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Abstract

Implicit schemes for the integration of ODE's are popular when stabil-

ity is more of concern than accuracy, for instance for the computation

of a steady state solution. However, in particular for very large sys-

tems the solution of the involved linear systems may be very expensive.

In this paper we study the solution of these linear systems by a mod-

erate number of iterations of the minimum residual iterative method

GMRES. Of course, this puts limits to the step size since these ap-

proximate schemes may be viewed as explicit schemes and these are

never unconditionally stable. It turns out that even a modest degree of

approximation allows rather large time steps and we propose a simple

mechanism for the control of the step size with respect to stability.

Keywords: Time-stepping schemes; Stability step size control; GMRES

1 Introduction

Implicit schemes for the integration of ODE's are popular when stability is
more of concern than accuracy, for instance for the computation of a steady
state solution. However, in particular for very large systems the solution
of the involved linearized systems may be very expensive. In this paper we
study the solution of these linear systems by a moderate number of iterations
of the minimum residual iterative method GMRES [13, 1]. Of course, this
puts limits to the step size since these approximate schemes may be viewed
as explicit schemes and these are never unconditionally stable. It turns out
that even a modest degree of approximation allows rather large time steps

�P.O.Box 80.010, 3508 TA Utrecht, the Netherlands. E-mail: [botchev, sleijpen,

vorst]@math.ruu.nl

1



2 M.A. Botchev, G.L.G. Sleijpen and H.A. van der Vorst

and we propose a simple mechanism for the control of the step size with
respect to stability.

The usage of a few steps of GMRES is attractive, since this involves only
matrix-vector operations. Specially on parallel computers this may be an
advantage because matrix vector operations are usually easy to parallelize. If
one uses k steps of GMRES, then the resulting approximate method may be
viewed as an explicit integration scheme and such schemes have been studied
heavily. Most often, these schemes are studied with �xed coe�cients, while
GMRES leads to di�erent coe�cients for each time step. The usage of
GMRES for the approximate solution of the involved linear systems is not
new either, but the resulting schemes have been studied from an accuracy
point of view, that is the main focus is on strategies to obtain bounded
residuals [5, 4, 3]. Another approach, that is based on Krylov subspace
information, is to use an approximation for the vector e�tAyn (where A is
the Jacobian), for accurate time integration of sti� systems [7, 8].

In more conventional approaches for approximating an implicit scheme with
explicit schemes one works with Chebyshev approximations [11, 21, 10].
Performance of these methods depends on a priori knowledge of a region
containing the spectrum of the Jacobian.

We study the usage of a few steps of GMRES from the point of view of
stability. A nice aspect of GMRES is that it constructs implicitly an in-
tegration polynomial of which the coe�cients are adjusted to the speci�c
right-hand side. If after some time steps components in the solution in
higher frequencies have not su�ciently damped out, then they are present
in the right-hand side. As soon as these components are too large then they
are automatically damped out by the GMRES polynomial, provided that the
time step is not too large with respect to the number of GMRES steps. We
propose an easy strategy to control the size of the time step. This strategy
is based on information that we obtain from the GMRES process itself. The
stability control is to be applied in time stepping when the local error is not
controlled, as happens typically in large physical simulation codes, e.g. [15].
However, our approximated implicit schemes can be used in an ODE code
as well. Of course, there may be phases in the integration process where the
local errors have too be small and where the step size is restricted by toler-
ances set on the local error, rather than by stability. Although our schemes
have not been designed to cope with this situation specially|there is a huge
variety of specially tuned schemes for this problem|it is of interest to know
how our scheme competes with the existing schemes for general systems of
ODE's, e.g. [3, 14]. As we will see from our numerical experiments, our
scheme is more or less competitive with the existing codes when the local
error is the constraining parameter, but our scheme is certainly competitive
when stability is the only restriction on the time step.
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The remainder of our paper has been organized as follows. Our basic ap-
proach has been formulated in Section 2. In the third section we present
the stability analysis and discuss how the stability can be monitored. We
will do this for two di�erent schemes. Implementation issues are discussed
in Section 4. Numerical experiments are presented in the �fth section, and
we have listed some conclusions at the end.

