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ABSTRACT 

The control of insect pests by using insect pathogens as dynamic biological 
control agents is a recent effort. Model studies on insect-pathogen relations can help 
in the development of biocontrol programs. Except for the work of Briggs and 
Godfray [1], insect-pathogen models ignore the stage-specific susceptibility of insects. 
Moreover most models do not incorporate insect self-regulation. We develop stage- 
structured models of insect-pathogen relations incorporating insect-density depen- 
dence and disease transmitted through direct contact between susceptible and 
infective individuals. The models are analyzed by using steady-state and stability 
analysis. Numerical solutions are used as sources of further insight into the dynamics 
of the insect-pathogen systems. It is shown that there are major differences in the 
dynamics of adult- and juvenile-infecting diseases. Moreover, the interplay between 
insect-density dependence and stage-specific susceptibility has important conse- 
quences for the dynamics of insect-pathogen systems. © Elsevier Science Inc., 1997 

1. I N T R O D U C T I O N  

Insect pests are a serious threat  in many agricultural and forestry 
systems. One seeks to control insect populations by applying synthetic 
insecticides in many situations. For  reasons of environmental safety, 
research has focused on methods to drive back the use of  these 
synthetic insecticides. Methods have been developed to control insect 
populations by using natural enemies of  the pest insect. Such biological 
control programs usually make use of  parasitoids or predators. The use 
of  these organisms is now well established and operationalized for the 
control of  several insect pests. A more  recent effort is the use of  insect 
pathogens as biological control agents. The use of insect pathogens has 
focused on the development  of  microbial agents or products that are 
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applied as "natural" insecticides [2, 3]. Recently, however, researchers 
have begun to explore the use of insect pathogens as dynamic biological 
control agents [4-9]. Using pathogens for biological control requires an 
understanding of the dynamics of insect pathogens and their interaction 
with the dynamics of the pest species.. 

The first efforts toward understanding the dynamics of insect-patho- 
gen interactions date to the eighties. Population ecologists led by 
Anderson and May [10, 11] discovered the capability of regulation of 
insect populations by pathogens. They developed and analyzed seven 
model variants. For these models, they calculated threshold parameter 
values for disease persistence, steady states of the insect population 
density, and stability of the steady states. Their modelling study was 
followed by several other model approaches considering the effect of 
various aspects of a pathogen's life history. 

Model studies of insect-pathogen interactions can be classified on 
the bases of transmission dynamics of the disease and the presence of 
insect-density dependence. Many fungal and viral insect diseases kill the 
infected host, followed by the release of infective particles into the 
environment [2]. Susceptible hosts become infected through encounters 
with these free-living infective stages. To study these diseases, the 
dynamics of the density of the free-living infective stage in the environ- 
ment is modeled, and the rate of infection of susceptibles is assumed to 
depend on susceptible density and infective-stage density [1, 10-12, 13]. 
Other authors assume disease transmission to depend on the product of 
the density of susceptible and infective individuals [11, 14-16]. This 
assumption is more appropriate for insect diseases in which the infec- 
tious agent is short lived outside the host or for diseases that are 
transmitted directly between host individuals. Examples of such diseases 
are those caused by various nematodes, some sexually transmitted, and 
protozoa, as well as some bacterial and fungal diseases with short-lived 
transmission stages [2, 5, 6]. 

In most models, the insect population is assumed to grow exponen- 
tially in the absence of disease [1, 11, 13, 16]. This assumption is 
appropriate in some agricultural systems where one seeks to control the 
insect below the crop-damage threshold. Below the damage threshold, 
the insect population is far below carrying capacity, and exponential 
growth is a good approximation. In other agricultural and forestry 
systems and in field populations, the extensive defoliation that occurs 
argues that self-limitation of the insect population has to be taken into 
account [15, 17]. It has been shown that insect-density dependence has 
major consequences for the dynamics of the insect-pathogen system. On 
the basis of a model without insect-density dependence, Anderson and 
May [10] claimed that the cyclic dynamics observed in forest insects 
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results from insect-pathogen dynamics. Bowers et al. [15], however, 
showed that incorporating insect-density-dependence cycles is less 
likely. Moreover, using parameter estimates from field data usually fails 
to generate population cycles. Begon et al. [14] showed that insect-den- 
sity dependence is important in host-host-pathogen systems. Incorporat- 
ing insect-density-dependence coexistence of hosts is more likely than 
in the absence of insect self-regulation. 

Models of insect-pathogen systems usually ignore the feature of stage 
dependent susceptibility well known in insects. Depending on the 
pathogen and the insect species either the juvenile stage or the adult 
stage is susceptible [2, 3, 5, 18]. In a recent paper, Briggs and Godfray 
[1] showed that stage-dependent susceptibility strongly affects the dy- 
namics of insect pathogen systems. They modeled insect pathogens 
transmitted through a free-living infective stage. In their models, they 
did not incorporate insect-density dependence. The objective of this 
paper is twofold. First, we investigate the effects of stage-dependent 
susceptibility for insect diseases with direct transmission. Second, we 
address the question of the effect of insect-density dependence in 
stage-structured models. It will be shown that the interplay between 
stage-dependent susceptibility and insect-density dependence has unex- 
pected effects on the dynamics of insect-pathogen systems. 

