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General

Enterococci are widespread in nature and commonly found in alimentary
tracts of humans and other animals as well as in soil, water and food. In human
adults, enterococci account for 1% of the intestinal microflora (90). Enterococci are
facultative anaerobic, catalase-negative gram-positive cocci that occur singly, in
pairs or as short chains. The optimum growth temperature is at 35°C, but the
growth temperature can range from 10 to 45°C. All enterococci grow in broth
containing 6.5% NaCl and hydrolyze esculin in the presence of 40% bile salts
(bile-esculin medium) (32). Among the enterococcal species, Enterococcus faecalis
and Enterococcus faecium are the most commonly encountered species in human
faeces (67,74). Although enterococci were for years considered as harmless
inhabitants of the gut flora, they are now among the leading causes of nosocomial
infections of humans. Originally, the majority of clinical infections like
bacteraemia, endocarditis, urinary tract and surgical wound infections were
caused by E. faecalis (80-90%), while E. faecium was found much less frequently
(isolated in almost 10% of the infections) (40,45,58,76,85). However, the ratio E.
faecalis to E. faecium infections changed in favor of E. faecium in the US in late
1990s (66,75,103). Other enterococcal species which occasionally cause infections
in humans are Enterococcus durans, Enterococcus avium, Enterococcus casseliflavus,
Enterococcus hirae, Enterococcus gallinarum, Enterococcus raffinosus and Enterococcus
muntdii (40,67,85).

Antimicrobial resistance in enterococci

Antimicrobial resistance in enterococci can be divided in two classes, intrinsic
resistance and acquired resistance (Table 1). Intrinsic resistance is due to either
lack of target sites for the antibiotic drug or insufficient penetration of the drug to
the intracellular target site. For example, enterococci don’t posses penicillin
binding proteins (PBPs), which bind cephalosporins with high affinity (37,73).
Furthermore, as a result of poor permeability of the enterococcal cell wall,
aminoglycosides are unable to reach their target site (64). More important in the
emergence of resistance is the ability of enterococci to acquire resistance through
either chromosomal mutations or genetic exchange of mobile elements like
transposons or plasmids (123). For example, mutations in the DNA gyrase or
topisomerase genes reduce the affinity of quinolones for these genes (96). In E.
faecalis and E. faecium many different transposons and plasmids have been
identified conferring resistance to a wide variety of antimicrobial drugs,
including vancomycin, streptomycin, kanamycin, tetracycline, gentamycin and
erythromycin (113). These resistance genes are present in combinations on large
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composite elements or as single genes. It has been hypothesized that E. faecium
plays a central role in the acquisition, conservation and transfer of antimicrobial
resistance genes among bacteria (116).

Ampicillin resistance

Enterococci are intrinsic resistant to -lactam antibiotics due to low affinity of
their penicillin binding proteins (PBP) to f-lactam agents (Table 1) (34,48,122).
They possess at least five and sometimes more than nine different PBPs (121). The
level of intrinsic resistance differs among the f-lactam antibiotics. Generally,
penicillins (e.g. ampicillin) have the highest activity, carbapenems slightly lower
and cephalosporins have the lowest activity (48,67). Except for a few §3-lactamase
producing E. faecalis isolates identified in the US (67,69,70), high level ampicillin
resistance is mainly found in E. faecium isolates derived from clinical specimens.
High level ampicillin resistance in E. faecium is due to either alterations by
mutations in PBP5 resulting in even lower affinity for ampicillin (5,56,86,126) or
by overproduction of PBP5 (33,51,126). In 2000, a novel mechanism of 3-lactam
resistance has been described in a laboratory mutant of E. faecium not involving
PBPs (61). In this strain cross-linking during cell wall elongation occurred by a
LD-transpeptidation, which by-passes the wusual 8-lactam-susceptible DD-
transpeptidation (61,62). So far, no clinical isolates with this type of resistance
have been reported.

In the US, the first reports on increase of infections and outbreaks due to
ampicillin resistant E. faecium (AREfm) were published in the early 1980s
(22,41,45,67). In several European countries a similar increase of AREfm has been
observed, but with a 10 year delay (27,35,53,102). No data are available whether a
similar increase of AREfm infections has occurred in the Netherlands. Such an
increase will have clinical implications for the treatment of infections and will
lead to increased use of vancomycin with the threat of increased selection of
vancomyecin resistant E. faecium (VREF).