2 Minimal Residual Approximated Implicit schemes

The general idea behind our approach is as follows. Our aim is to obtain
a cheap alternative for an implicit integration scheme, without loosing too
much in terms of stability. We start with a given implicit scheme of order p in
time, and we approximate the solution of the associated implicit system with
a few steps of a minimum residual iterative solver, say GMRES. This leads
to a new scheme, and in order to let this new scheme have at least the same
order of consistency, we need to start GMRES with the result of an explicit
scheme of order p. This is di�erent from the popular predictor{corrector
approach, where the corrector is solved by successive substitution. This
is essentially a Richardson type of iteration which leads to an integration
scheme with limited stability properties comparable to the stability of the
predictor.
We will work out this idea in more detail for the simple Euler Backward
scheme for the system of ODE's

dy

d t
= f(t;y) ; y

��
t=0

= y0 2 RN: (1)

Euler Backward is given by:

yn+1B = yn +�tf(tn+1;y
n+1
B ): (2)

In order to solve this equation for yn+1B , we take Euler Forward

yn+1F = yn +�tf(tn;y
n); (3)

as an initial guess, and we write

yn+1B = yn+1F + �y: (4)

The vector �y satis�es

yn+1F +�y = yn +�tf(tn+1;y
n+1
F + �y): (5)

This leads to

�y = yn + �tf(tn+1;y
n+1
F + �y)� yn+1F

� yn + �t
�
f(tn+1;y

n+1
F ) +A�y

	� yn+1F ;
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where A denotes the Jacobian, evaluated in (tn+1;y
n+1
F ). In the predictor{

corrector approach one ignores the �y in the right-hand side, and one re-
peats the preceding steps, which leads to an iterative application of (4):

yn+1(j) = yn+1(j�1) +�y(j�1): (6)

In our approach, we take for �y the approximate solution from

(I ��tA)x = rn � yn � yn+1F + �tf(tn+1;y
n+1
F ): (7)

Note that rn can be interpreted as the residual for (2), that we get when
yn+1F is inserted.
We solve (7) by k steps of GMRES, with starting solution x0 = 0, so that
the approximated solution xk can be represented as

(�y := ) xk = P
(n)
k�1(I ��tA)rn;

where P
(n)
k�1 is the so-called iteration polynomial of degree k � 1, associ-

ated with GMRES (in the case that A is symmetric, we take the MINRES
method instead of GMRES). The number of iterations k is kept �xed. The
superindex �(n) has been included in order to indicate that we usually get
a di�erent polynomial for each time step. We will refer to the resulting
scheme as an Minimum Residual Approximated Implicit (MRAI) scheme.
Obviously, we can interpret the combination of (7) with GMRES as an in-
exact Newton method for (2).
We leave it to the reader to verify that the order of the local error is the
same as for Euler Backward or Euler Forward, irrespective the number of
GMRES steps used for the approximation of x. For more general implicit
schemes, one has to take care that the starting vector is constructed with
an explicit scheme of at least the same order in time.

3 Stability of the MRAI scheme

The MRAI scheme of the previous section can be represented by

yn+1M = yn+1F + P
(n)
k�1(I ��tA)(ynM � yn+1F + �tf(tn+1;y

n+1
F )) (8)

with yn+1F = ynM +�tf(tn;y
n
M).

This explicit scheme is di�cult to analyze, because the polynomial P
(n)
k�1

depends on spectral properties of the matrix as well as on the vector on which
it is acting. This means that we can not simply apply the MRAI scheme
to a linear homogeneous system and consider its e�ect in each eigenvector
direction independently.
For the stability we look at the recursions obtained when f(t;y) = Ay, that
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is we consider, as is usual, the behavior for the linear homogeneous case.
Form straight forward evaluation of (7), together with (3), we obtain

yn+1M = (I ��tA)�1
�
I �

h
I � (I ��tA)P

(n)
k�1(I ��tA)

i
(�tA)2

�
ynM :

(9)

The polynomial I � (I ��tA)P
(n)
k�1(I ��tA) is just the k-degree GMRES

polynomial R
(n)
k (I � �tA), that is the polynomial that describes how the

initial residual rn � rn0 is reduced to rnk , after k steps of GMRES.
Assuming that A 2 RN�N can be diagonalized as A = S�S�1, where � is
a diagonal matrix with real eigenvalues �j on its main diagonal, we arrive,
with zn � S�1ynM , at

zn+1 = (I ��t�)�1
�
I �R

(n)
k (I ��t�)(�t�)2

�
zn; (10)

or for the j-th component zn = znj of zn, and the j-th eigenvalue � = �t�j :

zn+1 = (1� �)�1
�
1� R

(n)
k (1� �)�2

�
zn: (11)

We have written the above expressions for the GMRES polynomial R
(n)
k ,

rather than for P
(n)
k�1, since R

(n)
k satis�es an optimality property: kR(n)

k (I �
�tA)rnk2 is minimal over all polynomials R of degree k, satisfying R(0) = 1.
Note that exactly the same reccurences as (10) and (11) describe how the
initial residual S�1rn+1 is related to its precessor S�1rn.
From experiences with GMRES, it is well-known that this polynomial at-
tempts to reduce the largest components of S�1rn, by putting a root close
to the corresponding eigenvalue. Therefore, if the scheme leads to a large
component in the vector S�1rn, because of instability, then this component
will be damped and in the next time step a new polynomial is automatically
constructed that tries to reduce other new dominating components. The
heuristic argument behind our stability control strategy is that we assume
that in average, over a number of successive time steps, no component of
the vector S�1rn dominates, or in other words, that all its components are
more or less equal in absolute value.

