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Abstract� In this paper we present the solution to a longstanding problem
of di�erential geometry� Lie�s third theorem for Lie algebroids� We show that
the integrability problem is controlled by two computable obstructions� As
applications we derive� explain and improve the known integrability results�
we establish integrability by local Lie groupoids� we clarify the smoothness of
the Poisson sigma�model for Poisson manifolds� and we describe other geomet�
rical applications� Our approach also puts into a new perspective the work of
Cattaneo and Felder for the special case of Poisson manifolds and the �new�
proof of Lie�s third theorem given by Duistermaat and Kolk�
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�� Introduction

This paper is concerned with the general problem of integrability of geometric
structures� The geometric structures we consider are always associated with local
Lie brackets � � � on sections of some vector bundles� or what one calls Lie algebroids�
A Lie algebroid can be thought of as the appropriate replacement for the tangent
bundle� the locus where in�nitesimal geometry takes place� Roughly speaking� the
general integrability problem asks for the existence of a �space of arrows� and a
product which unravels the in�nitesimal structure� These global objects are usually
known as Lie groupoids �or di�erentiable groupoids� and in this paper we shall give
the precise obstructions to integrate a Lie algebroid to a Lie groupoid� For an
introduction to this problem and a brief historical account we refer the reader to
the recent monograph ����

To describe our results� let us start by recalling that a Lie algebroid over a
manifold M consists of a vector bundle A over M � endowed with a Lie bracket � � �
on the space of sections ��A�� together with a bundle map � � A� TM � called the
anchor� One requires the induced map � � ��A� � X ��M � ��� to be a Lie algebra
map� and also the Leibniz identity

��� f�� � f ��� �� � ���f���

to hold�
For any x �M � there is an induced Lie bracket on

gx � Ker ��x� � Ax

which makes it into a Lie algebra� In general� the dimension of gx varies with x�
The image of � de�nes a smooth generalized distribution in M � in the sense of
Sussmann ���
��� which is integrable� When we restrict to a leaf L of the associated
foliation� the gx�s are all isomorphic and �t into a Lie algebra bundle gL over L
�see ������ In fact� there is an induced Lie algebroid

AL � AjL

which is transitive �i�e� the anchor is surjective�� and gL is the kernel of its anchor
map� A general Lie algebroid A can be thought of as a singular foliation on M �
together with transitive algebroids AL over the leaves L� glued in some complicated
way�

The integrability problem for Lie algebroids can be illustrated by looking at some
basic examples�

� For algebroids over a point �i�e� Lie algebras� the integrability problem is
solved by Lie�s third theorem on the integrability of ��nite dimensional� Lie
algebras by Lie groups�

� For algebroids with zero anchor map �i�e� bundles of Lie algebras�� it is
Douady�Lazard ���� extension of Lie�s third theorem which ensures that the
Lie groups integrating each Lie algebra �ber �t into a smooth bundle of Lie
groups�

� For algebroids with injective anchor map �i�e� involutive distributions F �
TM �� the integrability problem is solved by Frobenius� integrability theorem�

Other fundamental examples come from E� Cartan in�nite continuous groups �Singer
and Sternberg� ������ the integrability of in�nitesimal actions of Lie algebras on man�
ifolds �Palais� ������ of Poisson manifolds �Weinstein� ��
��� algebras of vector �elds

�We denote by �r�M� and X r�M�� respectively� the spaces of di�erential r�forms and r�
multivector �elds on a manifoldM � If E is a bundle overM � ��E� will denote the space of global
sections�
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�Nistor� ����� and of abstract Atiyah sequences �Almeida and Molino� ����� These�
together with various other examples will be discussed in the forthcoming sections�

Let us look closer at the most trivial example� A vector �eld X � X ��M � is
the same as Lie algebroid structure on the trivial line bundle L� M � the anchor
is just multiplication by X� while the Lie bracket on ��L� � C��M � is given by
�f� g� � X�f�g � fX�g�� The integrability result here states that a vector �eld is
integrable to a local �ow� It may be useful to think of the �ow �t

X as a collection
of arrows x �� �t

X �x� between the di�erent points of the manifold� which can be
composed by the rule �t

X�s
X � �s�t

X � The points which can be joined by such
an arrow with a given point x form the orbit of �X �or the integral curve of X�
through x�

The general integrability problem is similar� it asks for the existence of a �space
of arrows� and a partially de�ned multiplication� which unravels the in�nitesimal
structure �A� � � ����� In a more precise fashion� a groupoid is a small category G
all of whose arrows are invertible� If the set of objects �points� is M � we say that
G is a groupoid over M � We shall denote by the same letter G the space of arrows�
and write

G

��
t

��
s

M

where s and t are the source and target maps� If g� h � G the product gh is de�ned
only for pairs �g� h� in the set of composable arrows

G��� � f�g� h� � G � Gjt�h� � s�g�g �

and we denote by g�� � G the inverse of g� and by �x � x the identity arrow at
x �M � If G and M are topological spaces� all the maps are continuous� and s and
t are open surjections� we say that G is a topological groupoid� A Lie groupoid is a
groupoid whose space of arrows G and space of objects M are smooth manifolds�
whose source and target maps s� t are submersions� and with all the other structure
maps smooth� We require M and the s��bers G�x��� � s���x�� where x � M � to
be Hausdor� manifolds� but it is important to allow the total space G of arrows
to be non�Hausdor�� This is dictated by very simple examples� the monodromy
groupoid of a foliation is non�Hausdor� if there are vanishing cycles�

As in the case of Lie groups� any Lie groupoid G has an associated Lie algebroid
A � A�G�� As a vector bundle� it is the restriction to M of the bundle T sG of
s�vertical vector �elds on M � Its �ber at x � M is the tangent space at �x of the
s��bers G�x��� � s���x�� and the anchor map is just the di�erential of the target
map t� To de�ne the bracket� one shows that ��A� can be identi�ed with X s

inv�G��
the space of s�vertical� right�invariant� vector �elds on G� The standard formula of
Lie brackets in terms of �ows shows that X s

inv�G� is closed under �	� 	�� This induces
a Lie bracket on ��A�� which makes A into a Lie algebroid�

We say that a Lie algebroid A is integrable if there exists a Lie groupoid G
inducing A� The extension of Lie�s theory �Lie�s �rst and second theorem� to Lie
algebroids has a promising start�

Theorem �Lie I�� If A is an integrable Lie algebroid� then there exists a �unique�
s�simply connected Lie groupoid integrating A�

This has been proved in ���� �see also ���� for the transitive case�� A di�erent
argument� which is just an extension of the construction of the smooth structure
on the universal cover of a manifold �cf� Theorem ������ in ����� will be presented
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below� Here s�simply connected means that the s��bers s���x� are ��connected�
The Lie groupoid in the theorem is often called the monodromy groupoid of A�
and will be denoted by Mon �A�� For the simple examples above� Mon �TM � is the
homotopy groupoid of M � Mon �F� is the monodromy groupoid of the foliation F �
while Mon �g� is the unique simply�connected Lie group integrating g�

The following result is standard �we refere to ��	� ���� although the reader may
come across it in various other places�� See also section � below�

Theorem �Lie II�� Let � � A � B be a morphism of integrable Lie algebroids�
and let G and H be integrations of A and B� If G is s�simply connected� then there
exists a �unique� morphism of Lie groupoids � � G � H integrating ��

In contrast with the case of Lie algebras or foliations� there is no Lie�s third
theorem for general Lie algebroids� Examples of non�integrable Lie algebroids are
known �we will see several of them in the forthcoming sections� and� up to now� no
good explanation for this failure was known� For instance� the various integrability
criteria one �nds in the literature are �apparently� non�related� some require a
nice behavior of the Lie algebras gx� some require a nice topology of the leaves
of the induced foliation� and most of them require regular algebroids� A good
understanding of this failure should shed some light on the following questions�

� Is there a �computable� obstruction to the integrability of Lie algebroids�
� Is the integrability problem a local one�
� Are Lie algebroids locally integrable�

In this paper we will provide answers to these questions� In particular� we will
show that the obstruction to integrability comes from the relation between the
topology of the leaves of the induced foliation and the Lie algebras de�ned by the
kernel of the anchor map�

We will now outline our integrability result� Given an algebroid A and x � M �
we will construct certain �monodromy� subgroups

Nx�A� � Ax�

which lie in the center of the Lie algebra gx � Ker��x�� they consist of those
elements v � Z�gx� which are homotopic to zero �see section ��� As we shall
explain� these groups arise as the image of a second order monodromy map

� � ���Lx� � G�gx�

which relates the topology of the leaf Lx through x with the simply connected Lie
group G�gx� integrating the Lie algebra gx � Ker��x�� From a conceptual point of
view� the monodromy map can be viewed as an analogue of a boundary map of the
homotopy long exact sequence of a �bration �namely � � gLx � ALx � TLx � ���
In order to measure the discreteness of the groups Nx�A� we let

r�x� � d��� Nx�A� � f�g�

where the distance is computed with respect to a �arbitrary� norm on the vector
bundle A� Here we adopt the convention d��� 
� � ��� We will see that r is not a
continuous function� Our main result is�

Theorem �Obstructions to Lie III�� For a Lie algebroid A over M � the fol�
lowing are equivalent�

�i� A is integrable	
�ii� For all x �M � Nx�A� � Ax is discrete and lim infy�x r�y� � �	
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We stress that these obstructions are computable in many examples� First of
all� the de�nition of the monodromy map is explicit� Moreover� given a splitting
� � TL� AL of � with Z�gL��valued curvature ��form ��� we will see that

Nx�A� � f

Z
�

�� � 	 � ���L� x�g � Z�gx�


With this information at hand the reader can already jump to the examples �see
sections ���� ��
� 
�� and 
��

As is often the case� the main theorem is just an instance of a more fruitful
approach� In fact� we will show that a Lie algebroid A always admits an �integrat�
ing� topological groupoid G�A�� Although it is not always smooth �in general it is
only a leaf space�� it does behave like a Lie groupoid� This immediately implies
the integrability of Lie algebroids by �local Lie groupoids�� a result which has been
assumed to hold since the original works of Pradines in the �����s�

The main idea of our approach is as follows� Suppose � � A � M is a Lie
algebroid which can be integrated to a Lie groupoid G� Denote by P �G� the space
of G�paths� with the C��topology�

