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Response of valley glaciers to climate change and
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ABSTRACT, A simple numerical flow model that couples mass divergence
directly to basal shear stress as the only driving force is used to study kinematic waves.
Kinematic waves that result from a perturbation of the ice thickness or mass balance
are compared with the linear kinematic-wave theory of Nye/Weertman. The wave
velocity is calculated as a function of the wavelength and amplitude of a perturbation.
The modelled wave velocity is typically 6-8 times the vertically averaged velocity in
the flow direction whereas linear theory predicts a factor of only 5.

An experiment with the geometry of Hintercisferner, Austria, shows that the
increase in the local ice velocity during a kinematic wave is about 10% but varies
slightly depending on the position along the glacier and the amplitude of the kinematic
wave. Kinematic waves are thus hard to detect from velocity measurements.

The dynamics of simple continuity models are rich enough to support a variety of
kinematic-wave phenomena. Such models are a useful tool to study the response of

valley glaciers to climate change.

1. INTRODUCTION

In the late 1950s and early 1960s, ideas on the response of
valley glaciers to climate change were strongly influenced
by the theoretical concept of kinematic waves (Lighthill
and Whitham, 1955). They defined kinematic waves as a
type of wave motion which exists in any continuum as a
consequence of a conservation law and a coupling
between discharge, concentration, and position. Applica-
tion of this theory to glacier response was developed in a
series of papers by Weertman (1957, 1958) and Nye
(1958, 1960, 1963). It was realised by these workers that
the vertically integrated continuity equation for ice mass,
together with a relation between ice discharge and (at
least) ice thickness, supports the existence of kinematic
waves. With strong simplifications in the governing
equations, some interesting results were obtained con-
cerning the effect of mass-balance perturbations on the
shape of a valley glacier. Notably, it was concluded that
kinematic waves are unstable in regions of decreasing ice
velocity in the direction of flow (lower part of glacier) and
stable in the region of increasing ice velocity (upper part
of glacier).

We believe that some of the results have led to
misinterpretation of features observed in the feld. For
instance, it has been claimed (Nye, 1963) that the high
level of trim-lines in the lower reaches of a glacier basin is
in agreement with the sudden increase of ice thickness due
to an unstable kinematic wave. This is only true because
diffusion is neglected in the kinematic-wave solution.
Including diffusion (which is realistc) yields a much
smaller increase in the ablation area. A more logical
explanation for the high level of wim-lines in the lower
reaches of a glacier basin is therefore the slow retreat due
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to changes in the mass balance since the “Little Ice Age”.
It is also argued (Nye, 1960) that kinematic waves are the
fundamental reason why glaciers are such sensitive
indicators of climatic change. This point has never been
demonstrated in a convincing way from existing data. In
our opinion glaciers are sensitive indicators of climatic
change because a small change in climate may yield a
large change in ablation, yielding an adjustment of the
glacier volume (length). This can be demonstrated with
simple continuity models.

On the other hand, the use of simple continuity
models as a tool to study the response of glaciers to
climate change has been criticised (e.g. Paterson, 1981,
p.268). It is a fact, however, that the simple continuity
model has richer dynamics than the linearised-wave
equation used by both Nye and Weertman. In view of
this, we think that a comparison of linear-wave theory
with the performance of a numerical “continuity model”
is useful.

Before we start this comparison some comments on
historical observations of kinematic waves are necessary.
The classic example is the kinematic wave on the Mer de
Glace from 1891 to 1899, as described by Lliboutry (1963)
and Lliboutry and Reynaud (1981). Figure 1 shows a
kinematic wave with an amplitude of 2-6 m, a wavelength
of about 3km, and a wave velocity of 800ma™". The
surface velocity itsell increased from 125 to 155 m a’l,
simultancously over the entire ablation area. In spite of
the limited accuracy ol the survey technique at that time,
this seems to be significant. Yet this is not what one would
expect. Velocity should decrease after the passage of a
kinematic wave at a specific point, since the ice thickness
decreases locally and the surface slope decreases as well
(ice thickness increases in the flow direction after the



Van de Wal and Oerlemans: Response of valley glaciers to climate change and kinematic waves

Year
1891 1895 1899
!

