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ABSTRACT
Generic Haskell is an extension of Haskell that supports the
construction of generic programs. During the development
of several applications, such as an XML editor and compres-
sor, we encountered a number of limitations with the exist-
ing (Classic) Generic Haskell language, as implemented by
the current Generic Haskell compiler. Specifically, generic
definitions become disproportionately more difficult to write
as their complexity increases, such as when one generic func-
tion uses another, because recursion is implicit in generic
definitions. In the current implementation, writing such
functions suffers the burden of a large administrative over-
head and is at times counter-intuitive. Furthermore, the
absence of type checking in the current implementation can
make Generic Haskell hard to use.

In this paper we develop the foundations of Dependency-
style Generic Haskell which addresses the above problems,
shifting the burden from the programmer to the compiler.
These foundations consist of a full type system for Depen-
dency-style Generic Haskell’s core language and appropriate
reduction rules. The type system enables the programmer to
write generic functions in a more natural style, taking care of
dependency details which were previously the programmer’s
responsibility.

Categories and Subject Descriptors
D3.3 [Programming Languages]: Language constructs
and features

General Terms
Languages, Design, Theory

Keywords
Generic Haskell, Generic programming, functional program-
ming, type systems
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1. INTRODUCTION
Generic programming simplifies a programmer’s job. No

more need a programmer write functions such as map or
fold or pretty print for her data structures. These can be
written once and for all as a generic definition and applied
automatically to all of the programmer’s datatypes, even as
those datatypes evolve.

In Classic Generic Haskell, a Haskell extension based on
ideas due to Hinze [13, 16, 18], generic functions can be writ-
ten which are applicable to Haskell datatypes of all kinds.
Generic functions are easy to write. Cases are supplied for
sums and products, for the unit datatype, for primitives,
and for constructors. The type of each case follows a partic-
ular pattern. To produce a generic instance for some type,
Hinze’s theory dictates how a compiler assembles cases to-
gether following the structure of the type to produce well-
typed code.

We have experimented quite a lot with the Classic Generic
Haskell compiler and implemented a number of advanced
generic programs such as digital searching, the zipper, and
XML tools such as a compressor, an editor, and a database.
For all Classic Generic Haskell’s simplicity, however, some
complexity remains to hamper us as soon as we write generic
functions for these more involved applications. Rather than
write generic definitions in the natural recursive style mod-
ern programmers are accustomed to, as in

map〈Prod a b〉 (a, b) = (map〈a〉 a,map〈b〉 b),

the theory underlying Classic Generic Haskell dictates that
we supply additional parameters for the recursive invoca-
tions of generic functions, as in

map〈Prod〉 mapa mapb (a, b) = (mapa a,mapb b).

The additional arguments mapa and mapb are used to de-
note the recursive instances of map at the types for the
arguments of the product. These function arguments are
supplied with the appropriate value when the compiler gen-
erates code.

When using a generic function that depends upon another
generic function, the number of parameters increases and
functions must be tupled together, and unpacked when re-
quired. We must write something like

foobar〈Prod〉 (fooa, bara) (foob, barb) (x , y) =
(definition of foo, definition of bar)

rather than the more natural

foo 〈Prod a b〉 (x , y) = definition of foo
bar〈Prod a b〉 (x , y) = definition of bar .



The reason for the complications is that we do not have
access to the type arguments, only to the recursive calls
of the function being defined. That means, for instance,
that we cannot access bar〈a〉 while defining foo〈Prod〉 as a
stand-alone function. The language forces the function into
the structure of a catamorphism, but sometimes this fixed
recursion pattern is not a good match for the algorithm one
wants to implement, resulting in unnecessarily complex and
nearly unmaintainable code.

Our present goal is to move this complexity from the user
to the compiler. This shift enables the programmer to write
her code in a natural style, leaving the dependency con-
straints to the type system. The result is not only a ratio-
nal reconstruction of Classic Generic Haskell, which we dub
Dependency-style Generic Haskell, in doing so we gain in
expressivity, enabling examples which were previously only
possible using unnatural coding practices.

From a larger perspective, we provide a firm founda-
tion which not only goes beyond the foundation for Clas-
sic Generic Haskell, but opens the door to tackle problems
which had previously seemed too far off. Future possibilities
include better support for type-indexed types, higher-order
and locally defined generic functions, dependency inference,
type inference of kind-? type arguments, generic functions
based on kinds other than ?, and pattern matching on type
arguments.

The paper is organized as follows. Section 2 presents some
motivating examples. Section 3 describes the core calcu-
lus. Section 4 presents type rules for checking well-formed
expressions along with their dependency information. Sec-
tion 5 gives the reduction semantics of the calculus. Sec-
tion 6 describes related work. Section 7 discusses what we
have achieved here, and points to future work.

In this paper we use Classic Generic Haskell to refer to
earlier versions of Generic Haskell, as implemented in the
Amber and Beryl [5] versions of the compiler. This paper de-
scribes the foundations of Dependency-style Generic Haskell.
When no confusion will arise, we use Generic Haskell to refer
to Dependency-style Generic Haskell.

2. EXAMPLES
This section introduces Dependency-style Generic Haskell

through a number of examples.

2.1 Generic equality
The equality function takes two values of a datatype and

compares them. In Haskell the equality function can be
derived for a user-defined datatype, as in

data Bush = Leaf Int | Bin Bush Bush deriving Eq .

In Generic Haskell we can define the generic equality func-
tion. A datatype consists essentially of sums, products, base
types like Int , and a unit type. Sums, products and unit can
be viewed as Haskell datatypes as follows:

data Unit = Unit
data Sum a b = Inl a | Inr b
data Prod a b = (a, b).

We need to define equality only on these types to obtain
an equality function for an arbitrary datatype. In Classic

Generic Haskell, this is coded as follows.

type Eq〈〈?〉〉 t = t → t → Bool
type Eq〈〈κ1 → κ2〉〉 t = ∀u.Eq〈〈κ1〉〉 u → Eq〈〈κ2〉〉 (t u)

eq〈t :: κ〉 :: Eq〈〈κ〉〉 t
eq〈Int〉 i j = eqInt i j
eq〈Unit〉 Unit Unit = True
eq〈Sum〉 eqa eqb (Inl a) (Inl a ′) = eqa a a ′

eq〈Sum〉 eqa eqb (Inr b) (Inr b′) = eqb b b′

eq〈Sum〉 eqa eqb = False
eq〈Prod〉 eqa eqb (a, b) (a ′, b′) = eqa a a ′ ∧ eqb b b′

This definition consists of a kind-indexed type, a type signa-
ture assigning the kind-indexed type to eq , and several cases
defining eq for the basic datatypes. Using this definition,
the Classic Generic Haskell compiler generates a definition
of eq〈Bush〉, which is used to compare two Bush values [18].

