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Abstract. An attempt is made to simulate the Pleistocene glacial cycles with a 
numerical model of the Northern Hemisphere ice sheets. This model treats the 
vertically-integrated ice flow along a meridian, including computation of bedrock 
adjustment and temperature distribution in the ice. Basal melt water is traced and 
controls ice-mass discharge. 

The model produces asymmetric glacial cycles, even when it is not forced. 
Model parameters can be chosen such that cycles with a duration of about 100 000 
yr occur. Due to the production of basal melt water and bedrock sinking, deglacia- 
tions are very rapid. 

The occurrence of glacial cycles in the model is a stable feature, but the phase 
of the cycles is very sensitive to the model parameters. The main conclusion is 
that ice-sheet dynamics may provide an explanation for the Pleistocene glacial 
cycles. However, the 'predictability' of the ice-volume record appears to be small. 

1. Introduction 

Explaining the quaternary glacial cycles has become one of the major problems in palaeo- 

climatology. In particular, the apparent 100 000 yr power in spectra of  the global ice 

volume record (Hays et al., 1976) is not understood. Most workers agree on the point 

that the orbital insolation variations at least have a steering effect on the growth and 

decay of  the Northern Hemisphere ice sheets, but it has also been claimed that internal 

(more or less free) oscillations play the dominant role. Anyway, it has become clear that 

nonlinearities in the climate system must be responsible for the amplification of  the 

100 000 yr insolation signal (e.g. Birchfield and Weertman, 1978), or, alternatively, 

internally generate quasi-periodic behaviour on that time scale. Preliminary results of  a 

Northern Hemisphere ice sheet model exhibiting such behaviour were recently reported 

by the author (Oerlemans, 1980a). It appeared that the interaction of  ice-sheet growth 

and (lagged) bedrock depression may create glacial cycles in the model with a period of  
about 100 000 yr. 

In this paper experiments with a refined version of this ice-sheet model will be dis- 

cussed in some detail. The modification consists of  computation of  the temperature field 

within the ice sheet, and, if basal melting occurs, dealing with the effect of  basal sliding. 

Before turning to a description of  the model, we will first discuss why the Northern 

Hemisphere ice sheets are likely to play such an important and active role in the establish- 

ment of  the regular sequence of  cold and warm climates during the quaternary epoch. 

There have been several approaches in 'modelling the ice ages'. The first models 

related to this aim were the so-called energy balance climate models, which have become 

popular through the work of  Budyko (1969) and Sellers (1969). With these models, the 
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importance of the ice-albedo feedback in increasing the sensitivity of the earth's climate 
for insolation variations could be investigated. More sophisticated models have been 

constructed to study, among other things, the effect of different formulations of the heat 
transport (e.g. Gal-Chen and Schneider, 1976; Lindzen and Farrell, 1977), the potential 
importance of variations in cloud height (e.g. Schneider, 1972) and cloudiness (Van den 
Dool, 1980), the possible role of zonal asymmetry (Hartmann and Short, 1979; Oerle- 
roans, 1980b) and the modification of the albedo feedback by the action of the yearly 
cycle (e.g. North and Coakley, 1979). Recently, a number of studies have been published 

in which parameterizations employed in energy balance climate models are tested both 
against observational data (e.g. Warren and Schneider, 1979) and general circulation 
models (e.g. Coakley and Wielicki, 1979). These studies have cast some doubt on the 

performance of energy balance climate models under forcing conditions that differ from 
those to which the models are tuned. 

Practically all energy balance climate models have at least two points in common. 
First, they fail to produce ice ages for realistic changes in the insolation regime. Second, 
they treat continental ice sheets as if they were pancakes of ice. The latter implies that 
ice sheets only affect the climate through the ice-albedo feedback - there is no difference 
between an ice sheet and a snow field in amplifying climate sensitivity. Although Bod- 
varsson (1955) and Weertman (1961) already showed the extreme importance of the feed- 
back between the ice accumulation rate over an ice sheet and its surface elevation, it has 
only recently been recognized by climatologists as a potentially very effective mechanism 
in creating cold climates. Coupling of a simple ice-sheet model to an energy balance 
climate model was first reported in a note by Pollard (1978), and discussed in more detail 
by the author (Oerlemans, 1980c) and Pollard et  al. (1980). In these studies it is clearly 
demonstrated that the ice accumulation rate - surface elevation feedback is more im- 
portant than the ice-albedo feedback. One should thus conclude that 'modelling the ice 
ages' cannot be done without treating in some detail the basic dynamics of large ice 
sheets. Moreover, it may ultimately turn out that a Northern Hemisphere ice sheet model 
on its own is capable of reproducing the quaternary glacial cycles, when directly forced 
by insolation variations. The first study in this spirit was carried out by Weertman (1976), 
who showed that the orbital insolation variations may indeed create ice sheets of ice-age 
size through the feedback between ice-accumulation rate and surface elevation mentioned 
above. In this interpretation, the Northern Hemisphere ice sheets determine the climatic 
regime rather than reversed. 

Another way to explain the glacial cycles involves free oscillations. Examples are 
studies by K~llen et  al. (1979), Ghil and LeTreut (1981), Saltzman et  al. (1981) and 
Sergin (1979). The latter uses a fairly complete model of the climate system. Although 
these models all exhibit periodic behaviour in some parts of the parameter space involved, 
it appears that none of them is capable of yielding periods as large as 100 000 yr. Similar 
studies include stochastic forcing. It is well-known that the behaviour of nonlinear 
deterministic systems may change drastically when a stochastic forcing is added. Random 
diffusion between components of a dynamical system may for example lead to oscilla- 
tions (e.g. Howard, 1979). Studies essentially based on this concept are those by Nicolis 
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and Nicolis (1981) and Sutera (1981). Although these models are as yet far from physical 
reality, they show that in principle low-frequency oscillations may occur as a result of 
relatively weak random forcing. 

Nonlinear analysis of dynamical systems is in rapid progress and many systems are now 
known (in particular in biology and ecology) that exhibit relaxation oscillations which 
look similar to the oscillations occurring in O18/O 16 records from deep-sea cores (which 
measure global ice volume, see Figure 1). Due to the wide parameter ranges that can be 
used in global climate models (because the strength of most feedback loops is very 
poorly known), it should not be too difficult to construct a nonlinear few-component 
system that produces relaxation oscillations with a period of about 100 000 yr. How- 
ever, one should be careful with this type of approach, because it is a matter of picking 
the right dynamical system rather than using physical laws simplified by appropriate 
scaling. Few-component systems should be validated against, or better, be derived from 
more sophisticated models before they are used extensively. 
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Fig. 1. O18/O 16 records from deep-sea cores, reflecting variations in the global ice volume. The 
Brunhes-Matuyama magnetic reversal (about 700 000 yr ago) is indicated by thin vertical lines. Dashed 
lines connect points that axe thought to be in phase; the mean spacing is about 100 000 yr. Refs.: 
Imbrie et al. (1973), Shackleton and Opdyke (1973, 1976). 
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The present study was undertaken in this spirit. Numerical experiments are discussed 

in which a fairly complete model of  the Northern Hemisphere ice sheets is used. We will 

see that with a model having a large number of degrees of freedom, fairly regular cycles 
in ice volume can be simulated, even in the absence of forcing. Characteristics of 'observed' 
ice-volume records are well reproduced, but the results are very sensitive to small varia- 
tions in the model parameters. This may be due to model deficiencies, but it is more 

likely that the evolution of the climatic state during the Pleistocene was just one out 

of many possible realizations. 