Sr— \
\
£ \
- \\
50 T x=1.0km
B \
e \
o \
a] x=1.7 km
8 —
Y x=2.4km

Fig. 1. Change in the mean surface elevation of Mer de
Glace, France, along four cross-profiles over a period of
9a. The broken line corresponds to a wave velocity of
800ma™" (from Lliboutry (1958)).

passage of the kinematic wave). Furthermore, an increase
of 25% (from 125 to 155 m a™!) seems a bit too much for
an increase in ice thickness of only a few metres. The
simultaneous change in velocity presented in Lliboutry
and Reynaud (1981) rather suggests the occurrence of a
surge-type event with increased basal sliding, enabling
velocity to increase over large areas of a glacier by about
925%. Although a few more examples of kinematic waves
could be discussed, available data are limited. The major
reasons for the scarcity of data on kinematic waves on
glaciers are, in our opinion, the complex adjustment of a
glacier to scasonal and long-term fluctuations in its mass
balance, the rapid diffusion of kinematic waves and the
lack of accurate ficld observations. All together these
points make differentiation of the field observations
hetween kinematic waves and variations in basal sliding
very difficult.

In addition to a comparison with the linear theory,
this paper attempts to present some quantitative insight
into kinematic-wave velocities, and associated changes in
ice thickness and ice velocity. In particular, we consider
experiments using a “model glacier” with simple geom-
etry and using the Hintereisferner, a valley glacier in
Austria. Model experiments are presented which show the
sensitivity of the kinematic waves to variations in
amplitude and wavelength.

We use a numerical ice-flow model in which the mass
flux is directly coupled to the basal shear stress (e.g.
Bindschadler, 1981; Kruss, 1984; Oerlemans, 1986; Huy-
brechts and others, 1989; Stroeven and others, 1989;
Greuell, 1992). We will not consider models that deal in
one way or another with longitudinal stress gradients (e.g.

Budd and Jensen, 1975; Shoemaker and Morland, 1984;
Van der Veen, 1987), although these would be required if
one wanted to simulate certain strongly localised dynamic
features.

2. A BRIEF REVIEW OF LINEAR-WAVE THEORY

So-called continuity models are based on the vertically
integrated mass-conservation equation together with a
simple flow law for the vertical mean ice velocity. In the
one-dimensional case:

OH O(HU)
ot M- O (1)
U=Ug+Us=CgHF" + C,F™ (2)
F = pgHh,. 3)

Here H is ice thickness, t time, M specific balance, z
distance along the flowline, U vertically averaged velocity
parallel to the bed, F' “driving stress”, [Cq,n, Cs,m] a set
of flow parameters, p ice density (910kg m™), g gravit-
ational acceleration (9.8ms™) and h, surface slope.
Subscripts d and s refer to contributions from internal
deformation and sliding.

The kinematic-wave equation for glaciers, essentially
based on linearisation of Equation (1) (Nye, 1958;
Weertman, 1958), reads:

OH, _ aCy 0D\ 0H, | . 8%°Hy
=m-E = (G- ) T Do

ot
(4)

Cy is the kinematic-wave velocity, and Dy the dilTusivity
of the kinematic waves. The linear theory assumes a
reference state upon which small, independent pertur-
bations of mass flux, ice thickness, and surface slope oceur.
The subscripts 0 and 1 refer to the reference and
perturbed states, respectively. The reference state 1s
normally interpreted as an equilibrium state. Equation
(4) can be solved if Cy and Dy are known functions of z.
This is of course a valuable approach for gaining physical
insight into the full non-linear problem. But Equation (4)
also shows the limitation of this theory, since in reality Cp
and Dy are not simple functions of « and in fact are only
known if the full ice dynamics are included. The wave
velocity as derived by Nye (1958) is given by:

Cy= (71 + 2)U0d <+ (m + 1)U0S. (5)

Useful qualitative insight can be gained by prescribing Co
and Dy as a function of 2. In Figure 2 the well-known
results of Nye (1960) are presented for the following
formulation of Cy, with Dy = O

Co=r(1-2){05 <z <1},
(6)

Cy = rz{0 <z < 0.5}

Here 7 is a positive constant, and  is now the scaled
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glacier length (ranging from Q at the glacier head to 1 at
the terminus).