The function eq is a generic function which recurses over
the type structure of its argument type. The recursion
is implicit in the arguments eqa and eqb in the Sum and
Prod cases. We would rather write the following definition,
which is how we define equality in Dependency-style Generic
Haskell.

eq〈Int〉 i j = eqInt i j
eq〈Unit〉 Unit Unit = True
eq〈Sum δa δb〉 (Inl a) (Inl a ′) = eq〈δa〉 a a ′

eq〈Sum δa δb〉 (Inr b) (Inr b′) = eq〈δb〉 b b′

eq〈Sum δa δb〉 = False
eq〈Prod δa δb〉 (a, b) (a ′, b′) = eq〈δa〉 a a ′ ∧ eq〈δb〉 b b′

The recursion over the type structure is explicit: the case
eq〈Prod δa δb〉 is expressed in terms of eq〈δa〉 and eq〈δb〉. We
think this style is more readable, especially when a generic
function depends on another generic function. Functions
written in the this style can be translated to the former style,
so no expressiveness is lost; the only difference is readability.

We write δa for a type variable that appears in a type
index and call it a dependency variable. Thus we syntac-
tically distinguish quantified type variables from type vari-
ables that may appear in a type index. It is not necessary
to make this distinction, but it simplifies the terminology in
later discussions. A dependency variable introduces a de-
pendency. For example, if we write eq〈List δa〉, then this
function depends on the function eq〈δa〉. “Depending on”
means that in order to call function eq〈List δa〉 on two lists,
we need a function eq〈δa〉 that determines equality of the
values in the list, as in the following example,

(let eq〈δa〉 = λx → λy → eqInt x y in
eq〈List δa〉 [1, 2, 3] [1, 2, 3],

let eq〈δa〉 = λc → λd → toUpper c ≡ toUpper d in
eq〈List δa〉 "Hello" "HELLO")

which has value (True,True).
The type of the Classic (i.e., the first) version of eq is

the kind-indexed type Eq . Consider the case eq〈Prod〉. The
product type has kind ? → ? → ?, and hence eq〈Prod〉 takes
an equality function for the left component of the prod-
uct, and an equality function for the right component of
the product, and only then takes two product values. The
second line of a kind-indexed type has the same structure
for any implicitly recursive generic function. The type of
equality on a type of kind κ1 → κ2 is a function from the
type of equality for kind κ1 to the type of equality for kind



κ2. This structure is enforced by the translation method
used in Generic Haskell. In the case of the dependency-style
definition, a type index always has kind ?, but in turn may
contain dependency variables, so a kind-indexed type in the
classic sense is not an option. If we ignore dependency vari-
ables, we have the following type for function eq on types t
of kind ?.

eq〈t〉 :: t → t → Bool

If a type argument of a generic function contains a depen-
dency variable, and the generic function uses a (possibly
different) generic function in its definition, then the type
records a dependency constraint for the dependency vari-
able. For example, the generic function eq only uses itself,
so for the type List δa we get the following type.

eq〈List δa〉 :: ∀a.(eq〈δa〉 :: a → a → Bool) ⇒
List a → List a → Bool

It turns out that all information about the type of a generic
function can be calculated from the base case for a single
dependency variable of kind ?. For eq this is

eq〈δa〉 :: ∀a.(eq〈δa〉 :: a → a → Bool) ⇒ a → a → Bool .

The type of eq on a type with a kind other than ?, possibly
containing many dependency variables, is a generalization
of this type. We make this explicit by abstracting over the
types a and δa using the generalize construct, and applying
the expression obtained to the type on which we want an
instance of the equality function.

eq〈t〉 :: (generalize 〈δa〉 a 7→
(eq〈δa〉 :: a → a → Bool) ⇒ a → a → Bool) t

In Section 4 we explain how to calculate instances of a gen-
eralized type.

2.2 Huffman coding in XComprez
XComprez is a generic compressor for XML documents

[12]. XComprez separates an XML document into its struc-
ture (the markup) and its contents (the strings). The DTD
that describes the structure of the document is translated
to a Haskell datatype, and the structure of the document
is translated to a value of this datatype. Using knowledge
about the DTD (and the datatype to which it is translated),
the structure of an XML document can be compressed con-
siderably; the contents are compressed by means of a stan-
dard compressor.

To improve the compression of the contents, we apply the
following variant of Huffman coding. Given an input value,
we calculate the number of occurrences of each constructor.
Given the number of occurrences of each constructor, we
calculate the optimal Huffman encoding for the particular
value, and we encode the value using this encoding.

The function conCount calculates the number of occur-
rences of each constructor in a value of a datatype:

conCount〈t〉 :: (generalize 〈δa〉 b 7→
(conCount〈δa〉 :: b → [(ConDescr , Int)])

⇒ b → [(ConDescr , Int)]) t .

The function conCount is used in encode

encode〈t〉 :: (generalize 〈δa〉 b 7→
(conCount〈δa〉 :: b → [(ConDescr , Int)],
encode ′〈δa〉 :: b → [(ConDescr , Int)] → [Bit ])

⇒ b → [Bit ]) t

encode〈δa〉 x = let table = conCount〈δa〉 x in
encode ′〈δa〉 table x ,

where encode ′ is the generic function that encodes each con-
structor as a list of bits [12]. This is an example of a generic
abstraction [6]: a generic function defined in terms of one
or more other generic functions instead of recursively over
the type structure. Function encode is an example where
the dependency constraints contain dependencies on other
generic functions, unlike function eq which only contains the
constraint that is identical to the type itself.

2.3 Pretty-printing “important” information
Suppose we want to pretty-print a value of a datatype, but

only parts which satisfy some condition. For example, we
only want to print trees that have at least a certain height,
or we only want to print balanced trees. Suppose we have a
generic function important that determines whether or not
to print a subtree.

important〈t〉 :: (generalize 〈δa〉 b 7→
(important〈δa〉 :: b → Bool) ⇒ b → Bool) t

The function print depends on function important .

print〈Int〉 = printInt
print〈Unit〉 = printUnit
print〈Sum δa δb〉 (Inl a) =

if important〈δa〉 a then print〈δa〉 a else "..."

print〈Sum δa δb〉 (Inr b) =
if important〈δb〉 b then print〈δb〉 b else "..."

print〈Prod δa δb〉 (a, b) =
if important〈δa〉 a
then if important〈δb〉 b then print〈δa〉++ print〈δb〉 b

else print〈δa〉 a ++ "..."

else if important〈δb〉 b then "..." ++ print〈δb〉 b
else "..."

The dependency shows in the type of function print :

print〈t〉 :: (generalize 〈δa〉 b 7→
(important〈δa〉 :: b → Bool , print〈δa〉 :: b → String)

⇒ b → String) t .

This is an example of a generic function defined recursively
over the type structure, which depends on another generic
function. In Classic Generic Haskell, we would have to pair
the definitions of print and important , defining two essen-
tially separate aspects at the same time.