2. Model description 

The ice-sheet model to be used is based on the one described in Oerlemans (1981). 

Recently, Birchfield et al. (1981) employed a similar model. Only vertically-integrated 

ice flow is computed according to a flow law of the 'Glen-type', in which the vertical 

mean ice velocity is proportional to the basal shear stress. The model thus comes some- 

where between the perfect plasticity models (e.g. Weertman, 1976; Birchfield, 1978) 

and the models in which the variation of ice velocity with depth is computed explicitly 
(e.g. Jenssen, 1977). The latter class of models puts too heavy demands on computational 

resources, at least for palaeoclimatic studies we have in mind. 
The geometry of the model, sketched in Figure 2, treats the Northern Hemisphere ice 

sheets in a very schematic way. Only one sheet is considered. We may imagine that this 

is the Laurentide ice sheet, which is known to be the most important one, at least when 

ice volume is concerned. Many objections can be made, however, against the idea of a 
passive Eurasian ice sheet just following the American one. Anyway, we consider only 

one model ice sheet, whose evolution is computed along a meridian (north-south, defined 

here as the x-axis). 

height (KM) 
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Fig. 2. Schematic picture of the Northern Hemisphere ice-sheet model. Beyond the snow line the ice 
�9 . , O . 

accumulation rate is posiUve. The northern edge of the continent is at 73 N latitude. The dashed 
line (ho) shows the equilibrium bedrock profile when ice load is absent. 
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Ice flow is modelled by the following equations 

a l l _  a a t  ax [D a(H+h)ax ]+M (1) 

D = B(Oo, W)Hm+I I ~(H+h) [ m-I 
~x (2) 

ah 
- + h-%)/t* ( 3 )  

at 

In (1)-(3), H is ice thickness, h bedrock elevation, ho bedrock elevation in the undisturbed 
case (no ice load), M the mass balance or ice accumulation rate. D can be interpreted as 
a diffusitivity for ice mass. It depends on the flow parameters B and m. 

Equation (1) describes the conservation of ice mass. The expression in square brackets 
is the vertically-integrated mass flow (the ice is assumed to be incompressible). In this 
study m is kept constant at a value of 2.5, which gives a realistic ice-sheet profile. The 
flow constant B depends on temperature and the amount of basal water beneath the ice. 
We turn to this in a moment. 

Equation (3) treats the reaction of the bedrock to the ice toad. It has been assumed 
that the density of the upper mantle is about three times that of ice. The constant t* is 
a time scale, indicating how fast the system returns to isostatic equilibrium (h=ho-11/3). 
Equation (3) does not take into account the flexural rigidity of the lithosphere. This 
may be a shortcoming for a typical scale of the ice load less than 100 km (e.g. Turcotte, 
1979), i.e. near the edge of an ice sheet. A few experiments were carried out with an 
equation for ah/at that took into account lithospheric rigidity. It appeared to give small 
deviations from Equation (3), in fact smaller than 75 m, and this has a negligible effect 
on the evolution of the model ice sheet. If some kind of grounding line dynamics is 
included (modelling of the ice sheet-ice shelf junction), such deviations near the ice-sheet 
edge may be important (see Pollard, 1982). 

Recently, Pollard (1982) noted that the stability of ice sheet models of the present 
type with regard to parameter variability is substantially increased if a region of high 
elevation is included. Since such plateaus are present in reality, there is not much reason 
to leave them out. In the present model high grounds are represented as shown in Figure 
2. The dashed line shows the bedrock profile which is assumed to be in isostatic equilibrium 
if ice cover is absent. 

The flow law employed here represents two modes of ice-mass discharge, namely, 
internal deformation and basal sliding. Given some stress, internal deformation becomes 
larger if the ice temperature (with respect to the pressure melting point) increases, e.g. 
Paterson (1969). In the present model no explicit calculation of deformation is done, so 
the total ice-mass discharge due to deformation should be directly related to ice temper- 
ature. Since most of the velocity shear is found in the lower layers of an ice sheet, it is 
natural to express B in 0o, the basal ice temperature. Similarly, the effect of basal sliding 
on the total ice-mass discharge can be included by increasing B according to the amount 
of melt water beneath the ice. In this study B is parameterized as follows 
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B 4 § 6e 0~ + 2B = arc tan (W/10)m -3/2 yr -1 (4) 
7r m a x  

Here, 0~ is the basal temperature with respect to the pressure melting point, 14' is the 

amount of melt water beneath the ice and B is a constant that measures the effect of max 
basal sliding on the ice-mass discharge. 

According to an analysis by Weertman (1966), a large ice sheet frozen to the bottom 

will be roughly twice as thick as an ice sheet of similar size beneath which (sufficient) 
melt water is present. So extensive basal sliding is capable of halving the height-to-width 

ratio of a large ice sheet. In terms of the model described in this paper, if sufficient melt 

water is present B should be such that this reduction of the ice thickness indeed occurs. 

Given the value of B in the no-sliding case, the value orB corresponding to the case with 

extensive sliding can be obtained by scaling (1) and (2). Another way is to compute a 
large steady-state ice sheet which is frozen to the bed, and then to vary B until a steady- 
state ice sheet is produced with half the ice thickness of the former one. Both methods 

were carried out and appeared to give practically the same result. The value for B m a  X 
found in this way was about 120 m -3a yr - a .  However, the model behaviour for other 

values o f B m a  X will also be discussed. 
To compute the amount of basal water W and the flow constant B it is necessary to 

know the temperature distribution within the ice sheet. This means that the thermo- 

dynamic equation for a continuum has to be solved with appropriate boundary condi- 

tions. In the present model this is done by an approximate method. It is assumed that 

the vertical temperature profile can be approximated by a second-order polynomial. 

The three coefficients appearing in this polynomial are thus a function o fx  and t. Equa- 
tions for these coefficients (the spectral equations) are obtained from the upper boundary 

condition (ice temperature equals atmospheric temperature), the lower boundary condition 

(the temperature gradient meets the geothermal heat flux) and the vertically-integrated 
form of the heat equation. The method is described in detail in the Appendix. 