2. THE MODELS 

2.1. THE INSECT POPULATION WITHOUT INFECTIOUS DISEASE 

We model an insect population consisting of two life stages: juveniles 
and adults. The density of juveniles in the population, J(t) ,  increases 
owing to birth, b(t),  and decreases owing to maturation into the adult 
stage, M(t ) ,  and owing to death. The density of adults, A( t ) ,  increases 
owing to the maturation of juveniles and decreases owing to death. We 
assume a constant death rate, tol and toA, for J and A, respectively. 
The dynamics of J and A are governed by the differential equations 

dJ 
d---t = b( t )  - M (  t )  - to, J,  

dA 
d--t = M (  t)  - toA A .  (1) 

We assume resources of adults and juveniles to be different. This 
assumption is realistic for most insect species. Birth rate then depends 
only on adult density. The per capita birthrate of adult insects is 
denoted by E(t ) .  Thus, 

b ( t )  = E ( t ) A ( t ) .  (2) 
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Following Gurney et al. [19], we model the dependence of the per capita 
birth rate of adult insects as 

E = 3"e -cA, (3) 

where 3' is the rate of offspring production per adult individual at 
infinitesimally low adult density and ~ measures the effect of adult 
population density on reproduction. This exponential dependence of the 
per capita reproductive output is found in several data sets; for exam- 
ple, see [20, 21]. The total population birth rate thus takes the form 

b( t )  = 3"A( t ) e  -~A(t). (4) 

This dependence of population birth rate on population density is 
known as the Ricker equation. It is assumed that juveniles mature into 
the adult stage at a fixed age ~-. The maturation rate thus is 

M ( t )  = b ( t  - z ) P ,  (5) 

where P is the probability that a juvenile survives until age r. Because, 
in the model, death rate is constant, 

P = e -'0i~. (6) 

This completes the specification of the model for the insect population 
without an infectious disease. This model was developed and analyzed 
by Gurney et al. [22]. They showed that this simple time-delayed model 
gives good qualitative as well as quantitive agreement with Nicholson's 
classic blowfly experiments. It explains, among other things, the appear- 
ance of single-generation cycles in blowfly populations. 

2.2. THE INFECTIOUS DISEASE 

The insects are susceptible to an infectious disease. The disease is 
infective to one of the life stages. We assume the disease to be of the 
classical Susceptible, Infective and Removed (SIR) type. Furthermore, 
we make the simplifying assumption that an infected individual suffers 
from the disease such that it does not take part in the dynamics of the 
insect population. More specifically, in the case of adult diseases, birth 
rate depends only on the density of uninfected adults; for juvenile 
diseases, infected juveniles do not mature into the adult stage. 

2.3. THE ADULT DISEASE 

In our first model, the adult individuals are susceptible to an infec- 
tious disease. The rate at which adults become infected is proportional 
to the product of the density of susceptible adults, A( t ) ,  and the density 
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of infected adults, I ( t ) ,  with proportionality or. This constant a will be 
called the transmission coefficient. Infected adults die at constant rate 
/3. The death rate, /3, is the sum of the "natural death rate" not due to 
disease, which is equal for susceptible and infected individuals, and the 
disease-induced death rate. Therefore, a reasonable biological con- 
straint on /3 is /3 > to A. The model thus reads 

dJ 
-d-[ = b (  t )  - b (  t - r ) P (  t )  - oJ~J, 

d A  
dt = b (  t - r ) P (  t )  - tOAA - a l A ,  (7) 

dI  
d---i = a l A  - / 3 1 ,  

where b ( t )  and P are given by Equations (4) and (6), respectively. 

2.4. THE JUVENILE DISEASE 

In our second model, the juvenile individuals are susceptible to an 
infectious disease. The rate at which juveniles become infected is 
proportional to the density of susceptible juveniles, J( t ) ,  and the density 
of infected juveniles, I ( t ) ,  with proportionality constant o~, the transmis- 
sion coefficient. Infected juveniles die at constant rate /3. This death 
rate, /3, is the sum of the "natural death rate" not due to disease and 
the disease-induced death rate. Therefore, the biological constraint on 
/3 is /3 > toj. The model thus reads 

dJ = b (  t )  - b (  t - r ) e ( t )  - to1J - otlJ, 
dt  

a A  = b (  t - z ) e ( t )  - ~ o A A ,  
dt 
d I  
d--t = a l J  - [31, 

(8) 

where b ( t )  is given by Equation (4). In this model, the probability of 
surviving until adulthood, P ( t ) ,  depends not only on the juvenile death 
rate to~, but also on the rate of infection due to the disease. Consider a 
group of susceptible juveniles, N ( t ) ,  born at time t = t*. The rate of 
change in the number of susceptibles is given by 

(9) a N ( t )  
at = - [ toj + a I (  t ) ] N (  t ) .  

Integrating from t = t* to t, we fmd 

N (  t ) = N (  t * ) e  - I/'{-'+~'(¢)~d~. (10) 
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Juveniles maturing at time t were born at time t - r, and the probabil- 
ity of surviving until adulthood takes the form 

N ( t )  = e  -f'-,co'+~t(o)ld~. (11) 
P ( t )  = N ( t  - z )  

2.5. THE N O N S T A G E  S T R U C T U R E  E Q U I V A L E N T  

To be able to separate the effects of insect-density dependence from 
the effects of stage-specific susceptibility, we also study the nonstage 
structured variant 

d S  
- ~  = y S e  - ~ s  - toS  - a S I ,  

d/ 
- ~  = a S I -  [31, 

(12) 

where S is insect density, ra is the death rate not due to disease, and/3 
is the sum of the death rate not due to disease and the death rate due 
to disease. Again, ot is the transmission coefficient. 

2.6. S C A L I N G  THE M O D E L S  

Variables in both models are scaled by using 

A * = ~ A ,  J * = ~ J ,  I * =  El, t * = y t ,  (13) 

and, for the nonstage-structured equivalent, S* = ~S. Further, we define 
the scaled parameters as 

a*=~-y,a ~ = w j y ,  m~=~Ay, [3.=/3y, z * = y r ,  (14) 

and, for the nonstage-structured variant w*= oJ/y.  These scaled vari- 
ables and constants are substituted in the models, and the suffix is 
dropped. The model of an insect population without infectious disease 
yields the scaled equations 

dJ 
- ~  = A e  - a  - A (  t - z ) e  - a ( ' -  ~)e-°'J ~ - t o j J ,  

d A  
= A ( t  - ~-) e-a(t-  ~)e-*'~ ~ - t o A A ;  

d t  

(15) 
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for the model of an adult disease, we find the equations 

dJ 
d---i = Ae - ' 4  - A (  t - ~ ' ) e  -A( t -  ~)e -'°J~ - to lJ ,  

dA  
at = A (  t - r ) e - A ( t - ~ ) e  -'°'~ -- toA A - a l A ,  (16) 

d I  
- d i =  a l A  - ~ I ;  

for the model of a juvenile disease, 

dJ 
-~ i  = A e - A  - A (  t - ~ ) e - A ( t - ' P (  t )  - o ~ J  - a l J ,  

dA 
- ~ -  = A (  t - z ) e - A ( t - * ) P (  t ) -- toA A ,  

(17) 
d l  
-tit = a l J -  [31, 

where P ( t )  - - - -  e-f/-'A'a1+al(°')}d°'; 

and, for the nonstage-structured model, 

d S  
d--T = S e - S  _ toS - a S ,  

d I  (18) 
d---i = a S I -  E l .  