The results presented in Figure 2, in which diffusion is
neglected, will be compared with results from a simple
flow model that includes the effects of diffusion. The
kinematic-wave velocity should he 3-6 times the
horizontal surface velocity, because m and m are
generally estimated to be 3-4 and 2, respectively. We
use a model with n= 3 and no basal sliding. Therefore, a
kinematic-wave velocity of 5 times the surface velocity is
expected from the linear-wave theory.

3. EXPERIMENTS WITH A NUMERICAL MODEL

The numerical model solves Equations (1)—(3) on a grid.
Flow is prescribed along a flowline with a constant width,
Basal sliding is neglected (Cs = 0). The flow parameter
for deformation (Cq) is set to 5 x 107 mPN3a™! for all
experiments (including the Hintereisferner experiment).
The specific balance is prescribed as:

M = min{a(h — hg); Mmax} (7)

where a is the balance gradient, Ag the equilibrium-line

altitude, and Mpe an upper limit (values of these
parameters in all experiments reported here: 0.01 mm™,
675m and 1.25 m of water equivalent, respectively). A
grid-point spacing of 0.1 km is used. Because of explicit
time integration, this requires a time step of 0.052a to
maintain stability. It may be noted that all results
presented are independent of the applied grid-point
distance. This means that numerical diffusion is neg-
ligible. The steady-state properties of the resulting model

glacier are shown in Figure 3.

A: experiments with simple geometry (slope and
width of bed constant)

Starting with the modelled glacier in a state of
equilibrium, we have imposed a sudden and uniform
instantaneous perturbation of the mass balance with a
scaled amplitude Hy equal to 1. The model calculates the
time evolution of the ice thickness after the perturbation.
The result shown in Figure 4a can be compared with
Figure 2a because both are scaled by the velocity profile
(r). The results obtained with the flow model are
quantitatively different from the linear theory. There
are three factors that can account for the observed
discrepancies. First, the glacier length is kept constant in
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Fig. 2. (a) Time evolution of ice thickness in an idealised glacier following a sudden uniform increase in accumulation rate.
The upper part of the glacier responds stably; the lower part responds unstably, until the kinematic wave from x = 0.5
arrives (from Nye (1960) ). The time of observation is scaled with the mean velocity gradient over the ablation area. The
glacier length is also scaled (0 at the glacier head, 1 at the glacier front in the equilibrium state). (b) Time evolution of ice
thickness following an addition of uniform layer of ice. The temporary instability of the lower half is relieved by the arrival
of the kinematic wave generated at x = 0.5 { from Nye (1960)).
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Fig. 3. Characteristics of the model glacier in equilibrium. (o) Bedrock and ice-surface elevation as a_function of the scaled
length. (b) Mass balance as a function of height I = 675m, M" = 1.2 m. (¢) Velocity as a function of the scaled length.
(d) Gradient of the velocity as a_function of the scaled length.
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Fig. 4. (a) Modelled increase in ice thickness due to an instantaneous increase in the mass balance. The increase in ice
thickness is scaled with the magnitude of the disturbance. Lengih and time scaling is similar to Figure 2. ( b) Modelled
increase in ice ihickness due to an instanianeous increase in the ice thickness. The scaling is similar lo Figure 2,

the linear theory, but this is not the case in the numerical
model. Sccondly, the linear theory neglects diffusion,
which is not the case in the numerical model. Thirdly, in
the linear theory fu/dz equals r over the ablation area
(and —r over the accumulation area) whercas in the
model, du/Bz decreases lincarly over most of the ablation
area (Fig. 3d). Overall the model yields a smaller increase
in ice thickness, but the relatively greater increases in
ablation area, particularly in the terminus arca, are
qualitatively comparable to those predicted from theory.
The lower increase in ice thickness can be understood
when we realise that the mass flux in the model will
increase as a result of the perturbation in the mass
balance, yielding an adjustment of the modelled glacier
length. A less pronounced increase in ice thickness can be