To close the system, an equation is needed that describes the budget of melt water 

beneath the ice. Unfortunately, very little is known about the processes that regulate 
the flow of melt water. Several objections can be made against the possibility of an 

extensive layer of water beneath the ice. Hydrostatic pressure exerted by the ice will 
probably tend to concentrate melt water at specific locations (to form 'lakes'). Lliboutry 
(1966) has stressed the importance of cavities filled with melt water. In principle, 'channel- 

ing' may also occur, in particular in regions where bedrock slopes are large. In this rather 
hopeless situation, the best we can do probably is to employ an advection equation for 

melt water, i.e. 

3W ,3W 
- u - -  + s ( 5 )  

~t ~x 

Here S is the rate of melting at the base and u' is a fraction of the vertical mean horizontal 

ice velocity. In this study the fraction is taken 0.5. The way in which melting or refreezing 

is calculated is described in the Appendix. 
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The treatment of the thermal regime of an ice sheet and its effect on the ice flow as 

used in this study is admittedly crude and has many intuitive aspects. [Another approach 

to model glacier surges involving basal sliding has been carried out by Budd and McInnes 
(1975)]. Here one should remember the specific purpose of this study: to construct a 
model that can be used for integrations over one million years, but is nevertheless sophis- 
ticated enough to include the effects of bedrock sinking and thermodynamics in an 

essentially correct way. 
Numerical integration of the model equations is performed on a grid with a spacing of 

70 km, with a simple forward-time central-space difference scheme. The time step varies 
from 10 to 1 yr, depending on how B varies over the grid (a small step being used if large 

horizontal differences in B occur). The advection terms are treated with the Lax-Wendroff 

scheme (e.g. Mesinger and Arakawa, 1976). 

3. Environmental Conditions 

Parameterization of the ice accumulation rate M is very difficult and can hardly be done 
without ad hoc assumptions. In most approaches the concept of a snow line is used, see 

Figure 2. It separates the regions where M>0 from those where M<0. Weertman (1976) 

used constant values for M in the ablation and accumulation regions while others (e.g. 

Andrews and Mahaffy, 1976) have employed a functional form for M in terms of surface 

elevation with respect to the height of the snow line. Pollard (1980) includes a somewhat 

more explicit calculation of snow fall, but it is doubtful whether this yields essentially 

different results. 
Here, we use a simple representation of M, namely 

M = rain [Mup , 1 .5xl0-3x(H+h-E)  ] rn ice yr -1. (6) 

E is the snow line elevation, given by 

E = Eo+aX,  (7) 

where ~ is the slope of the snow line and Eo the height of the snow line at the northern 

tip of the continent. Mup is an upper limit to the ice accumulation rate and should be 

imposed because for cold conditions the capability of the air to contain water vapour is 
very small (annual precipitation over the Arctic: about 0.4 m yr -1 ; over the Antarctic 

continent: 0.17 m yr-1). In studying the response of the model ice sheet to external 
forcing, Eo will be varied. This simply means that the snow line moves up and down, 

while its slope and the vertical gradient in the ice accumulation rate are kept constant. 
Other environmental conditions that have to be prescribed are connected with the heat 

balance of the ice sheet (see Appendix). The geothermal heat flux entering the base of 
the ice sheet is set to 0.04 W/m 2, which is slightly less than the global mean value (e.g. 
Paterson, 1980). The annual mean surface temperature ir a is determined from 

T a = r s - O . O l x ( H + h - E ) K ,  (8) 
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where T s is the 'snow-line temperature'. Data from the Greenland Ice Sheet (Putnins, 
1976; Ambach, 1972) suggest that T s is in the - 1 2  to - 1 5  ~ range. The atmospheric 
lapse rate along the surface used here is 0.01 K km -~ . This figure is suggested by data 
from Antarctica and Greenland (note that it is larger than the lapse rate in the free 
atmosphere). 

4. Basic Model Behaviour 

In the discussion of this section thermodynamics are not yet taken into account. All 
properties of the model ice sheet discussed below apply to conditions with a constant 
flow parameter B. 

The model ice sheet responds highly nonlinearly to changes in snow line elevation. 
The presence of a fixed ice boundary at x=0 creates branching of the steady-state solu- 
tions 0Veertrnan, 1961). A typical solution diagram is shown in Figure 3a. It shows 
equilibria of the ice %olume' V as a function of the snow line elevation. If the snow line 
intersects the surface sufficiently far north from the coast (x=0), no ice sheet is possible. 
If the intersection is on land, a large ice sheet must exist. In between is a region where 
both V=0 and V=large are stable equilibria. 

The presence of a mountain range causes another branching of the steady-state solu- 
tions (Oeflemans, 1981). A typical situation is shown in Figure 3b. For certain values of 
E0, a small ice cap on the mountain is stable. 
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Fig. 3. Typical solution diagrams for a Northern  Hemisphere ice sheet  when  there is no interaction 
between ice flow and ice temperature.  Stable equilibria are indicated by solid lines, unstable equilibria 
by dashed lines. The upper  panel  refers to the  case wi thout  a moun ta in  range at high latitudes, the 
lower one to the  case in which such a moun ta in  range is present.  Climatic condit ions are reflected by 
Eo,  the snow-line elevation at 73 ~ N latitude. 
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The location of the critical points depends on the model parameters, of course. A 

particularly important parameter is the slope of the snow line. For decreasing slope, the 

'Eo-width' of the multiple equilibria region and the ice volume on the upper branche 

increase. However, for realistic model parameters, the structure of the system (without 
thermodynamics [) is always as shown in Figure 3. 

To see how the model response to forcing depends on the slope of the snow line, we 

consider a few numerical experiments with periodic forcing. So Eo=E~ +Eam cos (2rrP/t), 

where Earn is the forcing amplitude, P the period and Eft the mean snow-line elevation 

at x=0. Figure 4 summarizes the results of runs with Earn=500 m and P=22 000 yr (to 

mimic the effect of equinoxal precession on summer radiation). The upper curve shows 
the vertical movement of the snow line. In runs a-d the flow parameter B is constant and 

equal to 4 m -3/2 yr -1 . For a given slope ~ of the snow line, smaller values of E~" lead to 

larger ice volumes. The transition from small mean ice volume to large mean ice volume 
appears to be more abrupt if ~ is smaller. Curves a and b correspond to oc=0.8xl0 -3 with 

E~=100 and 0 m, respectively. Curves c and d show results for ~=0.5x10 -3 with E~'=400 

5001 , A 

oil/i/ 
500_1L t /  I t /  

% 

t~ a 

i , i  

_2 C cD 

0 
I , i  

0 
0 40 80 120 

TIME (1000 YR) 
Fig. 4. Response of the model (no thermodynamics) to periodic forcing. The upper curve shows the 
snow-line elevation with respect to its mean value. Model parameters are: Curve a: ot=0.8xl0 -3, 
E~=100 m; Curve b: ot=0.8xl0 -3, E~=0 m; Curve c: o~=-0.5x10 -3, E~=400 m; Curve d: 0t=-0.5xl0 -3, 
E~=300 m. 
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and 300 m respectively. Apparently, in the latter case the effect of a 100 m drop in E~ 
is much larger. 