The j-th component of S�1rn is multiplied in step n by a factor to R
(n)
k (1�

�)�2, and following the above heuristics, it is likely that the polynomial

Q(�) � �2R
(n)
k (1� �)

has almost the minimax property over the interval [�t�N ;�t�1] (we as-
sume that the eigenvalues have been ordered as �N 6 : : : 6 �1). Note that
this leads to a weaker condition than the requirement that the reduction
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polynomial is small over the entire spectrum in each time step. The latter
requirement is made for schemes based upon Chebyshev polynomial approx-
imations.

We will further assume that �1 < 0. The stability condition now reads
�����
1�R

(n)
k (1� �)�2

1� �

����� 6 1; or

����1�Q(�)

1� �

���� 6 1: (12)

The last condition in (12) is equivalent to

� 6 Q(�) 6 2� �: (13)

Note that Q(1) = R
(n)
k (0) = 1, and 0 is a root of Q of multiplicity 2. The

other k roots �i satisfy R
(n)
k (1� �i) = 0. Suppose that �k 6 : : : 6 �1. Since

� < 0 over the interval of interest, we have that �i, in particular �1 < 0.
In Figure 1 we have plotted the situation when Q has the exact minimax
property. With the estimate

jQ(�)j = �2

�����
kY
i=1

� � �i
1� �i

����� 6 �2
�� �1
1� �1

; � 2 [�1 ; 0); (14)

it is possible to show (see [2] for a detailed proof) that (13) holds when

� 7 6 �1 (< 0): (15)

In fact, condition (15) guarantees that the rightmost local maximum of Q(�)
(cf. Figure 1) is below the line 2 � �. The other local extrema should be
between � and 2� �. In other words, condition (15) works for polynomials
Q(�) which may only very roughly resemble the minimax polynomial. To
see whether our conclusions are con�rmed in practice, in Figure 3 we have
plotted S�1rn = rn and Q(�) observed during numerical integration of the
model problem

y0 = Ay; y0 = (1; : : : ; 1)T 2 R500;

A = Diag(�1 : 0:002 : �0:01): (16)

Here we used the descibed MRAI scheme based on Euler Backward with
k = 5 steps of GMRES and the step size chosen to have �7 6 �1 6 �6:5.
It turns out that the condition (13) is true for most time steps; each time
step where for some �'s the condition (13) is not ful�lled is followed by one
or two \safe" steps. As we see, our assumptions leaded to realistic stability
control.
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2−µ

µ
Q

η η = − 7

(µ)

k 1

Figure 1: Stability governed by the roots of Q(�) (cf. (13),(15))

The roots �i of R
(n)
k are easily obtained from the GMRES process: they are

the so-called harmonic Ritz values [12]. The right-most root �1 indicates how
important the spectral information is for eigenvalues closest to the origin,
and we simply have to check that this stays below �7. If �1 < �7, then we
have to decrease the step size (see Section 4).
Condition (15) is sharp for the case k = 1, and remains to be close to
sharp for small k > 1. In Figure 2 we have plotted kyk1 of the computed
numerical solution of the model problem (16). A decrease of the norm in
the plots indicates that the scheme is stable.
For the upper plot, the solution was obtained with only k = 1 GMRES
iteration and, at each time step, the step size �t was chosen such that
�7:0 6 �1 6 �6:8). For the lower plot, we have repeated the computation
with the requirement that �7:2 6 �1 6 �7:05. We see that even a modest
change in the bound for �1 re
ects the instability.
Other numerical experiments suggest that stability conditions similar to
(15) can be applied for the case where the spectrum is in the left complex
half-plane.

Another simple bound for the time step can be derived under the assumption

that R
(n)
k (1��) resembles in average the k-th degree Chebyshev polynomial

Tk shifted to a segment containing all �'s, for instance [��t�N ; 0]. This

polynomial Tk is also scaled to be 1 at 0 (recall that R
(n)
k (0) = 1. The largest

root of Rk is 1 � �k. Since we know �k from the GMRES process, we can
approximate �N using the relation

�t�N = �N � 2�k
1 + cos(0:5�=k)

:

Of course, this estimate may not be accurate. Nevertheless, it gives a good
impression of the largest e�ective eigenvalue that restricts the step size.
Moreover, the stability condition (12) is satis�ed when jRk(1 � �)j j�j 6 1.
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Figure 2: The maximal component of the numerical solutions. (Growth
means unstability)

Then, from the estimate jRk(1� �)j 6 2
�p

1��N�1p
1��N+1

�k
, we obtain

2

�p
1� �N � 1p
1� �N + 1

�k
j�N j 6 1: (17)

The last inequality can be solved numerically, which gives an upper bound
C for j�t�N j, and, hence, also for �t:

�tj�N j = j�N j 6 C so that �t 6 C�j�N j: (18)

It should be remarked that the estimate (17) is typically stronger than (12),
and in practice it should be relaxed, especially for small k (k . 3). For
instance, the constant 2 is often too crude in (17), and does not re
ect
realistically observed values.

