S in G.

If S = V we speak of the minimum bisection width of G, notation:
mbw (G) . The nodes of Y will be called "yellow" and of B "blue".
Necessarily |Y| = L4s] ana |B| = [4s], with s = |s|.

Thompson [2], p.52 notes that the mbw of a w x w square block of
the 2-dimensional grid is w + (w mod 2) but gives no proof of this
fact. As the result is intuitively obvious it has become a folk theorem
in this part of VLSI-theory. Yet we feel that a rigourous proof is
reqﬁired. In this note we show the following more general result. Let
G be a v xw x 1 rectilinear block of the 3-dimensional grid with

v £w 1, then mbw(G) 2 vw.
Definition. G(v,w,l) = <V,E> is the graph 5523 with node-set
v = {(i,3,k)|18isv & 1535w & 15k$1)} and an edge between every two

nodes that differ by 1 in exactly one coordinate.

2. The folk theorem. Consider a minimum bisection of G(v,w,1) into

parts Y and B, using a set D E of d edges (@ = the minimum bisection
width) . Let nodes in Y and B be called "yellow" and "blue" respectively.
An edge will be called yellow or blue if it connects two yellow or

two blue nodes, respectively. An edge will be called "green" if it
connects a yellow node and a blue node. {By definition every path from
a Y-node to a B-node must contain a green edge. It also follows that
all green edges belong to D.} We will estimate the number of green
edges in G(v,w,1l). View G as a collection of v "planes” of size w X 1,
with w <1. {Thus a plane is a w x 1 rectangle of the two-dimensional

grid.}



Lemma 2.1. Suppose a plane contains at least x nodes from Y and x nodes
from B. Then it contains 2 min {w,2Vx} green edges.

Let the plane be P. One can view P as a collection of w or 1 "paral-
lel" lines. A line will be called yellow or blue if it contains yellow
or blue edges only. A line will be called green if it contains at least
one green edge. Consider the lines in one direction. If all lines are
green, then we have at least as many green edges and the estimate of
min {w,1} = w.follows. Suppose in both directions there is at least
one yellow or blue line. Because the lines intersect they must both
be yellow or both be blue. Assume they are both yellow (without loss
of generality), which implies that there can be no blue lines. It fol-
lows that every blue node must lie on the intersection of two green
lines. Because there are at least x blue nodes there are at least as
many intersections of green lines. Suppose there are X, green lines
in one direction and x, in the other. The number of green edges will
be 2 x X, whereas. for the number of intersections X, X 2 x. Under

1 2
the latter constraint x,+x, 2 2vx. o

Proggsition 2.2. The minimum bisection width of a w x 1 rectilinear
block of the two-dimensional grid with w £ 1 is w + (1 mod 2), for
w> 1.

Let the block be G. Clearly G can be bisected by a "vertical"” cut
using a number of edges as stated. Only when 1 is odd there will be
one "zig zag" in the vertical cut, accounting for the one extra cutting
edge. For a lowerbound apply lemma 2.1. with x = [iwl]. When 1 is even
(hence 1 2 2) we have x = 3l.w and the number of green edges is bound-
ed by min {w,ZY;IG} = w, using that 1 2 w. Thus the upper- and lower-
bound on the mbw match. Let 1 be odd. The same argument would still
result in a lowerbound of w, although {2V§] = [2VT¥§TT] 2 w+l in this
case. {We exclude the degenerate case that w equals 1.} Consider the
first part of the proof of lemma 2.1. again. Distinguish the following

cases:



{i) all w lines in one direction are green. This leads to at least
w green edges in (say) the horizontal direction. The 1 vertical lines
cannot be all yellow or blue, or else we would not have a proper bi-
section (1 odd). Thus at least one vertical line is green, and the
estimate of the number of green edges becomes w + 1.

(ii) all 1 lines in the other direction are green. This leads to at
least 1 green lines in the yertical direction. Either w is even and
the estimate becomes 1 2 w + 1, or w is odd and the same argument as
before shows that there must be at least one extra green line in the
horizontal direction and (hence) at least 1 + 1 green edges total.
Thus at least w + 1 green edges are required when 1 is odd, and again

the upper- and lowerbound on the mbw match. o

Observe that proposition 2.2. proves Thompson's remark that the minimum

bisection width of a w x w block is w + (w mod 2) ([23, p.52).

Theorem 2.3. The minimum bisection width of a v x w x 1 rectilinear
block of the three-dimensional grid with v £ w £ 1 is at least ww.
View G(v,w,l) as a stack of v planes Pl”"’Pv of size w x 1 each.
Let Pi (1£isv) contain Y; yellow nodes and hence wl - Y; blue nodes.
Let t be a threshold value with 0 < t £ wl, t not necessarily integer.