For use in the discussion of results, we note that the scaled population 
total birth rate [Eq. (4)] becomes 

b ( t )  = A e  -A .  (19) 

The population birth rate reaches a maximum at A = 1 and decreases 
with further increase of A. 

These four models (Sections 2.3-2.6) will be the subject of our 
analysis in Section 3, 4 and 5. For the model of the insect population 
without infectious disease, we will quote the results of Gurney et al. 
[19], for use in the analysis of the other models. 

3. STEADY STATES 

3.1. THE INSECT POPULATION WITHOUT INFECTIOUS DISEASE 

From Equations (15) we find a trivial steady state, 

(Yl,.~,) = (o,o) ,  (2o) 
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and the internal steady state 

(f2,,42)=[~Af(lntoa+to, r)(1--e~'~),--lnton--tojr]. (21) 

A steady state is biologically relevant only if its value is larger than or 
equal to zero. The steady state of Equation (21) exists, in this biological 
sense, if 

1 
- - e  -'~'" > 1. (22) toA 

This combination of parameters has a clear biological interpretation. 
Consider one newly born individual in the density-independent situa- 
tion. The probability that this juvenile survives until adulthood equals 
exp{ - tojr}. The average time span in which this individual can repro- 
duce is 1/to n . Recall the scaling and note that the rate of offspring 
produced per adult at low population density equals one. Thus 
(1/toA)exp{ -- toj'r} is the average number of offspring produced per 
individual in the density-independent situation. This quantity is known 
in ecology as the net-reproductive number, R0,insect =(1/toA) 
exp{-  tolr}. If the net-reproductive number is larger than one, the 
animal species can invade a virgin habitat and, as a consequence, the 
internal steady state exists. 

3.2. THE ADULT DISEASE 
Besides the trivial steady state 

(Yl, ~Zll, [1)= (0,0,0), (23) 

we find the boundary steady state (J~,-42, [2)= (J2, A2,0), where f2 and 
A2 are given by Equation (21). This steady state has the same interpre- 
tation as that for the model of the insect population without infectious 
disease. 

The third steady state, the internal steady state, is given by 

(J3'A3'[3) = otto,fl e - ~ ( 1 - e - ° " * ) ' a ' ~  e - g - ° " ' -  toA • (24) 

This steady state exists, in a biological sense, if 

ot 
-~( - I n  toA - to.t" r) > 1. (25) 
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The term in parentheses is the steady-state adult density in a population 
without the infectious disease present, A 2. The average lifetime of an 
infected individual is 1//3, in which it produces on average a A  2 new 
infections per unit of time. The parameter combination on the left-hand 
side of Inequality (25) can thus be interpreted as the average number of 
new infections produced by one infected adult at infinitesimally low 
density of infected individuals, the net-reproductive number of the 
disease, R0,diseas e = ( O ~ / / 3  X -  In to A - to jr) .  It is obvious that the infec- 
tious disease can invade the animal population when R0,diseas e is larger 
than unity. 

Figure 1 shows the steady-state values of juveniles, susceptible adults, 
and infected adults as a function of the transmission coefficient, a, for 
two sets of values of the other parameters. The branch of internal 
steady states bifurcates supercritically from the branch of boundary 
steady states at Ro,  ais~as ~. Susceptible-adult density decreases and in- 
fected-adult density increases with increasing transmission coefficient, 
which is biologically plausible. Combining the two graphs reveals that 
total adult density decreases with increasing transmission coefficient, a. 
Juvenile density either decreases or increases with transmission coeffi- 
cient. These phenomena hinge upon the Ricker-type dependence of the 
population birth rate on susceptible-adult density. From Equation (24), 
we find 

d~ /3 
d a > ( < ) O  ,~ - ~ > ( < ) 1 .  (26) 

Because /3/o~ is the steady-state susceptible-adult density, this inequal- 
ity implies that juvenile density decreases with a if susceptible-adult 
density is smaller than unity. Recalling the scaled Ricker equation 
[Eq. (19)], we can conclude that juvenile density increases when popula- 
tion birth rate decreases owing to the susceptible-adult density being 
larger than unity. Consideration of the change in juvenile density with 
transmission coefficient close t o  R0,diseas e = 1 can be a source of further 
insight. From 

R0,discasc = ' 1 " ,  

dr3 > 0  ** - lneo  A o J f r > l  ** A 2 > l ,  (27) 
doe 1 

it follows that, for diseases with net reproduction close to unity, juvenile 
density increases when the adult density of a population without the 
infectious disease is larger than the density where the Ricker equation 
has its maximum. 
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FIG. 1. Steady-state values of the density of juveniles, susceptible adults, and 
infected adults as a function of the transmission coefficient, a ,  for the insect-patho- 
gen model with adults susceptible to the disease: (a) ¢ = 400, /3 = 0.01, o~ A = o~j = 
0.01; (b) r = 85, /3 = 0.1, o~ A =~oj = 0.01. Solid lines, stable steady states; dashed 
lines, unstable steady states. [See Eqs. (13) and (14) for scaling.] In (a) R0,discas ¢ = 1 
for a = 0.0165; in (b) for a -- 0.0266. 

