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Abstract

In this paper we experiment with a rather general notion of “inter-
pretation in constructive arithmetical theories”. We prove a number of
elementary properties of the notion introduced. We prove a number of
negative results for interpretations that commute with disjunction. These
negative results diverge markedly from what is known in the classical case.
We briefly consider interpetations in formula classes of bounded complex-
ity. In an appendix we show how to do (the interpretation version of)
the Henkin construction for Intuitionistic Predicate Logic inside Peano
Arithmetic. This construction cannot be given in Heyting’s Arithmetic.

1 Introduction

Relative interpretability has been well studied for classical arithmetical theo-
ries. What happens when we try to transfer the insights obtained classically to
constructive theories? It turns out that the situation in the constructive case is
markedly different. One of the pillars of the study of interpretations in the clas-
sical case, the formalized Henkin construction, cannot be constructivized. On
the other hand there is a wealth of translations — like Kleene realizability, the
Friedman translation, the double negation translation — that we are tempted to
grant the honorific interpretation. The role of these interpretations is far more
central to the study of theories like Heyting Arithmetic, than relative interpre-
tations are to the study of Peano Arithmetic. No systematic study has been
made of these interpretations. What is worse: no general definition has emerged
of what an ‘interpretation in a constructive theory’ is.

It is our impression that it is too early to attempt a definition of interpre-
tation for the constructive case. Still, it is already possible to say a lot without
such a definition. Our approach is to study certain global properties that are
plausible for interpretations.

The properties we consider have, mainly, to do with the way the external
numerical variables reappear inside the interpretation. To understand what this
means, let’s turn back to the classical case for a moment. Consider a relative
interpretation IC of a theory U in a theory T. One heuristically fruitful way



to view K is to look at it as a definable mapping of models of T' to models of
U. For every model 91 of T, the interpretation provides an internal model N
for U. If T' extends Peano Arithmetic and if U contains some number theory,
then the numbers of M, the external numbers, can be mapped, definably and
uniformly, on the numbers of M, the internal numbers. Certain properties the
external numbers have are reflected internally. E.g., if © # y externally then
the internal counterparts of x and y will be internally different, etcetera. In the
constructive case our metaphor does not work: an interpretation is not always
a mapping of models. Still it is useful to think of an interpretation as if it
were such a mapping. We will set up our notion of interpretation in such a way
that e.g. (P(z))® means: the counterpart of external z has property P inside
K. Under this convention, the external-internal property, we mentioned, can
be formulated as: T F = # y — (z # y)*. The external-internal properties
combine in certain ways with other properties, like commutation with certain
logical connectives.

The properties we consider are such that most known interpretations satisfy
them. However, even if the present approach is ‘top-down’, we did not aim at
full generality. For one thing, we did not consider other languages than those
of ordinary predicate logic. For another thing, the properties of the internal
appearance of external numerical variables studied here, are plausible only for
theories having full induction, since they are motivated by the intuition that
the external numbers are ‘an initial segment’ of the internal ones.

A spectacular difference between the constructive case and the classical case
with relative interpretations, is as follows. If over Peano Arithmetic an in-
terpretation is provably standard, then it is a faithful interpretation of Peano
itself. The interpretation maps models to models isomorphic to themselves. On
the other hand, the most salient examples over interpretations over Heyting
Arithmetic — Kleene realizability, the double negation translation, the provabil-
ity translation — keep the numbers standard, but engender new priciples — in
our examples, respectively: ECT(, Excluded Third, the Completeness principle.
Moreover, if an interpretation commutes with disjunction and falsum, in a the-
ory like HA then — as we will show — it cannot provide non-standard elements.
Thus in classical arithmetic interesting interpretations are always non-standard,
in constructive arithmetic interesting interpretations are quite often standard.

The contents of the paper are as follows. We provide the necessary prelimi-
naries in section 2. Section 3 introduces our notion of ‘interpretation’ and pro-
vides some examples. In section 4 we verify in some detail the basic properties
of interpretations. In section 5, we prove a number of limitative results in Rosser
style. Specifically we show that if interpretations commute with disjunction and
falsum, then they cannot be non-standard (in suitable constructive theories).
Analogously, we show that interpretations that commute with disjunction and
falsum are Ils-conservative. In section 6 we have a look at interpretations into a
bounded formula class. We provide an example of a bounded interpretation and
show that in HA there are no primitive recursive bounded interpretations that
commute with implication, disjunction and falsum. In appendix A, we show
that the Henkin construction for Kripke models of constructive predicate logic



can be performed in Peano Arithmetic.

2 Preliminaries

2.1 Theories

The language of arithmetic, £a,, contains, apart from =, the following symbols:
0,S,+,.. The theory Ar is the £p,-theory given by constructive logic plus the
following principles:

Arl Sz =Sy —-x =y,

Ar2 x4+ 0=z, 2+ Sy=S(z+y),
Ar3 z.0=0,z.Sy=x.y + x,

Ard x+ Sy #«x

Ar5 =0V dyxz = Sy.

We write: © < y 1> Ju x + Su = y. Evidently Ar verifies: -2 < z, y < Sy,
r<y—z<Sy,r<Sy< (z<yVz=y).

The theory i-IAq is the constructive counterpart of IAg, i.e., it is the the-
ory in £a, containing Ar, plus induction for Ap-formulas. Exp is the axiom
(correctly) expressing that exponentiation is total. (The usual results on the
(verifiable) representability of the graph of exponentiation by a Ag-formula are
easily seen to go through in i-IAg.) i-IAg + Exp is finitely axiomatizable. We
will work with its finitely axiomatized version. Another axiom that we will meet
a few times is the axiom 27, which says that the function wy(z) := olog()” g
total.

For all languages i for predicate logic, that we consider in this paper, we
will assume that there is a relative interpretation (in the classical sense) 2ty of
Lar into Y. We consider this interpretation to be given with the language, so
strictly speaking when we talk about i, we mean the pair (8, 2ry(), rather than
il proper. In practice, we will simply treat il as a language, which has £, as
(designated) sublanguage. We will only consider theories that verify Ar on the
designated numbers. The variables that we exhibit as x,y, z, . . . in U will always
range over the designated numbers.

2.2 Provability

We use underlining for our external numeral function. (In almost all cases, we
will suppress the underlining, except at places where there is a real possibility of
confusion.) num is the arithmetization of the numeral function. We will use O
for the formalization of provability in 7. Suppose A is a formula with variables
Z1,...,Tn. We write #A and #t, for: the Godelnumber of A, respectively, ¢.
We define (#A){(#x1) := x1,...,(F#x,) := x5} or, briefly, (#A){(#x) = x}
as: the Godelnumber of the result of substituting the numerals of the x’s for the



variables in A. (We use binary numerals, since their use is more appropriate in
the context of weak theories.) Similarly, we can define (#A){(#x) := t}, where
t is any sequence of terms of the language. Or A(x) means Provy ((#A){(#x) :=
x}), where Provy is the arithmetization of the provability predicate of T and
where x contains all free variables of A. (We need to arithmetize the function
(#A){(#x) := x} to make sense of this.)

~ We illustrate the above by an example. We suppose Godelnumbers are
assigned as follows: (+— 11, ) — 12, =+ 15, S +— 8, 0— 3, + +— 19. Let x be
an arithmetization of the syntactical operation of concatenation. We have e.g.:

HAF num(3) = 8% 8 x 8 % 3.

And:
Or(x = ) means: Provr(11 * num(z) * 15 * num(z) * 12).

Our notational convention evidently introduces a scope ambiguity. What is
Or((z 4+ y) = 2) going to mean?

a) Provy (11 * num(z + y) * 15 * num(z) x 12) (wide scope) or:
b) Provy (11 * 11 * num(x) * 19 x num(y) * 12 « 15 * num(z) * 12) (small scope)

For definiteness we stipulate that we always use the small scope reading. Fortu-
nately by standard metamathematical results, we know that as long as the terms
we employ stand for T-provably total recursive functions the different readings
are provably equivalent. So (a) and (b) are provably equivalent. In this paper
we will only employ terms for primitive recursive functions, so the ambiguity is
mostly harmless. Note that in the context of the use of the Rosser ordering (see
subsection 2.3 below) strictly speaking the choice still makes a difference — but
the difference will always be inessential for the results we prove.