3.1 An example of a higher order MRAI scheme

Of course, the ideas outlined in the previous section may also be applied to
other implicit schemes. In this section we discuss brie
y the situation for
the trapezoidal rule

yn+1T = yn +�tf(tn+1=2;
1

2
(yn + yn+1T )); (19)
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where tn+1=2 = tn +
�t
2 . This scheme is the second order accurate. We

consider as before the linearized form:

(I � �t

2
A)yn+1T = (I +

�t

2
A)yn +�tgn+1=2; (20)

with

A =

�
@f

@y

�
(tn+1=2;y

n); gn+1=2 = f(tn+1=2;y
n)�Ayn:

For the starting vector for the GMRES scheme, we select the second order
explicit scheme

yn+1P = yn + (I +
�t

2
A)�tf(tn+1=2;y

n): (21)

The initial residual delivered by (21) is rn = (�t)3

4 A2f(tn+1=2;y
n), or, and

for linear inhomogeneous system with f(t;y) = A(t)y + g(t), we obtain

rn =
(�t)3

4
A2(Ayn + gn+1=2): (22)

In a similar way as for the Euler Backward scheme, we obtain after some
manipulations, with ~A = I � �t

2 A:

yn+1 = ~A�1
�
I +

�t

2
A � 2(

�t

2
A)3R

(n)
k ( ~A)

�
yn

+�t ~A�1
�
I � (

�t

2
A)2R

(n)
k ( ~A)

�
gn+1=2:

Assuming that A can be diagonalized, and has real negative eigenvalues, we
get for the components of the transformed solutions zn = znj :

zn+1 =
1+ �� 2�3R

(n)
k (1� �)

1� �
zn + �t

1� �2R
(n)
k (1� �)

1� �
ĝn+1=2;

with � = 1
2�t�j .

The scheme is stable if for all time steps:����1 + �� 2�3Rk(1� �)

1� �

���� 6 1: (23)

Following the same heuristic arguments as in the previous section, we con-
clude that the polynomial

Q(�) = 2�3Rk(1� �)

has in average almost the minimax property. This leads to the bound

� 2:375 6 �1 (< 0); (24)

where �1 is the largest among all �i such that R
(n)
k (1� �i) = 0.
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4 GMRES iterations and stability control

We assume that the minimal residual iterations are carried out with GMRES
[13, 1]. The iterations are applied to the linear system with matrix ~A (for the
Euler Backward scheme, ~A = I��tA). In k steps of GMRES an orthogonal
basis fv1; : : : ; vkg for the Krylov subspace spanfrn; ~Arn; : : : ; ~Ak�1rng is
built up. We take these vectors vi as the columns of the matrix Vk. GMRES
constructs a small (k + 1)� k upper Hessenberg system

~Hu = b; b = (krnk2; 0; : : : ; 0)T 2 Rk+1; (25)

that is solved in the least squares sense, where ~H = V �
k+1

~AVk.

The construction of Vk+1 and ~H requires k matrix{vector multiplications
with ~A and k(k + 1)=2 + k inner products. The Jacobian matrix is not
needed in explicit form, only its action on a vector is required. For instance,
this may be approximated directly by a Frechet derivative in the direction
of the vector on which the Jacobian acts. The MRAI algorithm is explicit
and allows straightforward parallelization.

During the time-stepping process, the stability of MRAI can easily be checked
with conditions like those inferred by (15) and (24), and, if necessary, the
step size can be adjusted. We note that ~H depends on �t as ~H = I ��tH ,
where elements of H do not depend on �t. The required value �1 can be
computed from the small upper Hessenberg system, since the 1� �i are the
eigenvalues of the matrix

~H��( ~H
� ~H);

where ~H is the k� k upper part of ~H. The values �i are the harmonic Ritz
values of ~A [12].
The conditions (15) and (24) have been derived for a negative real spectrum
of A. It turned out experimentally that they may also be used when the
spectrum of A is contained in the left complex half-plane. Instead of �1, we
then use its real part.
For the simpli�ed situation where f = f(y), we have collected the major
elements of two MRAI scheme, based on Euler Backward and Trapezoidal
rule, in Tables 1 and 2. These allow adjustment of the step size for almost
no extra price, when the Krylov basis has already been computed.