According to these experiments, an ice sheet of ice-age size (V-6xl09  m 2) only forms 
if a is small. Large ice sheets can also be created for larger values of a if other parameters 

are adjusted, of course. Using a sufficiently small value of E~ and a sufficiently large value 

of Earn may lead to a large ice sheet even for a=10 -a (Weertman, 1976). However, 
present-day observations indicate that a value of 300 m for E~ is already quite low. It 

also seems unlikely that the snow line moves up and down over a range much larger than 

1000 m, at least as long as changes in radiation associated with changes in the earth's 
orbit are concerned. In view of this, a value of ~ of about 0.5x10 -3 seems to be most 
suitable. 

From Figure 4 we can also learn that the response of the model ice sheet to a 22 000 

yr forcing becomes essentially linear after some time. A signal in other periods than 
22 000 yr is hardly present. This situation changes if the time scale for bedrock sinking 

(t*=5000 yr in this study) is substantially increased. For t*>12000 yr, which seems to 

be unrealistically large, a strong signal in the 80 000-120 000 yr range appears (Oerle- 
marls, 1980a). 

The model behaviour sketched above becomes much more complicated if interaction 

between the temperature field and the ice flow is allowed. Before discussing experiments 

in which the complete model is forced, we first consider the possibility of free oscilla- 
tions. 

5. Free Oscillations 

A number of experiments were carried out to see whether free oscillations are possible 

for a constant flow parameter B. Since bedrock adjustment lags ice volume, in principal 
free oscillations are possible. However, strong damping appeared to be present always, 

and no free oscillations were found. 
This situation changes if thermodynamics are included. The strong positive feedback 

loop involving basal sliding (melting point is reached ~ increasing ice-mass discharge 

increased frictional heating -+ more basal water -+ increasing ice-mass discharge, etc.) sets 
the stage for the occurrence of free oscillations. When a certain critical ice thickness is 

reached (depending on surface temperature, geothermal heat flux, ice accumulation rate, 

frictional heating), melt water is formed at the base of the ice sheet. In general, this 
happens near the thickest part of the ice sheet. Then the basal water spreads slowly 
towards the ice-sheet edge(s), and when the basal water reaches an edge, a surge takes 

place and the ice volume decreases rapidly. Now refreezing of basal melt water starts 

because the ice thickness has decreased substantially (the geothermal heat can escape 
'easily' to the atmosphere). After some time all basal water has disappeared, and then 

the cycle starts again. 
In Figure 5 a number of runs are shown in which free oscillations occur. The left-hand 

side shows ice volumes for a series of experiments in which only Eo (snow-line elevation 
at x=0) is varied. Other model parameters are: w~0.5xl0 -3, Bmax=100 m -3/2 yr -1, 



Glacial Cycles and Ice-Sheet Modelling 

I Eo: 300 Bmax:50 

0 . z 0 v , , i l 

363 

~ Eo = 200 

i,i 

'-, / Eo=lO0 [- 

o 5 
> 

LI.J 
L D  

I (~ I 

Mup = 0.25 

I I I 

O F -  . . . . . .  ~ - _ _  i , i i 

0 150 300 0 150 300 
TIME (I000 YR) TIME (I000 YR) 

Fig. 5. Free oscillations occurring when thermodynamics are included. The left-hand side shows 
the effect of snow line elevation. Curves on the right-hand side show results from runs where the 
model parameters Bma x and Mup were perturbed as indicated (with respect to model parameters 
used in the run marked with *). 

Ts=-14  ~ and Mup=0.35 m yr -1. Integrations were carried out over 300 000 yr of 

simulated time. For Eo=400, no oscillations occurred. For Eo=300 m, however, a strong 

cyclic signal is produced. It has a period of  about 80 000 yr and ice volumes range over 

5x109 m 2. Note that the ice sheet never disappears completely: part of  the mountain 

range is always above the snow line. Further lowering of  the snow line leads to smaller 
periods. For Eo=100 m, the period is about 45 000 yr. 

I f  the snow4ine elevation is decreased another 100 m, the character of  the solution 

changes. Now the surface temperature, which is coupled to the snow line, is so low that 

basal melting is restricted to the central part of  the ice sheet. Melt water formed in the 

central part refreezes at the edges of the 'basallake', and no large-scale surges are produced. 

Figure 6 provides a closer look at the dynamics of  one cycle. It corresponds to the first 
70 000 yr of  the second run in Figure 5 (Eo=200 m). In this case, the production of  basal 
water starts after 30 000 yr, and reaches its largest values during the surge phase (which 

lasts comparatively short, but nevertheless takes thousands of  years). Total refreezing of 
the bot tom layer marks the start of  a new cycle. 

Free oscillations occur for a wide range o f  model parameters. As long as the snow line 
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Fig. 6. Close-up of a free oscillation. Solid lines show ice thickness in m; dashed lines amount of basal 
water in m. The picture corresponds to the curve in the upper left of Figure 5. 

is between certain limits (snow line too low: no basal melting; snow line too high: no 
large ice sheet), and (aB/aOO)rnax is above a critical value (which depends on other model 
constants), cyclic behavior is always encountered. The right-hand side of Figure 5 gives a 

few examples of model behaviour for other model parameters. 
The run marked with * serves as control run. Perturbed parameters are indicated in the 

figure. Smaller values of Bma x apparently lead to smaller amplitudes of the oscillation. 
For Bmax=25 m -3/2 yr -1, the oscillation is of a different nature. It is curious that a 

lower value of Bma x results in smaller maximum ice volumes. The reason for this is rather 

subtle: it appears that a large value for Bma x, as used in the control run, leads to such a 

strong increase (if melt water occurs) of the southward ice-mass discharge that the ice 

thickness near the equilibrium point (snow line - ice surface intersection) increases. So at 

first instance the ablation zone shrinks and the ice volume continues to grow! The s 
surge, when the basal water reaches the ice-sheet edge, is more vigorous in case of large 

Bmax, of course. 
The control run was also perturbed by changingMu_, the maximum ice-accumulation 

rate. For Mup=0.25 m yr -1 , the ice sheet does not reac~ the size necessary for the forma- 

tion of basal water. For Mup=0.45 m yr -1 , on the other hand, the cycle speeds up: the 

amplitude is larger now, and the period shorter (-~ 45 000 yr). 
It is obvious that in the present model free oscillations occur frequently. From the 

experiments it is also clear that model parameters can be chosen such that cycles with a 
period of 100 000 yr (and a sawtooth shape) are produced (the first run in Figure 5 comes 
close to it) In general, the period of the oscillation decreases with increasingM . Very �9 up 
long periods can be produced for small values of Mup and a very small slope of the snow 

line (otherwise, the ice sheet does not reach 'ice-age size'). 
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6. Response to Forcing 

The simplest way to force the model with the Milankovitch insolation variations is to set 
the snow-line elevation proportional to the caloric summer insolation at high latitudes. 
This yields the forcing shown in the top of Figure 7. Caloric summer insolation at 65 ~ N 
was computed from expansions of the earth's orbital parameters given by Berger (1978) 
and from standard formulas to calculate insolation (e.g. Sellers, 1965). 