2.4 Traversal functions
To illustrate the extensibility Generic Haskell provides,

we present a series of modifications to a running example.
Adapting from Lämmel and Peyton Jones [25], we use the



following datatypes to represent the organizational structure
of a company.

data Company = C [Dept ]
data Dept = D Name Manager [SubUnit ]
data SubUnit = PU Employee | DU Dept
data Employee = E Person Salary
data Person = P Name Address
data Salary = S Float
type Manager = Employee
type Name = String
type Address = String

Update Salaries.We wish to update a Company value,
which involves giving every Person a 15% pay rise. To do so
requires visiting the entire tree and modifying every occur-
rence of Salary . The implementation requires pretty stan-
dard “boilerplate” code which traverses the datatype, until
it finds Salary , where it performs the appropriate update—
itself one line of code—before reconstructing the result.

In Generic Haskell writing this function requires but a few
lines. The code is based on the standard generic map:

map〈t〉 :: (generalize 〈δa〉 a1 a2 7→
(map〈δa〉 :: a1 → a2) ⇒ a1 → a2) t t

map〈Unit〉 v = v
map〈Int〉 v = v
map〈Sum δa δb〉 (Inl a) = Inl (map〈δa〉 a)
map〈Sum δa δb〉 (Inr b) = Inr (map〈δb〉 b)
map〈Prod δa δb〉 (a, b) = (map〈δa〉 a,map〈δb〉 b).

The generalized type of map takes two arguments so that it
can be used in the type modifying way we are used to. With
only one argument it would degenerate to the generic iden-
tity function [14]. This is our first example of a generalized
type that takes more than one type argument.

The code to perform the updating is given by the following
three lines, the first of which is the necessary type signature,
the second states that the function is based on map, though
it introduces an additional parameter which is automatically
threaded through the computation, and the third performs
the update of the salary, using the threaded value. The
extends construct denotes that the cases of map are copied
into update. These are the default cases described in Clarke
and Löh [6]. (This is, in effect, a preprocessing step and
thus extends does not appear in the calculus.)

update〈t〉 :: (generalize 〈δa〉 a 7→
(update〈δa〉 :: Float → a → a) ⇒ Float → a → a) t

update〈δa〉 p extends map〈δa〉
update〈Salary〉 p (S s) = S (s · (1 + p))

The introduction of the new threaded variable p is impos-
sible in Classic Generic Haskell. Being able to do this is a
small but significant advance over our previous work.

Update “Update Salaries”.Political forces require that
the code be changed so that only marketing gets a raise, of
25%, as well as giving a certain manager a 10% raise. Being
versed in generic programming enables the programmer to

update the previous code as follows:

updateNew〈t〉 :: (generalize 〈δa〉 a 7→
(updateNew〈δa〉 :: Float → a → a) ⇒ Float → a → a) t
updateNew〈δa〉 extends update〈δa〉
updateNew〈Dept〉 p (D name manager subunits) =
let newp = if name ≡ "marketing" then 0.25 else p in
D name manager (updateNew〈SubUnit〉 newp subunits)

updateNew〈Employee〉 p (E person salary) =
let newp = if person ≡ daevclarke then 0.1 else p in
E person (updateNew〈Salary〉 newp salary).

Separating Matching from Updating.Understanding the
social nature of management structures, the programmer
writes her code more generally by separating the updating
of salaries from the code which determines who gets what
pay rise.

A match function performs a test on a part of the or-
ganizational structure. The result of the function is one of:
NoMatch indicating that no work need be done to that part;
Value n indicating that the value, presumably the amount
of the pay rise, needs to be applied to this part of the tree;
and finally Inconsistent indicating that different subparts of
the same part require different inconsistent updates—which
requires recursion to further distinguish the parts. This is
captured using the following datatype and operation:

data Data a = NoMatch | Value a | Inconsistent
(./) :: (Eq a) ⇒ Data a → Data a → Data a
NoMatch ./ NoMatch = NoMatch
(Value a) ./ (Value b) = if a ≡ b thenValue a

else Inconsistent
./ = Inconsistent .

Using the generic function known as crush, which is a gen-
eralization of fold ,

crush〈t〉 :: (generalize 〈δa〉 a 7→
(crush〈δa〉 :: b → (b → b → b) → a → b)

⇒ b → (b → b → b) → a → b) t
crush〈Unit〉 e op = e
crush〈Int〉 e op = e
crush〈Sum δa δb〉 e op (Inl a) = crush〈δa〉 e op a
crush〈Sum δa δb〉 e op (Inr b) = crush〈δb〉 e op b
crush〈Prod δa δb〉 e op (a, b) = op (crush〈δa〉 e op a)

(crush〈δb〉 e op b),

the basis for all match functions is

matchBase〈t〉 :: (generalize 〈δa〉 a 7→
(matchBase〈δa〉 :: a → Data b) ⇒ a → Data b) t

matchBase〈δa〉 extends crush〈δa〉 NoMatch (./).

This match function can be specialized to perform the match
that we are interested in, as follows.

match〈t〉 :: (generalize 〈δa〉 a 7→
(match〈δa〉 :: a → Data Float) ⇒ a → Data Float) t

match〈δa〉 extends matchBase〈δa〉
match〈Dept〉 (D name ) =
if name ≡ "marketing" then (Value 0.25) else NoMatch
match〈Employee〉 p (E person ) =
if person ≡ daevclarke then (Value 0.1) else NoMatch

The update function can now refer to this match function,
though their code can evolve separately. This is where the



dependency information of Generic Haskell comes in.

updatePre〈t〉 :: (generalize 〈δa〉 a 7→
(updatePre〈δa〉 :: Float → a → a,
update〈δa〉 :: Float → a → a,
match〈δa〉 :: a → Data Float)

⇒ Float → a → a) t

updatePre〈δa〉 extends update〈δa〉
updatePre〈Con δa〉 p c@(Con a) =

case match〈Con δa〉 c of
Value newp → Con $ update〈δa〉 newp a
NoMatch → c
Inconsistent → Con $ updatePre〈δa〉 p a

The Con-case is applied at the constructor positions in a
value. This code can be converted to an ordinary Haskell
value by specializing it to our Company datatype as follows:

updateGrand :: Float → Company → Company
updateGrand = updatePre〈Company〉.

2.5 Further Applications
Other applications which benefit from Dependency-style

Generic Haskell include type-indexed datatypes [19, 17], such
as generic dictionaries and the zipper: a data structure used
to represent a tree together with a subtree that is the focus
of attention, where that focus may move left, right, up, or
down the tree. These navigation functions depend heavily
upon each other, and create a heavy notational burden when
expressed in Classic Generic Haskell.

3. CORE LANGUAGE
Figure 1 presents the grammar for the core language un-

derlying Dependency-style Generic Haskell. Grammar pro-
ductions which specifically treat generic constructs are em-
phasized. The core language simplifies the language in which
we present examples: all lambda abstractions are explicit,
whereas pattern matching, constructors, infix operators, tu-
ples and lists are not treated specially. Furthermore, let has
been divided into letrec and deplet.

We use horizontal bars over subexpressions to denote po-
tential repetition of constructs. For instance, t denotes a
vector of (possibly different) types. Both primed (t ′) and
indexed (t0) elements denote independent elements, rather
than the components of a vector, as we never need to refer
to vector elements individually.

A Generic Haskell program consists of four components:
programs, expressions, types and kinds.