5 Numerical experiments

Numerical experiments with the MRAI approach are presented for two dif-
ferent situations. In the �rst one, an MRAI scheme is used in a physical
simulation code VAC [15]. In the second case, we demonstrate that the
MRAI approach can be successfully employed in an ODE code.
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Table 1: First order MRAI based on Euler Backward

1. yn is given, fn := f(yn) Function evaluation
rn := Afn, compute b in (25) Jacobian action

2. Modi�ed Gram-Schmidt ) k Jacobian actions,

matrices Vk+1 and ~H k + 1 vectors to store

3. Choose �t (cf. (15)), b := (�t)2b, O(k3) operations
solve the least-square problem (25)

4. Starting vector: yn+1P := yn +�tfn

MRAI step: yn+1 := yn+1P + Vku k vector updates

Table 2: Second order MRAI based on Trapezoidal rule

1. yn is given, fn := f(yn) Function evaluation
pn := Afn, rn := 1

4Ap
n, 2 Jacobian actions

compute b in (25)

2. Modi�ed Gram-Schmidt ) k Jacobian actions,

matrices Vk+1 and ~H k + 1 vectors to store

3. Choose �t (cf. (24)), b := (�t)3b, O(k3) operations
solve the least-square problem (25)

4. Starting vector:

yn+1P := yn +�tfn + (�t)2

2 pn

MRAI step: yn+1 := yn+1P + Vku k vector updates
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5.1 MRAI time stepping in the magnetohydrodynamical sim-
ulation

In this section we describe numerical experiments made with the MRAI
approach in an magnetohydrodynamical (MHD) simulation code VAC (Ver-
satile Advection Code1) [15], [9].

The numerical results presented here, together with others, were reported
in [16], where performance of several implicit and explicit schemes are com-
pared on problems typical for astronomical research. Here, we discuss in
detail behavior of the MRAI scheme for one of the model problems to illus-
trate our results from the section 3.

This model problem is a 2D MHD problem which shows formation of a
steady bow shock occuring in a super-fast 
ow around a perfectly conducting
cylinder. Such a problem is of interest for simulation of the bow shock
around planets in the solar wind. For more details on the model problem
description see [16].

In VAC, the equations are discretized spatially by high-resolution shock-
capturing �nite di�erence schemes [17]. In this example, a polar 60�60 grid
was used, and the discretization resulted in a system ofN = 21600 nonlinear
ODE's. The steady-state solution for this problem is to be obtained by the a
time stepping integration. The time-stepping process is performed until the
relative di�erence in solution becomes su�ciently small. Because the step
size �t can be much larger than in time-accurate computations, this way to
get the steady state solution is sometimes called pseudo time-stepping.

With the simple Forward Euler explicit scheme, the steady solution can
be obtained in 1710 time steps which requires approximately 3120 seconds
of CPU time on the Sun Sparcserver 1000E.

As an alternative, an implicit time stepping could be applied. Because
of prohibitively high storage requirements, direct linear solves can not be
used. For problems of this type iterative solvers work satisfactory only with
a powerful preconditioning as e.g. Modi�ed (Relaxed) Block ILU [19], [16].
This again leads to high storage needs which are hardly possible to satisfy for
�ner grids or in 3D case. Although it is not fare to compare performance of
such fully implicit scheme with the performance of explicit MRAI scheme, we
report that for this 2D example the implicit scheme requires approximately
3 times less CPU time than the MRAI time stepping.

Therefore, as a cheaper alternative, the MRAI time stepping was ap-
plied. Our analysis in section 3 suggests that stability of the MRAI time
stepping depends strongly on the choice of the starting vector. In particu-
lar, evaluations of the starting vector, made in successive time steps by an
explicit scheme, are typically the main source of unstability of the MRAI
schemes. The choice of the explicit scheme is usually determined by the or-
der requirements (the order of an MRAI scheme is not larger that the order

1See URL http://www.fys.ruu.nl/~ toth/ .
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Figure 4: log10 of residual norm (left) and residual norm reduction (right)
delivered after k = 5 GMRES iterations versus the time step number.

of the starting vector). In this case, since the integration process is steady
state, accuracy in time is not of interest. Therefore, the starting vector was
simply yn+1P = yn. As the corrector, the linearized Euler Backward scheme
was used.

It is important for the overall e�ciency that this MRAI scheme allows the

exible cheap change of �t (where �t is adjusted after computing the Krylov
basis matrix Vk+1). The scheme is almost identical to the one represented
in Table 1, the di�erence is in several simpli�cations: rn := fn, b := �tb in
step 3, and yn+1P := yn.

Stability analysis similar to that of section 3 suggests that this MRAI
scheme is nearly unconditionally stable for linear problems with negative
spectrum of the Jacobian. The model problem under consideration, however,
is nonlinear, with strongly nonsymmetric Jacobian, so that the step size has
to be restricted.