3.3. THE JUVENILE DISEASE 

Besides the trivial steady state [Eq. (23)], wefind the boundary steady 
state ( f2 ,A2,J2)=(f2,A2,0) ,  where-/2 and A 2 are given by Equation 
(21). Interpretations of these steady states are similar to those for the 
adult disease. The internal steady state is 

,no  o,r  



INSECT-PATHOGEN DYNAMICS 125 

20 

0 
2 

0 

(b) 

I I I 

/ 
I I 

0 
0 

I I I 

0.05 0.10 0.15 
Transmiss ion  coef f ic ien t ,a  

FIG.  1. ( C o n t i n u e d )  

where [3 is found from 

oJa ( - ln  oJ A - co j r -o t r [3 ) (eO"*+ '~ 'q -1 )  - [313 - ~o,~--  O. (29) 

Figure 2 shows the boundary and the internal steady state as a function 
of the transmission coefficient for two sets of values for the other 
parameters, The internal steady state of I bifurcates either super- or 
subcritically from the boundary steady state. Both the bifurcation point 
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FIG. 2. Steady-state values of the density of susceptible juveniles, infected juve- 
niles, and adults as a function of the transmission coefficient, a ,  for the insect-path- 
ogen model with juveniles susceptible to the disease: (a) z = 85,/3 = 0.I, ¢o A = ~ j  = 
0.01; (b) ~" = 150, /3 = 0.2, ~o A = ¢o I = 0.02. Solid lines, stable steady states; dashed 
lines, unstable steady states. [See Eqs. (13) and (14) for scaling.] 

a n d  the  d i r e c t i o n  o f  b i f u r c a t i o n  a g a i n  h a v e  c l e a r  b i o l o g i c a l  i n t e r p r e t a -  
t ions .  F o r  s m a l l  va lues ,  ~f3 can  b e  a p p r o x i m a t e d  by  

t 0 A ( - - I n  to A -- t o D ' ) ( e  '~'~ - - 1 ) - -  toj~-  

f3 ~ toA ( l n  to A + toj  ~" ) a~" e '°,~ + to A a~" ( e '~,~ --  1) + / 3 '  ( 30 )  



INSECI'-PATHOGEN DYNAMICS 127 

m 

4 

2 

2 
0 

'f- 

(b) 

~ m 

I I I 

, I 

¢c 0 
0 

7- 

/ 

0.06 0.1 0.16 
Transmiss ion  coeff ic ient /x  

FIo. 2. (Continued) 

0.2 

and we find that the internal steady state bifurcates from the boundary 
steady state at 

° ° A a ( l n ~ o A + ~ o j r ) ( 1 - - e " ' ) = l  ~ ~ f 2 = 1 .  (31) 
~oj/3 

In a population without disease, juvenile density equals f2. One in- 
fected juvenile produces a f  2 new infections per unit of time. The 
average lifetime of an infected juvenile is 1/ /3.  The total number of 
new infections caused by one newly infected juvenile at infinitesimally 
low disease density, the Ro, disease = (o~A a/~oj/3)( ln oJ A + o~j¢)(1- e'°,~), 
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therefore equals (a//3)f 2. For R0,diseas e > 1, an infectious disease can 
always invade the animal population. From Figure 2, we see, however, 
that it is, for some parameter combinations, also possible that the 
internal steady state exists, although R0,diseas e < 1. At first sight, this 
seems counterintuitive. However, from Equation (29), we find 

/3 

dot R 0 , d i s e a s  e = 1 

to,  

toA(ln to,4 + tolr) re°'~ + to.4~'( e°'~ -- 1) + /3 '  (32) 
Ot 

which implies that the internal steady state bifurcates subcritically 
(supercriticaUy) if 

toA(ln toA + toj~') ze'°'7+ toAz( e°''~ - 1 ) +  ~ < (  > )0 

d'f3 g O , d i  . . . . .  = (33) >( <)0. 
d/3 1 

When, in a situation where the net-reproductive number of the disease 
equals unity, an increase in the infected juvenile density results in an 
increase in the density of susceptible juveniles, the total number of new 
infections caused by one infected individual becomes larger than unity. 
In such situations, the disease can invade the animal population. That 
the juvenile density increases with increasing density of infected juve- 
niles is the result of the hump in the Ricker equation. When part of the 
juvenile population becomes infected, the adult density will decrease 
and therewith the population birth rate can increase. 

Calculating the total juvenile density, susceptible plus infected, we 
see that, about R0.diseas e =1, the total juvenile density is, for the 
parameter combinations of Figure 2, larger when disease is present than 
in the absence of the disease. Clearly, this has consequences for 
selecting insect pathogens for biological control. We return to this in 
the discussion. 

3.4. THE NONSTAGE STRUCTURED MODEL 

Besides the trivial steady s ta te  (S l ,  I1) --- (0, 0) we find the boundary 
steady state 

($2,12) = [In( l / to) ,0]  (34) 

and the internal steady state 

(S3'I3)=( flot' e-~-to)ce " (35) 
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This internal steady state exists, in a biological sense, if 

129 

~ l n ( 1 / w )  > 1. (36) 

As in the models for adult and juvenile disease, the parameter combina- 
tion on the left-hand side can be interpreted a s  R0,diseas e. Figure 3 
shows the boundary steady state and the internal steady state'~s a 
function of the transmission coefficient for two sets of values of the 
other parameters. The internal steady state always bifurcates supercriti- 
cally from the boundary steady state, as in the adult disease model. For 
small transmission coefficients, the total insect density increases with 
increasing transmission coefficient. At intermediate transmission coeffi- 
cient, insect density reaches a maximum. Increasing the transmission 
coefficient further decreases total insect density. 

4. LOCAL STABILITY OF STEADY STATES 

We refer to Bellman and Cooke [23] for an introduction to the 
stability analysis of delay differential equations. A more biologically 
oriented outline can be found in Gurney and Nisbet [24]. 

4.1. THE INSECT POPULATION WITHOUT INFECTIOUS DISEASE 

Linearizing about the trivial steady state, we find the characteristic 
equation 

( w, + A)(e -~'°'~'*~'' - A -  wA)=0,  (37) 

from which we can conclude that the trivial steady-state is unstable if 

e -  £ojT 
- -  > 1 ~0 R0,insect > 1, (38) to A 

which implies that the trivial steady state is unstable when the animal 
population can invade a virgin habitat. The trivial steady state is locally 
stable if R0,inseet < 1. Numerical solutions of the model show that, in this 
situation, the population dies out independently of parameter values 
and initial conditions. 