We write T;, for the theory axiomatized by the finitely many axioms of
1-IAg + Exp, plus the axioms of T, which are smaller than n in the standard
Godelnumbering. We write k1, A, or T'+,, A, for provability of A in 7}, and
Provr , for the formalization of -7 ,,. We consider Prov ,, as a form of restricted
provability in T'. The following well-known fact is quite important:

Fact 2.1 Suppose T is an RE extension of HA in £a,. Then T is essentially
reflexive (verifiably in HA). Le. we have, for all n and for all formulas A with
free variables x, T F Vx (Op,A — A). And, using UC(B) for the universal
closure of B, for all variables except x, even:

HA F VaVA € FOR O7UC(O7,A — A).

Proof

The proof is roughly as follows. Ordinary cut-elimination for constructive pred-
icate logic (or normalization in case we have a natural deduction system) can



be formalized in HA. Reason in HA. Let a number z and a formula A be given.
Introduce a measure of complexity on arithmetical formulas that counts both
the depth of quantifiers and of implications. Find y such that both the axioms
of T, and A have complexity < y. We can construct a truthpredicate True, for
formulas of complexity < y. We have: O7UC(True, A — A). Reason inside Or.
Suppose we have Or ,A. By cut-elimination we can find a T,-proof p of A in
which only formulas of complexity < y occur. We now prove by induction on
the subproofs of p, that all subconclusions of p are True,. So A is True,. Hence
we find A. Q

In section 5 we will consider RE extensions of HA in £4, that are closed under
the De Jongh rule.

DJ For formulas A,B: T+ AV B = forsomen T+ AV 0Or,B.
(Or equivalently:
For formulas A,B: T+ AV B = forsomen Tt Op,AVOr,B.)

We will have a brief look at the question which theories can be seen to have
this property. Note that if a theory T closed under the De Jongh Rule satisfies
Y-reflection, then it satisfies the Disjunction Property. We define a translation
due to Dick de Jongh. Let T be an RE-extension of HA and let n be a natural
number. Define a translation [T],(.) as follows:

e [T],P := P for P atomic,

o [T],(.) commutes with A, V,3,

o [T)u(A— B) = ([T]uA = [T],B) A Or.n(A — B),

o [T]nVy Aly) :=Vy [T] Ay) A Or,n Yy A(y).
Let’s first make a few quick observations, that make life easier:
i) HAF [T],A — Or A, T+ [T],A — A,

ii) HAF [T],((A — B)A (A" — B')) <
([TnA — [T]nB) A ([T]nA" — [T]nB') A Brn((A — B) A (A" — B)).
Similarly for conjunctions of more than two implications.

iii) HA F [T],YyVz A(y, z) < (YyVz [T, A(y, z) A Op ,YyVz Ay, z)). Similary
for larger blocks of universal quantifiers.

iv) HA - [T],Vy (A(y) — B(y)) <
Yy ([T A(y) — [T]nB(y)) A OrnVy (A(y) — B(y))-

v) HAF [T],Vy < z A(y) < Yy < z [T],A(y).
vi) For S€ ¥ :HAF S « [T],5



In (vi) ¥ is the set of Y-formulas. We assume that these are the results of
prefixing a block of existential quantifiers to a Ag-formula. Agp-formulas, in
their turn, are generated from atoms and negated atoms using conjunction,
disjunction and bounded quantification. (v) is immediate from the well known
fact that:

HAFVy < 207, A(y) — Op Yy < 2z A(y).

(vi) is immediate from (v). Let’s write [T],,I" := {[T],D | Dr}. We have:
vii) T Fpan A= [T],I Fua [T],A (verifiably in HA).

Proof

Of (vii): The proof is by induction on the proof witnessing I' ya ,, A. We treat
two cases.

Suppose A is an induction axiom, say for B(x), of HA,,. Clearly [T],A is
HA-provably equivalent to:

[ { [T.BO) A Ve ([T],B(x) — [T]nB(z +1))

A Op,Vz(B(z) — B(z+1)) }
—  (Vz[T],B(x) A Op Yz B(x)) ]
A DT,nA .

We have, HA+ O, A. So it follows that:
HA & (O7,,B(0) A Op YV (B(x) — B(z +1))) — O V2 B(z).
Moreover (as an instance of induction for [T, B(x)):
HA + ([T],B(0) AVz ([T),B(x) — [T],B(x + 1)) — Vz [T],B(x).

Combining these we find the promised: HA F [T, A.
Suppose A = (D — FE) and the last step in the proof was by:

I',D l_HA,n E=T }_HA,n D — E.
From I', D Fya ,, £, we have, by the Induction Hypothesis,
[T]nrv [T]HD l_HA,n [T]nE

and hence: [T],I" Fya ,, [T]nD — [T, E. Moreover, for some finite I'y C I', we
have: I'g, D Fya ., E. Let B be the conjunction of the elements of I'y. We find:

[T]nl—‘ l_HA,n DT,nB and l_HA,n DT,n<B — (D — E))
Hence: [T],I' Fya , O (D — E). We may conclude:

[T]nl“ l_HA,n ([T]nD — [T]nE) A DT,n(D — E)



Let € be the smallest class such that:

a) X C¢,

b) for any B € £a,, and for any C € €, (B — C) € €,

c¢) € is closed under conjunction and universal quantification.

Note that the formulas of € can always be brought in the form of a universal
quantification of a conjunction of implications with a YX-formula in the conse-
quent.

viii) Suppose A € €, then Fp Op, A — [T],A.

Proof

Of (viii): The proof is by induction on the definition of €. We treat case (b).
Suppose A = (B — (). Reason in T. Suppose Op,A. We have to show
[T]nA. Clearly, it is sufficient to show [T],B — [T],C. Suppose [T],B. Then
Or,»B. Combining this with Or ,, A, we get Or,,C, and, hence, by the Induction
Hypothesis: [T],,C. Q

Let T be an RE extension of HA, axiomatized (over HA) by €-formulas. We
have:

ix) T brp A= [T].T Fr [T]nA.

In case the relevant properties of T' are verifiable in HA, (ix) is also verifiable in
HA.

Proof
Of (ix): Note that if C' is a non-HA axiom of T which is smaller than n, then
T+ Op,C, and, hence, T + [T],,C. a

Theorem 2.2 Any €-aziomatized RE extension of HA is closed under the De
Jongh Rule.

Proof

Suppose T+ B V C, then, for some n,T +, BV C. Hence, by (ix), T +
[T]n(BVC). Ergo T+ [T],BV [T],C, and thus, by (i), T+ BV Op,C. a

Of course, there are many other extensions of HA, not covered by theorem 2.2
— like HA plus the uniform reflection principle for HA — that are closed under
the De Jongh Rule.

We close this section by giving an application of the De Jongh Rule. We
remind the reader of two forms of Markov’s Rule for T (see Troelstra [73]):



MR T +Vax (A(z) V -A(x)) and T + =—3x A(z) = T + Jx A(z)
MRpr TFH =S =Tk S, for S a X-formula.

The second form is Primitive Recursive Markov’s Rule. Closure under MP
immediately implies closure under MPpR.

Theorem 2.3 Suppose T is an extension of HA closed under the De Jongh Rule
and MPpr. Then T is closed under MP.

Proof

Suppose T satisfies the conditions of the theorem and T + Vz (A(z) vV —A(z)).
By the De Jongh Rule, we have for some n: T F Vz (Op,A(z) V —A(z)). If
T F ——3z A(z), it follows that: T F ——=3x Op ,A(z). Hence, by MPpr: T F
Jdz Op , A(z). We may conclude: T F 3z A(x). a

2.3 The Rosser ordering

The definitions of witness comparisons between sentences are as follows:
e dx Ax < Jy By :& Jx (Ax AVy < 2 —By)
e dx Ax < Jy By :& Jz (Ax AVy < 2 -By).

In this paper we will only consider witness comparison between Y-formulas with
precisely one (outer) unbounded existential quantifier. For such Y-formulas the
obvious properties of the ordering, familiar from the classical case, also hold
constructively. E.g., i-TAgF S — (S <S8V S < 9).

We write (3x Az < 3y By)* for 3y By < 3x Az, and (3z Az < Jy By)*
for 3y By < dx Ax. For later use and for illustration, we reproduce an typical
argument involving these notions.