P �G� �
�
g � ��� ��� Gj g � C�� s�g�t�� � x� g��� � �x

�
�paths lying in s��bers of G starting at the identity�� Also� denote by � the equiv�
alence relation de�ned by C��homotopies in P �G� with �xed end�points� Then we
have a standard description of the monodromy groupoid as

Mon �A� � P �G�� � 


The source and target maps are the obvious ones� and for two paths g� g� � P �G�
which are composable �i� e� t�g���� � s�g������ we de�ne

g� 	 g�t� �

��
�

g��t�� � 
 t 
 �
�

g���t� ��g���� �
� � t 
 �

Note that any element in P �G� is equivalent to some g such that  g��� �  g���� and
if g and g� have this property� then g� 	 g � P �G�� Therefore� this multiplication is
associative up to homotopy� so we get the desired multiplication on the quotient
space which makes Mon �A� into a �topological� groupoid� The construction of the
smooth structure on Mon �A� is similar to the construction of the smooth structure
on the universal cover of a manifold �see e� g� Theorem ������ in �����

Now� any G�path g de�nes an A�path a� i� e� a curve a � I � A de�ned on the
unit interval I � ��� ��� with the property that

�a�t� �
d

dt
��a�t��


The A�path a is obtained from g by di�erentiation and right translations� This
de�nes a bijection between P �G� and the set P �A� of A�paths and� using this bijec�
tion� we can transport homotopy of G�paths to an equivalence relation �homotopy�
of A�paths� Moreover� this equivalence can be expressed using the in�nitesimal data
only �section �� below�� It follows that a monodromy type groupoid G�A� can be
constructed without any integrability assumption� This construction of G�A�� sug�
gested by Alan Weinstein� in general only produces a topological groupoid �section
��� Our main task will then be to understand when does the Weinstein groupoid
G�A� admit the desired smooth structure� and that is where the obstructions show
up� We �rst describe the second order monodromy map which encodes these ob�
structions �section �� and we then show that these are in fact the only obstructions
to integrability �section 
�� In the �nal section� we derive the known integrability
criteria from our general result and we give two applications�
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�� A�paths and homotopy

In this section A is a Lie algebroid over M � � � A � TM denotes the anchor�
and � � A�M denotes the projection�

In order to construct our main object of study� the groupoid G�A� that plays the
role of the monodromy groupoid Mon �A� for a general �non�integrable� algebroid�
we need the appropriate notion of paths on A� These are known as A�paths or
admissible paths� and we shall discuss them in this section�

���� A�paths� We call a C� curve a � I � A an A�path if

�a�t� �
d

dt
	�t�


where 	�t� � ��a�t�� is the base path �necessarily of class C��� We let P �A� denote
the space of A�paths� endowed with the topology of uniform convergence�

We emphasize that this is the right notion of paths in the world of algebroids�
From this point of view� one should view a as a bundle map

a dt � TI � A

which covers the base path 	 � I �M and this gives a algebroid morphism TI � A�
Obviously� the base path of an A�path sits inside a leaf L of the induced foliation�

and so can be viewed as an AL�path� The key remark is�

Proposition ���� If G integrates the Lie algebroid A� then there is a homeomor�
phism DR � P �G� � P �A� between the space of G�paths� and the space of A�paths
�DR is called the di�erentiation of G�paths� and its inverse is called the integration
of A�paths��

Proof� Any G�path g � I � G de�nes an A�path DR�g� � I � A by the formula

�DRg��t� � �dRg�t����g�t�  g�t� �

where� for h � x � y arrow in G� Rh � s���y� � s���x� is the right multiplication
by h� Conversely� any A�path a arises in this way� by integrating �using Lie II� the
Lie algebroid morphism TI � A de�ned by a� You should then notice that any
Lie groupoid homomorphism � � I � I � G from the pair groupoid into G is of the
form ��s� t� � g�s�g���t� for some G�path g�

A more explicit argument� avoiding Lie II� and which also shows that the inverse
of DR is continuous� is as follows� Given a� we choose a time dependent section �
of A above a� i� e� so that

a�t� � ��t� 	�t��


If we let 
t�
� be the �ow of the right�invariant vector �eld that corresponds to ��
then g�t� � 
t�
� �	���� is the desired G�path� Indeed� right�invariance guarantees
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that this �ow is de�ned for all t � ��� �� and also implies that

�DRg��t� � �dRg�t����g�t����t� g�t��� � ��t� 	�t�� � a�t�


���� A�paths and connections� Given an A�connection on a vector bundle E over
M � most of the classical construction �which we recover when A � TM � extend to
Lie algebroids� provided we use A�paths� This is explained in detail in ���� ���� and
here we recall only the results we need�

A A�connection on a vector bundle E over M can be de�ned by a covariant
derivative operator ��A� � ��E� � ��E�� ��� u� �� r�u satisfying rf�u � fr�u�
and r��fu� � fr�u� ���f�u� The curvature of r is given by the usual formula

Rr��� �� � �r��r���r����
�

and r is called �at if Rr � �� For an A�connection r on the vector bundle A� the
torsion of r is also de�ned as usual by�

Tr��� �� � r�� �r��� ��� ��


Given an A�path a with base path 	 � I �M � and u � I � E a path in E above
	� then the derivative of u along a� denoted rau� is de�ned as usual� choose a time
dependent section � of E such that ��t� 	�t�� � u�t�� then

rau�t� � ra�
t�x� �

d�t

dt
�x�� at x � 	�t� 


One has then the notion of parallel transport along a� T t
a � E��
� � E��t�� and

for the special case E � A� we can talk about the geodesics of r� Geodesics are
A�paths a with the property that raa�t� � �� As in the classical case� one has
existence and uniqueness of geodesics with given initial base point x � M and
�initial speed� a
 � Ax� �

Example ���� If L is a leaf of the foliation induced by A� then gL � Ker��jL�
is a representation of AL� with r�� � ��� ��� In particular� for any A�path a� the
induced parallel transport de�nes a linear map� called the linear holonomy of a�

Hol �a� � gx � gy �

where x� y are the initial and the end point of the base path� For more on linear
holonomy we refer to �����

Most of the connections that we will use are induced by a standard TM �connection
r on the vector bundle A� Associated with r there is an obvious A�connection on
the vector bundle A

r�� � r���


A bit more subtle are the following two A�connections on A and on TM � respec�
tively� �see �����

r�� � r���� ��� ��� r�X � �rX�� ����X�


Note that r��� � �r��� so in the terminology of ���� this means that r is a
basic connection on A� These connections play a fundamental role in the theory of
characteristic classes �see �
� �� �����
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���� Homotopy of A�paths� As we saw above� if A is integrable� A�paths are in
a bijective correspondence with G�paths� Let us see now how one can transport the
notion of homotopy to P �A�� so that it only uses the in�nitesimal data� i� e�� on Lie
algebroid data�

Let us �x

a��t� � a��� t� � I � I �M

a variation of A�paths� that is a family of A�paths a� which is of class C� on ��
with the property that the base paths 	��t� � 	��� t� � I � I � M have �xed end
points� If A came from a Lie groupoid G� and a� came from G�paths g�� then g� is
not necessarily a homotopy between g
 and g�� because the end�points g���� may
vary� The following lemma describe two distinct ways of controlling the variation
d
d�
g����� one way uses a connection on A� and the other uses �ows of sections of a

A �see Appendix A�� They both depend only on in�nitesimal data�

Proposition ���� Let A be an algebroid and a � a� a variation of A�paths�

�i� If r is an TM �connection on A with torsion Tr� the solution b � b��� t� of
the di�erential equation

�tb� ��a � Tr�a� b�� b��� �� � �����

does not depend on r� Moreover� �b � d
d�
	�

�ii� If �� are time depending sections of A such that ���t� 	��t�� � a��t�� then b��
t�
is given by

b��� t� �

Z t




�t�s��
d��
d�

�s� 	��s��ds
���

�iii� If G integrates A and g� are the G�paths satisfying DR�g�� � a�� then b �
DR�gt�� where gt are the G�paths �� gt��� � g��� t��

This motivates the following de�nition�

De�nition ���� We say that two A�paths a
 and a� are equivalent �or homotopic��
and write a
 � a�� if there exists a variation a� with the property that b insured by
Proposition ��� satis�es b��� �� � � for all � � I�

When A admits an integration G� then the isomorphism DR � P �G� � P �A�
of Proposition ��� transforms the usual homotopy into the homotopy of A�paths�
Note also that� as A�paths should be viewed as algebroid morphisms� the pair �a� b�
de�ning the equivalence of A�paths should be viewed as a true homotopy

adt� bd� � TI � TI � A


in the world of algebroids� In fact� equation ��� is just an explicit way of saying
that this is a morphism of Lie algebroids �see ��
���

Proof of Proposition 
��� Let �� be as in the statement� and let � be given by

���� t� x� �

Z t




�t�s��
d��
d�

�s��s�t
���

�x��ds � Ax

We note that � coincides with the solution of the equation

d�

dt
�
d�

d�
� ��� �� 
���

with ���� �� � �� Indeed� since

���� t��� �

Z t




��s�t�� ���
d�s�
d�

�ds � ��A��
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equation ��� immediately follows from the basic formula �A��� for �ows� Also� X �
�� and Y � �� satisfy a similar equation on M � and since we have X��� t� 	��t�� �
d�
dt

� it follows that Y ��� t� 	��t�� � d�
d�

� In other words� b��� t� � ���� t� 	��� t�� satis�es

�b � d�
d�

� We now have

�tb � r d�
dt
� �

d�

dt
� r��� �

d�

dt

at x � 	��t�� Subtracting from this the similar formula for ��a and using ��� we get

�tb� ��a � r��� �r��� � ��� �� � Tr��� ��


We are now left proving �iii�� Assume that G integrates A and g� are the G�
paths satisfying DR�g�� � a�� The formula of variation of parameters applied to
the right�invariant vector �eld �� shows that

�g��� t�

��
�

Z t




�d
t�s�� �g�	�s�
d�s�
d�

�g��� s��ds

� �dRg�	�t�����t�

Z t




�t�s��
d�s�
d�

�		�s��ds


But then�

DR�gt� �

Z t



�t�s��

d�s�
d�

�		�s��ds � b��� t�


The next lemma gives elementary properties of homotopies of A�paths�

Lemma ���� Let A be a Lie algebroid�

�i� If � � I � I� with � ��� � �� � ��� � � is a smooth change of parameter� then
any A�path a is equivalent to its reparametrization a
 �t� � � ��t�a�� �t���

�ii� Any A�path a
 is equivalent to a smooth �i� e� of class C�� A�path�
�iii� If two smooth A�paths a
� a� are equivalent� then there exists a smooth homo�

topy between them�

Proof� To prove �i�� we consider the variation

a��t� � ���� �� � �� ��t��a���� ��t� �� �t��


and we check that the associated b satis�es b��� �� � �� In fact� one can compute
by any of the methods of Proposition ����

b��� t� � �� �t� � t�a��� � ��t� �� �t��


For example� if we let � be a time�dependent section which extends the path a� and
de�ne a ��parameter family of time�dependent sections �� by�

���t� x� � ��� � �� � �� ��t������ � ��t� �� �t�� x��

then �� extends a� and the family

���� t� x� � �� �t�� t������ ��t� �� �t�� x�

satis�es ���� Hence� we must have b��� t� � ���� t� 	��� t�� as claimed�
For �ii�� note that from the similar claim for ordinary paths on manifolds �see

e� g� Theorem �
��
� in ����� we can �nd a Cr�homotopy 	� between the base path
	
 of a
 and a smooth path 	�� Clearly� we can do it so that 	� stays in the same
leaf L as 	
� and so that 	��t� is smooth in the domain t � ��� ��� � � �c� �� for
some constant � � c � �� We now choose a smooth splitting � � TL � AjL of the
anchor map� and put b��� t� � �� d

d�
	��t��� Let a be the solution of the di�erential

equation ���� with the initial conditions a��� t� � a
�t�� Clearly a is smooth on
the domain on which b is� hence it de�nes a homotopy between a
 and the smooth
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A�path a�� Part �iii� is just a degree�one higher version of part �ii�� and can be
proven similarly replacing the path a
 by the given homotopy between a
 and a�
�a similar argument will be presented in detail in the proof of Proposition ��
��

��
� Representations and A�paths� A �at A�connection on a vector bundle E
de�nes a representation of A on E� The terminology is inspired by the case of
Lie algebras� There is also an obvious notion of representation of a Lie groupoid
G� this is a vector bundle E over the space M of objects� together with smooth
actions g � Ex � Ey de�ned for arrows g from x to y in G� satisfying the usual
identities� By di�erentiation� any such representation becomes a representation of
the Lie algebroid A of G �see e� g� �
� �
��� Moreover� when G � Mon �A� is the
unique s�simply connected Lie groupoid integrating A� this construction induces a
bijection

Rep �Mon �A�� �� Rep �A�

between the �semi�rings of equivalence classes of� representations� This is explained
in ����� but it follows also from our construction of G�A� �see next section� since we
have�

Proposition ��	� If a
 and a� are equivalent A�paths from x to y� Then for any
representation E of A� parallel transports Ex � Ey along a
 and a� coincide�

Proof� We �rst claim that for any A�connection r on E� adt� bd� and homotopy
between a
 and a��

ra�rbtu�rbtra�u � Rr�a� b�u

for all paths u � I � I � E above 	��� t�� To see this� let us assume that �� � are as
in the proof of Proposition ���� and let � be a family of time�dependent sections of
E so that u��� t� � ���� t� 	��� t��� Then

rbtu � r���
d�

d�

at x � 	��� t�� Hence

ra�rbtu � r�r���r��
d�

d�
� �r��

d�

dt
� �

d��

d�dt
�r d�

dt

�


Subtracting the analogous formula for rbtra�u and using ��� the claim follows�
When r is �at� this formula applied u��� t� � T t

a�
�u
�� where T t

a�
denotes parallel

transport� gives ra�rbtu � �� But rbtu � � at t � �� hence rbtu � � for
all t�s� Since u��� t� � T t

a�
�u
� it follows that u��� t� � T �

bt
T t
a�

�u
�� Thererefore

T t
a�

� T �
bt
T t
a�

� for all �� t and� in particular� for � � t � � we get T �a� � T �a� �

Recalling the notion of linear holonomy �cf� Example ���� we have�

Corollary ��
� If a
 and a� are equivalent A�paths from x to y� they induce the
same linear holonomy maps

Hol �a
� � Hol �a�� � gx � gy


�� The Weinstein groupoid

We are now ready to de�ne the Weinstein groupoid G�A� of a general Lie alge�
broid� which in the integrable case will be the unique s�simply connected groupoid
integrating A�



INTEGRABILITY OF LIE BRACKETS ��

���� The groupoid G�A�� Let a
� a� be two composable A�paths� i� e� so that
��a
���� � ��a������ We de�ne their concatenation

a� � a
�t� �

��
�

�a
��t�� � 
 t 
 �
�

�a���t� ��� �
� � t 
 �

This is essentially the multiplication that we need� However� a� � a
 is only piece�
wise smooth� One way around this di"culty is allowing for A�paths which are
piecewise smooth� Instead� let us �x a cuto� function � � C��R� with the follow�
ing properties

�a� � �t� � � for t � � and � �t� � � for t 
 ��
�b� � ��t� � � for t ���� ���

For anA�path awe denote� as above� by a
 its reparametrization a
 �t� � � ��t�a�� �t���
We now de�ne the multiplication by

a�a
 � a
� � a

 � P �A�


According to Lemma ��
 �i�� a
a� is equivalent to a
 � a� whenever a
��� � a�����
We also consider the natural structure maps� source and target s� t � P �A� � M
which map a to ��a���� and ��a����� respectively� the identity section � � M � P �A�
mapping x to the constant path above x� and the inverse � � P �A� � P �A� mapping
a to a given by a�t� � �a��� t��

Theorem ���� Let A be a Lie algebroid over M � Then the quotient

G�A� � P �A�� �

is a s�simply connected topological groupoid independent of the choice of cutto�
function� Moreover� whenever A is integrable� G�A� admits a smooth structure
which makes it into the unique s�simply connected Lie groupoid integrating A�

Proof� If we take the maps on the quotient induced from the structure maps de�ned
above� then G�A� is clearly a groupoid� Note that the multiplication on P �A� was
de�ned so that� whenever G integrates A� the map DR of Proposition ��� preserves
multiplications� Hence the only thing we still have to prove is that s� t � G�A� �M
are open maps�

Given D � G�A� open� we will show that its saturation #D w�r�t� the equivalence
relation � is still open� This follows from the fact� to be shown later in Theorem

�	� that the equivalence relation can be de�ned by a foliation on P �A�� A more
direct argument is to show that for any two equivalent A�paths a
 and a�� there
exists a homeomorphism of T � P �A� � P �A� such that T �a� � a for all a�s� and
T �a
� � a�� To construct such a T we let � � ���� t� be a family of time dependent
sections ofAwhich determines the equivalence a
 � a� �see Proposition ����� so that
���� �� � ���� �� � � �we may assume � has compact support� so that all the �ows
involved are everywhere de�ned�� Given anA�path b
� we consider a time dependent
section �
 so that �
�t� 	
�t�� � b�t� and denote by � the solution of equation ���

with initial condition �
� If we set 	��t� � ���

��t

	
�t�� and b��t� � ���t� 	��t��� then

T��b
� � b� is homotopic to b
 via b�� and maps a
 into a��

���� Homomorphisms� Note that� although G�A� is not always smooth� in many
aspects it always behave like in the smooth �i� e� integrable� case� For instance� we
can call a representation of G�A� smooth if the action becomes smooth when pull�
backed to P �A�� Similarly one can talk about smooth functions on G�A�� about its
tangent space� etc� This subsection and the next are variations on this theme�

Proposition ���� Let A and B be Lie algebroids� Then�
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�i� Every algebroid homomorphism � � A � B determines a smooth groupoid
homomorphism � � G�A� � G�B� of the associated Weinstein groupoids� If
A and B are integrable� then �� � �	

�ii� Every representation E � Rep�A� determines a smooth representation of
G�A�� which in the integrable case is the induced representation�

Proof� For �i� we de�ne � in the only possible way� If a � P �A� is an A�path then
��a is an A�path in P �B�� Moreover� it is easy to see that if a� � a� are equivalent
A�paths then ��a� � ��a�� so we get well�de�ned smooth map � � G�A�� � G�A��
by setting

���a�� � �� � a�


This map is clearly a groupoid homomorphism�
Part �ii� follows easily from Proposition ����

In particular we see that� as in the smooth case� there is a bijection between the
representations of A and the �smooth� representations of G�A��

Rep �G�A�� �� Rep �A�


���� The exponential map� Assume �rst that G is a Lie groupoid integrating A�
and r is a TM �connection on A� Then the pull�back of r along the target map t
de�nes a family of �right invariant� connections rx on the manifolds s���x�� The
associated exponential maps Exprx

� Ax � T s

xG � s���x� �t together into a global
exponential map ����

Expr � A� G

�de�ned only on an open neighborhood of the zero section�� By standard arguments�
Expr is a di�eomorphism on a small enough neighborhood of M �

Now if A is not integrable� we still have the exponential map associated to a
connection r on A� It is de�ned as usual� so Expr�a� is the value at time t � �
of the geodesic �A�path� with the initial condition a� By a slight abuse of notation
we view it as a map

Expr � A� P �A�


Of course� Expr is only de�ned on an open neighborhood of M inside A consisting
of elements whose geodesics are de�ned for all t � ��� ��� Passing to the quotient�
we have an induced exponential map

Expr � A� G�A�


For integrable A� this coincides with the exponential map above�
Note that the exponential map we have discussed so far depends on the choice

of connection� To get an exponential independent of the connection recall from ����
that an admissible section of a Lie groupoid G is a di�erentiable map � � M � G
such that s���x� � x and t�� � M �M is a di�eomorphism� Also� each admissible
section � � ��G� determines di�eomorphisms

G � g �� �g ���x�g� where x � t�g��

G � g �� g� �g��y�� where t � ��y� � s�g�


Now� each section � � ��A� can identi�ed with a right�invariant vector �eld on
G� and we denote its �ow by 
t�� We de�ne an admissible section exp��� of G by
setting�

exp����x� � 
���x�
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This gives an exponential map exp � ��A� � ��G� which� in general� is de�ned
only for sections � su"ciently close to the zero section �e� g�� sections with compact
support��

In the non�integrable case� we can also de�ne an exponential map exp � ��A� �
��G�A�� to the admissible smooth sections of the Weinstein groupoid as follows�
First of all notice that

a��x��t� � ��t� �t�
���x��

de�nes an A path a��x� for any x �M and for any time depending section � of A
whose �ow is de�ned up to t � � �e� g�� if � is su"ciently close to zero� or if it is
compactly supported�� This de�nes a smooth map a� � M � P �A�� For � � ��A�
close enough to the identity section we set

exp����x� � �a��x��


Notice that a � a��x� is the unique A�path with a��� � ��x� and a�t� � ����a�t����
for all t � I�

In the integrable case these two constructions coincide� Moreover� for a general
Lie algebroid� we have the following

Proposition ���� Let A be a Lie algebroid and �� � � ��A�� Then� as admissible
sections�

exp�t�� exp��� exp��t�� � exp��t����

where �t� denotes the in�nitesimal 
ow of � �see Appendix A��

Proof� First we make the following remark concerning functoriality of exp� Let
� � A� � A� a morphism of Lie algebroids and let � � G�A�� � G�A�� be the

corresponding morphism of groupoids �Proposition ��� �i��� If one denotes by #�

�resp� #�� the corresponding homomorphism of sections �resp� admissible sections��
then we obtain the following commutative diagram�

��G�A��� ����
��G�A���

��A�� ��
��

��
exp

��A��

��
exp

To proof the proposition is therefore enough to proof that for the homomorphism
�t
� � G�A� � G�A� associated to �t� � A� A we have�

�t
��g� � exp�t��g exp��t���

or� equivalently� that

��t� � a� � exp�t���a� exp��t��


for any A�path a � G�A�� To prove this� one considers the variation of A�paths
a	 � exp���t�� 	 ��	t� � a� 	 exp���t��� and checks that this realizes an equivalence
of A �paths using proposition ����

Remark ���� Hence G�A� behaves in many respects like a smooth manifold� even if
A is not integrable� This might be important in various aspects of non�commutative
geometry and its applications to singular foliations and analysis� one might expect
that the algebras of pseudodi�erential operators and the C��algebra of G�A� �see
����� can be constructed even in the non�integrable case� A related question is when
G�A� is a measurable groupoid�
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Although the exponential map does exist even in the non�integrable case� its
injectivity on a neighborhood of M only holds if A is integrable� One could say
that this is the di�erence between the integrable and the non�integrable cases� as
we will see in the next sections� However� our main job is to relate the kernel of the
exponential and the geometry of A� and this is the origin of our obstructions� the
monodromy groups described in the next section consist of the simplest elements
which belong to this kernel� It turns out that these elements are enough to control
the entire kernel�

�� Monodromy

Let A be a Lie algebroid over M � x � M � In this section we give several
descriptions of the �second order� monodromy groups of A at x� which control
the integrability of A�

���� Monodromy groups� There are several possible ways of introducing the
monodromy groups� Our �rst description is as follows�

De�nition ���� We de�ne Nx�A� � Ax as the set of those elements v � Z�gx�
with the property that the constant A�path v is equivalent to the trivial A�path�

Let us denote by G�gx� the simply�connected Lie group integrating gx �equiva�
lently� the Weinstein groupoid associated to gx�� Also� let G�A�x be the isotropy
groups of the Weinstein groupoid G�A��

G�A�x � s���x� � t���x� � G�A� 


Closely related to the groups Nx�A� are the following�

De�nition ���� We de�ne the subgroup #Nx�A� of G�gx� consisting on the equiv�
alence classes �a� � G�gx� of gx�paths with the property that� as an A�path� a is
equivalent to the trivial A�path�

The precise relation is as follows�

Lemma ���� For any Lie algebroid A� and any x � M � #Nx�A� are subgroups of
G�gx� contained in the center Z�G�gx��� and their intersection with the connected
component Z�G�gx��
 of the center is isomorphic to Nx�A��

Proof� Given g � #Nx�A� � G�gx� represented by a gx�path a� Proposition ���
implies that parallel transport Ta � gx � gx along a is the identity� On the other
hand� since a sits inside gx� it is easy to see that Ta � adg� the adjoint action
by the element g � G�gx� represented by a� This shows that g � Z�G�gx��� The
last part follows from the fact that the exponential map induces an isomorphism
exp � Z�gx� � Z�G�gx��
 �cf� e� g� �
�

� in ����� and Nx�A� � exp��� #Nx�A���

Corollary ���� For any Lie algebroid A� and any x �M � the following are equiv�
alent�

�i� #Nx�A� is closed	

�ii� #Nx�A� is discrete	
�iii� Nx�A� is closed	
�iv� Nx�A� is discrete�

We remark that a special case of our main theorem shows that the previous
assertions are in fact equivalent to the integrability of AjLx � the restriction of A to
the leaf through x�
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���� A second order monodromy map� Let L � M denote the leaf through
x� We de�ne a homomorphism � � ���L� x� � G�gx� whose image is precisely the
group #Nx�A�� This second order monodromy map relates the topology of the leaf
through x with the Lie algebra gx�

Let �	� � ���L� x� be represented by a smooth path 	 � I � I � L which maps
the boundary into x� We choose a morphism of algebroids

adt� bd� � TI � TI � AL

�i� e� �a� b� satis�es equation ���� which lifts d	 � TI�TI � TL via the anchor� and
such that a��� t�� b��� ��� and b��� �� vanish� This is always possible� for example�
we can put b��� t� � �� d

d�
	��� t�� where � � TL � AL is a splitting of the anchor

map� and take a to be the unique solution of the di�erential equation ��� with the
initial conditions a��� t� � �� Since 	 is constant on the boundary� a� � a�����
stays inside the Lie algebra gx� i� e� de�nes a gx�path

a� � I � gx 


Its integration �cf� ���� or our Proposition ��� applied to the Lie algebra gx� de�nes
a path in G�gx�� whose end point is denoted by ��	��

Proposition ���� The element ��	� � G�gx� does not depend on the auxiliary
choices we made� and only depends on the homotopy class of 	� Moreover� the
resulting map

� � ���L� x� � G�gx��
�

is a morphism of groups whose image is precisely #Nx�A��

Notice the similarity between the construction of � and the construction of the
boundary map of the homotopy long exact sequence of a �bration� if we view
� � gL � AL � TL � � as analogous to a �bration� the �rst few terms of the
associated long exact sequence will be

���L� x�
�
� G�gx� � G�A�x � ���L� x�


The exactness at G�gx� is precisely the last statement of the proposition� We leave
it to the reader the �easy� check of exactness at G�A�x�

Proof of Proposition ���� From the de�nitions it is clear that Im � � #Nx�A� so all
we have to check is that � is well de�ned� For that we assume that

	i � 	i��� t� � I � I � L� i � f�� �g

are homotopic relative to the boundary� and that

aidt� bid� � TI � TI � AL
 i � f�� �g

are lifts of d	i as above� We prove that the paths ai��� t� �i � f�� �g� are homotopic
as gx�paths��

By hypothesis� there is a homotopy 	u � 	u��� t� �u � I� between 	
 and 	��

We choose a family bu��� t� joining b
 and b�� such that ��bu��� t�� � d�u

d�
and

bu��� �� � bu��� �� � �� We also choose a family of sections � depending on u� �� t
such that

�u��� t� 	u��� t�� � bu��� t�� with � � � when t � �� �


As in the proof of Proposition ���� let � and � be the solutions of��
�

d�
d�
� d�

dt
� ��� ��� with � � � when � � �� ��

d

d�
� d�

du
� ��� ��� with � � � when � � �� �
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Setting u � �� � we get

ai��� t� � �i��� t� 	i��� t��� i � �� �


On the other hand� setting t � �� � we get

� � � when t � �� �


A brief computation shows that � � d�
du
� d


dt
� ��� �� satis�es

d�

d�
� ��� ���

and since � � �� when � � �� it follows that

d�

du
�
d�

dt
� ��� ��


If in this relation we choose � � �� and use �u��� t� � � when t � �� �� we conclude
that ai��� t� � �i��� t� 	i��� t��� i � �� �� are equivalent�

���� Computing the monodromy� Let us indicate brie�y how the monodromy
groups �De�nition ��� or� alternatively� De�nition ����� can be explicitly computed
in many examples� We consider the short exact sequence

� � gL � AL
�
� TL� �

and a linear splitting � � TL � AL of �� The curvature of � is the element
�� � ���L� gL� de�ned by�

���X�Y � � ���X�Y ��� ���X�� ��Y �� 


Then computation of monodromy can be reduced to the following

Lemma ��	� If there is a splitting � with the property that its curvature �� is
Z�gL��valued� then

Nx�A� � f

Z
�

�� � �	� � ���L� x�g � Z�gx�

for all x � L�

Before we give a proof some explanations are in order�
First of all� Z�gL� is canonically a �at vector bundle over L� The corresponding

�at connection can be expressed with the help of the splitting � as

rX� � ���X�� ���

and it is easy to see that the de�nition does not depend on �� In this way ��

appears as a ��cohomology class with coe"cients in the local system de�ned by
Z�gL� over L� and then the integration is just the usual pairing between cohomology
and homotopy� In practice one can always avoid working with local coe"cients� if
Z�gL� is not already trivial as a vector bundle� one can achieve this by pulling
back to the universal cover of L �where parallel transport with respect to the �at
connection gives the desired trivialization��

Proof of Lemma ���� We may assume that L � M � i�e� A is transitive� In agree�
ment with the comments above� we also assume for simplicity that Z�g� is trivial
as a vector bundle� The formula above de�nes a connection r� on the entire g� We
use � to identify A with TM � g so the bracket becomes

��X� v�� �Y�w�� � ��X�Y �� �v� w� �r�
X �w��r�

Y �v� ����X�Y ��


We choose a connection rM on M � and we consider the connection r � �rM �r��
on A� Note that

Tr��X� v�� �Y�w�� � �TrM �X�Y �����X�Y �� �v� w��
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for all X�Y � TM � v� w � g� This shows that two A�paths a and b as in Proposition
��� will be of the form a � �d�

dt
� ��� b � �d�

d�
� �� where �� � are paths in g satisfying

�t� � ��� � ���
d	

dt
�
d	

d�
� � ��� ��


Now we only have to apply the de�nition of �� Given �	� � ���M�x�� we choose the
lift adt� bd� of d	 with � � � and

� � �

Z 	




���
d	

dt
�
d	

d�
�


Then � takes values in Z�gx�� and we obtain ��	� � �
R
�

����

Example ��
� Recall �e� g� ����� that any two�form � � ���M � induces an alge�
broid A� � TM � L with anchor �X��� �� X and Lie bracket