observed in Figure 4a compared to Figure 2a as a result of

the changing glacier length. However the most pro-
nounced increase is found near the tongue of the glacier
since Qu/dz reaches a minimum value at the tongue,
overruling the effect of diffusion in the upper ablation
area. {The role of diffusion is considered in more detail for
a block ol ice later on.)

A sccondd comparison between the linear theory and
the model experiments is presented in Figures 4b and 2b
for a uniform increase in ice thickness (Hy) over the entire
glacier (Hy << Hy). The result depends only slightly on
the magnitude of the perturbation. However, the
quantitative result near the glacier front in Figure 4b
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should be regarded with some scepticism since it is
affected by a relatively large truncation error. Never-
theless, a strong increase in ice thickness can be observed
in the model results in the ablation zone. But the increase
in ice thickness is continuous in time (Fig. 4a and b), in
contrast to the linear theory in which the increase in ice
thickness shows a temporary instability. This instability is
relieved by the arrival of the kinematic wave. The
differences between theory and model results can he
explained by the same arguments as stated in the previous
paragraph. In a paper by Bindschadler (1982) kinematic
waves were simulated with a similar flow model, using a
different numerical approach and keeping the glacier
length fixed. The resulting kinematic waves are similar to
those in Figure 4a and b for central parts of the glacier.

Having drawn the comparison between the model and
the linear theory, we will now give attention to quant-
itative aspects of the simulation of kinematic waves with a
simple flow model in order to show the sensitivity of the
results to the formulation of the imposed disturbances The
dependence of the wave velocity on the wavelength of the
disturbance (), the amplitude of the disturbance (A),
and the mass-balance gradient will be presented. The
same datum state as used in the previous experiments and
presented in Figure 3a—d is considered. This equilibrium
state is disturbed by an instantancous perturbation of the
ice thickness, a bump centred at the equilibrium line and

described by
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2
Hl,m = H(],.T, + Asm—;—r(m — e .]_ZII.A)

Te—tA <z <2+ A (8)
0<A<,

in which . is the grid point at the equilibrium line and
the grid point for which the perturbation is calculated.
The amplitude (A) is in metres, and wavelength (A} is
dimensionless after scaling by the glacier length (L). The
subscripts 0 and 1 again indicate the equilibrium state
and the perturbed state, respectively. Note that this
formulation prescribes a positive perturbation of the ice
thickness, since x ranges from zo — %)\ to Te + %)\, with a
maximum perturbation at the equilibrium line. To study
the influence of the wavelength and the amplitude we
change only one variable (4, A) at a time. The kinematic
wave can be characterised by the velocity of the
maximum perturbation of the ice thickness.

In Figure 5a the velocity of the kinematic wave is
presented for different amplitudes (note that A << Hp)
and a constant wavelength of hall the glacier length. The
velocity is scaled with the vertically averaged horizontal
velocity at the equilibrium line in the equilibrium state.
Larger wave velocities are observed for larger amplitudes
which can be understood by the larger ice thickness and
steeper slopes (wavelength is constant), and hence greater
ice velocities as well as greater wave velocities. Obviously
the wave velocity increases towards the front of the glacier
as |Ou/dz| increases. This means that in the model glacier
the expected reduction of the wave velocity duc to
diffusion is overruled by the increased wave velocity
(wave velocity is proportional to the magnitude of du/dz,
or to Cy) as a result of the increasing |du/0z| towards the
front of the glacier. Furthermore, we can observe that a
doubling of the amplitude (A = 10 m) or a halving of the
amplitude (A = 2.5m) yields a roughly similar change in
wave velocity, Dy (= UH/hy) can be evaluated from the
steady-state conditions (Fig. 3). At the equilibrium linc,
U~ 32ma’, H~164m, and hy ~0.109, so Dy is
approximately 0.48 X 10°m?a™!. The ablation area is
about 2.8 km long, so dD;/0x averages about —17m a”!
over the ablation area. For comparison Cp =~ 160 m a!
(Equation 5), or an order of magnitude larger than the
gradient in Dy. Using these estimates in the linear theory
yields a kinematic wave speed, Cy — 8Dy/0z (Equation
4}, ol approximately 177 ma ! or ~5.5 times the surface
speed. However, the scaled velocity calculated with the
model (Fig. 5a) is typically 6-10 times the surface velocity
over a large part of the ablation arca, or somewhat larger
than expected from the linear theory.