Let T be an extension of Ay + Exp and let R be the ordinary ¥ Rossersen-
tence for T. R satisfies: T+ R < Op—R < OpR. Weshow: TH-R+ = TH+.1.
Suppose T'F —R*. Since T+ OrR — (RV R*Y), it follows that T - OrR — R.
By the Lob’s Rule, we find: T+ R. Hence, by Rosser’s Theorem, T 1.

3 What is an interpretation?

3.1 The definition

Let 4 and U be languages. An (U, U-)translation M is a mapping from the
formulas of Y with only arithmetical variables free to the formulas of U with
only arithmetical variables free. We demand:

Al) FV(AM) C FV(A).



We write: AM or A[M)] for: M(A).

An translation is bounded if its range is inside a restricted complexity class
of formulas. The hallmark of such a class is the existence of a truth predicate
with reasonable properties for it. A translation is primitive recursive (recursive,
...) if it is primitive recursive (recursive, ...) as a function.

An 4, U-translation M is an interpretation in T. if it has the following
properties for all U-formulas A and B:

The subscript 4 in A4 indicates that we mean consequences of the axioms Ar in
the language 4. Note that interpretations can be completely wild. M need not
even be recursive.

The free variables occurring in A are free variables of T. They should be
viewed as standing for elements of the world of T being injected in M. What
this means will get clearer in the examples of subsection 3.2. The conditions
A1-4 reflect the fact that we want the embedding of the numbers of T" into the
numbers of M to behave properly.

A parenthetical remark: our notion of interpretation is perhaps still too
‘HA-centric’, since we definitionally assume that all the numbers of T can be
embedded. Generality could be gained by only asking embeddability of the
numbers in some definable cut.

Let M be a U, Y-interpretation in V. Let U be a theory in . We write:

e M:V>U:& forall sentences Ain 4, U A=V AM,
o M :V >piwh U i for all sentences Ain i, UF A< V - AM,

In the first case we say that M is an interpretation of U in V. In the last case,
we say that M is a faithful interpretation of U in V.

We proceed to define the notion of local interpretation. There are many
possible definitions. More experimentation is certainly necessary to see which
of the various possibilities is best. Here we present just one of the possible
choices. Let R be a function from the natural numbers to U, U-interpretations
in V. Let A range over finite subsets of sentences of . Define:

¢ R:VDi U VAV > VA A(UF A=V ARW),
o R:V Dlocfaith U 1 VATV) > VA€ AU AV IEARWD),

We will consider interpretations with further properties P, Q, ... We will speak
of P-interpretations, P, Q-interpretations etc. Examples of such properties are:

Bl) T+ (Av B)M — AM v BM,



B2) THIM— 1.

)
B3) T F Vx (v < ¢)™, for some numerical £-constant c.
B4) T+ AM — (AMM,

(

B5() T+ C — CM, for C a I-formula.

For B5 to make sense we need that I' is both in 4 and U. We can relax
this condition a bit by only asking that I'" is mapped via standard relative
interpretations on the formulas of both 4 and U. We will take this relaxed view
in case I' is a set of arithmetical formulas.

A Bl-interpretation will be called disjunctive, a B2-interpretation consistent,
a B1,B2-interpretation prime, B3-interpretation provably non-standard, a B4-
interpretation inductive. A B5(T')-interpretation is called T-complete. If T is all
of U, we will simply say that the interpretation is complete.

Let’s first note an elementary fact.

Fact 3.1 Suppose M is a interpretation in 7.

i) M provably commutes with conjunction, i.e.,
T+ (AABM « (AM A BM).

i) T F (AM v BM) — (AM A BM). Hence, if M is prime, then M provably
commutes with disjunction.

iii) T+ (Vo A)M — Vo (AM).
iv) T F 3z (AM) — (Fz A)M.

Proof

(i) Reason in T. Suppose (A A B)M. By A4: ((AA B) — A)™. Hence by
A5: AM. Similarly we find BM. Hence (AM A BM). Conversely suppose
(AM A BM). By Ad: (A — (B — (A A B)))M. Hence by two applications of
A5: (A A B)M. (ii), (iii), and (iv) are trivial. a

3.2 Examples

There are plenty of interpretations in 7. We just provide a selection of the
possibilities.

3.2.1 Identity

The identity function ZD from £p to £r is a faithful interpretation of T in T'.
ID is unbounded, prime, inductive and complete.

10



3.2.2 (A— ()

Let A be any L£r-sentence. The function mapping £p-formulas B to (A — B)
is a faithful interpretation of T+ A in T'. If A is not refutable in T, the inter-
pretation is unbounded, inductive and complete. Generally the interpretation is
not consistent, nor disjunctive. It commutes with universal quantification and
implication.

3.2.3 (4 — ())icw

Let U be an L£p-theory extending 7. Fix an enumeration of the axioms of U
(over T'). Let A; be the conjunction of the first ¢ axioms of U. Then R with
R(#)(B) := (4; — B) is a faithful local interpretation of U in T.

3.2.4 Adding a function symbol

Suppose the free variables of A are x,y and
THVx3dy A(x,y) and T FVx,y, 2((A(x,y) N A%, 2)) — y = 2).

Let £ extend the language of T with a new function symbol f with arity |x|. The
usual translation of £ into £7 is an interpretation in our sense. The interpreta-
tion is unbounded, prime, inductive and complete. Moreover the interpretation
commutes with all connectives.

3.2.5 Adding a generic P

Let P be a formula with only x free. Suppose T + Jx P(x). Let £ extend the
language of T with a new constant c¢. Define for A in £:

AM = V2 (Plz = 2] — Alc = 2]),

where z is the first variable not occurring in P, A.

It is easily seen that M is an interpretation. In case, ¢ does not occur in A,
we have: T+ A « AM. So M is complete and consistent. It commutes with
universal quantification and with implications with antecedent without c. It is
easily seen that M cannot be disjunctive. Let e.g. P(z) be £ = x and let T be
HA. We have:

HA F (‘c is even’ V ‘c is odd’)™.

But not:
HA F (‘cis even’ )™M Vv (‘c is odd’)M.
3.2.6 Adding a generic non-standard P

Let P be a formula with only x free. Suppose T F Vy3z # y P(x). Let £ extend
the language of T' with a new constant c¢. Define for A € £:

AM =3z >y (Plz := 2] — Alc:= z]),

11



where z is the first variable not occurring in P, A.

It is easily seen that M is an interpretation. In case, ¢ does not occur in
A, we have: T + A < AM. So M is complete and consistent. We have:
T+ Vz (z < ¢)™. Just like in example 3.2.5 our interpretation is not disjunctive.
In section 5 we will see that this feature is necessary in HA.

3.2.7 =

The function mapping £p-formulas A to =—A is an interpretation in 7. It is
unbounded, consistent, inductive and complete. It commutes with implication.
It interprets T' plus propositional excluded third in 7'. It is not disjunctive.

3.2.8 The double negation translation ont

Godel’s double negation translation dnt can be obtained by replacing in a for-
mula A every subformula that is a disjunction or an existential quantification
by its double negation. The interpretation is unbounded, consistent, inductive.
It is not complete. It commutes with implication and universal quantification.
We have ont : HA >, PA. Ont is not disjunctive. It is easy to see that — under
reasonable conditions — the non-disjunctivity is unavoidable for interpretations
of PA in HA. Suppose e.g. that M is a primitive recursive, disjunctive inter-
pretation of PA in HA. We show that M interprets HA+ L. Let T be given by:
T+ A< HAF AM. By the properties of interpretations, 7" is an RE theory
of predicate logic, extending PA. Let R be the ordinary Rosser sentence for T
We have:

THRV-R = HAF(RV-RM
= HAF RMv (-R)M
= HAF RM or HAF (-R)M
= TFHRorTF-R
= TkFL.

See the remark below theorem 5.1 for another proof of this fact.

3.2.9 Non-standard interpretations via the Henkin construction in
PA

As is well known, since the work of Orey and Feferman, we can mimick the
Henkin model construction in PA 4+ Con(V') to construct an interpretation of V.
In the appendix we will see that the result can be widened to include the ana-
logue of the Henkin construction of Kripke Models for theories in Intuitionistic
Predicate Logic. This result holds for PA, not for HA. We can induce the result
in HA by composing it with dnt. However, the resulting interpretation will not
be disjunctive.