3.1 Programs
A program consists of definitions of generic functions, fol-

lowed by a single expression to be evaluated. A generic func-
tion is a type-indexed value, an expression taking a type ar-
gument, consisting of an obligatory type signature followed
by a number of cases defined over type patterns. With-
out loss of generality, we also assume that there is a set
of global predefined datatypes and functions, rather than
include these in the calculus.

3.2 Expressions
An expression may be a variable, a function application or

abstraction, a recursive let binding (which is now marked ex-
plicitly as letrec instead of let), or one of two new features

for generic programming. The first of these applies a generic
function to a type to obtain the instance of that generic func-
tion on that type. Such an application of a type-indexed
value might introduce a dependency constraint in the type
of the expression, which will be propagated outwards until
satisfied. This means that the generic function depends on
an additional value which should be provided by the envi-
ronment surrounding the expression. This is achieved us-
ing a deplet, the second generic programming feature. The
deplet construct introduces dependency bindings which are
used to satisfy dependency constraints arising from its body.
The variable name associated with a deplet must refer to a
known type-indexed value defined in the top-level program.

3.3 Types
Types are divided into two levels: types and type schemes,

i.e. types with dependency constraints or universal quantifi-
cation.

The first level, ordinary program types, consists of type
variables (which also refer to globally known datatypes),
type application and function types. In addition to these fa-
miliar concepts we have the novel notion of dependency type
variable. Dependency type variables only appear within
the special type parentheses 〈·〉. Ordinary type variables
are bound by a universal quantifier or a lambda abstrac-
tion at the type level, whereas dependency type variables
are bound inside the type parentheses within a case of a
generic function 〈t〉 7→ e or in a deplet construct, such as
deplet v〈δa δb〉 = e1 in e2. In the generic function case,
the dependency variables scope over e; in the deplet, the
variable δa scopes over e1 and e2, whereas the arguments δb
are local to e1. The type of a generic function is a generic
type, built using generalize 〈δa〉 7→ Λa. s. Lambda ab-
stractions on the type level can occur only here. The generic
type is instantiated at a particular type to obtain the type
of an instance of the generic function for that type.

The second level consists of type schemes, which are types
extended with universal quantification (to denote polymor-
phic types) and with dependency constraints (to denote de-
pendencies on generic functions). A dependency constraint
is a set of dependencies, each consisting of the name of a
generic function, a dependency variable and a type. Depen-
dencies are introduced by calls to generic functions and can
be satisfied by deplet-bindings. We write ∀a. t if the set of
dependency constraints is empty, and (D) ⇒ t if there are
no quantified variables.

3.4 Kinds
Although they do not appear in the program text, kinds

are used heavily in the internal machinery to control the
well-formedness of types.

The kind of manifest types (i.e., types which correspond
directly to values) is ?. Type constructors have functional
kinds. Furthermore, we have two special kinds which play a
role in the types of generic functions. The “new moon”  is
used as the kind of the type argument in a generic function,
and the “full moon” # is the kind of the fully applied type
of a generic function.

If a type contains one or more dependency variables, then
this fact is reflected in its kind, (K) ⇒ κ, in the form of kind
dependencies. A kind dependency, K, is a set consisting of
kind assignments for each dependency type variable. We use
kind dependencies to check if the dependency structure of a



Kinds
κ ::= ? (kind of manifest types)

|  (kind of type argument)
| # (generic kind)
| κ1 → κ2 (functional kind)

Dependency kinds
ρ ::= (K) ⇒ κ

Kind dependencies

K ::= δa :: κ

Types
t ::= a, b, c, . . . (variable)

| δa, δb, δc, . . . (dependency variable)
| (t1 t2) (application)
| t1 → t2 (functional type)
| generalize 〈δa〉 7→ Λa. s

(generic type)

Type schemes/dependency types

s ::= ∀a. (D) ⇒ t

Dependency constraints

D ::= x 〈δa δb〉 :: s

Expressions
e ::= x , y , z , . . . (variable)

| (e1 e2) (application)
| λx → e (lambda abstraction)
| x 〈t〉 (type application)
| letrec x = e in e0 (let(rec) binding)

| deplet x 〈δa δb〉 = e1 in e2

(dependency binding)

Declarations

D ::= x 〈a〉 :: s = 〈b δc〉 7→ e
generic function

Main program
M ::= D ; e

Figure 1: Syntax of Generic Haskell core language

type is well-formed, as well as to steer the computation of
the generalized type of generic functions.

4. TYPE AND KIND CHECKING
The development of the type system we present in this sec-

tion, and indeed the recent development of Generic Haskell,
has been driven by how generic functions are used in actual
programs. The original work of Hinze enabled independent
generic functions to be written in a natural recursive style
[15], though such functions could only be written for fixed
kinds such as ? or ? → ?. Hinze [16] then lifted this re-
striction. As a result, generic functions in Generic Haskell
are applicable to types of any kind. Unfortunately, the style
in which functions are written is cumbersome to use. In
this paper, we do things a little differently from Hinze, but
gain significantly more ground. We enable generic func-
tions to be written in a natural style, while retaining the
ability to apply them at all kinds. The Classic Generic
Haskell value map〈List〉 becomes map〈List δa〉 in the de-
pendency style. That is, instead of applying map to the
type constructor List , the arguments to the constructor are
supplied with dependency variables, such as δa in List δa.
In addition, the Classic Generic Haskell value map〈List〉 re-
ceives the function which it applied to the list elements as
a ordinary function argument, whereas in Dependency-style
Generic Haskell, this argument is supplied via a deplet ex-
pression which provides a binding for map〈δa〉.

Thus in the dependency style, whenever a type argu-
ment appears within the type parentheses 〈·〉, it has kind
?, modulo dependencies. Our type system assigns the kind
(δa :: ?) ⇒ ? to the type List δa, which mirrors the ? → ?
kind of the List type constructor. In the dependency style,
generic functions still possess kind-indexed types, but they
can no longer be automatically applied to types of all kinds,
rather types must be supplied with enough dependency vari-
ables to make them effectively kind ?. So ultimately nothing
is lost.

The code of map (see Section 2) introduces a recursive
dependency of map on itself at type δa. In addition to this
common behavior, our system enables further dependencies
on other generic functions. These are recorded in a generic
type, as we also have seen in the examples. The goal of the
type system, beyond usual type correctness, is to ensure that
the correct dependency information is specified with generic
functions, and that dependencies are correctly satisfied or
propagated when using generic functions.

The kind checking rules are explained in Section 4.1. Be-
fore delving into the type system, we must first discuss in
Section 4.2 the rather technical topic of kind-indexed types,
which denote the signatures of generic functions and from
which the types of instances are determined. Forming the
basis for Hinze’s elegant proposal [16], these now bear the
brunt of the complexity with the addition of dependencies.
The type checking rules will then be explained in Section 4.3.