In the stability step size control used, the value of �t was accepted
whenever �1, the smallest in modulus element of f�i jRk(1� �i) = 0g, sat-
is�ed �12:5 = ��1 6 �1 6 �+1 = �9:5. This stability condition is similar to
(15), (24). The acceptance segment [��1 ; �

+
1 ] was determined on a basis of

numerical experiments. We found this stability condition to be reliable for
the described above MRAI scheme if the norm of the skew-symmetric part
of the Jacobian is of order of the norm of its symmetric part. It should be
emphasized that the performance of the scheme depends only mildly on the
choice of k, ��k and �+k . Our experience suggests that the choice k = 5 is
e�cient for most problems.

This variable step size implementation of MRAI(k = 5) required 1774
seconds of CPU to get to the steady state in 317 time steps. Hence, the gain
factor in CPU time with respect to the explicit scheme is at least 1:75.

An alternative way to control step size with respect to the stability could
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Figure 5: Step size delivered by MRAI (left) and steady state convergence
history (right). (The step size did not change after �rst 100 time steps.)

be to restrict the step size in such a way that the residual norm krnkk or the
norm reduction krnkk=krnk at each time step is below certain tolerance.
However, there seems to be no clear relation between the stability and the
residual norm behavior. This can be seen on Figure 4, where we have plotted
the residual norm krnkk and relative norm krnkk=krnk as were observed during
the computations with the MRAI scheme. As one can see, the residual norms
varies signi�cantly during the time stepping process, so that it is not clear
what tolerance in the residual reduction criterion could have been used. On
the other hand, the just described stability control based on the harmonic
Ritz values provided smooth convergence to the steady state (Figure 5).

5.2 MRAI in an ODE code

In an ODE code, the step size is normally controlled automatically based
on an estimation of the local error. The stability control described above
is then super
uous. However, the environment typical for most ODE codes
provides a fare comparison among the codes in terms of CPU time, number
function evaluations and achieved accuracy. We include this section to show
that our simple approach can be competitive when used in an ODE solver
as well.

We incorporated the MRAI approach in the standard multistep code
LSODE [6] and compared the revised code with the RKC [14] and VODPK
[3] codes.

We give a short description of the methods used.
The Runge-Kutta { Chebyshev (RKC) [14, 18] code is a recent implemen-

tation of the stabilized explicit Runge-Kutta method suitable for near-sti�
problems (see also [20] for a survey). The code is available from ftp://cwi.

nl/pub/bsom/rkc and http://www.netlib.org.
As an implicit multistep code, the LSODE (Livermore Solver for ODE's)
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code has been taken. This is a general purpose sti� integrator [6], but it can
work also in a non-sti� mode with Adams predictor{corrector methods. In
its sti� mode, LSODE uses BLAS LU-decomposition linear solves. Banded
structure of the Jacobian can be exploited by the code. Integration formulas
used in LSODE and the way of the Jacobian matrix evaluation are speci�ed
by a parameter mf (method 
ag).

We incorporated the MRAI scheme in the LSODE code. Our version
of LSODE code allows approximate linear solves with GMRES iterations
and approximation of Jacobian action by the directional quotient as an
additional option. MRAI scheme can easily be incorporated in other codes;
LSODE was chosen as a widely used ODE solver, its structure and basic
principles are employed in many other codes.

As it was noticed earlier, a straightforward substitution of exact linear
solves by an iterative process may a�ect the performance of the code. For
instance, after such a modi�cation codes may deliver an actual error larger
than the prescribed tolerance. An additional tuning then can be used to
improve the performance [4]. We emphasize that our experiments with the
modi�ed LSODE are aimed to show only that the MRAI approach can be
simply incorporated and employed in an ODE integrator. Therefore we did
not change anything in the code apart from the linear solver part.

The modi�cations made in LSODE are activated by a new value of the
LSODE method 
ag mf = 28. For this value, LSODE uses approximate
linear solves by k GMRES iterations and the approximate \Jacobian �
vector" evaluation by the directional quotient. In standard LSODE, once
the Jacobian has been evaluated, it is updated only when necessary. With
mf = 28, the Jacobian is always up-to-date.

The VODPK code [3] is a recently devised successor of the well known
VODE code, where the direct LU linear solves are replaced by the GMRES
iterative solver. As an option, the preconditioning can be provided by a user.
In linear solves of VODPK, not more than 5 GMRES steps are performed.
The key di�erence from our approach is that here the number of iterations
is not �xed, the residual relative norm is controlled in the stopping criterion.
If no convergence achieved within 5 GMRES steps, the step size is reduced.

All these codes have input tolerance parameters atol and rtol. It means
that during the integration process the local error en is controlled to satisfy

jeni j 6 rtoljyni j+ atol;

where, as an option, the tolerances' parameters may be prescribed to be dif-
ferent for di�erent components i. The results reported below were obtained
for scalar tolerances atol = rtol = tol.
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5.2.1 Example 1: 3D heat equation model problem

This test problem taken from [14] is a linear heat conduction problem in
the 3D unit cube. To have an analytical solution readily available, the
inhomogeneous term is specially introduced. The spatial discretization is
made by central di�erences on the uniform grid having 39 internal nodes in
each dimension. This yields system of N = 393 = 59319 equations. The
integration was done for 0 6 t 6 tend = 0:7.