12



3.2.10 Kleene realizability ¢

Let r be ordinary Kleene realizability over HA (See Troelstra[72a] or Troelstra
& van Dalen[88a]). We put: A* := 3z arA. Then t is a faithful interpretation
of HA + ECTy in HA. t is prime, inductive.

3.2.11 g¢-realizability g

Let q be ordinary g-realizability over HA. We put: A9 := 3z xqA (See Troel-
stra[72a] or Troelstra & van Dalen[88al). g-realizability has two versions. The
version we will use has the same clauses as ordinary realizalility, except in the
cases of — and V, where a conjunction with the original formula is added to the
clause of realizability. E.g., the clause for — is:

xq(B — C) :=Vy (ygqB — 3z ({z}y ~ 2 A 2qC)) A (B — C)

We have: q is a faithful interpretation of HA in HA. q is prime and inductive.

3.2.12 The Friedman translation

The Friedman translation was introduced in Friedman[77]. See also Troelstra
& van Dalen[88a], 136-139. Let B be any £a,-sentence. The (.)Z : £a, — Car
is defined as follows. (A)® is the result of replacing each atomic formula P in
A by PV B. The Friedman translation is an interpretation of HA in HA, but it
is only consistent in 7" if T+ —B. The Friedman translation commutes with all
connectives (except L), but is not generally inductive. (It is inductive, if B is
in ¥.) The Friedman translation is extremely useful for proving derived rules.

3.2.13 Provability

Consider the mapping of £a,-formulas A to Op A. This gives us an interpretation
of T in T, which is — assuming T to be consistent — not disjunctive and not
consistent.

3.2.14 The provability translation pp

The provability translation pr was studied extensively in Visser [82]. It is a
simplification of Beeson’s fp-realizability (see Beeson [75]). Viewed in a different
way it is just a variant of Godel’s translation of intuitionistic logic into S4, where
we substitute provability for necessity and where we do not necessarily start with
classical logic. The translation commutes with all connectives except — and V.
Here the clauses are:

e (A— B)»:= (AP — B?) AOr(A? — BP)
o (Vo A)P :=Va AP A OpVax AP

If we take T := HA, we find, e.g., that pya : HA >gien HA®, where HA™ is the
unique RE theory satisfying the following equation verifiably in HA:
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e HA* = HA + {A — Oya-A|A € £a/}-

(For a proof of the uniqueness of the solution of the equation, see Visser [82].)
The provability translation is prime and inductive.

3.2.15 The De Jongh translation 0j

The De Jongh translation can be considered as a local interpretation. For
example for the case of HA it is a faithful local interpretation of HA in HA.

3.2.16 Feferman provability

The Feferman predicate for an £a,-extension T' of HA is the predicate ApA
given by: ApA =3z (Op AN Or, T). (Here as usual, Op , is =07 ,—.) The
mapping A to ArA is an interpretation of T in T (due to the fact that T is
reflexive). It is consistent, but not disjunctive. In section 6 we will sketch the
construction of a modified Feferman predicate for HA that is prime.

4 Basic facts about interpretations

In this section we verify the basic facts of interpretations. These facts are not
the most exciting things in the world, but necessary to see that our interpre-
tations behave decently. Our notion of interpretation is mainly ‘about’ how
external variables behave internally. The facts of this section substantiate that
the behaviour is as expected. In this section M is an interpretation in 7.

Lemma 4.1 TFx =y — (z = y)M. a

Proof

We use Ar5. Suppose z = y. In case x = 0, we have y = 0. By A2 (z = 0)M
and (y = 0)™. So by A4, A5: (z = y)™. In case x = Su, we have y = Su. So
by A3: (z = Su)™ and (y = Su)™. Hence by A4, A5: (v = y)M. a

With lemma 4.1 in hand we are ready to settle a hairy detail: interpretations
behave decently w.r.t. substitutions of variables. Even if the fact proved here is
a complete and utter triviality, still, experience teaches, it is very easy to make
mistakes in this area.

Let o be a function from a finite set V' of variables to variables. Consider
a formula A. In case for every v in V wo is substitutable for v in A, Ao is the
result of substituting, for all v € V', veo for all free occurrences of v in A. In case
not every vo is substitutable for v, Ao is obtained as follows. We first go to an
a-variant A’ of A (i.e. we replace some bound variables by appropriate other
ones) such that all the vo’s are substitutable in A’ and then substitute the vo.

Lemma 4.2 We have: T+ AMg « Ac™M. 1]
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Proof
By A1 we may assume that V C FV(A). We first assume that V Nrange(o) = 0.
By lemma 4.1 we have:
T+ /\{v =volveV}— (/\{v =volv € V}HM.
Ergo by A4, A5:
T+ /\{v =volv €V} = (A = Ac)M.
And, hence, by A4, A5:
T+ Nv=volv eV} — (AM o AcM).

Since V is disjoint from range(o), V will be disjoint from FV(Ac) and, hence,
V will also be disjoint from FV (Ac™). By predicate logic, using the fact that
range(c) is disjoint from V, we find: T - AMo « Ac™M.

Now let o be arbitrary. Let p be a bijection between V' and some set of
variables U disjoint from FV(A) Urange(o). Since range(p) is disjoint from V|
we have:

T+ AMp — Ap™.
o (i.e., first =1, then o). Clearly it follows that:

T+ AMuy — ApMu.

Consider v = p~!

Note that dom(v) = U and range(v) = range(c). Since range(v)(= range(o)) is
disjoint from U we have:
T+ Ap™My - Ap™.
Hence: T+ AMpuv « App™. Since U is disjoint from FV(A) and hence from
FV(AM) we find: Auv = A(uv) = Ao and AMpuv = AM(uv) = AMo.! Ergo:
T+ AMo — AcM.

In lemma 4.3, we will strengthen lemma 4.2 a bit.
Lemma 4.3 i) T+ (y = 0)M[y := 0]

i) TF (y = Sz)M[y := Sx]

Let o be a function from a set V' of variables to terms of one of the following
forms: 0,z,Sy. Consider a formula A. Ao is defined in the obvious way.
iii) T+ AMo « AcM.

Q

INote the pittfall here. If, e.g., A is (zx = y) and p := [y := 2] and o is the empty
susbstitution, id, then: v = p~ 1o = [z := ylid = [z := y] and pv = id = 0. But (z = y)uv =
(x=2)v=(y=1y) # (x =y) = (x = y)o. The reason for this phenomenon is that p=1! is

only the inverse of y as a function on its domain, not the inverse of its extension p* to all
variables given by: p*(z) = p(z) if z € V, p*(x) = x otherwise.
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Proof

i) By A2, TFy =0 — (y = 0)™. Specializing, we find:
THO=0— (y=0)M[y:=0].

Hence, T I (y = 0)M[y := 0]. The proof of (ii) is similar.

iii) The proof follows the same general lines as the proof of lemma 4.2. We
just treat the special case that o = [y := 0]. We have:

a) Ark (y=0— (A< Aly:=0])

b) TrH(y=0— (A« Aly:=0))M a, A4

c) Tk (y=0M— (AM — Ay :=0|M) b, A5

d) Tk (y=0My:=0 — (AMy:=0] = Aly:=0[My:=0]) ¢

e) TFAM[y:=0]« Ay := M d, (i), Al

With lemmas 4.2 and 4.3 done we can devote our attention to the more inter-
esting ‘preservation’ theorems. For these theorems we often need a modicum
of induction. Let C be a class of numerical constants of £. Ag(M,C) is the
smallest class such that:

o (s=1) € Ag(M,0),
e Bc Ag(C)= BMc Ay(M,O),

e Ag(M,C) is closed under the propositional connectives and bounded
quantification.

T is M, C-adequate if it satisfies Ag(M, C)-induction. T is M-adequate if it
is M, -adequate. Note that HA is M, C-adequate for all interpretations M in
HA.