4.1 Kind checking
Kind judgments are of the form A ` f :: (K) ⇒ κ. The

environment A assigns kinds to global datatypes and local
type variables. The kind-level dependencies K bind depen-
dency variables to kinds. Dependencies are part of the syn-
tax of the kinds. The intention is that the dependencies
are inferred rather than previously known, which is why K
does not appear on the left-hand side of the turnstile. The
codomains of both A and K are restricted to plain kinds
i.e., dependencies on the kind level are not nested. The full
kind checking rules are presented in Figure 2.

The rules T-Var, T-App, T-Fun and T-Lambda are rela-
tively standard, except that a collection of kind-level depen-
dencies is threaded through the rules along with the kind.

The connection between kind-level dependencies and the
use of dependency variables on the type level is established
in the rules T-DVar and T-Dep. A dependency variable
introduces a dependency on itself by rule T-DVar. Depen-
dency variables must be used consistently at the same kind



in any given scope. Type-level dependencies are also re-
flected at the kind level using rule T-Dep. If a type has a
dependency of the form (v〈δa δb〉 ::s), then δa is the only de-
pendency variable that is visible outside; arguments δb are
local to the type scheme s. Thus s may depend on these
argument variables (and only on these) and is thus of kind
(δa :: κ) ⇒ ?, where κ are the argument variables’ kinds.
The kind of δa is κ → ?, and this dependency is recorded in
the final kind of the type.

Type signatures of generic functions are special in that
they contain the generalize construct. This construct trans-
forms a specific instance of the type of the generic function
into a generalized kind. This process is mirrored on the
kind level. From rule T-Generic, the type to be general-
ized must have kind ?n , where

?0 = ? ?n+1 = ? → ?n .

The arguments of this type are, after generalization, instan-
tiated to the type argument of the generic function. To
enforce this instantiation, the type argument of the generic
function gets a special kind, the “new moon”  . Accord-
ingly, rule T-Generic assigns kind

G#0 = # G#n+1 =  → G#n

to the type resulting from generalization. The fully applied
generalized type then has “full moon” kind #. Only gener-
alization introduces  and # kinds, and P-Generic (dis-
cussed in Section 4.3) enforces that all type signatures of
generic functions are of kind #.

Type signatures of generic functions must thus always
consist of a fully applied generalized type, possibly involv-
ing universal quantification for type variables of kind #, as
allowed by rule T-Forall. The algorithm that computes
the generalized kind-indexed type for the generic function
makes heavy use of this fact.

The final component of kinding is the instance relation
ρ1 6 ρ2 between kinds. This is defined in rules K-Inst-Refl
and K-Inst-Dep (Figure 3), and is used as a kind-level sub-
sumption in T-Sub to extend the set of dependencies which
appear in a kind.

4.2 Kind-indexed types
One of the key ideas of Hinze’s theory, as implemented in

Classic Generic Haskell, is that certain type-level constructs,
such as recursion, abstraction and application, are always
interpreted as their value-level counterparts. This leads to
the reasoning that generic functions possess kind-indexed
types [16]. The type of a generic function is tied to the kind
of its type argument, establishing identities such as:

eq〈Tree Int〉 ≡ eq〈Tree〉 (eq〈Int〉).

Here the application at the type level (of Tree to Int) can
be replaced by the value level application of two instances
of the generic function at those types.

In Dependency-style Generic Haskell, we no longer allow
type arguments of higher kinds, but we keep the general
idea: instead of a higher-kinded type, we use type argu-
ments which contain dependency variables. This shift en-
ables generic functions to depend on generic functions other
than just itself. In the dependency style, the identity corre-
sponding to the one above is:

eq〈Tree Int〉 ≡
deplet eq〈δa〉 = eq〈Int〉 in eq〈Tree δa〉.

In Classic Generic Haskell, kind-indexed types have to be
defined explicitly by the programmer. For instance, the type
of generic equality reads

Eq〈〈?〉〉 a = a → a → Bool
Eq〈〈κ1 → κ2〉〉 a = ∀b.Eq〈〈κ1〉〉 b → Eq〈〈κ2〉〉 (a b).

The function eq〈t〉 then has type Eq〈〈κ〉〉 t , where κ is the
kind of t . The second case captures the fact that equality
on kind κ1 → κ2 takes an equality function on the argument
type to an equality function on the resulting type.

Note that the second line of this type could be automati-
cally derived by the compiler, because the interpretation of
type application as value-level application is intrinsic to the
theory. Because of the increased complexity due to depen-
dencies, we opt for this solution in dependency-style Generic
Haskell, requiring a signature only for kind ?, plus depen-
dency information. Thus a generic type signature takes the
following form (the general form of types of kind #):

x 〈c〉 :: ∀a. (generalize 〈δa〉 7→ Λb. (y〈δa〉 :: s) ⇒ t) c . . . c.

Three sorts of type variables occur within a type signature:
the type argument c; outer quantified, non-generic variables
a; and abstracted variables b. The latter kind are called
generic variables and will be instantiated with the type ar-
gument when generating instances of the generic type. Note
that there are as many applications to c at the end as there
are variables in b.

A generic function may depend on itself and on other func-
tions. The dependencies y are the generic functions that x
depends on.

The generalize construct generalizes the type for a spe-
cial case (the type of x 〈δa〉, where δa is of kind (δa :: ?) ⇒ ?)
to a function tapp which produces a correct type for all type
arguments of kind (K) ⇒ ?. This function is used during
type checking and is defined in terms of the kind-indexed
type kapp as follows:

tapp(x ; t) = ∀a. kapp(x ; ρ; a | t . . . t).

where ρ is the dependency kind of t . The function kapp,
which is similar to the kind-indexed type in Classic Generic
Haskell, depends on both the non-generic and the generic
variables that occur in the type signature. We only sketch
its definition here, deferring the details to a technical re-
port [28]:

kapp(x ; ?; a | t) = base type of x
kapp(x ; (δa :: κ → ?, K) ⇒ ?; a | t) =

∀d . (y〈δa δb〉 :: kapp(y ; (δb :: κ) ⇒ ?; variables))

⇒ kapp(x ; (K) ⇒ ?; a | [δa 7→ d ]t).

For kind ? types (without dependency variables), the result-
ing type is the type specified in the type signature, without
the dependencies. The second case expresses the intuition
that a generic function on a type that depends on a variable
of kind κ → ? introduces dependencies for the functions that
x depends on, using kapp on that kind and a set of variables
which is a selection of a, possibly some global types, and d .
The information which variables are used here is extracted
from the dependency constraint in the type signature spec-
ified by the programmer. If δa is not of kind ?, then local
dependency variables, δb, are introduced in the dependency
constraints and used in the recursive calls of kapp to return
κ → ? to the form (K) ⇒ ?.



As a concrete example, recall the type of generic equality
from Section 2:

eq〈a〉 :: (generalize 〈δa〉 7→ Λb.(eq〈δa〉 :: b → b → Bool)
⇒ b → b → Bool) a.

Figure 4 contains some example values of the tapp function
for this signature. The last case, involving a dependency
variable of kind ? → ?, is an example of a nested depen-
dency constraint, making use of a local dependency variable
argument.