Linearizing about the nontrivial steady state yields the characteristic 
equation 

( to I + A)[( ~A~,¢ + ~oAln ¢0 A + oJA)e - a ¢ -  A-- oJA] =0 .  (39) 
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The internal steady state might lose stability through a Hopf bifurca- 
tion. Consider a path in a two-dimensional parameter space that inter- 
sects the stability boundary. Along this path, a pair of complex conju- 
gate roots crosses the imaginary axis, whereas all other roots lie in the 
left half-plane. We study this Hopf bifurcation by substituting A = Oi in 
Equation (39) and solving the resulting complex equation. This yields 

0 
tan(0¢) = - -~a 

where 0 = ¢ ( oJ A w j r + ~o A In oJ A + oJ 2)2 _ oj2. 

(40) 

Using Equation (40), we find several curves in parameter space. The 
branch of internal steady states bifurcates supercritically from the 
branch of trivial steady states at R0,insect -- 1. The trivial steady state is 
stable for R0,insect < 1 and unstable for R0,insect > 1. The principle of 
exchange of stability [25] implies that, at such a double point, stability 
properties of the steady states are exchanged. This implies that the 
internal steady state is stable for values of R0,insect larger than but close 
to unity. Therefore the curve crossed first, if we follow a path through 
parameter space moving away from the boundary where R0,insect = 1,  is 
the candidate for the stability boundary. Using numerical solutions of 
Equation (15), we find that this outer curve is indeed the stability 
boundary. We will use Equation (40) in the stability diagrams of the 
models with infectious disease. 

4.2. THE A D U L T  DISEASE 

Linearizing about the trivial steady state of Equation (23) yields 
characteristic Equation (37), and this steady state is unstable for the 
same parameter combinations as those discussed above. Linearizing 
about the boundary steady state yields the characteristic equation 

( A + oJj,)(A +/3 - az{2) [( ¢oAcoj¢ + main ~o A + ¢oA)e - ~ -  A -  COA] =0 .  

(41) 

This characteristic equation has real roots A = - a~j and A--/3 - a A  2. 
The secon d eigenvalue lies in the right half-plane when czA 2/ /3  > 1, 
which also implies that the internal steady state exists by Inequality (25). 
The third term on the left-hand side of Equation (41) equals the second 
term of Equation (39), implying Hopf bifurcation for the same parame- 
ter values as those in the model without infectious disease. A detailed 
analysis of the bifurcation structure of this steady state is outside the 
scope of this paper. Using numerical simulations of the adult disease 
model, Equation (16), we found that 
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(1) when a A  2 /13 > 1, solutions with I(0)> 0 always have positive 
values for I. This implies that the boundary steady state is unstable 
when the internal steady state exists. 

(2) when the internal steady state does not exist and a pair of 
complex conjugate roots of Equation (41) lie in the right half-plane, 
there is a limit cycle in the J, A plane and I = 0. 

The characteristic equation associated with the internal steady state is 

( ) t+  o J s ) [ - A ( 1 -  ~ ) e - ( A ' + ~  -+ '°~') 

+ Az +(A+13)e-(-~+~J')-tOAfl]=O. (42) 

Substituting h = Oi in the second part of the left-hand side of Equation 
(42), we find 

sin(O~) = 

cos(o -) 

02 - 13e- (~- + °'~') + w,4 13 

- 0 ( 1 -  ~ ) e -  (~-+ ~', • ) 

1 

1 B '  
a 

(43) 

with 13/a < 2. Equation (43) implies that no roots can cross the 
imaginary axis if / 3 / a  > 2. System (43) is studied numerically. In the 
results presented, to A = toj. We found no qualitatively different phe- 
nomena for to A 4: toj. 

Figure 4 summarizes the results of the linear stability analysis of the 
various steady states. In the juvenile period z versus transmission 
coefficient a parameter plane, solutions of Equations (40) (horizontal 
lines) and (43) (cloverleaf-shaped area) are plotted. The curve crossing 
the a-axis depicts parameter combinations where R0,diseas e = l .  For 
parameter combinations on the left-hand side of this line, the disease 
becomes extinct; on the right-hand side, the disease can invade the 
animal population. In area I, the boundary steady states is stable; in 
area 2, the boundary steady state is unstable and numerical solutions 
show that the cyclic behavior of the density of juveniles and susceptible 
adults and the density of infected adults equals zero. Inside area 3, the 
internal steady state is unstable, and numerical solutions show cyclic 
fluctuations in the density of juveniles, susceptible adults, and infected 
adults. In area 4, the internal steady state is stable. 
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FIG. 4. Stability diagrams of the insect-pathogen model with adults susceptible to 
the disease. [For scaling, see Eqs. (13) and (14).] Numbers in figures: (1) Internal 
steady state does not exist; disease not present. The steady state with juveniles and 
uninfected adults exists and is stable. (2) Internal steady state does not exist; disease 
not present. The steady state with juveniles and uninfected adults exists and is 
unstable. (3) Internal steady state exists; disease present. Internal steady state 
unstable. (4) Internal steady state exists; disease present. Internal steady state stable. 
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The principle of exchange of stability implies that, for values of the 
transmission coefficients such that R0,diseas e is larger than but close to 
unity, the stability property of the boundary steady state is transferred 
to the internal steady state, as is seen in Figure 4. When the internal 
steady state is stable close to the disease extinction boundary, increasing 
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the transmission coefficient can result in destabilization of the internal 
steady state. Further increasing the transmission coefficient will eventu- 
ally restabilize the internal steady state. When the internal steady state 
is unstable close to the disease extinction boundary, increasing the 
transmission coefficient will lead to stabilization. From Equation (43) 
and Figure 4, we can conclude that the internal steady state is always 
stable for transmission coefficients larger than 1 313. Increasing the 
disease-induced death rate, /3, decreases the net-reproductive number 
of the disease, R0,diseas e. From Figure 4, we can conclude that increasing 
/3 is associated with a larger parameter region where the steady state is 
unstable. 