A similar experiment is presented in Figure 5h. Here
the kinematic-wave velocity is calculated for three
different values of the wavelength, while the amplitude
is kept constant at 5m. This experiment is somewhat
more complicated to understand because the larger
increase in ice thickness for a longer wavelength,
compared with a perturbation with a small wavelength,
yields a higher diffusivity, but on the other hand steeper
slopes for smaller wavelengths yield a higher diflusivity.
The net result is, however, an increasing diffusivity for
longer wavelengths. If we consider the experiment in
more detail, we may note that for a wavelength of [}, the

tongue of the glacier is disturbed at the outset, as the front
end of the perturbation is at the terminus (Equation (8)).
The thickness at the tongue will, in this case, immediately
begin to increase due to diffusion. Together with a
transport of the wave in the flow direction, a greater
velocity of movement of the locus of maximum disturbed
ice thickness towards the tongue is expected. Iollowing
this line of reasoning, it is easy to understand that the
wave velocities for A =1L are higher than for A = %L,
although increasing wave velocities are still observed
towards the margin. Doubling the wavelength from 0.5 to
1L yields a larger change in the wave velocity than
halving the wavelength to + L (Fig. 5b).

The reason for the relative insensitivity of the wave
velocity to perturbations in amplitude or wavelength is
that the velocity gradient is comparable in the different
model experiments presented so far.

By changing the mass-balance gradient, new equili-
brium states can be calculated with a different du/0x
profile in the flow direction. The new equilibrium states
with different mass-balance gradients were perturbed
with a wave with an amplitude of 5 m, and a wavelength
of half the glacier, A smaller value of du/8z, due to a
smaller mass-balance gradient {a = 0.005), reduces the
kinematic-wave velocity as expected [rom linear-wave
theory as can be observed in Figure 5e. A larger value of
Ou/Oz (a = 0.02) increases the kinematic-wave velocity.
Scaling the velocity of the kinematic wave by dividing the
kinematic-wave velocity by Ou/0z (in the equilibrium
state) yields equal wave velocities for the three different
model glaciers, as shown in Figure 5d. This means that
the kinematic-wave velocity scales with the du/0x. This
may seem trivial, but the difference with the linear theory
is that the velocity is calculated in the numerical model
and not prescribed.

To eliminate the influence of the gradient in the
horizontal velocity, a few experiments were conducted for
a block of ice with constant thickness and surface slope.
This resulted in a steady state with du/0z = 0 over the
entire block length, The boundary condition at the
outflow border, 8H /Oz is constant, is time-independent.
The kinematic-wave velocity is presented in Figure 6, The
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Fig. 6. The velocity of a kinematic wave for A = 0.5L and
A=35m in a block of ice (H = constant) with
Ou/Ox =0 initially. The wvelocity is scaled by lhe
velocity in the reference state.
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Fig. 5. (a) The scaled velocity of the kinemalic wave for various amplitudes (A in metres) of the disturbance for
A = 0.5L. The velocity is scaled by the velocity at the equilibrium line in the refevence state. (b) The scaled velocity of the
kinemaltic wave for various wavelengths (X scaled by the glacier length) of the disturbance (A =5m). (c) The scaled
velocity of the kinematic wave for various mass-balance gradients (a) for a disturbance defined by A = 5m and X = 0.5.
(d) Asin (c), but the velocity is scaled by dividing by Udu/O0x instead of U only.
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wave velocity is constant in the middle of the block
because du/dz is negligible. Close to the margin, du/0x
increases and the wave velocity increases accordingly.
This result is in agreement with Bindschadler (1982) who
presented a constant wave velocity for kinematic waves in
central parts of a uniform slab of ice with fixed length.
One should, however, realise that diffusion cannot be
neglected in general, since diffusion reduces the long-
itudinal velocity gradient and thercfore the wave velocity
il there is a velocity gradient. The wave velocity is
independent of the wavelength and amplitude as long as
A <1 and A <10, the values used in the previous model
glacier experiments,