All integrations shown in Figure 7 are started at 800 000 yr before present, with initial 
condition h=H=0. Runs a, b, and c only differ in the value ofM,~;other__ model parameters 

for these runs are Eo=300 m, Bmax=100 m -3/2 yr -1 , Ts=-14 C, a=0.5xl0 -3. Without 
any doubt, the simulated ice-volume curves are qualitatively similar to the oxygen isotope 

record shown in Figure 1. The response is quasi-periodic, and variations in ice volume 
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Fig. 7. Response o f  the  model  ice sheet  to Milankovitch forcing. The upper  curve shows the snow-line 
elevation with respect  to its mean  value. Curves a-c only differ in the  value o f M u p  , which is 0.4, 0.375,  
and 0.35 m yr -1 ,  respectively. The slope of  the snow 3 line for these runs  is 0 . 5 x 1 0 -  . Curve d shows 
the result  f rom a run  with Mup=0.25 m yr -1 . In this case the  slope o f  the snow line is 0 .45x10 -3 .  
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are generally on a larger time scale than the radiation variations. Also, the sawtooth shape 
of the glacial cycles is well-reproduced. The runs show that the model response is very 
sensitive to the maximum ice accumulation rate. A similar sensitivity is encountered 
when other model parameters are varied. So the model response is of a stochastic periodic 
nature: glacial cycles with a sawtooth shape and a duration of 70 000-130 000 always 
show up, but there phase is not very stable with regard to parameter variability. 

To illustrate that even longer cycles can be generated, curve d in Figure 7 shows the 
result of a run in which Mup=0.25 m yr -1 andia=0.4xl0 -3 . Other model parameters were 
not changed. In this case the model produces cycles with a duration of 200 000 yr! 

Finally, two integrations were carried out in which the snow.line elevation was decreased 
gradually according to Eo=500-t/5000, where Eo is in rn and t in yr. To be speculative, 
this could mimic a situation in which the northern hemisphere continents drift (strongly 
accelerated) in northward direction. Integrations were extended over 2 000 000 yr of 
simulated time, with the model parameters of run b in Figure 7. The results are shown in 
Figure 8. The upper curve shows a run without any additional forcing. Initially, a very 
small steady ice sheet is present over the mountains, but at a particular point the ice sheet 
starts to grow (a critical point in Figure 3 is passed) and free oscillations set in. The lower 
curve shows what happens when a white-noise forcing (standard deviation of snow-line 
elevation: 300 m for 2500 yr periods) is added. In that case glacial cycles occur earlier, 
and the first cycles have a longer period (close to 100 000 yr). So although environmental 
conditions change very slowly, the model ice sheet suddenly jumps into a glacial cycle 
regime of large amplitude. This feature is also found in many climatic records based on 
proxy data (e.g. Shackleton and Opdyke, 1973). 

7. Discussion 

The main conclusion of this study is that a continental ice-sheet model is capable of 
simulating the dominant characteristics of the global ice volume record. It appears that 
the dynamical interaction of ice thickness, bedrock sinking and heat accumulation in the 
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Fig. 8. Two long integrations in which the  snow-line elevation decreases slowly (at a rate of  1 m per 
5000 yr). The upper  curve is for the case wi thout  additional forcing. The lower curve shows what  
happens  ff addit ional white-noise forcing is applied. 
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ice sheet may create a more or less regular sequence of glacials and interglacials in which 

the famous sawtooth dominates. Although this is a promising result, a few reflections are 

useful. 
First of all, model results are not very stable with respect to parameter variability. 

However, there is no reason to consider this as a model deficiency. It is very well possible 

that the pleistocene climate has a large stochastic component, and is almost unpredictable. 
This is the reason why it is difficult to match in detail the model simulation with the 
observed ice-volume record. The model can be tuned in such a way that the last two or 
three glacial cycles are well reproduced, but further back in time the right phase of the 
cycles is lost (Pollard, 1982 encountered a similar problem). 

In general, tuning of the model is difficult because its behaviour is complex. This is 
due to the interaction of temperature field and ice flow. For example, an increase in 
Mup makes the ice sheet thicker (so it is more difficult for the geothermal heat to escape), 
increases the frictional dissipation (because the total ice flow through the ice sheet is 
larger), but also increases the downward advection of cold ice. The net effect on the basal 
temperature may thus vary from place to place. When the model is forced, i.e. when the 
snov~ line moves up and down, it is not only the varying mass balance that affects the 
evolution of the ice sheet. An increased snow-line elevation implies higher temperatures 
at the ice surface. Such a temperature perturbation needs time to reach the base of the 
ice sheet. Optimal conditions for ice-sheet decay occur when a positive temperature 
perturbation (originating from a previous warm period) travels downward during a period 
of small snow-line elevation and reaches the base when the snow line goes up again. In 
this case large ice-mass discharge coincides with high melting rates. However, this me- 
chanism is difficult to get hold on in tuning experiments, because the time necessary 
for the temperature perturbation to reach the base depends on ice thickness and accumula- 
tion rate. 

Bedrock sinking plays an important role in rapid deglaciations, because it keeps a large 
part of the ice surface below the snow line once deglaciation has started. The time scale 

for bedrock sinking is by no means crucial (as it would be for an ice sheet that is never 
subject to melting, see Oerlemans, 1980a). The deglaciations occurring in the model 

would be even more rapid if a 'floating ice condition' would be built in, i.e. if ice that 
floats would not be considered anymore as belonging to the continental ice sheet. Due 
to the lagged bedrock sinking, the southern edge is mainly below sea level if the ice 
sheet shrinks. However, this is a passive mechanism that does not trigger deglaciation 
but merely accelerates the decay. Another situation arises when the rigidity of the litho- 
sphere is taken into account. In that case the bedrock is also suppressed somewhat in 
front of the ice-sheet edge, and this may lead to high calving rates by invading water and 
initiate 'spontaneous' deglaciation. Pollard (1982) uses a scheme which yields this type 
of behaviour. Great care must be taken, however, if such processes are included in models 
with a fixed grid (in a simple scheme without special arrangements, a floating ice condi- 
tion only permits retreat of the grounding line once the bedrock is below sea level; 
advance is not possible, see Oerlemans, 1982). 