Small values of /3 and large values of a are thus stabilizing. This 
implies that diseases with a large net-reproductive number will lead to 
constant population densities. Diseases with small and intermediate 
values of the net-reproductive number can lead either to stable popula- 
tion densities or to cyclic population oscillations. Figure 4 shows that 
increasing the death rate of the insect leads to smaller parameter areas 
with cyclic population fluctuations, as is usually found in population 
dynamic models. 

Stability diagrams were also calculated for other parameter values. 
The qualitative picture of the effects of the transmission coefficient, the 
juvenile-stage duration, and disease-induced mortality does not seem to 
be affected by the particular parameter values used in Figure 4. 

4.3. THE JUVENILE DISEASE 

Linearizing the juvenile disease model [Eq. (17)] proceeds along the 
same lines as for the other models except for the equation for P(t).  To 
linearize this equation, we substituted P( t ) = ff + 6 0 )  and I(  t ) = [ +  
~b(t), where P and I are the steady-state values of P and /, respec- 
tively, and 8 and ~b are small deviations. This yields 

P + 8 ( t )  = e -~'~- ~J:-'(f+ ,~(~))d~,. (44) 

Because ~b << 1, we have 

e ( t ) - ~  a e - " ~ - ~ h f t t _  qb(~r)d~.  (45) 

Linearizing about the trivial steady state [Eq. (23)] yields characteris- 
tic Equation (37), and this steady state is unstable for the same 
parameter combinations as those discussed above. Linearizing about the 
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boundary steady state yields the characteristic equation 

( A + tO/)(A -F ]3 -- O~f 2)[(  ¢.OAO.)jT -I- main oJ A + mA)e - a t -  A -  O.)A] = O. 
(46) 

This characteristic equation has real roots A = - toj and ;t ~/3 - a f  2. 
The second eigenvalue lies in the fight half-plane when a J  2/ /3  > 1, 
which implies that R0,disease > 1 and the internal steady state exists. 
Recall, however, that the internal steady state might also exist for 
parameter values for which R0,diseas e < 1. The third term on the left-hand 
side of Equation (46) equals the second term of Equation (39), implying 
Hopf bifurcation for the same parameter values as those in the model 
without infectious disease. A detailed analysis of the bifurcation struc- 
ture of this steady state is outside the scope of this paper. Using 
numerical simulations, we found that 

(1) when the internal steady state exists and R0,diseas e > 1' solutions, 
with I(0) > 0, always have positive values for I( t ) .  This implies that the 
boundary steady state is unstable. 

(2) when the internal steady state exists and R0,di~ea~e < 1, the inter- 
nal steady state is st~tble. 

(3) when the internal steady state does not exist and a pair of 
complex conjugate roots lie in the right half-plane, there is a limit cycle 
in the J, A plane and I ( t )  = O. 

The characteristic equation associated with the internal steady state is 

{ - - (  09A + OOAIn O.)A + mAOgjC" + O.)AOtC'f3) 

X ( A 2 +  tojA d- ~ A I  3 + a / 3 ~ ) e  - ~  + 1} 

/I X - ~ - - h ( l n  oJ a + o~j~" + arI3 (47) 

X[toAeO','r+a'l;(l+IntOA +ooi~" + otr I3) - -A-  toA] } + 

+ ( - -  )1.--¢.0A)()1.2 + £01)k + Ot~.f 3 + 0~/3f3) = 0. 

Substituting A = Oi we find 

C B - A D  
sin(0~-) C2 + D2 , 

- A C  + B D  
cos(0"r) = C2 + D2 , 

(48) 
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where 
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A = - o * + , ~ o : [ +  o ~o,a o,,  + ,~o~o,A[ 

+ a2toA[[ln(t0A) + tOj¢ + aTI] 

×{  e-°~'-  t°A ~# [ l+ln( toA)+t°J¢  +a~'[]- - t°A} '  

B = 03to, + 03a[ + 0 3 0 , -  Oal3toA?- [OOt2toA[ln(toA) + tOj¢ + ar[] ,  

C = - 02o~Aoj -- aO2oA[ - 02tOA to, In(tOA) 

-- aoE[t°Aln( tOA)- tOAt°2¢O2 (49) 

_ o ,~ ,o , ,~o2[-  o ~ o , ~ . , ~ # -  ,~:o:o,~i "~ 

- ~ : o , j [ l n ( O , A )  + , o j ,  + ~d] 
× (  °A ,[1 +ln(oJA) + o , ,  + a d l - ~ o A }  

e -  o.,.r- 

D =  - tOA03 + al3tOAO[-- 03toAln( toA) + al3OitoAln( toA)-  toAto,*O 3 

+ a2tOAt[ln(~Oa) + oJ,, + ar[]O. 

This set of equations is studied numerically. In the results presented, 
to A = raj. We found no qualitatively different phenomena for to A 4= toj. 

Figure 5 summarizes the stability analysis for the model of a juvenile 
disease. In the juvenile period 7 versus transmission coefficient a 
parameter plane, solutions of Equations (48) and (40) are plotted. In 
area 1, the boundary steady state is stable; in area 2, the boundary 
steady state is unstable and numerical solutions show cyclic behavior of 
the density of juveniles and adults in the absence of the disease. In area 
3, the internal steady state is unstable, and numerical solutions show 
cyclic fluctuations in the density of susceptible juveniles, infected juve- 
niles, and adults. In area 4, the internal steaCy state is stable. In area 5, 
both the boundary steady state and the internal steady state exist, and 
the internal steady state is stable. 

