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Abstract

Fast Q()) is a model free reinforcement learning technique for precisely
implementing (\) and other eligibility trace learning algorithms at a
hugely reduced computational cost. This report highlights some sub-
tleties in the original description of Fast Q(\) and that are likely to
lead to it being incorrectly applied. We propose changes to Fast Q(\),
without which the behaviour of the algorithm can be significantly dif-
ferent (and inferior) to Q(A). With these changes the algorithm behaves
precisely as Q(\) to a very high degree of precision. We also report on
an empirical validation of the algorithm and also provide an exploration
insensitive version (an analogue of Watkins’ Q()\)).

1 Introduction

Q(M)-learning is an important and widely used reinforcement learning (RL) method. It
combines Q-learning (Watkins, 1989; Watkins and Dayan, 1992) and TD()A) (Sutton,
1988; Tesauro, 1992). Q(\) is widely used — it is generally believed to outperform
simple one-step Q-learning, since it uses single experiences to update evaluations of
multiple state/action pairs (SAPs) that have occurred in the past.

Q(N\) learning is an unnecessarily expensive algorithm. It has a time complexity of
O(]S| - |A|) per step for a state space S, and action set A. To improve this, the Fast
Q(A) algorithm implements Q(A) to a very high degree of precision but at a mean com-
putational cost of O(]A|). However, the original description of Fast Q(\) (as published
in [18, 19, 17]) allows for the algorithm to be misapplied and we highlight two subtle
errors that can occur. This paper states these errors and corrects them. In addition, we
show how to extend the algorithm for state replacing traces, for off-policy (exploration
insensitive) learning and also simplify the algorithm to avoid difficulties with action
selection.

Section 2 provides a brief introduction to RL and the Q()) algorithm. Section 3 reviews
the original description of Fast Q(\). Section 4 presents the problems, fixes and new
extensions to Fast Q()A). Readers who are already familiar with Fast Q(X) should skip to
Section 4. In Section 5 we test how closely the new and old versions of Fast Q(A) match



standard Q(A). Section 6 concludes.

2 Q(A)-Learning

We consider finite Markov decision processes, using discrete time steps t = 1,2,3,..., a
finite set of states S = {S1,S52,S53,...,5,} and a finite set of actions A. The state at
time ¢ is denoted by s;, and a; = II(s;) denotes the selected action, where II represents
the learner’s policy mapping states to actions. The transition probability to the next
state s¢+1, given s; and ay, is determined by Pf; = P(sty1 =j|st =4,at =a) fori,j €S
and a € A. A reward function R maps the SAP (i,a) € S x A to scalar reinforcement
signals R(7,a) € R. The reward at time ¢ is denoted by r:. A discount factor v € [0, 1]
discounts later against immediate rewards. The controller’s goal is to select actions which
maximise the expected long-term cumulative discounted reinforcement, given an initial
state selected according to a probability distribution over possible initial states.

Reinforcement Learning. To achieve this goal, most reinforcement learning methods
learn an action evaluation function or Q-function. The optimal Q-value of a SAP (i, a)

satisfies
Q*(i,a) = R(i,a) + v Y_ PEV*(j), (1)
J

where V*(j) = max, Q*(j,a). To learn this Q-function, RL algorithms repeatedly do:
(1) Select action a; given state s, (2) Collect reward r; and observe successor state s¢41,
(3) Update the Q-function using the latest experience (s¢, ag, r¢, S¢+1)-

Q-learning. Given (s¢,at, 74, St+1), standard one-step Q-learning updates just a single
Q-value Q(s¢,az) as follows [15]:

Q(st, ar) < Q(s¢,ar) + a(se, ar)ey.

Here the temporal difference or TD(0)-error e} is given by:

ey = (re + 7YV (st41) — Q(st,a1)),

where the value function V(s) is defined as V(s) = max, Q(s,a), and ay(s¢,ar) is the
learning rate for the k" update of SAP (s¢,a;).

Learning rate adaptation. The learning rate ay(s,a) for the kt* update of SAP (s,a)
should decrease over time to satisfy two conditions for stochastic iterative algorithms
(Watkins and Dayan, 1992; Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998):

L Y2, ak(s,a) =00, and
2. Y2 ai(s,a) < oo
The first condition ensures that the updates are large enough to overcome any initial

biases or random fluctuations. The second condition ensures that the updates become
small enough to ensure convergence. They hold for aj(s,a) = 1/k®, where 1/2 < 8 < 1.