4.3 Type checking
Type judgments have the form A K V ` e :: s, where the

environment V assigns types to variables and generic func-
tion names, whereas the other two environments support
kind checking. The type judgments differ from a standard
Hindley-Milner system mainly due to the handling of depen-
dency constraints. As dependency constraints represent hid-
den arguments, and dependency constraints can be nested
and contain universal quantifiers, we also have to deal with
rank-n polymorphic types to some extent. We have drawn
from Odersky and Läufer [29] to deal with this aspect.

The type rules E-Var, E-Gen, E-Appl, and E-Lambda
are pretty standard. Type schemes and thus dependency
constraints are only introduced by the following constructs:
a variable that has been bound in a letrec, or a type appli-
cation of a generic function.

The letrec construct is the usual recursive let binding
corresponding to let in Haskell. All variables bound in a
letrec binding are assumed to be mutually dependent. De-
pendency constraints are treated analagously to class con-
straints or implicit parameters in that a value having de-
pendencies may be bound to a variable in a letrec. This
gives the feel of dynamically scoped dependency variables.
For example, the program

letrec x = map〈List δa〉 in
(deplet map〈δa〉 = λx → x + 1 in x [1, 2, 3],
deplet map〈δa〉 = null x in x ["one", "two", "three"])

has type (List Int ,List Bool). We made this choice for the
typing rule of letrec because it matches the idea that the
dependencies are part of the type of a value. An alternative
is discussed in Section 7.

By rule E-TApp, a generic function is declared with a
type signature of kind #. From the generic type signature
and the type at which the generic function is applied, the
result type of the expression is computed using the auxiliary
function tapp, described above.

A deplet expression is used to satisfy dependency con-
straints arising from the use of a generic function in its
body. The type s (without dependencies) of the expression
e1 which is used to satisfy the dependency must match the
type occurring in the appropriate dependency constraint of
the body expression e2. As deplet is somewhat like locally
defining an additional case for a generic function, we use
local dependency variables as type arguments when the de-
pendency which arises is not of kind ?. Thus, the argument
variables δb in the rule E-Deplet are local to the expression
e1. Finally, the remaining dependencies D1 and D2 of the
bound expression and the body must be compatible as well.

As with kinds, we have a subtyping relation on types (Fig-
ure 6). The relation s1 6 s2 expresses the intention that
expressions of type s1 are also of type s2. The relation is ex-

ploited in the subsumption rule E-Sub. The rules in Figure 6
modify those of Odersky and Läufer to handle dependency
constraints. Rule T-Inst-Dep establishes a connection be-
tween the instance relation on type schemes and the instance
relation on constraints. Dependency constraints represent
hidden parameters. Unused, but well-kinded dependencies
can be added to a type (D-Inst-1). Furthermore, because
they are arguments, dependencies become more general as
the types in them become more specific (D-Inst-2). This is
analogous to the contravariance of the argument position of
the function arrow.

The final rules are for type checking the well-formedness
of generic definitions and programs. These are given in Fig-
ure 7. By P-Generic, a case of a generic function is type
correct if the type of its right-hand side matches the type
declared for the generic function. This is achieved using
the function tapp to compute the type of the generic func-
tion at the specific type of the case in question, using the
type signature of the generic function. Finally, by P-Prog,
a program in the core language is type correct if all cases
of all generic functions are correct, and if the final expres-
sion is typeable. The environments A and V contain global
datatypes and global functions, respectively.

5. REDUCTION SEMANTICS
Figure 8 presents a fragment of the reduction rules for

the core language. For brevity we have omitted the unin-
teresting reduction rules. It remains implicit in the rules
that bound variables should generally be renamed in such a
way that no variables are captured during substitution. The
style in which these rules are presented keeps letrec and
deplet definitions around to act like environments for the
expressions being evaluated. Reduction proceeds against a
fixed environment S containing the bindings for each case of
each generic function. To be able to perform the reduction,
we need to keep information about dependencies from the
type checking process. The reason is that we have to know
when it is safe to reduce a deplet or a lambda expression.
Therefore, we assume that the domain of an expression’s de-
pendency constraint is accessible via the deps function. We
also assume that the kinds of all type arguments in generic
applications and the dependencies of all generic functions
are available via functions arity, which gives the arity of a
type, and dependencies, which gives the names of generic
functions which it depends on. The function length denotes
the length of a vector of variables.

The reduction rules R-App and R-Letrec are standard,
except for the fact that in R-App, all dependencies of the
argument have to be resolved before the application can be
reduced. This is because lambda-bound variables are always
of simple types, not type schemes, and thus are dependency-
free. A letrec is reduced by substitution in the underlying
expression. A letrec can only be eliminated if the bound
variables do not occur anymore in its body. Unlike letrec,
a deplet construct is not reduced by performing substitu-
tion on its complete body. Rather, it is pushed down the
expression, as shown for example in R-Deplet-Letrec. A
deplet is directly propagated to the body of a letrec here,
not affecting the expressions in the bound variables. This
implements the dynamically scoped behavior of dependency
constraints. There are similar rules that push a deplet
through applications or lambda abstractions. The three
rules R-Case, R-Deplet and R-TApp handle various forms



T-Var
a :: κ ∈ A

A ` a :: () ⇒ κ
T-DVar

A ` δa :: (δa :: κ) ⇒ κ
T-Sub

A ` t :: ρ1 ρ1 6 ρ2

A ` t :: ρ2

T-App
A ` t1 :: (K) ⇒ (κ2 → κ1) A ` t2 :: (K) ⇒ κ2

A ` (t1 t2) :: (K) ⇒ κ1

T-Fun
A ` s1 :: (K) ⇒ ? A ` s2 :: (K) ⇒ ?

A ` (s1 → s2) :: (K) ⇒ ?

T-Forall
A, a :: κ1 ` s :: () ⇒ κ2 κ2 ∈ {?,#}

A ` ∀a.s :: () ⇒ κ2

T-Lambda
A, a :: κ1 ` s :: (K) ⇒ κ2

A ` Λa.s :: (K) ⇒ κ1 → κ2

T-Dep

A ` s1 :: δb :: κ ⇒ ?
κ0 ≡ κ → ? A ` (D) ⇒ s2 :: (δa0 :: κ0, K) ⇒ ?