Comparing Figure 5 with Figure 4, we see that, for juvenile diseases, 
the effect of parameters a and fl on the stability of the internal steady 
state is opposite to the effect of these parameters for an adult disease. 
Values of the transmission coefficient and the disease-induced death 
rate for which the net-reproductive number is close to unity always lead 
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FIG. 5. Stability diagrams of the insect-pathogen model with juveniles susceptible 
to the disease. [For scaling, see Eqs. (13) and (14).] Numbers in figures 5: (1) Internal 
steady state does not exist; disease not present. The steady state with uninfected 
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(5) Depending on initial conditions, disease is present or absent. Internal steady 
state exists and is stable. 
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to stable internal steady states, even when the insect population shows 
cyclic fluctuations in the absence of the disease. Increasing the trans- 
mission coefficient can destabilize the internal steady state; whereas, for 
an adult disease, increasing a will eventually stabilize the internal 
steady state. 

The effect of the insect death rate on stability corresponds to the 
usually observed effect, as was found for adult disease. 

Stability diagrams were also calculated for other parameter values. 
The qualitative picture of the effects of the transmission coefficient, the 
juvenile-stage duration, and disease-induced mortality does not seem to 
be affected by the particular parameter values used in Figure 5. 

4.4. THE NONSTAGE STRUCTURED MODEL 

Linearizing about the trivial steady state, we find the characteristic 
equation 

( 1  - to - , ~ ) ( / 3  - ,~) = O, ( 5 0 )  

from which we can conclude that the trivial steady state is unstable if 

1 
- - > 1 .  (51) 
to  

In this unstructured model, ~- = 0, and inequality (51) can be interpreted 
as the condition that the trivial steady state is unstable when R0,insect > 1. 

Linearizing about the boundary steady state yields the characteristic 
equation 

[ - to ln (1 / to )  - A] [ ot I n ( l / t o )  - / 3  - A] = 0. 

This characteristic equation has real roots A = -  to ln(1/ to)  and A= 
a I n ( I / t o ) - / 3 .  The second eigenvalue lies in the fight half-plane when 
( a / / 3 ) l n ( 1 / t o ) > l ,  which is the condition for the existence of an 
internal steady state. This imPlies that the boundary steady state is 
unstable when the internal steady state exists. 

I~'i/iearizing' about the internal steady state yields the characteristic 
equation 

+ to) = o. 
O/ 

Using the Routh-Hurwitz criteria, we find that the internal steady state 
is stable if it exists. 
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FIG. 6. Numerical solutions of the insect-pathogen model with the adults suscep- 
tible to the disease. A transect at T = 160 in the parameter space of Figure 4 (top 
/eft) for increasing values of transmission coefficient, a. 

5. DYNAMIC B E H A V I O R  

The models were numerically solved by using the program SOLVER 
[26]. This package is especially developed for the numerical solution of 
delay differential equations. The numerical solutions were used to 
check the stability boundaries computed in Section 4. 

Figures 6 and 7 present solutions of the systems of Equations (16) 
and (17). Initial data are A(t)= J(t)= I(t)= 0 for t < 0, as well as a 
short input pulse of newborn individuals and a short input pulse of 
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infected individuals after t = 0, for all figures except Figure 7, top left. 
For F igure  7, top^ left (dotted lines), the initial condition was A ( t ) =  
0.9A 3, J(t) = 0.9J 3, I( t)  = 0.9~ for t < 0. We now consider the period 
of population cycles in terms of the juvenile period, 7. We will loosely 
call the juvenile-stage duration the generation time. 

The first series (Figure 6) corresponds to a transect at T = 160 and 
increasing transmission coefficient, a ,  in the parameter space of Figure 
3, top left. Figure 6 shows the cyclic fluctuations in the density of adults 
and juveniles in the absence of  the disease. Increasing the transmission 
coefficient to values where the disease can invade the population 
slightly increases the amplitude of the fluctuations in adult and juvenile 
density. Further increasing the transmission coefficient decreases the 



INSECT-PATHOGEN DYNAMICS 143 

(a) 

20 

10 

a=0 .0065  

Susceptible ,' juveniles 

i '""" ' "  ' i Infected 
~' i' :' " ' / juveniles  
1 I d i I • 

i adults 
...... t ....... I ...... 

2000 4000 6000 8000 
Time 

W 

10 

0 
0 

(b) 

tx=0.015 I 

| .Susceptible 
///~]uveniles 

~| / l Infected 
] ~ j u v e n i l e s  

dults 

2000 4000 6000 8000 
Time 

FIG. 7. Numerical solutions of the insect-pathogen model with the juveniles 
susceptible to the disease. A transect at ~- = 160 in the parameter space of Figure 5 
(top left) for increasing transmission coefficient, a. 

amplitude and, for still larger transmission coefficients, the internal 
steady state becomes stable. The period of the oscillation in the absence 
of the infectious disease is approximately 2.9 generation times. With 
the infectious disease present, the period decreases from approxi- 
mately 2.5 generation times near the extinction boundary of the disease 
(R0,diseas c = 1) to about 1.9 generation times near the stability boundary 
at the right-hand side of the cloverleaf. 

The second series (Figure 7) corresponds to a transect at ~" = 160 and 
increasing transmission coefficient, a,  in the parameter space of Figure 
5, top left. Figure 7 shows the coexistence of a periodic solution without 
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disease and a stable internal steady state when disease is present. If the 
transmission coefficient is increased, the internal steady state remains 
stable. Increasing the transmission coefficient further destabilizes the 
internal steady state, resulting in small-amplitude periodic fluctuations. 
The period of the fluctuations is smaller in the presence than in the 
absence of the disease. Close to the stability boundary, the period is 
approximately 1.6 generation times and slightly increases up to 1.8 
generation times for a = 0.04. The amplitude of the periodic fluctua- 
tions in the presence of a juvenile disease is considerably smaller than 
the amplitude of the population fluctuations in the absence of the 
disease. In all our simulation runs, we found only small amplitude 
fluctuations for the juvenile disease model. 
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Both series of simulations show that the addition of the insect 
disease decreases the cycle period compared with the cycle period when 
no disease is present. We have not been able to find a biological 
explanation for this phenomenon. 