Still open to question is the role of the interaction between the Laurentide, Eurasian 



368 J. Oerlemans 

and Antarctic Ice Sheet. Budd (1981) has suggested that the 100 000 yr signal in the 

oxygen isotope record is completely due to variations in antarctic ice volume. It would be 
due to the fact that the Antarctic Ice Sheet needs about 70 000 yr to extend the grounded 

ice over the Ross and Weddell seas and to create conditions favourable for a major surge 

(initiated by rising sea level as a consequence of ice sheet decay in the Northern Hemi- 
sphere). Meanwhile, the Northern Hemisphere ice sheets would go through a number of 

full cycles (mostly three). Budd's suggestion is partly based on results of a model study 

of the Laurentide Ice Sheet (Budd and Smith, 1981). In this study an ice flow model was 

tuned in such a way that ice sheets of ice-age size were produced and disappeared again, 
without thermodynamic effects. This model did not generate 100 000 yr power, however. 

More detailed modeling of the Antarctic Ice Sheet is needed to see whether the antarctic 

ice volume reacts in such a way that it generates the 100 000 yr power in oxygen isotope 
spectra. In addition to this, it is unlikely that the evolution of the Laurentide and Eurasian 

ice sheets is always in phase. If the growth of one of them lags the other one in some- 
thing like a regular sequence, a long time scale is added to the climate system. Before 

such effects can be modeled, we need to know much more about the factors that are 

decisive in the initiation of an ice sheet. 
This brings us back to the uncertainty concerning the slope and mean elevation of the 

snow line. In short, one can state that variance of ice volume on larger time scales is 
produced when the slope of the snow line is smaller. In the case of small slope, a larger 

value of Eo (which is much more in accordance with present-day conditions) can be used 

while the model still produces ice sheets of ice-age size. It appears that models using a 

steep snow line and, consequently, a small value for Eo, have difficulties in producing 

real interglacials (zero ice volume for some time). It therefore seems more likely that in 

the presence of growing ice sheets the slope of the snow line is smaller than present-day 

observations on mountain glaciers would suggest. It is not difficult to imagine that this 

might be the case. The ice sheet will exert a strong influence on its climatic environment, 

and some indication exists (Oerlemans and Vernekar, 1981) that accumulation over the 

southern part of a Northern Hemisphere ice sheet increases when it becomes larger 

(which effectively implies a reduction of the slope of the snow line). 
In conclusion, this study has shown that a Northern Hemisphere ice-sheet model is 

capable of producing an ice-volume record that is similar in character to the record 

inferred from proxy data. Glacial cycles of long duration and asymmetric shape occur 
even without external forcing. The model results further indicate that the 'predictability' 
of global ice volume is rather low, due to the presence of nonlinear instabilities (in 
particular, basal sliding). If  such an instability occurs, the model forgets the history of 

the ice sheet. Predictability should thus come from the direct model response to the 
Milankovitch forcing, which, according to this study, does certainly not explain the bulk 

of the variance in the global ice volume record. 
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Appendix 

In this Appendix the thermodynamic part of the ice-sheet model is discussed and illus- 
trated by a few simple model calculations. 

The heat equation for a continuum reads 

dO 
- kV20 + Q/pc. (A1) 

dt 

Here, 0 is temperature, t is time, k the thermal conductivity, p density, c specific heat 
and Q the internal heat generated by velocity shear. A numerical solution in two-dimen- 
sional space is generally obtained by employing a two-dimensional grid. However, this is a 
(computer) time consuming procedure. Given the comparatively smooth temperature 
profiles observed in ice sheets and the fact that this paper deals with a very schematic 
ice-sheet model anyway, a more efficient approach is possible. 

Expanding the ice temperature 0 in powers of h', the height above the bedrock, and 
retaining three terms yields 

O(h', t) = Oo(t) + O, (Oh' + 02(t)h '2 . (A2) 

So it is assumed that the vertical temperature profile can be described by a second-order 
polynomial. Three equations are needed for 0x, 02, and 03 (spectral equations, in fact). 
These equations can be obtained from the lower and upper boundary condition, and from 
the vertically-integrated form of the heat equation. 

As lower boundary condition the upward heat flux G (the geothermal heat flux) at 
the base of the ice sheet (h'=0) is prescribed. This immediately yields 

01 = - G / k  . (A3) 

So if the geothermal heat flux is constant, 01 is also constant. At the surface (h'=/-/) the 
ice temperature is set equal to the annual air temperature T a. From Equations (A2) and 
(A3) it then follows that 

02 = (T  a - Oo + GH/k)/I-I 2 . (A4) 

To obtain the third equation, which should guarantee the conservation of heat, Equation 
(A1) is integrated from h'=O to h'=H: 

H H 
H a0 f 3 0 d h ' =  k 30 + C - f w ~ - ~ ,  d h ' -  

0 ~t 3h' 0 

H H 
Q dh' (A5) - f u(h') 30 dh' + f pc " 

0 3x 0 
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Diffusion in horizontal direction is omitted, because it is negligable compared to the 
advection of heat. At this point it is necessary to prescribe the profiles of u and w, being 
the horizontal and vertical velocity respectively. For the present purpose it is sufficiently 
accurate to assume that the horizontal velocity profile is parabolic, i.e. 

- 3 h,l121H312 u - ~ (u), 

where (u) is the vertical mean horizontal velocity (as computed from the flow law, see 
section on model description). Since ice can be considered incompressible, it follows from 
the two-dimensional continuity equation that w varies with h On. Therefore it makes 
sense to write W=WH(h/H)On , where w H is the vertical velocity at the surface. 

AU terms in Equation (A5), except the internal generation of heat, can now be expressed 
in the coefficients 0i(t ). Eliminating 01 and 02 with Equations (A3) and (A4)yields, 
after considerable algebraic manipulation, an equation for the basal temperature 00. It 
reads 

~ H  00o 
at 

Oo ( w .  - - :   i-i  I-i + 

 H--+2G+r k/H- T - Ifl GH/k- 
at 

(A7) 

H 
+ (-~Q dh' .  

~o pc . 

The surface vertical velocity is given by (h' is positive upwards, so downward velocity is 
negative) 

w H = - M +  O H + u r i a H  at + s ,  (AS) 

where u H is the horizontal velocity at the surface, M the ice accumulation rate at the 
surface and S the melting rate at the base (which is small compared to the other terms). 
It should be noted that w H is the vertical velocity relative to the vertical velocity due to a 
sloping bedrock (i.e. relative to UH(ah/Ox ). Also, in the derivation sketched above u is 
in fact the velocity parallel to the local bedrock. 