A ` (x 〈δa0 δb〉 :: s1, D) ⇒ s2 :: (δa0 :: κ0, K) ⇒ ?
T-Generic

A ` Λa. s :: (δa :: ?) ⇒ ?n

A ` generalize 〈δa〉 7→ Λa. s :: () ⇒ G#n

Figure 2: Kind checking rules

K-Inst-Refl
ρ 6 ρ

K-Inst-Dep
(K1) ⇒ κ1 6 (K2) ⇒ κ1

(K1) ⇒ κ1 6 (δa :: κ2, K2) ⇒ κ1

Figure 3: Instance relation on (dependency) kinds

t :: ? tapp(eq ; t) = t → t → Bool
t :: ? → ? tapp(eq ; t δa) = ∀a.(eq〈δa〉 :: a → a → Bool) ⇒ t a → t a → Bool
t :: ? → (? → ?) tapp(eq ; t δa δb) = ∀a.∀b.(eq〈δa〉 :: a → a → Bool , eq〈δb〉 :: b → b → Bool)

⇒ t a b → t a b → Bool
t :: (? → ?) → ? tapp(eq ; t δa) = ∀a.(eq〈δa δb〉 :: ∀b.(eq〈δb〉 :: b → b → Bool) ⇒ a b → a b → Bool)

⇒ t a → t a → Bool

Figure 4: Example instances of tapp for generic equality

E-Var
x :: s ∈ V

A K V ` x :: s
E-Sub

A K V ` e :: s1 A K ` s1 6 s2
A K V ` e :: s2

E-Gen
A K V ` e :: s a /∈ ftv(V)

A K V ` e :: ∀a.s

E-App
A K V ` e1 :: (D) ⇒ (t2 → t1) A K V ` e2 :: (D) ⇒ t2

A K V ` (e1 e2) :: (D) ⇒ t1
E-Lambda

A K V, x :: t1 ` e :: (D) ⇒ t2

A K V ` λx → e :: (D) ⇒ t1 → t2

E-TApp

A ` s1 ::#
x :: s1 ∈ V A K V ` tapp(x ; t) = s2

A K V ` x 〈t〉 :: s2
E-Letrec

V′ ≡ V, x :: s A K V′ ` e :: s A K V′ ` e0 :: s0
A K V ` letrec x = e in e0 :: s0

E-Deplet

A ` δa δb :: (δb :: κ, K) ⇒ ? A K V ` e1 :: (y〈δb〉 :: s, D1) ⇒ t ′

A K V ` e2 :: (x 〈δa δb〉 :: (y〈δb〉 :: s) ⇒ t ′, D2) ⇒ t A K ` (D2) 6 (D1)

A K V ` deplet x 〈δa δb〉 = e1 in e2 :: (D1) ⇒ t

Figure 5: Type checking rules

T-Inst-Refl
A K ` s 6 s

T-Inst-Dep
A K ` (D1) 6 (D2)

A K ` (D1) ⇒ t 6 (D2) ⇒ t

T-Inst-Univ-1
A K ` [a 7→ t ]s1 6 s2

A K ` ∀a.s1 6 s2
T-Inst-Univ-2

A K ` s1 6 s2 a /∈ ftv(s1)

A K ` s1 6 ∀a.s2

D-Inst-1
A ` δa δb :: (δb :: κ, K) ⇒ ? A ` s :: (K) ⇒ ?

A K ` () 6 (x 〈δa δb〉 :: s)
D-Inst-2

A K ` s2 6 s1 A K ` (D1) 6 (D2)

A K ` (x 〈δa δb〉 :: s1, D1) 6 (x 〈δa δb〉 :: s2, D2)

Figure 6: Instance relation on types and dependency constraints



P-Generic

A, a :: ` s :: () ⇒ #

A ` b δc :: (K) ⇒ ? A K V ` e :: tapp(x ; b δc)

A V ` x 〈a〉 :: s = 〈b δc〉 7→ e well-formed
P-Prog

A V ` x 〈a〉 :: s = 〈b δc〉 7→ e well-formed
A K V ` e :: s ′

A V ` x 〈a〉 :: s = 〈b δc〉 7→ e; e well-formed

Figure 7: Program checking rules

(R-App) (λx → e1) e2 ; [x 7→ e2 ]e1

where deps(e2) = ∅
(R-Letrec) letrec x0 = e0; x = e in e ′ ; letrec x0 = e0; x = e in [x0 7→ e0 ]e ′

(R-Deplet) deplet x 〈δa δb〉 = e in x 〈δa δb〉; e where deps(e) = ∅
(R-Deplet-Letrec) deplet x 〈δa δb〉 = e0 in (letrec x = e in e ′) ; letrec x = e in (deplet x 〈δa δb〉 = e0 in e ′)

(R-Case) x 〈a δb〉; e

where x 〈a δb〉 7→ e ∈ S

(R-TApp) x 〈t0 t1 δa〉; deplet y〈δa1 δb〉 = y〈t1 δb〉 in x 〈t0 δa1 δa〉
where δa, δb are fresh, arity(t1) = length(δb), dependencies(x ) = y

Figure 8: A fragment of the reduction rules

of generic function application. These depend on whether
the form of the function’s type argument is, respectively,
a type constructor applied to some number of dependency
variables, a dependency variable applied to some number of
variables, or a type of some other form. By rule R-Case a
generic function applied to a type constructor with depen-
dency arguments is reduced to the corresponding value in
the environment. Rule R-Deplet handles a local depen-
dency declaration for the case where a dependency variable
is in the constructor position, reducing to the value defined
in the appropriate deplet clause. Finally, rule R-TApp re-
duces the other cases, where the type appearing in an ar-
gument position is not a dependency variable. The idea is
to transform away the rightmost of these, t1, into depen-
dencies on a new dependency variable δa1 which replaces t1
in the argument type. The dependencies introduced by at-
tempting to reduce the generic function x are those which x
depends upon. A consequence of applying this rule is that
the type arguments in the resulting expression are simpler
than the original; multiple applications of this rule eventu-
ally simplify all type arguments so that the rules R-Case
and R-Deplet become applicable.

Beyond these reductions, the Generic Haskell compiler
computes embedding and projections of all datatypes into
types constructed from Unit , Sum, and Prod , and special-
izations for such types. This mechanism is orthogonal to the
system described in this paper, and has been described else-
where [14]. We tacitly assume that the required functions
are supplied within the environment S.

The usual progress and subject reduction theorems hold
for our reduction semantics with respect to the type system
presented earlier. The proofs are included in a technical
report [28].

6. RELATED WORK
The field of generic programming has grown consider-

ably in recent years. Much of this work stems from so-
called theories of datatypes, for example [3], which are often
based on category theoretic notions such as initial algebras.
These approaches focus on generic control constructs, such
as folds [32], which are derived from datatypes.

Based on initial algebra semantics, Charity [7] automati-
cally generates folds and so forth for datatypes on demand,
but otherwise does not allow the programmer to write her
own generic functions. PolyP [21] extends Haskell with a
special construct for defining generic functions, also based
on initial algebras. Although PolyP permits type inference
and functions which make use of the pattern functor of
a datatype, which we cannot do, it supports only regular
datatypes, not mutually recursive, multiparameter, nested
types, or types containing function spaces.

In Functorial ML [23] the algorithm for map, for exam-
ple, is defined using combinators to find the data upon which
argument function will apply. While supporting type infer-
ence, Functorial ML programming is a rather low level lan-
guage and lacks the simplicity of Hinze’s approach. Functo-
rial ML and other work on shape theory has resulted in the
programming language FISh [22].

Weirich and others [33] (and the earlier work on in-
tensional polymorphism [8]) employ a typecase construct
which performs run-time tests on types to implement poly-
typic functions of an expressiveness similar to Hinze’s.
Ruehr’s structural polymorphism [31] adopts similar type
tests. By avoiding type interpretation at run-time, Generic
Haskell distinguishes itself from these approaches.