6. DISCUSSION 

In this paper, we studied insect-pathogen systems with insect-density 
dependence and stage-specific susceptibility. For comparison, we also 
analyzed the nonstage-structured variant. The nonstage-structured vari- 
ant has one internal steady state. This internal steady state is locally 
stable if it exists. The coexistence of a stable internal steady state and a 
boundary steady state in the model for a juvenile disease thus hinges 
upon the interplay between stage specificity of the disease and the 
Ricker type of insect-density dependence considered. A biological inter- 
pretation of this coexistence of stable steady states is given in the 
previous sections. 

Both the model of an adult disease and the model of a juvenile 
disease have, for some parameter combinations, an unstable internal 
steady state. It is shown that, when an unstable internal steady state is 
present, cyclic population fluctuations arise. Because such cyclic fluc- 
tuations are not found in the nonstage-structured model, we can con- 
clude that cycles are the result of both density dependence and stage 
structure. 

Most authors studying the dynamics of insect-pathogen systems, 
using simple explicit models, used steady-state and stability analysis and 
numerical solutions in the same way as was done in our study. This 
enables a comparison between model results. In the comparison, we 
concentrate on two parameters of the disease process: the transmission 
coefficient and the disease-induced death rate. 

All studies on insect-pathogen systems show the steady-state density 
to be affected by the transmission coefficient. Increasing the transmis- 
sion coefficient reduces steady-state insect densities in the absence of 
insect-density dependence [10, 11, 13, 16]. Bowers et al. [15] show that 
incorporating logistic-type insect-density dependence results in maxi- 
mum insect depression at intermediate values of the transmission 
coefficient. The Ricker-type insect-density dependence used in the 
present model (nonstructured variant) shows that, for small (large) 
values of the transmission coefficient, steady-state insect density in- 
creases (decreases) with transmission coefficient. Maximal densities are 
found for intermediate values of the transmission coefficient. We can 
thus conclude that the effect of the transmission coefficient on steady- 
state insect density strongly depends on the type of insect-density 
dependence used. To the conclusion of Bowers et al. [15] and Begon et 
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al. [14] that insect-density dependence cannot be ignored in the study of 
insect-pathogen relations, we can add that the precise form of the 
density dependence also has to be considered. 

Adding stage-specific susceptibility further complicates the picture. 
Whether the use of pathogens is an effective biological control mecha- 
nism depends on the insect stage harmful to the crop and on the stage 
that is susceptible to the disease. With the use of an adult disease, the 
adult density always decreases with increasing transmission coefficient. 
Juvenile density can, however, increase when an adult disease is used. 
Juvenile diseases always decrease steady-state adult density. Juvenile 
diseases can increase total juvenile density when R0,diseas e is close to 
unity. From these results, we can conclude that the control of insect 
pests where the adult stage is harmful to the crop is feasible for either 
an adult or a juvenile disease. The control of insects where the juvenile 
stage is harmful strongly depends on whether the disease is adult or 
juvenile and on parameter values of the particular inset-pathogen 
relation considered. We note here that it is very likely that these 
conclusions are influenced by the type of insect-density dependence 
used in the present model study. Other types of density dependence 
have to be studied in models with stage-dependent susceptibility to get 
an overview of the various possible effects of the interplay between 
density dependence and stage-specific susceptibility to get an overview 
of the various possible effects of the interplay between density depen- 
dence and stage-specific susceptibility. 

In the models without insect-density dependence and without a 
free-living infective stage studied by Anderson and May [10, 11] and 
Brown [16], the transmission coefficient does not affect stability. The 
same effect of "exploitation efficiency" on stability is found in most 
host-parasitoid models. Our nonstage-structured model with insect-den- 
sity dependence also does not show a dependence of stability on the 
transmission coefficient. This conclusion, however, drastically changes 
when stage-dependent susceptibility is introduced. Moreover, it is shown 
that the effect of an increase in transmission coefficient is different for 
juvenile diseases than for adult diseases. For juvenile disease, increased 
transmission coefficients promote instability, whereas they promote 
stability in adult diseases. 

The only model study using stage-specific susceptibility published so 
far is the model by Briggs and Godfray [1]. They show that stage-specific 
susceptibility strongly affects the dynamics of insect-pathogen systems 
with transmission through infective units released into the environment. 
The present model analysis shows that, for diseases transmitted through 
direct contact between susceptible and infective and for diseases with 
short-lived infective units, stage-specific susceptibility also has major 
consequences for the dynamics of insect pathogen relations. Briggs and 
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Godfray showed that adult insect-pathogen systems show, for many 
parameter values, persistent cycles with a period of one or a few 
generation times. Lotka-Volterra-type cycles with a period of more 
than six generation times are found in small-parameter regions only. 
For juvenile insect-pathogen systems, the Lotka-Volterra-type cycles 
are the rule rather than the exception. Cycles with a period of one or a 
few generations are less common. In the present model with transmis- 
sion due to direct contact between susceptible and infective, we found, 
for both juvenile and adult diseases, a cycle period of one or a few 
generations only. Lotka-Volterra-type cycles have not been found. We 
can thus conclude that the type of transmission dynamics influences the 
dynamic behavior of insect pathogen systems. 

From the above discussion, we conclude that stage-specific suscepti- 
bility has a major effect on steady states and their stability. Moreover, 
the effect of variations in parameter values can deviate markedly from 
the effects usually found in models of insect-pathogen systems. 

The disease-induced death rate is found to be stabilizing in the 
models of Anderson and May [11] and Brown [16]. In the model for an 
adult disease, the parameter area where steady states are unstable 
increases when the disease-induced death rate increase. For juvenile 
diseases, an increasing disease-induced death rate is found to be stabi- 
lizing. Again, the dynamics of insect-pathogen systems depends essen- 
tially on which stage is susceptible to the disease. 

In conclusion we can say that stage-specific susceptibility, insect-den- 
sity dependence, and, especially, the interplay between these two mech- 
anisms strongly affects the dynamics of insect-pathogen relations. 

We wish to thank Johan Grasman, for helpful discussions during this 
research, and Maarten de Gee, for comments and discussions during the 
preparation of  the manuscript. We also wish to thank two anonymous 
referees who helped us to improve the paper. 
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