Lemma 4.4 Suppose T is M-adequate. We have:
) ThFet+y=2— (z+y=2)M
i) Thaoy=2— (z.y=2)M

i) Tha#y— (x#y)M

Proof

Reason in T'.

i) We show by induction on y that: Vz(z +y = z — (v +y = 2)™). This
induction can be viewed as a Ag(M) induction, since we can, trivially, bound z
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by +Sy. We show first: (Vz (z+y = z — (z+y = 2)™))[y := 0]. By lemma 4.3
this is equivalent to: Vz (z + 0 = z — (x + 0 = 2)™). Suppose x + 0 = 2, then
r = z, hence (x = 2)™ and so by A4,A5: (z + 0 = 2)™. Next we show:
Vz(z+y=2— (x+y=2)™))[y := Su]. By lemma 4.3 this is equivalent to:
(Vz(z + Su =2z — (v + Su = 2)™). Suppose = + Su = z. It follows that for
some v : z = Sv and ¢ + u = v. By the induction hypothesis (in combination
with lemma 4.2), we find: (z +u = v)*. Hence, by A4,A5: (z + Su = Sv)M.
Moreover by A3: (z = Sv)™. Ergo, by A4,A5: (z + Su = 2)™. The proof of
(ii) is similar.

iii) Suppose x # y. Since T contains i-IA, it follows that z < y or y < .
(Here © < y is defined as: Juxz + Su = y). We prove by induction on y that:
for all 2 < y (z # y)™. If y = 0, this is trivial. Suppose y = Su. Consider
z < Su. By i-IAg, z < wor z = u. In case z = 0, we are easily done.
Suppose z = Sv. We have v < u. It follows, by the Induction Hypothesis that
(z # YM[z == v,y := u], Low. (v # u)M. By Ad,A5, we get: (Sv # Su)M.
Note that by A3 we have: (y = Su)™ and (z = Sv)™. Hence, by A4,A5:
(z # y™M. Q

Lemma 4.5 Suppose T is M-adequate. We have for £p,-terms ¢ and u:
i) THt=u— (t=u)M.

i) ThHt#u— (t#u)M

iii) T+ (AM A BM) — (AN B)M.

iv) T+ (AMv BM) — (Av B)M.

v) Tk 3z AM — (Jz AM.

vi) TV <y AM — (Vo <y A)M for A € A,.

Proof

Let z be a variable not in ¢. It is sufficient to show
* Tht=x— (t =2)M,

since () implies:

THt=u — Jzx(t=xAu==zx)
— Jz(t=2)MA (u=2)™)
— (:u)M.
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The proof of () is by meta-induction on ¢. Suppose e.g. t =t' +¢”. We have,
for fresh variables ' and z”,

Trt=2 — /2" =2'Nt"=2"N2'+2" =2)
N Elx’,x" ((t/ — m/)/\/l A (t” _ x//)/\/l A (x/ +x// _ QT)M)
- (t=a2)M.

(ii)-(v) are left to the reader.

vi) Reason in 7. We prove by induction on y : Vo < y AM — (Vo < y A)M.
In case y = 0, this is easy. Suppose y = Su and Vo < Su AM. It follows that
Vz < u AM and hence by the Induction Hypothesis: (Vo < y A)M[y := u], i.e.,
(Vo < uA)M. Also we have: AM[y := u] and hence (A[y := u])™. We have
(y = Su)™ and, hence, (Vz (z < y < (z < uVx = u))™. We may conclude:
(Vo <y A)M. Q

Remember that the Ag-formulas are built up from atoms and negated atoms us-
ing conjunction, disjunction and bounded quantification. This rather restricted
definition could make a difference inside (.)™, since Ar does not verify the
equivalence with more general forms.

Theorem 4.6 Suppose T is M-adequate. Then M is X-complete in T .

Proof

By a simple meta-induction on Y-formulas, using lemma 4.5. a

Remark 4.7 Suppose T contains Y-induction and M(A) := Oy A, for U con-
taining Ar. Then theorem 4.6 implies T-provable Y-completeness for U-provab-
ility. We can see that for such applications our result is not optimal, since e.g.
T = i-IAg + Exp already proves >-completeness for U-provability. We leave the
exploration of possible refinements for later work. Q

Theorem 4.8 (Substitution of terms) Let o map variables of a finite set
of variables V' to £a,-terms. Let T be an M-adequate theory. We have: T +
(Ao)M — AMo.

Proof

We treat the case that ¢ = [z := t] and t is substitutable for = in A. the
general argument is similar. Suppose first that ¢ does not contain z. Since
Ttaz=t— (z=t™it follows that:

Thao=t— (Alz :=t] = AM.
Ergo, T F (Alx := t))M « AM and so
TF (Alz == t)M[z == t] & AM[z :=1].
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We find: T+ (A[z := t]))M «— AM[z :=1].
In case x does occur in t, let u be a fresh variable not in A or t. We get:

T (Alz =tz == u])M « AM[z = t[z == u]].

And hence: T F (Alz = tlz := u]])M[u := 2] & AM[z = t[z = u]][u := z].
Lemma 4.2 gives us the desired result. a

5 Limitative results concerning prime interpre-
tations

In this section, we direct our attention mainly to HA and its extensions. We
will show that if an interpretation is prime/disjunctive, then, under reasonable
further assumptions, it has various other properties, like II>-conservativity. The
results of this section are very much like improvisations on one single theme.

The immediate ancestors of these results are (i) Friedman’s proof that the
¥ Disjunction Property plus Consistency imply X-reflection (see Friedman [75]
and remark 5.11 below), (ii) the work of McCarthy on the non-existence of
non-standard models of arithmetic (see McCarthy [88]).

We start with the simplest result of ‘non-existence of non-standard, prime
interpretations’.

Theorem 5.1 Suppose:

i) M is a prime interpretation of i-IAg in T,
i) M is provably non-standard in T,

iii) M is X-complete in T

iv) T has the disjunction property.

Then T is inconsistent.

Proof

Suppose T I Vx (z < ¢)™, for the numerical £-constant c. Let C := 3z x = c.
Note that for any S € ¥, we have: T+ S — (S < C)™. Let R be the ordinary
(X) Rosser sentence for 7. We find:

i-INy(c) F (R< C) V (C < R).

SoTF (R< CVC < RM, and hence: T F (R < O)M v (C < R)M.
Since T - R — (R < C)M, we find: T + (C < R — =R. Moreover
T+ R+ — (RYH)M, and hence T+ R+ — (-R)™. So T+ (R < C)M — —R*.
We may conlude: T'F —R+ VvV —=R. By the disjunction property: T F —R* or
T F —R. Hence by Rosser’s Theorem: T L. Q
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Note that we could as well have taken ¢ to be a term of £. An immediate conse-
quence of theorem 5.1 is a proof of the fact that there is no prime interpretation
of PA in HA. Suppose there was one, say M. There is a provably non-standard,
prime interpretation A/ in PA. So, as is easily verified, A" o M (first A/, then
M) is prime and provably non-standard. A contradiction with theorem 5.1.

Note that in the present formulation of theorem 5.1 we used that the Rosser
sentence is written in the strict 3;-form of £a,. Nothing, however, beyond the
verifiability of the properties of the Rosser ordering is used inside M.

A disadvantage of theorem 5.1, is that e.g. HA cannot verify its own dis-
junction property, so we cannot verify one of the assumptions of the theorem
in HA for HA. One way to get around this, is to use closure under the De
Jongh Rule instead of the Disjunction Property. Another way is to use closure
under Church’s Rule. We first treat the approach using De Jongh closure. Note
that the use of restricted provability only makes sense in the presence of full
induction.

Theorem 5.2 Suppose:

i) M is a prime interpretation of i-IAg in T,
i) M is provably non-standard in T,

iii) T satisfies full induction,

iv) T is closed under the De Jongh Rule.

Then, T is inconsistent.

Proof

Suppose T F Vx (z < ¢)™, for the numerical £-constant c. Using the Godel
Fixed Point Lemma find R(b) in ¥ (with free variable b), such that:

i—IAO [ R(b) — DTﬁb—\R(b) S DT’bR(b).

Let R*(b) := Or,R(b) < O7,~R(b). Reasoning as in the proof of theorem 5.1,
we find: T F —R(b) V ~R*(b). So by the De Jongh rule, for some m:

T+ Ogm—R(b) V Or m—RE(b).
So by substituting m for b, we find:
T+ Opm—R(m)V Or ,,— R (m).