The last term in Equation (A7), the vertically-integrated frictional heating, can be 
computed from the release of potential energy in an ice column by downward motion. 
This is possible because the amount of kinetic energy associated with the ice flow is much 
smaller than the potential energy. It leads to 

H H 
_ ~ [2 If Oh ) (A9) f Q~dh' = -  ! f p g w ,  dh'= c t  ~- H + ( U ) ~  x . 

pc 0 pc 0 
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Now it is important to use the 'absolute' vertical velocity w (in rigid motion of ice down 
a slope potential energy is released!). In practice, the <u>ah/ax term is smaller than the 
other tenn. 
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Fig. A1. The effect of  t runcat ion errors on the solution o f  the the rmodynamic  equation.  The error 
is damped when the model  ice sheet approaches a steady state. 
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Fig. A2. A typical example of  a temperature  field calculated with the  m e t h o d  described here. In this 
example,  the model  is run to a steady state for a fixed snow line (without  bedrock adjustment) .  To 
prevent  the occurrence o f  basal melting, a low value for the temperature  at the snow line has been 
used. 
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The rate of basal melting is computed by requiring that, as soon as 0o equals the 
melting point (corrected for hydrostatic pressure), all surplus energy is used for melting. 
On the other hand, when basal water is present and the basal temperature tends to drop 
below the melting point, refreezing takes place. If sufficient melt water is present to 
permit basal sliding, part of the vertically-integrated frictional heating is used for additional 
melting of ice. This part varies between 0 and 50%, and is a piecewise linear function of 

the flow constant B: 0% for B=Bmi n and then increasing to 50% for B=Bma x. 
No attempt was made to include a separate thermodynamic calculation in case of 

substantial sliding, in which case the velocity profiles are different. The reason for this is 

that also in the case without sliding most of the velocity shear is found in the lower 
layers. So in case of basal sliding horizontal velocities are larger (up to twice the regular 

'frozen-to-the-bedrock' mean velocities), but all assumptions made in the foregoing 

discussion are retained. 
The equation for 0o is integrated on the same grid as used for the ice-flow model (see 

section on Model description). Several schemes for the integration in time were explored. 
It appeared that the Lax-Wendroff scheme (e.g. Mesinger and Arakawa, 1976) performed 
best. Although this scheme turned out to be numerically stable, some curious things did 
happen. This is illustrated in Figure A1, where 00 is shown as a function of horizontal 
distance x at various time. It concerns an ice sheet that grows southwards from x=0 
(southern coast of the polar sea, say) to a steady state. The prescribed mass balance is 
constant. It is evident that large temperature fluctuations are created by the advancing 
snout of the ice sheet. If the sheet becomes steady, the fluctuations are damped. 

A closer look at this problem revealed that these temperature fluctuations are caused 
by truncation errors. Assuming that the geothermal heat flux is constant (so ~01/~x=0), 

the advection can be written 

1 

In order to meet the boundary conditions, 02 becomes very large if the ice thickness is 
small (if the ice edge advances, ice thicknesses of a few meters appear in the model). In 
reality the second term within the square brackets does not vary too much near the edge 

because smaller values of / /2  are associated with larger values of a02/ax. However, in the 
model the truncation error in a02/~x becomes so large that this compensation is not 
present. As a consequence, large differences in/-/2 ~02/ax appear between the grid points 

nearest to the edge. 
To solve this problem, a maximum value of 15x10 -6 ~ was set to 02. With this 

condition included the scheme performed quite well. The conservation of heat is not 
seriously violated by this procedure, because larger values of 02 only appear in one or 
two grid points where the ice thickness is very small. 

Finally, a typical temperature distribution as calculated by the model described here 
is shown in Figure A2. The field is dominated by the vertical temperature gradient and 
tongues of cold ice pointing to the edges of the ice sheet. This is in full accordance with 

observations on present-day ice sheets (e.g. Paterson, 1980). 

(Received September 16, 1981; in revised form April 22, 1982). 



Glacial Cycles and Ice-Sheet Modelling 3 73 

References 

Ambach, W.: 1972, 'Zur Sch~itzung der Eis-Nettoablation im Randgebiet des Gr~Snlandischen Inland- 
eises', Polarforschung 42, 18-23.  

Andrews, J. T. and Manhaffy, M. A. W.: 1976, 'Growth Rate of the Laurentide Ice Sheet and Sea- 
Level Lowering (With Emphasis on the 115 000 BP Sea Level Low)', Quaternary Res. 6, 167-183.  

Berger, A. L.: 1978, 'Long-Term Variations of Daily Insolation and Quaternary Climatic Changes', 
J. Atmos. Sci. 35, 2362-2367.  

Birchfield, G. E.: 1977, 'A Study of the Stability of a Model Continental Ice Sheet Subject to Periodic 
Variations in Heat Input ' ,J .  Geophys. Res. 82, 4909-4913.  

Birchfield, G. E. and Weertman, J.: 1978, 'A Note on the Spectral Response of a Model Continental 
Ice Sheet', J. Geophys. Res. 83, 4123-4125.  

Birchfield, G. E., Weertman, J., and Lunde, A. T.: 1981, 'A Paleoclimatic Model of the Northern 
Hemisphere Ice Sheets', Quaternary Res. (in press). 

Bodvarsson, G.: 1955, 'On the Flow of Ice Sheets and Glaciers', J6kull 5, 1-8. 
Budd, W. F.. 1981, 'The Importance of Ice Sheets in Long Term Changes of Sea Level and Climate', 

IAHS Pub. No. 131,441-471. 
Budd, W. F. and Smith, I. N.: 1981, 'The Growth and Retreat of Ice Sheets in Response to Orbital 

Radiation Changes', 1AHS Pub. No. 131,369-409. 
Budd, J. F. and Mclnnes, B.: 1975, 'Modelling of Periodically Surging Glaciers', Science 186, 925-927.  
Budyk% M. I.: 1969, 'The Effect of Solar Radiation Variations on the Climate of the Earth', Tellus 

21 ,611-619 .  
Coakley, J. A. and Wielicki, B.: 1979, 'Testing Energy Balance Climate Models', s Atmos Sci. 36, 

2031-2039.  
Dool, H. M. van den: 1980, 'On the Role of Cloud Amount on an Energy-Balance Model of the Earth's 

Climate', J. Atmos. Sei. 37 ,939-946 .  
Gal-Chen, T. and Schneider, S. H.: 1976, 'Energy Balance Climate Modeling: Comparison of Radiative 

and Dynamic Feedback Mechanisms', Tellus 28, 108-121. 
Ghil, M. and Le Treut, H.: 1981, 'A Climate Model with Cryodynamics and Geodynamics',J. Geophys. 