For such a problem dimension, it is very expensive to use any direct
Jacobian evaluation in an implicit code. Therefore, in LSODE we attempted
to use an approximation to the Jacobian by using the banded evaluation
(mf = 25) with the prescribed width of the band less than the actual one.
This resulted in an extremely poor performance.

For the LSODE with incorporated MRAI(k) strategy, we used the method

ag mf = 28 (directional quotient Jacobian evaluation), and k was set to 5.
With these parameters, LSODE/MRAI required 16 N -vectors to store (10
from which are for the integrator itself and the other k + 1 = 6 are for the
MRAI part).

Like in [14], we used VODPK with diagonal scaling preconditioning. For
all the parameters in VODPK the default values were taken. The storage
requirements of VODPK were 18 N -vectors to store (one vector to store for
the preconditioning).

For the RKC code, all the parameters were set by default, except that we
explicitly told the code an estimate for the spectral radius of the Jacobian
(this is not crucial for the performance of the code, however). The RKC
code requires only 4 N -vectors to store.

The results of comparative runs on the Sun Sparcserver 1000E are pre-
sented in Table 3 and on Figure 6. In the Table, columns \error", \CPU"
and \fevals/steps" contain the maximum di�erence in computed and exact
solution at t = tend, CPU time in seconds, number of calls to the right hand
side function f and steps made, respectively.

To separate an error made in the spatial discretization from that made
in the time-stepping process, the error reported in the Table is measured
with respect to a reference solution computed with a stricter tolerance [14],
rather than with respect to the analytical solution of the PDE.

We comment that all three codes work well for all the tolerances. The
RKC code is more reliable in delivering the error compared with the tol-
erance. However, sometimes this code delivers error of order less than the
tolerance, which means that an unnecessary work will be done to achieve
a not required stricter tolerance. In opposite, the error made by VODPK
may be larger than tol. The same, but in less extend, is true for the
LSODE/MRAI code.

Summarizing, we see that for this model problem our approach works
successfully and competes very well with other known techniques.
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Figure 6: A log-log plot of CPU time versus error for the Exam-
ple 1 (LSODE/MRAI|solid line, VODPK|dashed line, RKC|dashdotted
line).

Table 3: Results for the Example 1

code error CPU fevals/steps error CPU fevals/steps

tol = 10�1 tol = 10�4

lsode/
mrai 1.1 68 55/6 8:5 10�4 846 685/51

vodpk 0.99 64 46/7 1:3 10�3 693 480/70
rkc 8:9 10�1 422 402/6 4:0 10�5 1121 1068/57

tol = 10�2 tol = 10�5

lsode/
mrai 9:5 10�2 213 175/12 3:4 10�5 1360 1087/86

vodpk 8:3 10�2 222 160/16 1:1 10�4 1298 906/115
rkc 1:7 10�3 764 720/15 4:3 10�6 1762 1760/129

tol = 10�3 tol = 10�6

lsode/
mrai 1:8 10�3 506 403/32 7:0 10�6 1534 1237/98

vodpk 1:0 10�2 345 237/34 6:2 10�6 1682 1160/180
rkc 3:7 10�4 873 831/30 5:1 10�7 2588 2399/262



Stability Control for Time-stepping with Minimal Residual Iterations 19

5.2.2 Example 2: model problem of Gear and Saad

This model problem has been adapted from the �rst numerical example
of [5]. The original model problem in [5] is nonlinear autonomous, with
the real spectrum Jacobian. We modi�ed it in such a way that it became
nonautonomous and with the complex spectrum Jacobian.

We give a brief description of the problem. Consider the set of ODE's

z02i�1 = �iz2i�1 + �iz2i + 
z22i�1 + g2i�1(t);

z02i = ��iz2i�1 + �iz2i + 
z22i + g2i(t);

i = 1; : : : ; N=2:

It is easily checked that this system has an analytical solution

~z2i�1(t) = ~z2i(t) =
��i

1 + cie��it

as soon as we choose g2i�1(t) = ��i~z2i(t) and g2i(t) = �i~z2i�1(t). The
constants ci here are adjusted according to the initial values y

0
i . The change

of variables

z = Uy; U = I � 2

vTu
uvT

(notice that U = U�1) leads to the system of ODE's

y0 = f(t;y);

f(t;y) = U
�
�Uy + 
(Uy)2 + g(t)

�
;

(26)

where matrix � is block diagonal with 2� 2 blocks
�i �i
��i �i

. The operation

(Uy)2 for the vector Uy is understood here componentwise.
This model problem has the nice property that the analytic solution

~y(t) is available readily as ~y(t) = U ~z(t). Apart from that, the degree of
nonlinearity may be controlled by the parameter 
. Also, the spectrum
of the Jacobian, which is, obviously, �i � �i + 2
z2i�1(t), can be chosen
arbitrary by setting �i and �i.