B: Hintereisferner experiment

In order to get some insight into how kinematic waves can
be observed in a real glacier, a second set of experiments is
presented. Kinematic waves were simulated on a glacier
with the geometry and mass balance of Hintereisferner,
Austria. Here variations in the width of the glacier and
undulations in the bedrock may affect the results, A detailed
description of this Hintereisferner model, and results from a
simulation of historical glacier variations were presented by
Greuell (1992). His model is nearly similar to the one used
in the present paper because it also solves Equations 1-3. As
a start, an equilibrium state is calculated, resembling the
1987 extent of the glacier (Fig. 7a-d).

Figure 8 shows the total ice volume after a pertur-
bation of the ice thickness with a wave of 5 m, having a
wavelength of half the glacier length and being centred
around the equilibrium line. As soon as the wave front
reaches the glacier terminus the volume decreases. This
occurs alter only a few years, Equilibrium is reached after
about 70 a. Here the response time is defined as the time
required to reach (1-1/e) of the volume change due to the
disturbance in ice thickness. This response time is
comparable to the one found by Greuell (1992) for a
perturbation in mass balance.
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Fig. 8. Volume as a_function of time qfter an instantaneous
perturbation imposed on the glacier as it appeared in 1990
(A= 5m, A=0.5L).

The change in ice thickness at specific times after the
onset of the perturbation is presented in Figure 9a, The
maximum change moves down-glacier with a velocity 6
times the velocity at the equilibrium line. This is similar
to the velocity of the kinematic waves in the model-glacier

experiments discussed earlier., The geometrical boundary
conditions create a rather stable zone about 5 km from the
head of the glacier. Equilibrium is restored starting at the
glacier head. A temporary increase of 200m can he
observed in the glacier length.

In another experiment, an instantaneous uniform
increase of 0.5m in the specific balance during 1a was
imposed on the glacier. The insensitive zone is now
centred around 4 km (Fig. 9b). Equilibrium is restored
again from the glacier hcad down to the glacier front. The
transition to a new equilibrium is shown in Figure 9b and
c. No increase in glacier length is observed.

The effect of this perturbation on the velocity is shown
in Figure 10. In the accumulation zone the velocity
increases only slightly due to the counteracting effect of
increased ice thickness and reduced surface slope (Fig.
10a), In the ablation zone the small changes in ice
thickness and surface slope increase the local velocity
typically by 10% (Fig. 10b). At the glacier terminus a
very large increase is observed, but the large truncation
error reduces the accuracy of the result here. The 10%
increase in the velocity can be compared with observa-
tions at the Hintereisferner over the period 1916-21, as
presented by Lliboutry (1965). Changes in the surface
velocity by a factor of 10, as Lliboutry presented, cannot
be explained by a kinematic wave. The small changes in
ice thickness and surface slope during the passage of the
wave are insuflicient to explain an order-of-magnitude
increase in surface velocity. Kinematic waves cause only a
small increase in the local ice velocity, depending on
position along the flowline.

4. CONCLUSIONS

According to our numerical flow model, kinematic waves
typically move with a velocity of 6-8 times the surface
velocity, whereas linear theory predicts that they will
move with a velocity of 5-5.5 times the surface velocity.
This difference results from the increasing gradient in the
horizontal velocity in the ablation zone in the flow model.
This also explains the acceleration of the waves in the
ablation zone. For a typical valley glacier the eflect of
diffusion is less important than the gradient in the
horizontal velocity, as demonstrated by Figures 7 and 8.