The work of Hinze [18, 16, 13], upon which Generic Haskell
is based, is a major improvement over the other approaches,
because it allows the instantiation of generic functions on
mutually recursive, multiparameter, nested types, or types
containing function spaces. Clarke and Löh [6] present a few
extensions to Hinze’s framework which are compatible with
the framework presented here, and will be incorporated into
the compiler for Dependency-style Generic Haskell.

Closest to the work described in the present paper are
both Weirich’s original higher-order intensional type anal-
ysis [33] and her recent type-erasure approach [34]. This
approach offers the advantage of support for separate com-
pilation, dynamic loading, and polymorphic recursion. In
addition, by carrying around a representation of type in-
formation, she can successfully treat universal and existen-
tial quantification. The implementation of our approach



requires no type information at run-time, enables separate
compilation, and can certainly handle polymorphic recur-
sion, as our cases must have a certain degree of polymor-
phism. Our calculus does however carry run-time informa-
tion around, using it for dispatch purposes. The big differ-
ence between our system and Weirich’s is that we handle
the dependency of one generic on another, and treat generic
functions by name, rather than as anonymous case state-
ments.

Altenkirch and McBride [2] present a rather complicated
encoding of much of our style of generic programming (ex-
cluding the dependency extension) into a system of depen-
dent types. While this approach is highly expressive, we
argue that there is a long way to go before it is usable by
mere mortals as a programming language. We expect that
using type theory one can do anything we do in this paper
and probably much more, but we suspect that programming
the examples given in Section 2 will be very difficult.

The programming language Haskell supports deriving
clauses for a certain number of built-in classes (Eq , Show ,
etc) [30]. This facilitates the automatic overloading of cer-
tain functions for datatypes which have the deriving clause
specified. Hinze and Peyton Jones explore an extension, fol-
lowing Hinze’s earlier ideas [15], which integrated generics
with Haskell’s type class system [20]. This system suffers
from some limitations due to the interaction with the type
class system. G’Caml [9, 10] presents a generic program-
ming extension for O’Caml [26]. The proposal does not aim
to cover all datatypes, and as such can be seen as a way of
achieving Haskell-style overloading in O’Caml. The generic
extension for Clean is also based on Hinze’s work [1]. This
proposal is more closely integrated with the type class sys-
tem, but does not include any of the extensions described
here. Generic Haskell, on the other hand, takes the ap-
proach of exploring generic programming in isolation, as an
extension to the Haskell language.

Lämmel and Peyton Jones present a very neat idea which
enables generic programs to be written in almost pure
Haskell (Haskell with rank-2 types and a form of type coer-
cion operator). We believe that our approach is more gen-
eral. One reason supporting this is that our definitions are
open, in that they can be extended or updated, whereas once
a generic function has been constructed in Lämmel and Pey-
ton Jones’s proposal, its behavior is fixed. They also lack
the ability for one generic function to depend on another
generic function, as our dependencies permit. Furthermore,
they generate generics only at kind ?. Their approach is
based on combinators, whereas ours is based on functions
which are defined indexed on the structure of types. In
their favor, their approach is better integrated into Haskell.

A dependency resembles a qualified type: a type with
restrictions that require certain type variables to be an in-
stance of a particular class [24]. Inferring the context re-
quirements for qualified types is, however, easier, because
the dependencies for a generic function appear at multiple
kinds, and thus have types with differing forms. Depen-
dencies are similar in spirit to implicit parameters [27], and
deplet is similar to the with construct (now an ordinary
let) in that the functions referred to are not explicitly given
as arguments. Implicit parameters are supplied at a fixed
monomorphic type, whereas a dependency refers (often) to
an entire generic function, which includes cases of polymor-
phic type.

The development of Generic Haskell is example driven.
We encountered the need for dependencies when we imple-
mented the digital searching and zipper examples in our
work on type-indexed datatypes [19]. Most other approaches
we have seen only use simple examples such as map and zip
as their motivating examples.

7. DISCUSSION
We have made design choices at several points when de-

veloping the language. We discuss two here. Firstly, distin-
guishing dependency variables from ordinary variables has
been useful in making the dependency concept explicit, al-
though this distinction is not necessary. Secondly, we could
have adopted an alternative formulation of letrec which im-
plements a statically scoped view, as opposed to the more
dynamic view taken in our system, using the following rule.

V′ ≡ V, x :: t ′

A K V′ ` e :: (D) ⇒ t ′ A K V′ ` e0 :: (D) ⇒ t

A K V ` letrec x = e in e0 :: (D) ⇒ t

Here the types for the let-bound variables are added to the
environment without their dependencies. Thus the bound
variables have a dependency-free type when used in the
body. The dependencies of the bound variables as well as
of the body must be compatible and become the common
dependencies of the whole expression.

As presented here, generic functions are explicitly anno-
tated for types of kind ?. Rank-n types appear, in con-
junction with dependency constraints, in the types of in-
stances of generic functions on particular types. It is easy
to extend the language presented here to allow rank-n types
everywhere. If we are given explicit type annotations for
all rank-n types, we can infer the types of the expressions
in the language, following along the lines of Odersky and
Läufer [29], also adapting ideas from Lewis et al [27] and
Chitil [4].

A prototype implementation of the system described in
this paper including type inference exists, although we have
not yet incorporated it into the Generic Haskell compiler.
The prototype can be obtained by contacting the authors.

In conclusion, we have introduced a core language, a type
system, and a reduction semantics for a new style of generic
programming language which we have called Dependency-
style Generic Haskell. The development of this language
has been strongly motivated by practical concerns, derived
from our experience programming in Generic Haskell. The
difference with Classic Generic Haskell is significant, and
the number of new concepts may seem overwhelming. How-
ever, we feel the added complexity is justified, as the sys-
tem presented in this paper provides foundations which not
only go beyond Classic Generic Haskell, but also opens the
door to tackle problems which previously seemed too far off.
Possibilities include better support for type-indexed types,
higher-order and locally-defined generic functions, depen-
dency inference, type inference of kind-? type arguments,
generic functions based on kinds other than ?, and pat-
tern matching on type arguments. Initial experiments have
shown promising results in these areas. We feel that de-
pendency inference, i.e. allowing the programmer to omit
dependencies in generic type signatures, is our most press-
ing concern.
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Type-indexed data types. In Proceedings of the 6th
Mathematics of Program Construction Conference,
MPC’02, volume 2386 of LNCS, pages 148–174, 2002.

[20] Ralf Hinze and Simon Peyton Jones. Derivable type
classes. In Graham Hutton, editor, Proceedings of the
2000 ACM SIGPLAN Haskell Workshop, volume 41.1
of Electronic Notes in Theoretical Computer Science.
Elsevier Science, August 2001.

[21] P. Jansson and J. Jeuring. PolyP — a polytypic
programming language extension. In POPL’97, pages
470–482. ACM Press, 1997.

[22] C. B. Jay. Programming in FISh. International
Journal on Software Tools for Technology Transfer,
2:307–315, 1999.
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