Q(A)-learning. Q(A) uses TD(A)-methods (Sutton, 1988) to accelerate Q-learning.
First note that Q-learning’s update at time ¢ + 1 may change V' (s¢41) in the definition
of e;. Following Peng and Williams (1996) we define the TD(0)-error of V (s¢41) as

errt = (rer1 + 7V (se42) = Vise41))- (2)
Q(A) uses a factor A € [0, 1] to discount TD-errors of future time steps:
Q(st,at) < Q(st, ar) + (st Gt)ei‘, (3)



where the TD(A)-error e} is defined as,

T
e = e+ Z(’W\)i@tﬂ', (4)

i=1

where 7" denotes the time at which a terminal state in entered. 7" may be infinity if there
are no terminal states.

Eligibility traces. The updates above cannot be made as long as the TD errors of
future time steps are not known. We can compute them incrementally, however, by
using eligibility traces (Barto et al., 1983; Sutton 1988). From update rule (3) and
definition (4), and assuming a constant « for simplicity, the @Q-function at time k is
given by,

k

Qr(s,a) = Qg(s,a)+aZet}‘nt(s,a). (5)

t=1

In what follows, 7n:(s,a) will denote the indicator function which returns 1 if (s, a) oc-
curred at time ¢, and 0 otherwise. Omitting the learning rate for simplicity, the increment
of Q(s,a) for the complete trial is:

AQ(S,G) = QT(Sva') _QO(Saa')
AQ(s,a)
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To simplify this we use an eligibility trace l;(s,a) for each SAP (s, a):

t—1

Le(s,a) = Y (YN 'ni(s, a). (7)

i=1
Then the online update at time ¢ 4+ 1 becomes:

V(s,a) € S x A do: Q(s,a) < Q(s,a) + ax(st,ar) [ein(s,a) + etli(s,a)]. (8)

Online Q(A). We will focus on Peng and Williams’ algorithm (PW) (1996), although
there are other possible variants, e.g, Rummery and Niranjan’s SARSA (1994). PW uses
a list H of SAPs that have occurred at least once. SAPs with eligibility traces below
€m > 0 are removed from H. Boolean variables visited(s,a) are used to make sure no
two SAPs in H are identical.



PW’s Q()\)-update(ss, as, ¢, Se41) ¢
1) e < (re + 7V (se41) — Q(s¢,a¢))
2) er < (re + 7V (st41) — V(st))
3) For each SAP (s,a) € H Do :
3a) I(s,a) < yA(s,a)
3b) Q(s,a) < Q(s,a) + ay(st, ar)esdl(s, a)
3c) If (I(s,a) < €n)
3c-1) H < H \ (s,0a)
3c-2) visited(s,a) < 0
4) Q(s¢,ar)  Q(s¢,ae) + ag(se, ar)e}
5) l(st,at) — l(st,at) +1
6) If (visited(st,ar) = 0)
6a) visited(sy, ar) « 1
6b) H+HU (st,at)

Comments.

1. The sARsA algorithm (Rummery and Niranjan, 1994) replaces the right hand side in
lines (1) and (2) by (r¢ + YQ(st41,a141) — Q(8¢, ar))-

2. For state replacing eligibility traces (Singh and Sutton, 1996), step 5 should be:
Ya: I(s¢,a) < 0; I(sg,ae) < 1.

3. Representing H by a doubly linked list and using direct pointers from each SAP to its
position in H, the functions operating on H (deleting and adding elements — see lines
(3c-1) and (6b)) cost O(1).

Complexity. Deleting SAPs from H (step 3c-1) once their traces fall below a certain
threshold may significantly speed up the algorithm. If v is sufficiently small, then this
will keep the number of updates per time step manageable. For large yA, PW does not
work that well: it needs a sweep (sequence of SAP updates) after each time step, and
the update cost for such sweeps grows with yA. Let us consider worst-case behaviour,
which means that each SAP occurs just once (if SAPs reoccur then the history list will
grow at a slower rate). In the beginning of the episode the number of updates increases
linearly until at some time step ¢t some SAPs get deleted from H. This will happen as
soon as t > log €y, / log(yA). Since the number of updates is bounded from above by the
number of SAPs, the total update complexity increases towards O(|S| - |A|) per update
for YA — 1.