We will fix t at t = }wz. Divide the planes into the following three

categories:
= < <
X, {Pilo sy, S t}
= < -
X, {Pilt y; <wl t}
= {p |wl-t Sy, £
X, {Pilwl t Sy, wl}

and let x, = lxil (15i23) . Clearly x, +x,+x; = V. Also note that the
division of the planes into categories based on the number of blue

nodes is symmetric to the currept one. Define O = min'{yilPi € Xl}

and max {yi|Pi € Xl}’ B = min'{yilPi € Xz} and B = max {yilPi € xz},

a
and Y min {yi|Pi 3 X3} and Y = max {inPi € X3}. We estimate the num-

ber of green edges in the graph. Consider the planes in X1,X2, and x3.
Planes in x1:
There are at least a'yellow nodes and wl - 4 blue nodes in every

plane in Xl. Because &,3 < t and t £ }wl it follows that every plane



contains at least a'yellow nodes and o blue nodes, and lemma 2.1. can
be applied. This leads to an estimate of min {w,2v63 = 2v5-green edges
in every plane of X, (using that V& S 2VE = w).

Planes in X2:

By their very definition planes in X2 contain at least t yellow nodes
and t blue nodes each. By lemma 2.1. it follows that every plane in X2
contains at least min {w,2y€} = w green edges.

Planes in x3:

There are at least Y yellow nodes and wl - Y blue nodes in every
‘plane of X3, hence at least wl - ; nodes of each kind. By lemma 2.1.
it follows that every plane in X3 contains at least min {w,2V6I:$} =
2\ 1-; green edges (using that wl - ; £t= }wz).

The remainder of the argument is tedious. If x1=x3=0 then X,V and
the bound of vw green edges follows (because the planes in X2 contribute
w edges each). Thus we may assume that xl#O or x3f0, and without loss
of generality we can take xl#O. We distinguish the following three
cases.

‘Case I: x,; 2 tw.

If all planes would belong to X1 (i.e., x1=v) then the number of
yellow nodes would be bounded by i-vw2 and be less than IY! = [ivwlj,

a contradiction. Thus X, < v, and we can define 3 = max {yi|Pi € X, U
x3} (#0) . By slightly extending the argument above, a plane Pi € X1

contains . at least 2V§;_green edges. Because y,. s }wz we can estimate
this at %yi green edges per plane. Considering the wl lines perpendi-

cular to the planes it can be noted that at least 8 - a must be green

and thus account for as many additional green edges. Now let Y1 =

z Y. Y2 = z y., and Y3 = z yi, and observe that
P
i€ Xl PiE X2 PiE X3
<. TptY3)
32 B — 2 ;'(Y2+Y3) by using the assumed bound on X, . The total

1
number of green edges can be estimated at:

4 53 - 4 2 ~
r 2y +8- = £ -a =
o S -a2z-y +o (Y,4Y) - a
Pi€ X1
-2 2 5 =2 2 3
= S (Y Y HY) + S Y - e =0 Ldvw] + S ¥, - a.
2 1 2 = 2 - -
Note that = |#vwl] 2 vl - — = -a 2 —. -0 2 0.
at — [dvwi] 2 v =, and that =Y, - 2 Z.x,0-0 0

Thus the bound becomes vl (2vw) green edges, using that the bound is



integer.

Case II: Xy < 4w (but X, # 0) and Xy = 0.

As before it can be argued that X, < v and (hence} that X, > 0.

4~
The planes of X1 contain at least 2\G 2 ;a green edges each, and the

planes of X2 at least w green edges each. The lines perpendicular to

the planes account for an additional § -a green edges. Observe that

Bz2-= [ivwlj 2 twl - %; and (hence) that B 2 dwl. {Clearly we can ex-
v;ude the case v = 1.} The number of green edges can be estimated at
4- = - _ 4~ 3wl-a = S
—ox, + X, + B o = xl(ag + X ) + X W + B wl 2

4- 2~ =
> - - 2
xl(;a + 1 ;Q) + X, W + B iwl

> >
2 xll + x2w =

2 VW

(using that 3 +x, = v).

Case III: X, < 4w (but X, # 0) and X5 # 0.

_ The planes of X1 contain at least 2Vr-> —a green edges each, the
planes of X2 at least w green edges each, and the planes of X3 at least
2! —(wl—y) = 41 - —N green edges each. The lines perpendicular
to the planes account for an additional Y -0 green edges. By symmetry

we may assume that Xq < 3w. The number of green edges can be estimated

as follows

4" 4= = -
o, X, + x3(4l - ;y) + Y - .
=x1(-3-(-i+ 5”}1{“) + X+ Xy (41-—y+3——;(~}—wi) 2
©4- 12 4= 2—3
> - 25 - ‘Y - >
2 xl(;a +1 ;g) + X W + x3(41 wy + Qy 1) 2
2=
2 - S >
2 xl.l + X,W +vx3(31 wY) 2
> >
2 xll + xzw + x3l 2
2 vw.

It follows that in all cases a lowerbound of vw green edges can
be shown and thus that the minimum bisection width of G(v,w,1l) is at

least vw(vIwsl). o

It follows in particular that for 1 even the minimum bisection width

of a v x wx 1l block (viéwsl) is precisely vw.



3. References.

[1] Rosenberg, A.L., Three-dimensional VLSI: a case study, J. ACM
30 (1983) 397 - 4l6.

{2] Thompson, C.D., A complexity theory for VLSI, Ph.D. Thesis,
Techn. Rep. CMU-CS-80-140, Dept. of Computer Science,

Carnegie-Mellon University, Pittsburgh, 1980.