Glycopeptide resistance

The first clinical isolates of vancomycin-resistant enterococci (VRE, both E.
faecium and E. faecalis) were detected in Europe in 1986 (54,104). Since then, VRE
have rapidly spread all over the world. Especially in the US, VRE prevalence rates
increased from 0% in 1989 to 28.5% in 2003 (1,3). Consequently, in the early 1990s
VRE were already the second most common nosocomial pathogen in

11



Chapter 1

Table 1. Antimicrobial susceptibility of enterococci

Trimethoprim-sulfamethoxazole

all enterococci

Inefficacy in vivo due to assimilation of exogenous folates

Antibiotic Species Mechanism of resistance
B-lactams: all enterococci Low afinity penicillin binding proteins (PBP)
- penicillins (low level)
é - carbepenems (moderate level)
;"’7: - cephalosporins (high level)
7 Aminoglycosides (low level) all enterococci Inefficient uptake
-2 Aminoglycosides (moderate level) E. faecium Production of chromosomal AAC(6')li enzyme
g
£

Lincosamides and streptogramins A

Glycopeptides (low level)

E. faecalis, E. avium,
E. gallinarum, E. casseliflavus
E. gallinarum, E. casseliflavus

Putative efflux

Production of D-Ala-D-Ser ending peptidoglycan precursors

Ampicillin (high level)

Aminoglycosides (high level)

E. faecium, E. hirae
E. faecalis
E. faecalis, E. faecium,

Overproduction or alterations of PBP5
B-lactamase (rare)
Aminoglycosides modifying enzymes e.g. AAC(6')-APH (2")

E. gallinarum, E. casseliflavus
most enterococci

E. faecium, E. faecalis

E. faecium, E. faecalis

E. faecium, E. faecalis

E. faecium, E. faecalis

Macrolides Ribosomal methylation
Chloramphenicol
Tetracycline
Quinolones

Glycopeptides (high level)

CAT encoding enzymes
Modification of ribosome protein
Alterations in DNA gyrase and Topoisomerase IV

Acquired resistance

Precursor modification

the US (36) and became endemic in many hospitals (68). In Europe, VRE
prevalence rates in hospitals are rising since the year 2000 (2,88).

In 1988, French researchers discovered that glycopeptide resistance was
plasmid-mediated (54). A few years later, the same group identified that
vancomycin resistance was located on a small mobile genetic element labeled
transposon Tn1546, encoding the VanA phenotype (8). Furthermore, the same
year a second phenotype, VanB, was identified on a different mobile element,
labeled transposon Tn1547 (79). Due to these self-transferable transposons and
plasmids, dissemination of vancomycin resistance is not only the result of clonal
expansion of resistant strains, but also of horizontal gene transfer between strains
and even species. Already at that time the potential transfer of these easily
movable resistance genes to more pathogenic gram-positive bacteria like
methicillin resistant Staphylococcus aureus (MRSA) was feared. At that time
vancomycin was the last antibiotic to treat patients with MRSA infections. The
first high-level vancomycin resistant S. aureus (VRSA) was identified in Michigan
(US) in 2002 (17). Up till now, five additional VRSA isolates have been identified
(6). In one case a vancomycin-resistant E. faecalis was a likely source of the vanA
gene cluster (114), while VRSA may have acquired the vanA gene cluster from an
E. faecium isolate in another case (115).

Vancomycin, as well as teicoplanin, belong to the group of glycopeptide
antibiotics. These antibiotics bind with high affinity to the D-alanyl-D-alanine (D-
Ala-D-Ala) C-terminus of peptidoglycan pentapeptide precursors and block the
addition of pentapeptide precursors by transglycosylation to the nascent
peptidoglycan chain, thereby preventing subsequent cross-linking catalyzed by
transpeptidation (11,80).

Nowadays, six types of vancomycin resistance have been described in
enterococci (Table 2, adapted from Courvalin (23)). Of the six phenotypes, the
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VanA and VanB type of glycopeptide resistance are most frequently reported
(19,82,87). Sequencing and functional analysis of the genes encoded by vanA and
vanB gene clusters revealed that glycopeptide resistance is due to enzymes that
encodes for (i) synthesis of low-affinity precursors, in which the C-terminal D-Ala
residue is replaced by D-lactate (D-Lac) or D-serine (D-Ser), thus modifying the
vancomycin-binding target and (ii) for elimination of the high-affinity precursors
that are normally produced by the host, thus removing the vancomycin-binding
target (8,9,15,81).