The space complexity of the algorithm is O(|S] - |A|). We need to store for all SAPs:
Q-values, eligibility traces, the “visited” bit variable and three pointers for managing
the history list (one from the SAP to its place in the history list, and two for the doubly
linked list).

3 Fast Q()\)-Learning

Fast Q(A) is intended a fully online implementation of Q(\) but with a time complexity
O(JA]) per update. The algorithm is designed for Ay > 0 — otherwise we can use simple
Q-learning.

Main principle. The algorithm is based on the observation that the only Q-values
needed at any given time are those for the possible actions given the current state.
Hence, using “lazy learning”, we can postpone updating Q-values until they are needed.
Suppose some SAP (s,a) occurs at steps t1,t2,t3,.... Let us abbreviate n; = n:(s,a),



¢ = yA. First we unfold terms of expression (6):
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Since n; is 1 only for ¢t = t1,ts,t3,... and 0 otherwise, we can rewrite this as
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Defining A; = Y!_, e;¢%, this becomes

1 1
621 + etz (Atz Atl) + 623 + (

= o
This will allow for constructing an efficient online Q(X) algorithm. We define a local trace
li(s,a) = 22:1 ’7"(;1-’”), and use (9) to write down the total update of Q(s,a) during an
episode:

) (Agy — Agy) + ... 9)

T
AQ(s,a) =Y [epme(s,a) + (s, a) (Arr — Ay)] - (10)

t=1

To exploit this we introduce a global variable A keeping track of the cumulative TD(\)
error since the start of the episode. As long as SAP (s,a) does not occur we postpone
updating Q(s,a). In the update below we need to subtract that part of A which has
already been used (see equations 9 and 10). We use for each SAP (s,a) a local variable
0(s,a) which records the value of A at the moment of the last update, and a local
trace variable !'(s,a). Then, once Q(s,a) needs to be known, we update Q(s,a) by
adding I'(s,a)(A—4(s,a)). Figure 1 illustrates that the algorithm substitutes the varying
eligibility trace I(s,a) by multiplying a global trace ¢' by the local trace I'(s,a). The
value of ¢! changes all the time, but I’(s, a) does not in intervals during which (s, a) does
not occur.

Algorithm overview. The algorithm relies on two procedures: the Local Update pro-
cedure calculates exact Q-values once they are required; the Global Update procedure
updates the global variables and the current Q-value. Initially we set the global vari-
ables ¢° <+ 1.0 and A <+ 0. We also initialise the local variables d(s,a) + 0 and
I'(s,a) < 0 for all SAPs.

Local updates. Q-values for all actions possible in a given state are updated before an
action is selected and before a particular V-value is calculated. For each SAP (s,a) a
variable d(s, a) tracks changes since the last update:



Figure 1: SAP (s,a) occurs at times ty,ts,ts,.... The standard eligibility trace (s, a)
equals the product of ¢t and I'(s,a).

Local Update(s;,a;) :
1) Q(st,at) < Q(st,at) + (s, ar) (A — (st ar))l' (51, a)
2) 6(st,at) — A

The global update procedure. After each executed action we invoke the procedure
Global Update, which consists of three basic steps: (1) To calculate V(s¢41) (which may
have changed due to the most recent experience), it calls Local Update for the possible
next SAPs. (2) It updates the global variables ¢* and A. (3) It updates the Q-value and
trace variable of (s, a;) and stores the current A value (in Local Update).

Global Update(s;,as, e, Se1) ¢

1)Va € A Do Make V (s¢11) up-to-date
la) Local Update(si11,a)
2) €; < (re + 7V (st41) — Q(st, ar))
3) et (re +7V(5t+1) V(st))
4) ¢t — yAPt~ Update global clock
5) A+ A+ et Add new TD-error to global error
6) Local Update(st,at) Make Q(st,at) up-to-date for next step
7) Q(st,a¢) + Q(s¢,ar) + ag(se, ar)ey
8) I'(sg,ar) « U'(se,ar) + 1/ Decay Trace

For state replacing eligibility traces (Singh and Sutton, 1996), step 8 should be changed
as follows: Ya : I'(s,a) < 0; I'(s¢,a¢) < 1/

Machine precision problem and solution. Adding e;¢' to A in line 5 may create a
problem due to limited machine precision: for large absolute values of A and small ¢*
there may be significant rounding errors. More importantly, line 8 will quickly overflow
any machine for yA < 1. The following addendum to the procedure Global Update detects
when ¢ falls below machine precision €,,, updates all SAPs which have occurred (again
we make use of a list H), and removes SAPs with I'(s,a) < €,, from H. Finally, A and
¢! are reset to their initial values.