Since R(m) is a Rosser-sentence for T),, we find, by the formalization of Rosser’s
Theorem: T+ Or,, L and, hence, by provable reflection, 7" 1. ]

Lemma 5.3 Let ¢ be a numerical constant of £. Suppose T is M, {c}-adequate
and disjunctive. Then: T F Vz ((c < )M — Jy < 2 (c = y)™M). a
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Proof

By a simple induction on z in 7. Q

T is closed under the Strong De Jongh Rule if, for each A, T + —A is closed
under the De Jongh Rule. As we have seen HA is closed under the Strong De
Jongh Rule.

Corollary 5.4 Let ¢ be a numerical constant of £. Suppose:

i) M is a prime interpretation of --IAq in T,

ii) T satisfies full induction,

iii) T is closed.under the Strong De Jongh Rule.

Then (a): T F =—=3z (z = c)™. If we also have:

iv) T is closed under Primitive Recursive Markov’s Rule MRpR.

Then: (b) T+ 3z (z = ¢)™. a

Proof

(a) It is easy to see that the conditions of theorem 5.2 are satisfied by T +
—=Vz (z < ¢)M. Tt follows that T F —Vz (z < ¢)™. We have:

ThH@<cve<a)M soTH (z <)MV (e <)M,

We may conclude: T+ ——3z (¢ < ). By lemma 5.3, we obtain the desired
result.

b) Since M is prime, we have: T F (z = o)™ v =(z = ¢)M. By (a):
T F =3z (x = ¢)M. By theorem 2.3, T is closed under MR. Hence, T |
3z (v = c)M. Q

We turn to the more Kleene style treatment. Let T'(e,x,p) be Kleene’s T-
predicate. Here e is the index of a partial recursive function, x is the (sequence
of) input(s) and p is the computation. Let res be the elementary result extract-
ing function. We write:
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Since formalization in i-1Aq is rather unwieldy we will work with interpreta-
tions that also satify the axiom ;. The predicate T'(e, x,p) can be represented
under the usual coding as a Ag(wq)-formula. By tricks well known from the
classical context, we can verify Ag(wy)-induction in i-IAg + Q4. Thus we may
comfortably work with the T-predicate inside i-IAg + 27 and verify the usual
elementary facts, like unicity of output.

Church’s Rule for T is the following rule.

CR T+ Va3y A(z,y) = for some e,
T EVa3pT(e,x,p) AV, p(T(e,z,p) — Az, res(p)))

T is closed under the Strong Church Rule if, for every A, T+ —A is closed under
Church’s Rule. E.g. HA is closed under Strong Church’s Rule.

Theorem 5.5 Suppose:

i) M is a prime interpretation of i-IAg + Qq in T,
il) M is provably non-standard in T,

iii) T is adequate for M,

iv) T is closed under Church’s Rule.

Then T 1.

Proof
Suppose T F Vz (z < C)M, for the numerical £-constant c¢. We have:
T+ Ve (={e}e ~. 0V ={e}e #. 0)M.

Hence: T F (={e}e ~. 0)™ Vv (={e}e . 0). Since M is prime and ¢ provably
non-standard, we find: T F —{e}e ~ 0V ={e}e % 0. So by closure under
Church’s Rule, we can find an index m such that:

TF “{m}istotal” A Ve(({m}e~0— —fele~0) A

({m}te# 0 — ~{e}e £0)).
We find:
T+ “{m} is total” A (({m}m ~0— ~{m}m~0) A
({m}m £ 0 — ~{m}m 2 0)).
It is immediate that: T L. a
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Theorem 5.6 Let ¢ be a numerical constant of £. Suppose:

i) M is a prime interpretation of i-IAg+ Qq in T,

i) T is adequate for M, ¢,

iii) T is closed under the Strong Church’s Rule.

Then (a) T+ ==3x (c = ). Moreover (b) if:

iv) T is closed under primitive recursive Markov’s rule MRpg, then: T +
3z (c = z)M.

Proof

We prove (a) from theorem 5.5, in the same way as we proved (a) of corollary 5.4
from theorem 5.2. We prove (b). Since 7T is prime we have: T F (z = ¢)M Vv
—(x = ¢)™. Hence by Church’s Rule: for some e:

T “cistotal” A Va(({elz~0— (z=c)™) A
({e}a # 0 — =(z = ™).

Hence T I (x = ¢)™M < {e}z ~ 0. By (a): T+ ——3x {e}x ~ 0. So by Markov’s
Rule: T+ 3z {e}x ~ 0 and hence: T+ 3z (z = c)M. Q

After these results involving the constant ¢, we turn to results, which are in
essence about Y-definable elements. Here we can often obtain somewhat sharper
results. We will say that M is T-disjunctive in T'if T - (Av B)M — (AMv BM)
forall A,B€T.

Theorem 5.7 Let A(z,y) be in Ag(w1) Suppose:
1. M is a X-disjunctive interpretation of i-IAg + Qy in T,
2. T+ Vz 3y Az, y)™M,
3. T satisfies full induction,
4. T is closed under the De Jongh Rule.
Then: T Vx 3y A(z,y)v LM).

Proof

Let B(a) := 3y A(a,y). Before proceeding, we must make a stipulation on the

use of variables nested inside M and then a box. We ask that, e.g., O ,A(a, b)M

means: Provy,(#A(a, b)) {#a := a, #b := b}. This stipulation has the advan-

tage that it avoids the use of M as a function inside the arithmetized context.
We want to find an R such that:

i-IAo + Q1 F R(a,b) < ((Or,4(=R(a,b))™) v B(a)) < Ory R(a, b))
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Now if it were given that (.)™ is provably recursive in i-IAg + 4, R could be
found by an immediate application of the Godel Fixed Point Lemma. Since such
an assumption is quite plausible in practice — all p-time computable functions are
provably recursive in i-1Ag+€; — we could simply add it to our list of conditions.
However, a minor modification of the Fixed Point Argument delivers a slightly
modified version, that is as good in practice. The reader who is content with
the demand of provable recursiveness may well skip the argument immediately
below.
We show: there are formulas R(a,b), G(a,b) and H(a,b), such that:

L4 i'[AO + Q1 F R(CL, b) A ((DT,bG(av b)) \ B(a’)) < DT,bH(a7 b)a
e T+ G(a,b) < (=R(a,b))™ and T - H(a,b) < R(a,b)™.

(G and H have no other variables than those displayed.) We sketch the argu-
ment. C[z :=t] is the usual unformalized substitution function. Define:

A(z,y,a,b) = (Provrp(z{#x =2, #y =y, #a:=a, #b:=b})V B(a)) <
Provr(y#x := x, #y =y, #a := a, #b := b}).

Now define:
C(x,y,a,b) := (-A(z,y,0,0)™, D(x,y,a,b) := (A(z,y,a,b))*.

Note that C' and D are fixed standard formulas. Let their Goédelnumbers be
#C and #D. Take:

R(a,b) = A(#C,#D,a,b),
G(a,b) := (—\A(x,y,a,b))M[x = #C,y = #D],
H(a,b) = A(z,y,a,b)M[z:=#C,y:=#D].

By theorem 4.8 we have immediately:
T+ G(a,b) < (—R(a,b))™ and T + H(a,b) < R(a,b)M.
Note that for a sufficiently large m we will also have:
e i-IAg+ Qi Fb>m — Ory(G(a,b) < (=R(a,b))™)
o i-[Ag+ Qi - b>m — Opy(H(a,b) < R(a,b)M).
The following are equivalent in -IAg + Qy:
1. R(a,b)

2. (Provyp(#C{#x = #C, #y := #D, #a := a,#b:=b}) V B(a)) <
Provyy(#D{#x := #C, #y = #D, #a := a,#b := b})

3. (Provy,(#G{#a :=a,#b:=b}) V B(a)) <
Provr,(#H{#a = a,#b:= b}

~—
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4. ((DT’bG(a, b)) V B(a)) < DT,bH(a, b)

In the following we simply confuse, e.g. O7 G with Oz, (=R)M. Tt is easy to
see that this is harmless, assuming that the m in the argument below is large
enough to yield the desired equivalences. We have in T

a)  (B(a))™ 2
) (R(a,b) V R*(a,b))M a
¢)  R(a,b)™ Vv R*(a,b)M L,b
) OrmR(a, M v Or.m R (a, b)™ 4,c,
some m
e) OrmR(a,m)Mv Or Rt (a, m)M d
f)  OrnR(a,m)M —  (R(a,m) V R*(a,m)) A R(a,m)™

= ((Or,m(=R(a,m)) Vv B(a)) A
R(a,m)™) v (R*(a,m) A R(a, m)™)
= (((=R(a,m)) Vv B(a)) A
R(a,m)™) v (R*(a,m)™ A R(a, m)M)

— M VB(a)
§ OrmR-amM —  (Rla.m)V R a,m) AR (a,m)™

— (Rla,m) AR (am)™) v

(D A )™ W R0, )

- R(a,m) A R*(a,m)™

- M
h) 1M VvB(a) e,f,g
p) Va(LMV3IyA(z,y)) h

Remark 5.8 It is immediate from 5.7, that if M : HA> T and M is prime,
then HA is Ily-conservative over T. Note, on the other hand, that PA is also
II5-conservative over T', but it is not prime interpretable in HA. a

Theorem 5.9 Let A(z,y) be in Ag. Suppose:
1. M is a X-prime interpretation of i-IAg in T,
2. T FVx 3y Az, y))™
8. M is X-complete in T,
4. T is closed under Church’s Rule.
Then: T+ Va3y A(z,y).