Clinical epidemiology of vancomycin-resistant
enterococci

Although the first clinical VRE were detected in Europe, a remarkable
difference exists in the epidemiology of VRE between Europe and the US. In the
US colonization of hospitalized patients with VRE rapidly increased in the 1990s,
up to the current endemic levels in many hospitals. In parallel, nosocomial VRE
infection rates increased as well, while colonization in healthy people appeared to
be absent. In Europe, prevalence rates in hospitals have remained much lower
and only started to rise since the year 2000 (2,88). It has been suggested that the
rapid increase of VRE in the US was due to 5-10 fold higher use of vancomycin in
the US compared to five European countries, including France, Italy, Germany,
United Kingdom and the Netherlands, which have, in total, a similar number of
inhabitants (13,49).

In the Netherlands, VREF outbreaks have been reported in three different
hospitals. In all cases, intervention measurements were successful in controlling
the outbreak (63,100,112). In contrast to the US where VRE is restricted to
hospitals, a large community reservoir of VRE among healthy people and farm
animals exists in Europe, which is most probably linked to massive use of
avoparcin in animal husbandry (95,105,107-111). Avoparcin is a glycopeptide
antibiotic, like vancomycin, and has been used as growth promoter in the
agricultural industry since the 1970s in most European countries. Since the
presence of a large community reservoir of VRE was thought to pose a threat for
VRE transmission into hospitals either by enterococcal strains harboring the
vancomycin resistance genes or by horizontal transfer of Tn1546 from animal
strains to human strains, the European Union banned the use of avoparcin in
April 1997. Since then, prevalence rates of VRE colonization among farm animals
and human volunteers have decreased (4,50,106).
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Molecular epidemiology of E. faecium

In the late 1990s spread of multi resistant enterococci mainly considered E.
faecium (19,66,75). Molecular typing methods are essential to determine, in detail,
the epidemiology of E. faecium and its resistance traits, and to identify outbreaks
in hospitals. Furthermore, the recognized presence of E. faecium in different
ecological niches created an additional need to determine its population structure
and genetic evolution.

The first molecular typing methods for enterococci were based on the analysis
of plasmid profiles, including plasmid composition and restriction endonuclease
analysis of specific plasmids (59,125). In the late 1980s, a new typing method was
developed based on analysis of chromosomal DNA restriction endonuclease
profiles by pulsed field gel electrophoresis (PFGE) (18), which was soon adapted
for enterococci (39,71). Until recently, many laboratories considered PFGE as the
“Gold Standard” typing method. However, this method is only suitable to trace
transmission of strains in hospital outbreaks. Interlaboratory data exchange is
problematic as there is a lack of standardized conditions for electrophoresis and
criteria for interpreting PFGE banding patterns (31).

To study the genetic relatedness between epidemiologically nonrelated VREF,
amplified-fragment length polymorphism analysis (AFLP) was developed, which
allows analysis of polymorphisms among small restriction fragments (119). With
this technique particular E. faecium genogroups appeared associated with
particular hosts, like pigs, calves, poultry and humans. Most importantly though,
there were genetic differences between VREF isolated from feces of
nonhospitalized persons without infection (genogroup A) and hospital isolates
from fecal origin or from infected body sites like blood (genogroup C). Other
studies confirmed the existence of these genogroups among vancomycin
susceptible E. faecium (VSEF) isolates originating from different sources
(14,16,21,46,47). Furthermore, AFLP exhibited a discriminatory power
comparable to PFGE and discriminated outbreak related isolates from other
isolates (46).

Although AFLP appeared to be a robust and fast typing method generating
reproducible data within a given laboratory, this method was less suitable for
data exchange between different laboratories and for studying the global
epidemiology and the evolution of E. faecium. For this, a typing method is
required, which generates unambiguous data suitable for the development of
web-based databases. In 1998, multi locus sequence typing (MLST) was proposed
for Neisseria meningitides with the aforementioned properties (60). MLST is based
on identifying alleles from DNA sequences of internal fragments of housekeeping
genes resulting in a numeric allelic profile. Each profile is assigned a sequence
type (ST). In addition, an Internet site with the possibility for data exchange was
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developed (www.mlst.net), which currently, together with www.pubMLST.org,
contains MLST schemes of 38 different bacterial species, including E. faecium (43)
and E. faecalis (84). MLST of 123 isolates, including VREF and VSEF originating
from human (nonhospitalized, clinical and hospital outbreak) and animal sources
from various countries, confirmed the genogroups as determined by AFLP,
including the hospital related genogroup C (43). MLST typing of the hospital
related isolates revealed that the outbreak isolates clustered in a sub-population
designated lineage C1, which was subsequently confirmed in many studies
performed world wide (12,21,25,52,55,94,117).