Global Update : addendum
9) If (visited(st,at) = 0)
9a) H <+ H U (s¢,a4)
9b) visited(st, ar) < 1
10) If (¢! < €m)
10a) ¥Y(s,a) € H Do
10a-1) Local Update(s,a)
10a-2) I'(s,a) < U'(s,a)¢
10a-3) If (I'(s,a) < €m)
10a-3-1) H «+ H \ (s, a)
10a-3-2) visited(s, a) < 0
10a-4) d(s,a) < 0
10b) A+ 0
10c) ¢! 1.0

Comments. Recall that Local Update sets §(s,a) < A, and update steps depend on
A—§(s,a). Thus, after having updated all SAPs in H, we can set A < 0 and (s, a) < 0.
Furthermore, we can simply set I'(s,a) < I'(s,a)¢! and ¢ < 1.0 without affecting the
expression I'(s,a) ¢! used in future updates — this just rescales the variables. Note that
if yA =1, then no sweeps through the history list will be necessary.

Complexity. The algorithm’s most expensive part is the set of calls of Local Update,
whose total cost is O(|A|). This is not bad: even simple Q-learning’s action selection
procedure costs O(|A4]|) if, say, the Boltzmann rule (Thrun, 1992; Caironi and Dorigo,
1994) is used. Concerning the occasional complete sweep through SAPs still in history
list H: during each sweep the traces of SAPs in H are multiplied by ¢. SAPs are deleted
from H once their trace falls below €,,. In the worst case one sweep per n time steps
updates 2n SAPs and costs O(1) on average. This means that there is an additional
computational burden at certain time steps, but since this happens infrequently our
method’s total average update complexity stays O(]A]).

The space complexity of the algorithm remains O(|S|-|A|). We need to store the following
variables for all SAPs: Q-values, eligibility traces, previous delta values, the “visited”
bit, and three pointers to manage the history list (one from each SAP to its place in the
history list, and two for the doubly linked list). Finally we need to store the two global
variables.

4 Revisions to Fast Q(\)

In this section we show how the original version of Fast Q(A) is likely to be misapplied
to give rise to two subtle errors. This section also introduces: i) what modifications, if
any, are required of action selection mechanisms that intend to employ up-to-date Q-
function, i7) the state-action replace version of Fast @()), and, ii7) how the algorithm
may be modified for off-policy learning (as Watkins’ Q(\)) [15, 12]. The new algorithms
are shown in Figure 2.

Error 1. Step 1 of the original Global Update procedure performs the updates to the
@Q-values at s, necessary to ensure that V' (s¢41) is an up-to-date estimate before steps
2 and 3 where they are used. However, Q(s¢, a;) and V (s;) are also used in steps 2 and
3 and may not be up-to-date. This is easily corrected by adding:

‘ 1b) Local Update(ss,a)

We shall see below that this change is not necessary if Q(s¢,-) is made up-to-date at the



end of the Global Update procedure.

Error 2. When state replacing traces are employed with the original Fast Q(\) algo-
rithm, it is possible that the eligibility of some SAPs are zeroed. In such a case, if these
SAPs previously had non zero eligibilities then they will not receive any update making
use of e;. An exception is Q(s;, at), which is made up-to-date in step 6 (and so makes use
of e;). However all other SAPs at s; with non-zero eligibilities will receive no adjustment
toward e, if their eligibilities are zeroed:

From the original version of Global Update:
3) et < (re + 7V (st1) — V(se))
Here, each a # a; with non-zero traces receive no update using et

(Q(sg,ay) is already up-to-date before this point)
8) Va: l'(stya) « 0;1'(se,ar) « 1/t

To avoid this in the revised algorithm, all of the @)-values at s; are made up-to-date
before zeroing their eligibility traces (step 8a).