Res. 86, 5262-5270.  
Hartmann, D. L. and Short, D. A.: 1979, 'On the Role of Zonal Asymmetries in Climatic Change', 

J. Atmos. ScL 36 ,519-528 .  
Hays, J. D., Imbrie, J., and Shackleton, N. G.: 1976, 'Variations in the Earth's Orbit: Pacemaker of 

the Ice Ages', Science 194, 1121-1132.  
Howard, L. N.: 1979, 'Nonlinear Oscillations', in Hoppensteadt (ed.),Nonlinear Oscillations in Biology, 

Lectures in Applied Mathematics, Vol. 17, American Mathematical Society, 253 pp. 
Imbrie, J., Donk, J. van, and Kipp, N. G.: 1973, 'Paleoclimatic Investigation of a Late Pleistocene 

Carribean Deep-Sea Core: Comparison of Isotopic and Faunal Methods', Quaternary Res. 3, 10-  
38. 

Jenssen, D.: 1977, 'A Three-Dimensional Ice Sheet Model',J. Glaciology 18, 373-390.  
Kgllen, E., Crafoord, C., and Ghil, M.: 1979, 'Free Oscillations in a Climate Model with Ice-Sheet 

Dynamics',J. Atmos. ScL 36, 2292-2303.  
Lliboutry, L.: 1966, 'Bottom Temperatures and Basal Low-Velocity Layer in an Ice Sheet',J. Geophys. 

Res. 71, 2535-2543.  
Lindzen, R. S. and Farrell, B.: 1977, 'Some Realistic Modifications of Simple Climate Models', J. 

Atmos. Sci. 34, 1487-1501.  
Mesinger, F. and Arakawa, A.: 1976, 'Numerical Methods Used in Atmospheric Models', Vol. 1. 

GARP Publication Ser. No. 1 7, 64 pp. 
Nicolis, C. and Nicolis, G.: 1981, 'Stochastic Aspects of Climatic Transitions - Additive Fluctuations', 

Tellus 33 ,225-234 .  
North, G. R. and Coakley, J. A.: 1979, 'Differences Between Seasonal and Mean Annual Energy 

Balance Model Calculations of Climate and Climate Sensitivity', J. Atmos. Sci. 36, 1189-1204. 
Oerlemans, J.: 1980a, 'Model Experiments on the 100 000-yr Glacial Cycle', Nature 287, 430-432.  
Oerlemans, J.: 1980b, 'On Zonal Asymmetry and Climate Sensitivity', Tellus 32 ,489-499 .  
Oerlemans, J.: 1980c, 'Continental Ice Sheets and the Planetary Radiation Budget', Quaternary Res. 

14 ,349-359 .  



374  J. Oerlemans 

Oerlemans, J.: 1981, 'Some Basic Experiments with a Vertically-Integrated Ice Sheet Model', Tellus 
33, 1-11.  

Oerlemans, J.: 1982, 'Response of the Antarctic Ice Sheet to a Climatic Warming: A Model Study', 
J. Climatology 2, 1-11.  

Oerlemans, J. and Vernekar, A. D.: 1981, 'A Model Study of the Relation Between Northern Hemi- 
sphere Glaciation and Precipitation Rates', Contr. Atm. Phys. 54 ,352-361 .  

Paterson, W. S. B.: 1969, The Physics of Glaciers, Pergamon Press, 250 pp. 
Paterson, W. S. B.: 1981, 'Ice Sheets and Ice Shelves', in Colbeck (ed.), Dynamics of Snow and Ice 

Masses, Academic Press, 468 pp. 
Pollard, D.: 1978, 'An Investigation of the Astronomical Theory of the Ice Age Using a Simple Climate- 

Ice Sheet Model',Nature 272, 233-235.  
Pollard, D., Ingersoll, A. P., and Lockwood, J. G.: 1980, 'Response of a Zonal Climate-Ice Sheet 

Model to the Orbital Perturbations During the Quaternary Ice Ages', Tellus 32, 301-319.  
Pollard, D.: 1982, 'A Simple Ice-Sheet Model Yields Realistic 100 k yr Glacial Cycles', Nature 272, 

233-235.  
Putnins, P.: 1970, 'The Climate of Greenland', in Orvig (ed.), World Survey of Climatology, Elsevier, 

Vol. 14,128 pp. 
Saltzman, B., Sutera, A., and Evenson, A.: 1981, 'Structural Stochastic Stability of a Simple Auto- 

Oscillatory Climatic Feedback System', J. Atmos. Sci. 38, 494-503.  
Shackleton, N. G. and Opdyke, N. D.: 1973, 'Oxygen Isotope and Paleomagnetic Stratigraphy of 

Equatorial Pacific Core V28-238:  Oxygen Isotope Temperatures and Ice Volumes on a 105 and 
106 yr Scale', Quaternary Res. 3, 39-55 .  

Shackleton, N. G. and Opdyke, N. D.: 1976, 'Oxygen Isotope and Paleomagnetic Stratigraphy of 
Pacific Core v28-239,  Late Pliocene to Latest Pleistocene', Geol. Soc. Am. Mere. 145,449-464.  

Schneider, S. H.: 1972, 'Cloudiness as a Global Feedback Mechanism: The Effects on the Radiation 
Balance and Surface Temperature of Variations in Cloudiness', J. Atmos. Sci. 29, 1413-1422. 

Sellers, W. D.: 1969, 'A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere 
System', J. Applied. Meteor. 8, 392-400.  

Sergin, V. Y.: 1979, 'Numerical Modelling of the Glaciers-Ocean-Atmosphere Global System', J. 
Geophys. Res. 84, 3191-3204.  

Sutera, A.: 1981, 'On Stochastic Perturbation and Long-Term Climate Behaviour', Quart. J. Roy. Met. 
Soc. 107, 137-152.  

Turcotte, D. L.: 1979, 'Flexure', Advances in Geophysics 21, 51-86 .  
Warren, S. G. and Schneider, S. H.: 1979, 'Seasonal Simulation as a Test for Uncertainties in Para- 

meterizations of a Budyko-Sellers Zonal Climate Model', Z Atmos. Sci. 36, 1377-1391. 
Weertman, J.: 1961, 'Stability Of Ice-Age Ice Sheets', J. Geophys. Res. 66, 3783-3792. 
Weertman, J.: 1966, 'Effect of a Basal Water Layer on the Dimensions of Ice Sheets', J. Glaciol. 6, 

191-207.  
Weertman, J.: 1976, 'Milankovitch Solar Radiation Variations and Ice Age Ice Sheet Sizes', Nature 

261, 17-20.  