Proof

Let B(a) := Jy A(a,y) and E(b,a) := (({b}(a) 20V B(a)) < ({b}a # 0)). We
have in T*
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a) B(a)M
b) (Et(b,a)V E(b,a))M a
c) EL(b,a)MV E(b,a)™ 1,b
d)  (=E(b,a))MV (mE*(b,a))M c
e) —E(ba)V-EL(ba) 3,d
f)  “m}istotal” A Vba(({m}(b,a) ~0— —E(b,a))

A ({m}ha) 20— -Brba) e,
g) Va{n}a={m}(n,a) Rec. Thm,

some n
h) “fn}istotal” A Va(({nla~0— -E(n,a))
A({n}a % 0 — ~E*(n, 0)) e

)
i) “n}istotal” A Va({n}a=~0— {n}ta#0)

AN ({n}a#20— ({n}a~0V B(a)))) h
j) Bla) i
k) Vady A(z,y) ]
a
Theorem 5.10 Let A(z,y) be in Ag. Suppose:
i) M is a prime interpretation of i-IAq in T,
i) M is X-complete in T,
iii) T F CTo.
Then: T VY (Jy A(z,y))M — Va3y A(z,y).
Proof
The proof is a minor variation of the proof of theorem 5.9. a

Remark 5.11 The proofs of the results above bear strong resemblance to Fried-
man’s work on the Disjunction and the Existence Property (see Friedman [75]).
Still Friedman’s result is not precisely the same. We provide a result that is
much closer to the original Friedman proof.

Suppose (S(a))M is ¥ for any S(a) in ¥. We suppose that M interprets i-1Ag+
Exp in T. Let B be a YX-formula. Let True be the usual X-truthpredicate. We
write True™ () for True(z)M[z := t]. By the Gédel Fixed Point Lemma, we
find R such that:

i-INg F R — (TrueM(R*Y) v B) < TrueM(R).
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Suppose M is Y-prime and ¥-complete in 7. We have in T

BM (RV RHM
RMv RM
True(R)M V True(RH)M
True™(R) v True™(R*)

RV R*.

L A A

And:
R — (TrueM(RY) v B) A RM
— (R*M v B) A RM
— 1MvB.
Moreover:
RY — True™(R) A RM
— RMARM
— 1M,
Ergo: T+ BM — Bv 1M, a

6 Notes on bounded interpretations

There is a strong feeling that there is only a very restricted possibility to have
bounded interpretations of HA into itself. We provide an example of a bounded
interpretation satisfying some constraints, followed by a negative result.

We sketch the construction of an interpretation of HA in HA which is primi-
tive recursive, bounded and prime. Define complexity classes I'; for £a,-formulas
as follows.

e 'y := 3, where we, locally, take X as being closed under A,V and 3
e A €Ty iff there is a computation sequence o such that A = (0)ength(o)—1
and, for all j < length(o), (¢); € £ or ((0); ¢ £ and

(0); =(BAC)or (0); =(BVC)=Jk,m<j((0)r =B and (0)m = C),
and

(0)j =3z B =3k <j(o)r =B, and
(0)j=(B—C)= B,C €Ty, and
(O’)j =VxB= Bel,.

We define truthpredicates True; for the I'; in such a way that each definition
can be formalized in HA and such that its properties can be verified.

e Trueg is the usual X-truthpredicate.
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e True;1(A) iff there is a computation sequence o such that A = (0)jength(s)—15
and, for all j < length(c), (0); € ¥ and Trueg((0);) or ((0); € ¥ and

(0); =(BAC)=3Jk,m < j((o)r =B and (0)m = C), and

(0)j=(BVC)=3k<j((o)y =Bor (o) =C), and

(0);j =3B = 3k < jan < 0 (0)r = B[z :=n], and

(0); = (B — C) = (True;(B) — True;(C)), and

(0); =V B = VnTrue;(Blz := n]).
We now modify the notion of restricted provability of subsection 2.2 as follows.
Let T be a theory in £p5,. We write T, for the theory axiomatized by the
finitely many axioms of i-IA + Exp, plus the axioms of T', which are in I',,. We

write Provr ,, for the formalization of provability in T,,. We have the following
analogue of theorem 2.1:

Fact 6.1 Suppose T is a finite C-axiomatized extension of HA in £a,. (see
subsection 2.2 for the definition of €.) We have, for all n, and for all formulas
A with free variables x,

THVx(Op,A— A).

And (using UC for: ‘the universal closure of’) even:

HA - Va¥A € FORO7UC(O7, A — A).

Proof

As usual we find a cut-free z-proof p of A and show by induction on subproofs
that p’s conclusion is true. The only problem is the fact that in our new cir-
cumstances T; has infinitely many axioms. Thus we cannot handle the axioms
case for case. We are saved by the fact that — due to our stipulation that 7" is a
finite extension of HA — the only axioms that we have, are finitely many special
axioms plus infinitely many induction axioms. The induction axioms have a
schematic form. Thus (in extremely sloppy notation):

True;((Alx := 0] AVz (A — Az := Sz])) — Vz A),
where A is a variable, is equivalent to:
(True;—o(A[z := 0]) AV (True; o (Alz = z]) —

True;_o(Afz := Sz]))) — Va True;_o(Afx := z]).

But this new fomula is itself an instance of induction with induction formula
B = True;_o(A[z := z]) and with A as free parameter. a
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We define [T],, just as in subsection 2.2, using the new notion of restricted
provability. (i)-(vi) of subsection 2.2 are verified without problems. Now note
that if A isin IT';, then [T],, A is also in T';. Thus we get the following strengthened
version of (ix) of subsection 2.2:

ixt) T'kpy A= [T, Fry [T],A (verifiably in HA).
Consider the following Feferman Predicate for HA:
Appd & Jx (D HA,zA AVS € ¥4 (DHA,IS — TI’UEo(S))).

Take M(A) := AyaA. We easily see — using fact 6.1 — that M : HA > HA.
Clearly, M is primitive recursive, bounded and consistent.

Theorem 6.2 M is disjunctive.

Proof

Reason in HA. Suppose Aya(B V C). Then for some x : Oya (B Vv C) and
VS € 31 (OHA .S — Trueg(S)). By the the closure of HA, under the De Jongh
translation [HA],, we find: Oyp . (Opa BV Opa C). Hence, by X;-reflection:
(DHA,xB \Y, DHA,xC)7 and so: (AgaB V AyaC). ]

The formulas of the intuitionistic propositional calculus IPC modulo provable
equivalence form the Rieger Nishimura Lattice (see Troelstra & van Dalen [88b],
707). gn(p) is a standard enumeration of these formulas.

Theorem 6.3 [De Jongh] Let A be a sentence of £a,, such that HA I/ =—A
and HAtf =——A — A. Then there is no £a,-formula B(x), such that for all n:

HAF g,(A) — B(n).

Proof
This theorem is an immediate consequence of theorems 2.1 and 5.1 of De Jongh
[82]. a

A formula is almost negative if it is built up from »-formulas using all connec-
tives except V and 3. Our definition is a minor variation of Definition 3.2.9 of
Troelstra [73], 193, alternatively: Definition 4.4, 197 of Troelstra & van Dalen
[88a].