Action Selection. Steps 9 and 9a of the Revised Global Update procedure are a prag-
matic change to ensure that all of the Q)-values for s;;; are up-to-date by the end of
the procedure. If this were not so then any code needing to make use of the up-to-date
@-function at sy41, such as those for selecting the agent’s next action, would need to be
defined in terms of the up-to-date, Q-function instead. The up-to-date function, Q1. is
given by:

Q(s,a) = Q(s,a) + ak(s,a)(A — d(s,a)l' (¢, ar) (11)
From an implementation standpoint, these changes are desirable for at least three rea-
sons. Firstly, the need to use QT for action selection is easy to overlook when imple-
menting the original version of Fast Q(\) as part of a larger learning agent. Secondly,
it reduces coupling between algorithms; an algorithm that implements action selection
based on the up-to-date @-values of s;;; does not need to use QT or even care that
values at different states may be out-of-date. Thirdly, it reduces the duplication of code;
we are likely to already have action-selection algorithms that use Q(s¢y1,-) and so we
don’t need to implement others that use Q" (s;41,-) instead.

The original description of Fast () assumed that the Local Update procedure was called
for all actions in the current state immediately after the Global Update procedure and
prior to selecting actions. However, from the original description, it was not clear that
this still needs to be done even if the ()-values at the current state are not used by the
action selection method (for example, if the actions for selected randomly or provided by
a trainer). If this is done, then the new and revised algorithms are essentially identical.

State-Action Replacing Traces. The descriptions of Q(A) and Fast Q()\) in Sections
2 and 3 include only the accumulating and state replacing trace variants. In addition
to these, Singh and Sutton describe a third state-action replacing trace variant. This is
similar to the state replacing trace except that the eligibilities of the actions not followed
are not zeroed but decayed as in the accumulating trace case [4]:

_ if s =s; and a = ay,
lir1(s,a) = {7)\lt(3,a), otherwise. (12

For Fast Q(A), an effect equivalent to setting an eligibility to 1 is achieved by
li 1(s,a) < 1/¢'. We include this variant only for completeness. See [12] for a dis-
cussion of the properties of the different variants.



For accumulating traces:
Revised Global Update(s;,as, ¢, Se41) ¢
1)Va € A Do

la) Local Update(sit1,a)

2) e} « (re + YV (st+1) — Q(st,at)) NB. s; was made up-to-date in step 9
3) r (re +9V(s41) = V(51))
4) ¢ + YAt
5) A« A —+ etgzﬁt
6) Local Update(st,at)
7) Q(st,a¢) + Q(s¢,ar) + ag(se, ar)ey
8) U'(styar) « U'(st,ar) + 1/ Increment eligibility
9) Va € A Do
9a) Local Update(sit1,a) Make Q(s¢+1,-) up-to-date before action selection

For state-action replacing traces replace step 8 with:

8) I'(s¢,ar) « 1/t Set eligibility to 1
For state replacing traces, replace steps 8 - 9a with:
8) Va € A Do
8a) Local Update(sy,a) Make Q(s¢,-) up-to-date before zeroing eligibility
8b) I'(s¢,a) 0 Zero eligibility
8c) Local Update(sit1,a) Make Q(st+1,-) up-to-date before action-selection
9) l'(s¢,as) « 1/t Set eligibility to 1

For Watkins () prepend the following to the Revised Global Update procedure.

0) if Q(st,a¢) < V(st) Test whether a non-greedy action was taken
0a) Flush Updates()

Flush Updates()

1) V(s,a) € H Do
) Q(s,a) «— Q(87 (J,) + ak(stva’t)(A - 6(8,@))1’(8,&)

3) d(s,a) <0

4) I'(s,a) <0

5)

6)

H+ {}
A0
7) ¢t 1

Figure 2: The revised Fast @Q(\) algorithm for accumulating, state replacing and state-
action replacing traces and for Watkins’ @Q(\). The machine precision addendum should
be appended to each algorithm. The Flush Updates procedure can also be called upon
entering a terminal state to make the entire @-function up-to-date and also reinitialise
the eligibility and error values of each SAP ready for learning in the next episode.