Here, we have taken 
 = 1, �1 = �1000, �2 = �800, �3 = �500,
�4 = �300, �i = �100N=2�i+1

N=2�5 for 5 6 i 6 N=2, and �1 = � � � = �4 = 0, and

�i = 0:5�i for 5 6 i 6 N=2. The spectrum of the Jacobian at the t = 0 for
these values of �i and �i is plotted on Figure 7. Furthermore, the matrix U
was determined by setting u = (0; 1; : : : ; 1)T , v = (1; : : : ; 1)T , and the initial
value was chosen as y0 = Uz0, z0 = (�1; : : : ;�1)T . Finally, the number of
equations was taken N = 15000.

The Jacobian matrix is full, so that the direct linear solves, as, e.g.
in LSODE code, are hardly possible. Therefore, again we use the modi�ed
LSODE/MRAI code and VODPK. The RKC code has substantial di�culties
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Table 4: Results for the Example 2

code error CPU fevals/steps error CPU fevals/steps

tol = 10�1 tol = 10�4

lsode/
mrai 0.72 21 85/15 1:6 10�4 121 449/78

vodpk 0.26 36 111/17 1:0 10�4 106 317/74

tol = 10�2 tol = 10�5

lsode/
mrai 7:3 10�2 46 181/30 1:7 10�4 173 613/114

vodpk 9:6 10�3 70 212/40 8:6 10�6 147 436/101

tol = 10�3 tol = 10�6

lsode/
mrai 8:1 10�3 70 269/49 1:1 10�6 213 741/150

vodpk 1:4 10�3 86 260/52 1:2 10�6 192 564/152

for this problem because the Jacobian spectrum is complex [14], and we
excluded it from the comparisons.

For LSODE/MRAI, the method 
ag was taken mf = 28 (this corresponds
to the only a�ordable way of the Jacobian evaluation). The number of
GMRES iterations was set to k = 3, so that the overall storage requirement
of LSODE/MRAI were 14 N -vectors to store. In the VODPK code, all the
parameters were chosen to have the default values and no preconditioning
was used. In this mode, VODPK required 17 N -vectors to store.

The results of comparative runs of LSODE/MRAI and VODPK are pre-
sented in Table 4 and on Figure 7. The notations in the Table's columns
are the same as in Table 3. The reported measurements of CPU time were
made on SUN Sparc 4 workstation.

We observe that our approach competes very well for moderate tolerances
tol > 10�3. For higher tolerances, however, its performance is comparable
as well.

6 Conclusions

We have studied the e�ect of approximate linear solves in implicit time step-
ping processes. A small �xed number of GMRES iterations are performed
in each linear solve. The resulted schemes can be seen as explicit stabilized
schemes, which are referred to as MRAI (Minimal Residual Approximated
Implicit) schemes.

The schemes under considerations are explicit, so that the stability is of
concern. We propose a convenient way to display the stability and adjust
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Figure 7: Jacobian spectrum at t = 0 (left) and a log-log plot of CPU
time versus error for the Example 2 (LSODE/MRAI|solid line, VODPK|
dashed line).

the step size accordingly. This is done by monitoring the harmonic Ritz val-
ues and results to an self-adaptive explicit time stepping. For autonomous
systems, simple e�cient implementations of MRAI up to order 2 are pro-
posed where the step size can be changed 
exibly, i.e. without recomputing
the Krylov basis.

Similarly to the explicit stabilized methods and implicit methods based
on iterative linear solves, MRAI approach becomes attractive when the Ja-
cobian matrix is not easy to obtain and/or invert, or, when parallelization
has to be done. However, MRAI time stepping has some distinctive features.

Usually, the convergence in linear solves is checked by displaying the
residual relative norm. In many cases it is not clear what tolerance has to
be taken here. In our approach, di�erent information coming from the linear
solver itself is used for the stability control.

Besides, when the residual norm is checked, the preconditioning is often
indispensable to avoid the stagnation, whereas the Jacobian matrix may not
be readily available. The MRAI strategy is free of this handicap.

Unlike many other explicit stabilized methods (see e.g. [20]), such as
RKC, MRAI successfully copes with the complex spectrum Jacobian.

Our numerical experiments con�rm these observations. They suggest
that, when standard implicit schemes are too expensive and high accuracy
is not required, MRAI can be very attractive. As we have shown in the ex-
periments, the approach can be successful in both large physical simulation
codes and in time accurate computations with an ODE solver.

In conclusion, we summarize that, although additional minor tuning may
be necessary, the approach seems to be promising.
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