Theorem 6.4 HA + ECT( is conservative over HA w.r.t almost negative for-
mulas.
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Proof

This result is an immediate consequence of Troelstra [73], Lemma 3.2.11, 193 and
Corollary 3.2.19, 196. Alternatively see Troelstra & van Dalen [88a], Proposition
4.5, 197 and Theorem 4.10, 199. a

Theorem 6.5 There is no provably recursive, bounded, prime interpretation
M in HA which commutes with implication.

Proof

Suppose M is provably recursive, bounded and prime. Since M is bounded,
there is a truthpredicate T(z) for its range. Suppose also that M commutes with
implication. Let S be a Y-sentence such that HA t/ =—S5 and HA / =-S5 — S.
A well known example of such a formula is Oya L. As is easily seen, there is a
primitive recursive function f such that f(n) is the Gédelnumber of (g, (S))™.
Take B(z) := T(f(z)). We have: HA I g,(SM) < (g.(S))™ < B(n). To
derive a contradiction it is, by theorem 6.3, sufficient to show that HA ¥ =—SM
and HA I/ ——SM — SM_ Suppose e.g. HA F ——=SM — SM_ Tt follows
that HA + CTg F ——=SM — SM_ Clearly M is a prime interpretation in
HA + CTy. By theorem 4.6 and theorem 5.10: HA + CTy F SM «— S. Ergo:
HA + CTy F =—=S — S. Since =—§ — S is almost negative, by theorem 6.4, we
find that HA+ =-S5 — S. Quod non. The proof for =-S5 is similar. Qa

The present result is not all that satisfactory, since commuting with implication
is not a frequent property among useful interpretations. So improvements of
theorem 6.5 would be wellcome.

A The Henkin construction

Let T be an RE theory of Intuitionistic Predicate Logic and let A be a sentence
in the language of T'. We assume that the language of T is relational, except for
the possible presence of constants. (If were is not, we could first convert it to the
relational format, using the usual procedure.) We show that in PA 4+ “T I/ A”
we can formalize the Henkin construction of a Kripke model of T, which does
not force A. This gives us an interpretation IC of 7" into PA 4+ “T" I/ A”, which
commutes with atomic formulas, A, V, 3, behaves in a more complicated way
in the cases of — and V. We have for sentences A, B:

Tt B=PA+“TH A"+ BX and PA+ “T If A" - —(AX).

We work informally inside of PA + “T't/ A”. For every n > 0 we define X,, as
the set of numbers divided by one of the first n prime numbers. let Y41 :=
Xnt1 \ Xn. Let £ be the language of T. We can arrange the coding of syntax
in such a way that fresh constants can be coded by pairs, say, (723,4). We write
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¢; for (723,4). For any set of numbers I, we write £(I) for the result of adding
the constants ¢; for i € I to £. Let £,, be £(X,,).
The worlds of our Henkin model will be given by triples (n, B, C). Here:

e B is a Ilr-formula in one free variable, defining a set of £,-sentences A,
that extends T and is saturated, i.e. for £,-sentences D, F and Jzx F’:

- AFD=DecA

- AL

— AFDVE=AFDor A+ E,

— AF3zF = Al Flz := ¢ for some i € X,,.

e (' is a [Iy-formula in one free variable, defining the set of £,-sentences not
in A.

We will write, informally, (n, A) for our worlds, where A is the Ay set of £,,-
sentences presented by B and C'. Since PA contains a truth-predicate for Il,-
formulas our definition makes sense inside PA. The domain associated to a world
(n, A) is simply the set of ¢; for ¢ in X,, modulo A-provable identity. We write
for P(c) atomic in £,:

(n,A) = P(c) i Plc) € A.
Etcetera. The ordering relation of our model is as follows:
(n,A) < (n',A"Y &n<n" and A C A"

The forcing relation is extended to the full language present at a world in the
usual way. We do not do this uniformly in PA, we just provide, for each F,
a PA-formula (n,A) = E, in which n and A are variables. We will show
(n,Ay EE& FE e A.

We want to show that if Tt/ A, then there is a world (n, A), such that T C A
and A ¢ A. Moreover we want to show for each B € £, : (n,A) = B < B € A.
The following lemma is sufficient.

Lemma A.1 [PA] Suppose I is a As-theory in £,,. Let Uy and Vj be finite sets
of £, +1-sentences, such that I', Uy I Vi. (The “V,” after the provability sign
gets the disjunctive reading.) Then we can explicitely give a world (n + 1, A),

such that I'; Uy C A and A H V}. Q
Proof
Let di,d>, . .. be an effective enumeration of the constants ¢; with index in Y541,

which are not in Up, V. We effectively enumerate the sentences of £,,11 as, say,
C4,Cs, ... in such a way that:

e d; occurs in Cj =i < j,
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o Cz =dz D= OiJrl = D[{E = di+1]7
o for any F € £,41, we can primitive recursively find j such that £ = C;.

We first describe the construction of A and verify its properties and then worry
about its arithmetical complexity. We define a sequence of pairs of finite sets of
£+1-sentences U,, V,, as follows.

o Uy, Vpy are given.
o If I, U;,Ciy1 Vi, then Uiy := U; U{Ciq1}, Vi1 =V,
o If I, U;,Ciy1 BV, then Uiyy :=Uj, Vg =V, U{Cip1}

We take I" the union of the U;’s.

By an easy induction, using the properties of disjunction, we find that I", U; t/
V;. It follows that A/ Vy and that T', Uy C A.

A is saturated. We treat the case of existential quantification. Suppose A +
dz D. Say I',U; - 32 D and C;11 = 3z D. It follows that I', U;, Ciq1 I/ V; (oth-
erwise we would have I', Upax(,j) ™ Vmax(i’j)). It follows that T',U; 2, D[z :=
dit2] ¥ Viya, since d; 42 does not occur in I', U 12, D, V;yo. Since Ciyo = D[z :=
d/L'_A'_QL we find D[l’ = di+2] € Upyo.

Finally we check that A is A, in PA. First note that the ‘decisions’ we need
in our construction are As, since I'-provability is supposed to be As and:

F, Ui,Ci—i-l [ Vl s T E @[14_1(((/\ Uz A Ci+1) — \/Vl))

Here €l;4; is the result of first replacing the Y;i-indexed constants by fresh
variables and then taking the universal closure of the resulting formula.

We can represent our recursive definition of the U’s and V’s by coding the
sequence of yes and no decisions of the construction as a sequence of 0’s and
1’s. Say, at place i + 1, we put 0 in the sequence if I',U;, C; 41 ¥ V;, and 1 if
I,U;,Ciy1 F V;. If we have such a sequence o of length k we can read off the
U; := U;(o) and V; := V(o) for i < k primitive recursively from o. Given F,
we can primitive recursively find j := j(E) such that E = C;. From j we can
derive a (primitive recursive) estimate k(E) of the 0,1-sequences of length j.
We find:

Ecl & do<F(E)[length(o) = j(£) and (0)p) =0A
Vi < j(E) P(Ui(0),Vi(9), Uit1(0), Vig1(0))].

Here P is the obvious As-condition (incorporating inclusion of the given finite
Up and Vj). Hence T is As. Q

We show that for all B € £,, and for all worlds (n,A): (n,A) E B < B € A,
by (external) induction on the complexity of B. We just treat the case that
B =Vz C. Consider a world (n,T'). From right to left is trivial. We prove from
left to right by contraposition. Suppose B € I'. So I' I/ Vx C. Let ¢ be the first
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constant with index in Y,41. Clearly T' I C[z := ¢]. Apply the lemma with
Uy =0, Vo := {Clz := ¢]}. We find a world {(n + 1,A) = (n,T), such that
Clz :=c] ¢ A. By the IH : (n,T') £ C[z := ¢].

Finally, if T 1/ A, we can find by the lemma a node (1, A) such that T'C A
and A &€ A.

Suppose T is a theory containing Ar. We can associate with each number n
in a primitive recursive way the £i-constant e, corresponding to the sentence
“Gr x = n”. We translate B(z1,...,z,) to: “#B[#x1 = €zyy..., L, =
ez,] € A”. It is easy to see that this yields an interpretation in our sense.
This interpretation evidently commutes with atomic formulas, conjunction, dis-
junction and existential quantification. Reasoning outside of PA, we see: PA I
—(A € A)and PAF (OrB — B € A). Hence, if T+ B, then PA - O7B and so
PA+ B e A.
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