Watkins’ Q(\). @Q()\) was originally conceived by Watkins and appeared in his thesis
[15]. Like Q-learning, Watkins’ Q(\) is an off-policy method; it can learn from the return
obtainable under one policy (the greedy policy) while, in practice, almost any policy can
be used to generate experience. It achieves this by ignoring the observed return that
follows from a non-greedy action in updates to the states visited prior to that action. In
an eligibility trace method the credit following a non-greedy action can be removed from
the error signal by setting the eligibilities of all SAPs to zero after taking that action.
The new Fast Q(\) version works in the same way except that here we must ensure that
all non-up-to-date SAPs are updated before zeroing their traces (see the Flush Updates
procedure).

Frequently zeroing the trace will mean that credit for receiving a particular reward will
immediately be assigned only to the few recent SAPs since the last non-greedy action.
A recent discussion of methods to overcome this inefficiency can be found in [6].

Unlike Watkins’ Q(\), Peng and Williams’ @ () is not off-policy. The @-function that it
will converge upon (if it converges at all) will be biased by the distribution of experience;
it can be shown that if the method converges then the final @Q-function may be different
from Q* if non-greedy actions are continually taken.! However, learning an accurate
Q-function is different from learning a good policy. Because Peng and Williams’ Q()\)
does not zero its trace, each experience may immediately affect many more SAPs than
Watkins’ @Q(A). Thus, in many instances it may learn more quickly.

5 Validation

In this section we empirically test how closely the correct and erroneous implementations
of Fast Q()\) approximate the original version of Q()\). We use Fast Q(\)T to denote the
correct implementation suggested in this paper and Fast Q(A)~ to denote the method
that does not apply a Local Update for all actions in the new state between calls to
the Global Update procedure. Note that if these updates are performed, Fast Q(\)*
and Fast Q()\)~ are identical methods.? We analyse what consequences the erroneous
implementation has on the learning ability of the RL agent.

The algorithms were tested using the maze task shown in Figure 3. At each step the
agent may choose one of four actions (N,S,E,W). Transitions have probabilities of 0.8
of succeeding, 0.08 of moving the agent laterally and 0.04 of moving in the opposite
to intended direction. Episodes start in random states and continue until one of the
four terminal corner states is entered. A reward of 100 is given for entering the top-
right corner and 10 for the others. There are a number of penalty fields of —1 and —4
around the maze. This task was chosen as credit for actions leading to the goal can be
significantly delayed and also because state revisits can frequently occur.

The action taken by the agent at each step was selected using e-greedy [12]. This se-
lects a greedy action, argmax, Q(s¢,a), with probability €, and a random action with
1 —e. For Fast QQ(\)~ the greedy action is chosen based upon the up-to-date @-function:
argmax, Q% (s¢,a).

Figure 5 compares the results for the PW Q()\) variants. The graphs measure the total

reward collected by each algorithm and the mean squared error (MSE) in the up-to-date
@-function learned by each algorithm over the course of 200000 time steps. The squared

!There is, as yet, no proof that any RL method with A > 0 converges upon Q* [12, 9].
2The experiments in the original description of Fast Q(\) did perform these local updates

and so we do not repeat the experiments in the original paper in order to compare the time-cost
of Fast Q(A\)* and Peng’s Q() [18, 19, 17].
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Figure 3: The large stochastic maze task. Impassable walls are marked in black and
penalty fields of —4 and —1 are marked in dark and light grey respectively.

>~ +1

Figure 4: A small stochastic maze task taken from [8]. Rewards of —1 and +1 are given
for entering (4,2) and (4, 3), respectively. On non-terminal transitions, r, = 1/25.