Observing kinematic waves in the field is difficult due
to the rather small changes (10%) in the local ice thickness
and velocity (Figs 9 and 10). Furthermore, time series of
both parameters must be observed, since ice thickness and
velocity are coupled. Observations of ice thickness or ice
velocity alone cannot discriminate between processes
related to deformation and changes in sliding. Synchro-
nous changes in ice velocity over a glacier are not an
indication of kinematic waves.

No length variations can be observed (Figs 9b and c)
for an instantaneous incrcase (during 1 a) of 0.5m in the
accumulation over the entire glacier. This suggests that
observing only front variations is probably insufficient to
detect kinematic waves in the {ield,

We believe that observations of so-called kinematic
waves are often associated with variations in basal sliding
(and not related directly to perturbations in ice thickness).

The numerical experiments discussed here have shown

149



Journal of Glaciology

4000 T I 1 l T I T I T I T I T l T I T l T

¥
|
e o

3600

3200

2800

PRI SN ATES A

height (m as)

2400

LNLIL I SRS B S B e

2000 0o+ o+ 0 o 0w ba e

o
o
)
o
B
o
23
o
oo
o
-
o

4000 LALINCINLEN (LU LI I L B N N S NN A A

T

3500

(6]
(@
o
(=}

height (m asl)

N
[5]
o
o

LI N R S B S B B B

TR S ITIR S AT N T SR NV HAT SO S AT IOU ST WU BT O S BT S SN T O W

0 -1 -0 -3 -4 -5 -6
mass balance (m we a™)

2000

o
-

6 O T T T | T T T T T T T T T T ¥ T T T T

50

N REREE NN

40
30

20

velocity (m a™)

10

LRI B S N L B B o L I S I

IERWE ERERY FNETE RN

o
o
)
o
>
o
o
o
-
o

0.06 T T T T T T T T T T T T T T T T T T T
0.04

0.02

duwox (a”)

-0.02

-0.04

o
L0 LR THLA L L LA N L L Y
1

-0.06 T OO SR AU VU VUMY SR N TOUNY VT Y S ST TR S S S S
4.0 6.0 8.0 10
X (km)

Fig. 7. Steady-state characteristics of Hintereisferner as obtained from the numerical model. (a) Bedrock and ice surface
elevation as a funclion of the distance from the glacier head. The glacier length is 7.4km. (b) Mass-balance Jorcing as a
Sunction of height ( Greuell, 1992). (¢) Vertically averaged velocity in the flow direction as a_function of the distance Srom
the head. (d) ds (¢), for the gradient of the velocity.

o
o
N
o

150



Van de Wal and Qerlemans: Response of valley glaciers to climate change and kinematic waves

AH (m)

RN SR RE S RN LIRS N AR

ST

sattdraaeluyrsbevestonratrpealins

(0]
r
oo
e
o

TT T T [T T T [T T T[T T v [

EERIE TN AT S SN O AN AN AU SN AT SN O AT ST AN N AN S RS

[
—
o
-
o

L B B L B LR S B LR

YN P ETE NS RTINS FENNE NR)

[0)]
—
[32]
—
o

x (km)

Fig. 9. (a) Increase in ice thickness at various times (t in years) afler the onset of the perturbation (A = 5m, A = 0.5L)
as a function of the distance from the glacier head. The vertical line (L) denotes the glacier length in the equilibrium state.
(b) Asin (a), now for a perturbation of 0.5m in aceumulation, lasting 1 a, vver lhe enlire glacier. (¢) Time evolution of
the ice thickness (as in Figure 9b) 20-100 a after onset of the perturbation.

that flowline models with local coupling of velocity and
thickness/slope simulate kinematic waves well. These
models are therefore suitable for the simulation of glacier
fluctuations on a time-scale of more than a few years, We
believe that the success of such simulations is determined
largely by the accuracy with which the mass-balance
history can be reconstructed or formulated.
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