A more detailed study on the population structure and evolution of E. faecium
is needed for better understanding of the worldwide epidemiology of E. faecium.
Furthermore, the recognition of hospital adapted E. faecium subpopulation
created a need for rapid identification and typing of E. faecium, in order to better
target infection control measures in hospitals.

Molecular characterization of DNA polymorphisms in the vanA gene cluster of
Tn1546 in isolates from humans and animals revealed high degrees of DNA
polymorphisms due to point mutations, deletions and insertions of different
insertion sequences e.g. IS1216V and 1S1251 (26,44,89,110,120,124). Identical
Tn1546 variants among VREF recovered from farm animals and humans were
identified, which could be a result of either colonization of animal-derived VREF
in humans or transfer of Tn1546 from animal VREF to human enterococcal
isolates.

Virulence determinants in E. faecium

In contrast to E. faecalis, little is known about virulence of E. faecium (38). Many
clinical isolates of E. faecium are resistant to phagocytosis by neutrophils (7),
which might be considered a pathogenic property.

Other putative virulence factors are the secreted antigen SagA (99) and a
surface exposed antigen designated Acm (72). Both antigens are able to bind to
human extracellular matrix proteins. In contrast to the specific collagen-binding
adhesin Acm, SagA has broad-spectrum binding to fibrinogen, collagen type I,
collagen type IV, fibronectin and laminin. Although the exact role of both
antigens in the pathogenesis of E. faecium infections is not well understood,
adherence to extracellular matrix proteins might be the first step in colonization
of the host.

In Caenorhabditis elegans, E. faecium produces hydrogen peroxide at levels that
cause cellular damage (65). Additional studies are necessary to investigate the
relevance of hydrogen peroxide production by E. faecium in the human host.
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Gelatinase is an extracellular zinc mettaloprotease, which contributes to E.
faecalis virulence in some animal models and is regulated through a cell-density-
dependent manner by the fsr operon (77,78). Recently, dissemination of gelatinase
was also described in E. faecium (57).

The identification of a hospital adapted E. faecium subpopulation raised the
question whether this population contained specific traits, which contribute to
increased abilities in spread and/or infections among hospitalized patients.
Screening of human and animal isolates for the presence of the esp gene, which
has been associated with increased virulence and biofilm formation in E. faecalis
(92,93,97,98,101), revealed that in E. faecium the esp gene is restricted to hospital-
derived isolates belonging to the hospital subpopulation (10,13,20,29,30,42,118).
Interestingly, in E. faecalis this gene is contained on a pathogenicity island (91)
and was identified among clinical and animal derived isolates (24,28,42,93).
Analysis of the up- and downstream regions of the E. faecium esp gene are
necessary to determine whether, as in E. faecalis, the esp gene in E. faecium is
contained on a pathogenicity island.

In 2003, another putative virulence gene, hyaluronidase (hylem) with
homology to the same gene in Streptococcus pyogenes and Streptococcus pneumoniae
was described to be enriched among clinical E. faecium isolates (83). Although the
presumed function of hyaluronidase in E. faecium is still unknown, in S.
pneumoniae it is suggested that hyaluronidase may contribute to the invasion of
the nasopharynx.

Conclusion and aims of the thesis

The recognition of a hospital adapted E. faecium subpopulation, which had
apparently spread worldwide, and which was, amongst others, characterized by
the presence of the esp gene, lead to the following research questions:

@) Can we develop (and validate) rapid identification and typing

schemes for E. faecium?

For this the accuracy to identify enterococci of current phenotypic
tests, automated microbiology systems, APl system and a newly
developed identification method designated Raman spectroscopy
were evaluated (chapter 2). In addition a rapid, robust and cheap
typing method (MLVA) allowing the study of genetic relatedness and
epidemiology of E. faecium with the possibility of interlaboratory data
exchange via Internet was developed (chapter 3) and compared to the
currently considered “Gold standard” for enterococcal genotyping
Pulsed Field Gel electrophoresis (chapter 4).
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(ii) Is the esp gene in E. faecium contained on a pathogenicity island as it is
in E. faecalis (chapter 5)?
(iif) What is the population structure of E. faecium and can we determine

evolutionary steps that have lead to the hospital adapted
subpopulation (chapter 6)?

(iv) What is the epidemiology of ampicillin resistant E. faecium in our
hospital (UMCU) (chapter 7) and in the Netherlands (chapter 8)?
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