Fast Q(\)~ | Fast Q(\)7

PW-acc 0.7 1.7%10~1
PW-srepl 1.3 8.8x10°1°
PW-sarepl 0.3 1.7%«10°1
WAT-acc 1.3 76%10"13
WAT-srepl 2.5 421010
WAT-sarepl 0.6 2.9% 1011

Table 1: The largest differences from @Q-function learned by original @(A) during the
course of 2000 time steps of experience within the small maze task. The experiment
parameters were €, = 107°, a = 0.2, A = 0.95 and v = 1.0. The experience was
generated by randomly selecting actions.
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Figure 5: Comparison of PW Q()), Fast PW Q(A)* and Fast PW Q()\)~ performance
profiles in the stochastic maze task. Results are the average of 20 runs. The parameters
were Qo = 100, « = 0.3, ¢ = 0.1, A = 0.9 and €,, = 1 x 103 for regular Q()\) and
em = 10710 for the Fast versions. (left column) Total reward collected. (right column)
Mean squared error in the value function. (top row) With accumulating traces. (middle
row) With state replacing traces. (bottom row) With state-action replacing traces.
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Figure 6: Comparison of Peng and Williams’ Q(\) methods with a high exploration rate
(e = 0.5). All other parameters are as in Figure 5. Note that the scale of the vertical
axes differs between experiment sets.
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Figure 7: Comparison of Watkins’ Q(X), Fast Watkins’ Q(A)~ and Revised Fast Watkins’
Q(\)T in the stochastic maze task. All parameters are as in Figure 5.
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error was measured as,

SE(s) = (V*(s)—maaxQ(s,a))2, (13)

for regular Q()\) and as,

SE(s) = (V*(s)—mgxm(s,a))g, (14)

for both versions of Fast Q(A). An accurate V* was found by dynamic programming
methods. All of the results in the graphs are the average of 100 runs.

Fast PW Q(A\)T provided equal or better performance than Fast PW Q(A)~ in most
instances, and its results also provided an extremely good fit against the original version
of PW Q()) in all cases (see Figures 5 and 6). Similar results were found when comparing
Watkins’ Q(A) and its Fast variants (see Figures 7 and 8).

Fast Q(\)~ worked especially worse in terms of error than Fast Q(A)T for PW with
accumulating or state-action replacing traces. However, in one instance (with a state
replacing trace) the error performance of the revised algorithm was actually worse than
the original (see Figure 6).3 This anomaly was not seen for Watkins’ Q(\) (see Figure 8).

The effect of exploratory actions on PW @Q(A) are also evident in these results. The PW
Q(A) methods collected less reward and found a hugely less accurate @-function in the
case of a high exploration rate than the Watkins’ methods (compare Figures 6 and 8). In
contrast, the Watkins’ variants collected similar or better amounts of reward but found
far more accurate @-functions than the Peng and Williams’ methods in both the high
and low exploration rate cases. Similar results were also reported by Wyatt in [20].

In addition to showing that the performance of Fast Q(\)" is similar to @Q()) in the
mean, we performed a more detailed test. The agents were made to learn from identical
experience gathered over 2000 simulation steps in the small stochastic maze shown in
Figure 4. At each time step, the difference between the Q-functions of @ () and the up-
to-date Q-functions of Fast ()T and Fast Q(\)~ was measured. The largest differences
at any time during the course of learning are shown in Table 1. The differences for Fast
Q(MN)T are all in the order of €,, or better. The differences for Fast Q(\)~ are many
orders of magnitude greater.

Also, overall, state replacing traces produced best performance in terms of @-function
error in both sets of experiments. State replacing traces are the variants suggested by
Singh and Sutton [10] and in the original description of Fast Q()\) [18, 19, 17].

6 Conclusion

Fast Q(\) provided the means to implement Q(\) at a greatly reduced computational
cost that is independent of the size of the state space. As such, it makes it feasible for
RL to tackle problems of greater scale. Although the underlying derivation of Fast Q(\)
is correct, we have shown in this paper that the original algorithmic description is likely
to be misinterpreted and incorrectly implemented. This paper has provided both sim-
plifications and clarifications of the original algorithm. The revised algorithm maintains
a mean time complexity of O(|A|) per step (as Fast Q(\)). Naive implementations of
Q(X) are O(]S| - |A|) per step.

8 An interpretation of this result might be that the Peng and Williams’ Fast Q()\)™ method
isn’t performing as bad as quickly as the other methods since the error is actually increasing in
all methods until the end of this plot.
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We have also shown how Fast @(A) can be modified to use state-action replacing traces
or used as an exploration insensitive learning method and reported upon the relative
merits of these modifications. In particular, in the experiments conducted here, the
exploration insensitive versions provided similar performance in terms of the collected
reward, but achieved uniformly better performance in terms of @-function error. This
was found both with high or low amounts of exploration.
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