��X� f�� �Y� g�� � ��X�Y �� X�g�� Y �f� � ��X�Y ��


Using the obvious splitting of A� Lemma ��� tells us that

Nx�A�� �

�Z
�

� � �	� � ���M�x�

�
� R

is the group of periods of �� Other examples will be discussed in the next sections�

��
� Measuring the monodromy� In order to measure the size of the mon�
odromy groups Nx�A�� we �x some norm on the Lie algebroid A and for x �M we
set

r�x� � d��� Nx�A� � f�g��

where we adopt the convention that d��� 
� � ���
When x varies on a leaf L this function varies continuously� since the norm on A

is assumed to vary continuously and the groups Nx�A� are all isomorphic for x � L�
On the other hand� when x varies in a transverse direction the behaviour of r�x� is
far from being continuous as illustrated by the following examples�

Example ���� We take for A the trivial ��dimensional vector bundle over M � R��
with basis fe�� e�� e�g� The Lie bracket on A is de�ned by

�e�� e�� � ae� � bx�$n

�e�� e�� � ae� � bx�$n

�e�� e�� � ae� � bx�$n

where $n �
P

i x
iei is a central element� and depends on two �arbitrary� smooth

functions a and b of the radius R� with a�R� � � whenever R � �� The anchor is
given by

��ei� � avi� i � �� �� �

where vi is the in�nitesimal generator of a rotation about the i�axis�

v� � x�
�

�x�
� x�

�

�x�
� v� � x�

�

�x�
� x�

�

�x�
� v� � x�

�

�x�
� x�

�

�x�



The leaves of the foliation induced on R� are the spheres S�R centered at the origin�
and the origin is the only singular point�

We now compute the function r using the obvious metric on A� We restrict to a
leaf S�R with R � �� and as splitting of � we choose the map de�ned by

��vi� �
�

a
�ei �

xi

R�
$n�
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Then we obtain the center�valued ��form �cf� section ����

�� �
bR� � a

a�R�
�$n

where � � x�dx�� dx� �x�dx�� dx� �x�dx��dx�� Since
R
S�
R

� � 
�R� it follows

that

N �A� � 
�
bR� � a

a�R
Z$n� R$n


This shows that

r�x� y� z� �

��
�

�� if R � � or a � bR��


� bR��a
a�

otherwise�

So the monodromy might vary in a non�trivial fashion� even nearby regular leaves�

In the previous example the function r is not upper semi�continuous� In the next
example we show that r� in general� is also not lower semi�continuous�

Example ���� Let F be the Reeb foliation inS�� and consider the central extension
Lie algebroid A � F�L associated with a closed ��form � � ���S�� �as in Example
����� We obtain a regular Lie algebroid A whose leaves are the leaves of F �

Now choose � so that its pullback to the compact leaf S� � S� has a nontrivial
cohomology class� Then� the monodromy group above a leaf L is formed by the
integrals of �jL over the classes �	� � ���L�� Since all the leaves other than the
sphere are contractible� we get�

r�x� �

��
�

r
 if x �S�

�� otherwise

Note that r
 can take any value in the interval �������

One might hope that if the anchor is injective in a �large set� then the mon�
odromy groups can be controlled in a very precise way� Our next example shows
that this is not the case�

Example ���
� This example is in fact a variation of Example ��	� and we use
the same notation� We let M � S

�� H� where H denotes the quaternions� The
Lie algebroid � � A � M is trivial as a vector bundle� has rank �� and relative to
a basis of sections fe�� e�� e�g the Lie bracket is de�ned by �e�� e�� � e� and cyclic
permutations� To de�ne the anchor� we let v�� v�� v� be the vector �elds on S�

obtain by restricting the in�nitesimal generators of rotations� and we let w�� w�� w�
be the vector �elds on H corresponding to multiplication by �i��j��k� The anchor of
the algebroid is then de�ned by setting �ei � �vi� wi�� i � �� �� �� For this Lie
algebroid one has�

� the anchor is injective on a dense open set�
� there is exactly one singular leaf� namely the sphere S�� f�g�

Now observe that the monodromy above the singular leaf is non�trivial� since the
restriction of A to this singular leaf is the central extension algebroid TS� � L
de�ned by the area form on S�� For the function r we have again�

r�x� �

��
�

r
 if x �S�� f�g

�� otherwise

Note that in this case r
 � �� We will show later �Section 
���
� that when the
anchor is almost injective we have r�x� � � for all x � ��
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� Obstructions to integrability

In this section we �rst state our main result which give the obstructions to
integrability� and give a few examples� We then give another description of the
Weinstein groupoid which is more suitable for proving the theorem�


��� The main theorem� Let A be a Lie algebroid over M � Using the notations
introduced above� our main result is the following�

Theorem ���� A Lie algebroid A over M is integrable if and only if

�i� Longitudinal obstruction� Nx�A� � Ax is discrete �i� e�� r�x� �� ���
�ii� Transverse obstruction� lim infy�x r�y� � ��

for all x �M �

The next examples illustrate this result and show that these two obstructions
are independent�

Example ���� In this example� non�integrability is forced by the �rst obstruction�
We simply take the central extension Lie algebroid A� � TM �L associated with
a closed ��form on M whose group of periods is not cyclic �cf� Example ����� Then
r�x� � � so the �rst obstruction ensures us that A� is non�integrable� We point
out that this is a well�known counter�example to integrability �cf� e� g� ��� pp�
��	� which is usually approach through the theory of transversely parallelizable
foliations �see also Section 
�� below��

Example ���� Let us give an example of a regular Lie algebroid whose �rst ob�
struction is trivial� while the second one is not� Take F to be the trivial foliation
of M � N � T with leaves N � ftg� t � T � Also we choose a closed ��form � on
N whose group of periods is cyclic and we set �t � ��t��� where � is some smooth
function on T � Since the pull�back of �t to any leave is closed� we obtain the central
extension Lie algebroid A�t � F�L� as in Example ���� whose leaves are the leaves
of F �

The ��rst obstruction� is satis�ed for all leaves� but clearly the �second obstruc�
tion� is not satis�ed at the points t
 � T with the property that ��t
� � � and � is
not locally constant at t
�

Example ���� Consider the Lie algebroid A over R� discussed in Example ��	�
Then A satis�es the �rst obstruction� but it does not satisfy the second obstruction
at points where aR� � b vanishes �without vanishing identically in some neighbor�

hood of the point� and also at the origin if lim infR�

bR��a
a�

� ��

For example� choosing a � R�� b � R� ��� the resulting Lie algebroid A over R�

has the following two properties�

�a� Its restriction to R�� � is integrable�
�b� Its restriction to any disc around the origin is not integrable �because of the

second obstruction at x � ���

Example ���� Let us explain Weinstein�s example of a non�integrable regular Pois�
son manifold given in ��
� �see also �
�� section ��� He takes M � R

� � f�g ��
su����� f�g with the Kirillov Poisson structure scaled by a function f�R� depend�
ing on the radius� The associated algebroid is in fact T �M � AjR��f
g� where A is

the Lie algebroid of Examples ��	 and 
�
 with a � f � b � �
R
f �� Its integrability is

then controlled by

r�R� � 
�
Rf � � f

f�
� �A��R��

where A�R� � ��R
f

is the symplectic area�
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We refer to section 
 for various integrability criteria that can be deduced from
the theorem� including all criteria that have appeared before in the literature�


��� The Weinstein groupoid as a leaf space� Before we can proceed with
the proof of our main result� we need a better control on the equivalence relation
de�ning the Weinstein groupoid G�A�� In this section we will show that G�A� is
the leaf space of a foliation F�A� on P �A�� of �nite codimension� whose leaves are
precisely the equivalence classes of the homotopy relation � of A�paths�

As before� A is a �xed Lie algebroid over M � We will use the following notations
when working in local coordinates� we let x � �x�� 
 
 
 � xn� denote local coordinates
on M � and we denote by fe�� 
 
 
 � ekg a �local� basis of A over this chart� The
anchor and the bracket of A decompose as

�ep �
X

bip
�

�xi
� �ep� eq� �

X
r

crpqer �

and an A�path a can be written a�t� �
P

p a
p�t�ep�

Let us �rst describe the smooth structure on P �A�� We consider the larger space
#P �A� of all C��curves a � I � A whose base path 	 � � � a is of class C�� It has

an obvious structure of Banach manifold� whose tangent space Ta� #P �A�� consists
of curves U � I � TA s� t� U �t� � Ta�t�A� Using a TM �connection r on A� such
curves can be viewed as pairs �u� �� formed by a curve u � I � A over 	 and a
curve � � I � TM over 	 �namely� the vertical and horizontal component of U ��

Lemma ��	� P �A� is a �Banach� submanifold of #P �A�� Moreover� given a con�
nection r on A� the tangent space TaP �A� consists of those paths U � �u� �� with
the property that

�u � ra�


Proof� We consider the smooth map F � #P �A� � #P �TM � given by

F �a� � �a�
d

dt
� � a


Clearly P �A� � F���Q�� where Q is the subspace of #P �TM � consisting of zero
paths� Fix a � P �A�� with base path 	 � � � a� and let us compute the image of

U � �u� �� � Ta #P �A� by the di�erential

�dF �a � Ta #P �A� � T
� #P �TM � 


The result will be some path t �� �dF �a	U �t� � T
��t�TM � hence� using the canonical
splitting T
xTM

�� TxM � TxM � it will have a horizontal and vertical component�
We claim that for any connection r� if �u� �� are the components of U � then

��dF �a 	U �hor � �� ��dF �a 	 U �ver � �u�ra�


Note that this immediately implies that F is transverse to Q� so the assertion of the
proposition follows� Since this decomposition is independent of the connection r
and it is local �we can look at restrictions of a to smaller intervals�� we may assume
that we are in local coordinates� and that r is the standard �at connection� We
now use the notations above� and we denote by �

�xi
the horizontal basis of T
xTM �

and by �
�xi

the vertical basis� A simple computation shows that the horizontal

component of �dF �a�u� �� is
P

�i �
�xi

� while its vertical component is

X
j

�
	�  �j�t� �

X
p

up�t�bjp�	�t�� �
X
p�i

ap�t��i�t�
�bjp
�xi

�	�t��



A �

�xj





INTEGRABILITY OF LIE BRACKETS ��

That this is precisely �u�ra� immediately follows by computing

rep

�

�xi
� �r �

�xi
ep �

�
�

�xi
��ep

�

� �
X
j

�bjp
�xi

�

�xj

We now construct an involutive sub�bundle F�A� of TP �A�� i� e� a foliation on
P �A�� Let us �x a connection r on A� and let a be an A�path with base path 	�
We denote by P
���A� the space of all C��paths b � I � A such that b�t� � A��t�

and b��� � b��� � �� For any such b we have a tangent vector Xb�a � TaP �A� whose
components �u� �� with respect to the connection r are

u � rab� � � �b


Lemma 
�� shows that these are indeed tangent to P �A�� and we set�

Fa�A� � fXb�a � TaP �A� � b � P
���A�g 


Some geometric insight to this sub�bundle can be obtain by considering the Lie
algebra of time depending sections of A vanishing at the end�points�

P
��A� �
�
I � t �� �t � ��A� � �
 � �� � �� � is of class C� in t

�
For any such section � we consider the induced path b�t� � ��t� 	�t�� and put
X��a � Xb�a� The resulting map

P
��A� � X �P �A��� � �� X�

is an action of the Lie algebra P
��A� on P �A��

Remark ���� The spaces P
���A� �t into a vector bundle P
�A� over the path space
P �M �� Its space of sections is ��P
�A�� � P
��A�� and there is an obvious map
P
���A� � T�P �M � induced by the anchor � of A� Hence P
�A� is an algebroid
over P �M �� Given � � P
��A�� 	 � P �M �� then t �� ��t� 	�t�� is precisely the
evaluation ev� ��� � P
���A�� The map

P
���A� � TaP �A�� b �� Xb�a

can then be viewed as an action �see e� g� ��
�� of the Lie algebroid P
�A� over
P �M � on the space P �A��

We now show that this foliation is in fact the same as the partition of P �A� into
equivalent classes of A�paths�

Proposition ���� For a Lie algebroid A�

�i� The spaces Fa�A� do not depend on the choice of connection r� More pre�
cisely� for any � � P
��A��

X��a�t� �
d

d�






��


���
�t a�t� �
d�t
dt

�	�t��


�ii� F�A� is a foliation on P �A� of �nite codimension equal to n � k where n �
dimM and k � rankA�

�iii� Two A�paths are equivalent �homotopic� if and only if they are in the same
leaf of F�A��

�iv� For any �local� connection r on A� the exponential map Expr � A � P �A�
is transverse to F�A��
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Proof� We �rst assume that �� is a family of elements of P
��A� of class C� on
� � I� and we will see that it induces a vector �eld X� on P �A� tangent to F�A�
and whose �ow preserves the equivalence of paths� This is only a reformulation
of Proposition ���� Hence� let a
 � P �A� with base path 	
� and let �
 be a time
dependent section of A such that �
�t� 	
�t�� � a
�t�� We denote by � the solution
of ��� with the initial condition ���� t� � �
�t�� Then� as in the proof of Proposition
����

���� t� �

Z �



���

���
�t

��
d�

dt
���� t�d�� � ��
���t ���



Now consider the base path

	��t� � ���

��t

	
�t�

and the paths above it

a��t� � ���t� 	��t��� b��t� � ���t� 	��t�� 


We can view � �� a� as a curve in P �A� starting at a
� and de�ning a tangent vector

d

d�






��


a� � Ta�P �A�


Given some connection r� Proposition ��� shows that this tangent vector has ver�
tical component

��a � �tb� T �a� b� � ra�b�

at � � �� while the horizontal component is

d

d�






��


	��t� � �b
�t�


In other words�

d

d�






��


a� � Xb��a� � Fa��A�


On the other hand� the formula above describing � shows that

a��t� �

Z �




����
�

�t

d�t
dt

���� ��
��

��t

�	
�t��d�� � ���
�t �	
�t��


The derivative at � � � is precisely the expression given in �i� and this also shows
that �iii� holds�

To determine the codimension of Fa�A� we note that given �u� �� satisfying
�u � ra� �i� e�� a vector tangent to P �A�� and lying in Fa�A�� we have

�a� ���� � ��
�b� If we consider the solution b of the equation ra�b� � u with initial condition

b��� � � �which can be expressed in terms of the parallel transport along a
with respect to r�� we must have b��� � ��

Conversely� if �a� and �b� hold� we have that ra��b� �� � � and �b� � vanishes
at t � �� It follows that � � �b and u � rab� so �u� �� is a tangent vector in
Fa�A�� This shows that codimF � dimM � rankA�

Finally� to prove �iv�� we assume for simplicity that we are in local coordinates
and that r is the trivial �at connection �this is actually all we will use for the proof
of the main theorem� and this in turn will imply the full statement of �iv��� Also�
only we need to show is that Expr�A� is transverse to F�A� at any trivial A�path
a � Ox over x � M � Now� the equations for the geodesics show that if �u� �� is a
tangent vector to Expr�A� at a then we must have�

 �i � bip�x�up�  up � �
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Therefore� we see that�

TaExpr�A� � f�u� �� � TaP �A� � u�t� � u
� ��t� � �
 � t�u
g 


Suppose that a tangent vector �u� �� belongs to this n � k dimensional space and
is also tangent to F�A�� Then �a� above implies that �
 � �� while �b� says that
the solution b of db

dt
� u
 with b��� � � satis�es b��� � �� Therefore� we must have

�
 � � and u
 � �� so �u� �� is the null tangent vector� This shows that Expr�A�
is transverse to F�A� at �x� for any x�

Remark ���� In �
�� Cattaneo and Felder obtain the Weinstein groupoid for the
special case of Poisson manifolds by a Hamiltonian reduction procedure� The Lie
algebraic interpretation given above for the foliationF�A� shows that our construc�
tion of G�A� for general A is also obtain by a kind of reduction procedure for Lie
algebroid actions�


��� Proof of the main theorem� In this section we prove our main theorem
�for notations� see Section ���

To prove that both conditions are necessary� choose some connection r on A� and
let Expr � A � G�A� be the associated exponential map� Clearly the restriction
of Expr to gx is the composition of the exponential map of gx with the obvious
map i � G�gx� � G�A�x� which shows that Expr�vx� � �x for all vx � Nx�A� in
the domain of the exponential map� On the other hand� if A is integrable� we know
that Expr will be a di�eomorphism on a small neighborhood of M on A� Hence
there must exist an open U � A such that U�N �A� � M � where N �A� � �xNx�A��
But this is obviously equivalent to the conditions in the statement�

We now show that these conditions also guarantee the integrability of A� First
we prove that the two conditions together imply that F�A� is a simple foliation�

Lemma ���
� For each a � P �A�� there exists Sa � P �A� transverse to F�A��
which intersects each leaf of F�A� in at most one point�

Proof� The proof is a sequence of reductions and careful choices� and is divided into
several steps� So let a � P �A� and denote by x the initial point of its base path�

Claim 
� We may assume that a � �x�

To see this� we choose a compactly supported� time�dependent� section � of A
so that ��t� 	�t�� � a�t�� If �� � exp��� is the associated admissible section �see
section ����� left multiplication T � P �A� � P �A�� T �b� � ���t�b��b de�nes a
smooth injective map with T ��x� � a� If there is a section Sx around �x� as in the
statement of the Lemma� it then follows that T � Sx �� P �A� intersects each leaf in
at most one point� Since Sx has the same dimension as the codimension of F�A��
Sa �� T �Sx� will have the desired properties�

From now on we �x x � M and we are going to prove the Lemma for a � �x�
We also �x local coordinates around x� and let r be the canonical �at connection
on the coordinate neighborhood� We also choose a small neighborhood U of �x in
A so that the exponential map Expr � U � P �A� is de�ned and is transverse to
F�A�� We are going to show that it intersects each leaf of F�A� in at most one
point� provided U is chosen small enough�

Claim �� We may choose U such that for any v � U �gy �y �M � with the property
that Expr�v� is homotopic to �y� we must have v � Z�gy��

Given a norm j 	 j on A� the set fj�v� w�j � v� w � gy with jvj � jwj � �g� where
y �M varies in a neighborhood of x� is bounded� Rescaling j 	 j if necessary� we �nd
a neighborhood D of x in M � and a norm j 	 j on AD � fv � ��v� � Dg� such that
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j�v� w�j 
 jvjjwj for all v� w � gy with y � D� We now choose U so that U � AD

and jvj 
 � for all v � U � If v is as in the claim� it follows from Proposition ���
�see also the proof of Lemma ���� that parallel transport Tv � gy � gy along the
constant A�path v is the identity� But Tv is precisely the exponential of the linear
map adv � gy � gy� Since jadvj 
 jvj 
 �� it follows �see e� g� ����� that adv � � so
v � Z�gy��

Claim �� We may choose U such that� if v � U �gy �y �M � has the property that
Expr�v� is homotopic to �y then v � �y�

Obviously this is just a restatement of the obstruction assumptions� combined
with the previous claim�

Claim �� We may choose U such that� if v � U has the property that the base path
of Expr�v� is closed� then v � gy�

To see this� we note that the equations for the geodesics in local coordinates
reduce to� ��

�
 xi �

P
p b

i
p�x�t��ap�

 ap � �


By the period bounding lemma ���� and �	�� Appendix A�� any non�trivial periodic
orbit of this system with initial condition on a open set D has period

T �
��

MD

where MD � sup
��j�k�m
x�D

�����
X
p

�bjp
�xk

�x�ap

����� 

Hence it su"ces to make sure that U � AD where D is chosen small enough so
that MD � ���

Now� for any open O � P �A�� we consider the plaques in O of F�A�� or� equiva�
lently� the leaves of F�A�jO� For a� b � O� we write a �O b if a and b lie in the same
plaque� From now on we �x U satisfying all the conditions above� and we choose
an open O so that Expr � U � P �A� intersects each plaque inside O exactly in
one point� This is possible since Expr is transversal to F�A�� Apart from the
pair �O�U �� we also choose similar pairs �Oi� Ui�� i � �� �� such that O�O� � O�
O�O� � O� and O��i � Oi�

Claim �� It is possible to choose a neighborhood V of x in U� so that� for all v � V �

�y 	 Expr�v� �O Expr�v�


We know that for any v there is a natural homotopy between the two elements
above� This homotopy can be viewed as a smooth map h � I � U � P �A� with
h��� v� � � 	 Expr�v�� h��� v� � Expr�v�� h�t� �y� � �y� Since I is compact and
O is open� we can �nd V around x such that h�I � V � � O� Obviously V has the
desired property�

Claim �� It is possible to choose V so that� for all v� w � V �

�Expr�v� 	Expr�w�� 	Expr�w� �O Expr�v�

This is proved exactly as the previous claim�

Claim �� Expr � V � P �A� intersects each leaf of F�A� in at most one point�

To see this� let us assume that v� w � V have Expr�v� � Expr�w�� Then

a� �� Expr�v� 	 Expr�w� � O� will be homotopic to the trivial A�path �y� On
the other hand� by the choice of the pair �O�� U��� a� �O� Expr�u� for an unique
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u � U�� Since Expr�u� is equivalent to �y� its base path must be closed� hence�
by claim 
 above� u � gy� Using Claim �� it follows that u � �� hence a� �O� �y�
Since O�O� � O� this obviously implies that

a� 	 Expr�w� �O �y 	 Expr�w�


Since V satis�es Claim 
 and Claim �� we get Expr�v� �O Expr�w�� Hence� by
the construction of O� v � w� This also concludes the proof of the lemma�

Note that the previous lemma implies that G�A� has a natural quotient di�er�
entiable structure� the charts are just the Sa�s� and the change of coordinates is
smooth since it is just the holonomy of F�A�� Hence we can complete the proof of
Theorem 
�� by showing that�

Lemma ����� For the quotient di�erentiable structure G�A� is a Lie groupoid with
Lie algebroid A�

Proof� It is clear from the de�nitions that A can be identi�ed with T s

MG�A� and
that under this identi�cation � coincides with the di�erential of the target t� So
we need only to check that the bracket of right�invariant vector �elds on G�A� is
identi�ed with the bracket of sections of A� For this we note that on one hand�
the bracket is completely determined by the in�nitesimal �ow of sections through
the basic formula �A���� On the other hand� we now know that the exponential
exp � ��A�� � ��G�A�� is injective in a neighborhood of the zero section� and so
Proposition ��� shows that the in�nitesimal �ow of a section � is the in�nitesimal
�ow of the right�invariant vector �eld on G�A� determined by �� Hence� we must
have A�G�A�� � A�

Remark ��
�� The proof above �namely an argument similar to Claim � above�
shows that� in the main theorem� it su"ces to require that for each leaf L� there
exists x � L satisfying the two obstructions�


� Examples and Applications

In this section we review the known integrability criteria� we derive them from
Theorem 
��� an present an application to the theory of transversely parallelizable
foliations�


��� Local integrability� Regarding the local nature of integrability� note that

� From Examples 
�� and 
�
 we learn that a Lie algebroid can be locally
integrable �i�e� each point has a neighborhood U so that AjU is integrable��
and not globally integrable� This shows that the integrability problem is not
a local one�

� Example 
�
 shows that there are algebroids which are not even locally inte�
grable�

However� a general �local integrability� result has long been assumed to be true�
namely the integrability by local groupoids� This result was �rst annonuced by
Pradiness� but a proof has never been published� One of the main di"culties is
that� if one tries to extend the known result from Lie groups �see e�g� ����� one faces
the problem of �nding a CBH�formula� However� with the Weinstein groupoid at
hand �and its description as a leaf space� this result can be proved quite easily�

For a local Lie groupoid the structure maps are only de�ned on �and the usual
properties only hold for� elements which are close enough to the space M of units
�these are obvious generalizations of Cartan�s local Lie groups� as explained in
Section �
	 of �����

Corollary ���� Any Lie algebroid is integrable by a local Lie groupoid�
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Proof� One uses exactly the same arguments as in the proof of Claim � and Claims 

through � in Lemma 
���� namely� We choose a connection r on A� a neighborhood
U of M in A and an open O in P �A�� with O � O��� such that Expr � U � P �A�
intersects each plaque of F�A� in O in exactly one point� Eventually choosing
smaller pairs �O�U � �similar to the �Oi� Ui� in the cited proof�� the structure of
local groupoid will be de�ned on U � the inverse of v � U is the unique $v � U with
the property that Expr�v� �O Expr�$v�� the multiplication v 	 w of v� w � U is
de�ned only for pairs �u� v� for which Expr�v�Expr�w� � O� and is the unique
element with the property that the last product of exponentials is �O Expr�v 	w��
The associativity around the units is proved exactly as Claims 
 and � of the cited
lemma� while the fact that the resulting local groupoid integrates A is a variation
of Lemma 
����


��� Integrability Criteria� We start with following general integrability crite�
rion which is an obvious consequence of our main result which implies most of the
known results �and even much stronger versions of them��

Corollary ���� If Nx�A� is trivial for all x � M � then A is integrable� In partic�
ular� A is integrable if any of the following three conditions holds for all x �M �

�i� the Lie algebras gx are semi�simple �more generally� if they have trivial cen�
ter�	

�ii� the leaves Lx are ��connected �more generally� if ���Lx� have only elements
of �nite order�	

�iii� there is a splitting � � TLx � AjLx of the anchor compatible with the Lie
bracket	

We now brie�y deduce the known integrability results�


����� Transitive algebroids� In the case of Lie algebroids the main theorem �see
also Remark 
���� becomes�

Corollary ���� Let A be a transitive Lie algebroid over M � Then A is integrable
if and only if Nx�A� is discrete in Ax for one �or� equivalently� all� x �M �

We mention in passing that this is strongly related to Mackenzie�s criteria �����
and we urge the interested reader to �nd the precise relation�

There are some obvious consequences of this result� For example�

Corollary ���� Every transitive Lie algebroid A over a ��connected base M is
integrable�

Note also that since s���x� is a principal G�A�x�bundle over M � it follows that if
M is contractible then A is in fact isomorphic to a direct sum TM � g �compatible
with the Lie brackets�� where g � gx� Hence�

Corollary ���� Any transitive Lie algebroid over a contractible base M is isomor�
phic to TM � g for some Lie algebra g�

In Mackenzie�s approach this result is �rst obtained in order to to construct his
obstruction�


����� Regular Lie algebroids� Although many of the known integrability criteria
require regular algebroids� it turns out that regularity is superfulous �see below��
This is the case� for example� with Dazord�Hector ����� integrability criteria for
totally aspherical regular Poisson manifolds� and with Nistor�s results ���� on the
integrability of regular algebroids whose anchor has either a splitting compatible
with the Lie bracket� or semi�simple kernels�

Let us mentioned� however� a result which fails in the non�regular case as shown
by Example 
�
�
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Corollary ��	� Any regular Lie algebroid is locally integrable�

This follows because regular foliations are locally trivial� As in the transitive case�
it is possible to describe explicitly the local structure of regular algebroids� Choosing
local coordinates in M so that the foliation becomes the obvious p�dimensional
foliation on Rp�Rq then� locally� the algebroid is TRp� g where g is a bundle of
Lie algebras over Rq�


����� Semi�direct products� Closely related to Palais� integrability ���� of in�nites�
imal actions of Lie algebras g on manifoldsM is the integrability of the transforma�
tion Lie algebroid A � g�M � Recall that� as a vector bundle� A is just the trivial
vector bundle with �ber g� the anchor is the in�nitesimal action� while the bracket
on C��M � g� is uniquely determined by the Leibniz rule and the Lie bracket of g�

Since Nx�A� sits inside N �g� for all x �M � the conditions of the main theorem
are satis�ed� hence

Corollary ��
� For any in�nitesimal action of the Lie algebra g on M � g �M is
integrable�

This is known as Dazord�s criterion �cf� ����� but it also appears implicitly in
Palais� work ����� Implicit in Palais� work is also the precise relation between this
result and the integrability of in�nitesimal actions� This relation has been clearly
explained by Moerdijk�Mr!cun in ����� where the reader can �nd various extensions
to semi�direct products of algebroids� Let us point out that exactly the same
argument as above shows that the semi�direct product of an integrable algebroid
by a regular foliation is integrable� and this is one of the main results of �����


���
� Algebras of vector �elds and quasi�foliations� For a Lie algebroid A over M
we say that the the anchor is almost injective at x
 �M if there is a neigborhood
U of x
 in M and an open dense subset O � U such that �x is injective for all
x � O� Note that if the anchor is injective at x
 then it is almost injective at x
�
We say that the anchor is almost injective if it is almost injective at every point�

Any Lie subalgebra � � X �M � which is a �nitely generated projective C��M ��
module is the space of sections of an algebroid whose anchor is almost injective� This
produces a large class of examples of Lie algebroids� including all regular foliations�
As explained in ����� such ��s arise naturally in the analysis on manifolds with
corners as algebras of vector �elds with a certain behavior on the faces of M � Their
integrability is relevant to various aspects of analysis and quantization �see ���� for
details�� Such algebroids were also studied by Claire Debord on her Ph� D� Thesis
��	��� and they give rise to quasi�foliations of M �

Our main result implies the following integrability criterion due to Debord�

Corollary ���� A Lie algebroid whose anchor is injective on a dense open set is
integrable�

To prove this result we need the following lemma�

Lemma ���� Let Xn be a sequence of complete vector �elds on Rn with 
ows �tn
and assume for some open set U one has�

�a� ��n�x� � x� for all x � Vn in some open subset Vn � U 	
�b� kJ �Xn�k � � as n � �� where J �X� denotes the jacobian of X and the

norm is the sup norm over U �

Then there exists a n
 � N such that Xn � � in Vn for all n � n
�

Proof� Suppose not� By �a�� each Xn has a nontrivial periodic orbit with initial
condition in Vn � U � with period T 
 �� But by the period bounding lemma ����
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and �	�� Appendix A�� any non�trivial periodic orbit of Xn with initial condition in
U has period

T �
��

kJ �Xn�k



This contradicts �b��

Sketch of proof of Corollary ���� We saw above �see Corollary ���� that equivalent
A�paths have the same linear holonomy� In fact more is true� equivalent A�paths
have the same non�linear holonomy� The proof is similar� except that now one
needs to use non�linear connections de�ned by horizontal lifts �see ������ Hence� if
we �x x
 �M and let a�t� � v be a constant A�path with v � Nx��A�� then a has
trivial holonomy�

Now �x some transverse section S to the leaf L through x
� We dentote by AS

the transverse Lie algebroid over S� so

AS jx � fa � Ax � �a � TxSg 


It follows from the construction of holonomy given in ����� Section ���� that we can
choose a neighborhood U of x
 in S such that for all su"ciently small v � Nx� �A�
there is a section � � ��AS� de�ned over U � with ��x
� � v� and the time�� �ow
of � is the holonomy of the A�path a�t� � v� Since this holonomy is trivial� the
time�� �ow of the vector �eld �� on U is the identity map�

Now� assume that � is almost injective at x
 and let fvng � Nx��A� be a
sequence such that vn � � as n � ��� For the associated sections �n � ��AS ��
the vector �elds Xn � ��n satisfy conditions �a� and �b� of the lemma above with
Vn � U � Hence there exists a n
 � N such that Xn � � in U for all n � n
� By
almost injectivity� we must have �n � � in a neighborhood of x
� so we conclude
that vn � � for all n � n
� This shows that r�x
� � �� so the �rst obstruction is
satis�ed�

To show that lim infy�x� r�y� � � we proceed as follows� Fix some open set U
containing x
 where � is injective on a dense open set� Suppose we have some
sequence of base points xn � U converging to x
� and let fvng � Nxn �A� � � be a
sequence converging to �� At each xn we choose a transverse section Sn and take
Vn � Sn � Lxn as a neighborhood of xn� We extend �rst the vector �eld Xn to
Vn� by taking Xn to be zero along the leave direction� and then we extend Xn to
U such that the norm satis�es�

kJ �Xn�kU 
 C kJ �Xn�kVn

for some constant C independent of n� Clearly� the sequence Xn satis�es the
conditions of the lemma� so there exists a n
 � N such that Xn � � in Vn for all
n � n
� By almost injectivity� we conclude that vn � � for all n � n
� This shows
that lim infy�x� r�y� � �� so the second obstruction is also satis�ed�


���
� Poisson manifolds� The Weinstein groupoid of the algebroid associated to
a Poisson manifold �the cotangent bundle T �M � is precisely the phase space G of
the Poisson sigma�model studied by Cattaneo and Felder in �
�� Our constructions
explain the constructions in �
�� while our main result clari�es the smoothness of
the Poisson�sigma model G�

The following obvious application of our general criteria� is the main positive
result of �
��

Corollary ���
� Any Poisson structure on a domain in R� is integrable�

The result is certainly not true in higher dimension� as shown by Weinstein�s
example of a non�integrable regular Poisson structure in R�� � �Example 
�
��
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In general� our main result applied to this context describes the precise obstruc�
tions for the integrability of Poisson manifolds� Let us point out the following
simple integrability result�

Corollary ����� All Poisson manifolds whose symplectic leaves have vanishing
second homotopy groups are integrable�

The integrability criterion of Dazord and Hector ����� is in fact this result spe�
cialized to the case of a regular Poisson manifold�

Note also that the monodromy groups of the regular symplectic leaves L �i� e�
around which the rank is locally maximal� of a Poisson manifoldM are particularly
simple� as it is the associated monodromy map

� � ���L� x� �N �
x �L�


Indeed� since the kernel N ��L� of � over L is abelian� by Lemma ��� we can use
any linear splitting �� The resulting cohomology class

�L � ���� � H��L�N ��L��

is independent of the splitting �� � is just the integration of �L over elements in
���L� x�� and its image de�nes the monodromy groups

Nx � N �
x �L�


Notice also that if M is regular and F is its symplectic foliation� then using a global
splitting � for � one gets a globally de�ned cohomology class � � H��F �N ��
which lies in the foliated cohomology with coe"cients in the kernel of �� Clearly�
�L � �jL for each L�


����� Van Est argument� Probably the most elegant proof of the integrability of
Lie algebras is Van Est�s cohomological argument which we brie�y recall� Given
a Lie algebra g� we form the exact sequence � � Z�g� � g � ad�g� � �� Here
ad�g� is easily seen to be integrable �it is a Lie sub�algebra of gl�g��� Also recall
that simply connected Lie groups are automatically ��connected� The core of Van
Est�s argument is then the following result for the particular case of Lie algebras

Corollary ����� If B �ts into an exact sequence of Lie algebroids

� � E � B
�
� A� �

with E abelian� and A integrable by a groupoid with ��connected s��bers� then B is
integrable�

This result for Lie algebroids is Theorem 
 of �
�� Interesting enough� it shows
that the integrability criterion of Dazord and Hector ��� mentioned above is actually
Van Est�s argument applied to regular Poisson manifolds�

The proof in �
� is an extension of Van Est�s cohomological methods� Using a
splitting � of � we obtain an action of A on E� and a ��cocycle �� on A with values
on E� This is well known �see e� g� ������ and can also be viewed as an extension of
the constructions in section ���� We can then form the group of periods Perx � Ex

of �� � The cohomological proof actually shows that B is integrable provided A is�
and the groups Px vanish �cf� Remark 
 and Corollary � in �
���

Let us brie�y point out how our result implies �and further clari�es� the previous
corollary� Let x � M sitting in a singular leaf L� The necessary information is
organized in the following diagram

���s
��
A �x�� ��tA

��
�E

���L� ���

��

�B

� � �
� � �

� � �
�

���A ���
���

���
� ���G�A�x�

��

j

� � �
� � �

� � �
� �

� �� Ex
�� G�gx�B�� �� G�gx�A�� �� �
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Here sA� tA� g�A�� �A are respectively the source and target map� the kernel of the
anchor� and the monodromy map of A� and we use analogous notations for B� Also�
� is the boundary map in homotopy associated to s��A �x� � L with �ber G�A�x
and j is the obvious inclusion whose image is precisely #Nx�A�� Finally� �E denotes
the monodromy map associated to the exact sequence in the corollary �constructed
exactly as the monodromy map of section ����� and whose image is precisely the
group of periods Perx�

Lemma ����� There is a short exact sequence of abelian groups�

� � Perx � #Nx�B� � #Nx�A� � �


Proof� These follows by diagram chasing since the two horizontal sequences above
are exact�

Therefore #Nx�B� appears as a twisted semi�direct product of #Nx�A� and Perx�
The simplest case where our main theorem applies is when Perx vanishes� This
gives precisely the corollary �and its stronger version� above�


��� Transversely parallelizable foliations� Historically� the �rst examples of
non�integrable Lie algebroids ��� came from Molino�s treatement �see ����� of trans�
versaly parallelizable foliations which we now brie�y recall�

Given a foliation F of M � let us denote by l�M�F� the algebra of transversal
vector �elds� i� e� sections of the normal bundle which can be locally projected
along submersions which locally de�ne the foliation� Then �M�F� is transversally
paralelizable if its normal bundle admits a global frame consisting of transversal
vector �elds� In this case the Lie algebra l�M�F� is free as a module over the space
�

b�M�F� of basic functions� on which it acts by derivations�
Let us see that the Lie bracket on l�M�F� is of the type studied in this paper�

We assume for simplicity that M is compact� Then the closures of the leaves
of F form a new foliation $F on M � whose leaf space is a smooth �Hausdor��
manifold W � M� $F � and is called the basic manifold of the foliation� Since F and
$F have the same basic functions� l�M�F� is the space of sections of a transitive
Lie algebroid over W � which we denote by A�M�F�� Its anchor � is just the
action of l�M�F� on �


b�M�F� �� C��W �� and the kernel of � has the following
geometric interpretation� For each leaf L ofF � the foliation �$L�Fj�L� is transversally
parallelizable with dense leaves� It follows that l�$L�Fj�L� is a �nite dimensional Lie
algebra� and moreover� �$L�Fj�L� is a Lie foliation induced by a canonical l�$L�Fj�L��
valued Maurer�Cartan form� Denoting by w � W the point de�ned by $L� l�$L�Fj�L�
is canonically isomorphic toKer��w�� This shows that all the Lie algebras l�$L�Fj�L�
are isomorphic� The resulting Lie algebra g�M�F� �de�ned up to isomorphisms� is
usually called the structural Lie algebra of the foliation�

The main result of Almeida and Molino in ��� says that �M�F� is developable
�i� e� its lift to the universal cover of M is simple� if and only if the Lie algebroid
A�M�F� is integrable� This discussion extends to transversally complete foliations
�M�F� without any compactness assumption on M �see ������

Now� our constructions produce a monodromy map � � ���W � � G�M�F� with
values in the simply connected Lie group integrating the structural Lie algebra
g�M�F�� which controls the developability of the foliation�

Corollary ����� A transversally parallelizable foliation �M�F� on a compact man�
ifold M is developable if and only if the image of the monodromy map

� � ���W � � G�M�F�

is discrete�

A simple consequence of this result is�



INTEGRABILITY OF LIE BRACKETS ��

Corollary ����� Let �M�F� be a transversally parallelizable manifold on a compact
manifold M � Then �M�F� is developable provided one of the following conditions
hold�

�i� the structural Lie algebra g�M�F� has trivial center	
�ii� ���W � has only elements of �nite order�

This result should be compared with Corollary � pp� ���� and Corollary � pp� ���
in �����

Appendix A � Flows

In this appendix we discuss the �ows associated to sections of Lie algebroids�
which generalize the ordinary �ows of vector �elds �sections of A � TM �� This is
used throughout the paper� most notably for de�ning the equivalence relation on
A�paths �section ����� As in the main body of the paper� A denotes a Lie algebroid
over M � � � A� TM denotes its anchor and � � A�M the projection�

A��� Flows and in�nitesimal �ows� Given a time dependent vector �eld X on
M � we denote by �t�s

X its �ow from time s to time t� Hence

d

dt
�t�s
X �x� � X�t��t�s

X �x��� �s�s
X �x� � x 


We have �t�s�s�u � �t�u and when X is autonomous �t�s
X � �t�s

X only depends on
t� s� Di�erentiating� we obtain the in�nitesimal �ow of X�

�t�sX �x� � �d�t�s
X �x � TxM � T�t�s

X
�x�M


Let us assume now that G is a Lie groupoid integrating the algebroid A� Given
a time�dependent section � of A� we denote by the same letter the right invariant
�time�dependent� vector �eld on G induced by � and by 
t�s� � G � G its �ow� If
x � s�g� and y � t�g�� then 
t�s� �g� is the arrow


t�s� �g� � x �� �t�s
���y�

and also satis�es the right�invariance property�


t�s� �g� � 
t�s� �y�g


The in�nitesimal 
ow of ��

�t�s� �x� � Ax � A�t�s���y�
�

is de�ned as

�t�s� �x� � �dR�
s�t
� �x���t�s� �x��d


t�s
� �x
�A���

The classical relation between Lie brackets and �ows translates at this level to

d

dt






t�s

��t�s� ��� � ��s� ����A���

where we have set

��t�s� ������x� � �s�t� ���t�s���x��


We wish to extend the in�nitesimal �ow to sections of general Lie algebroids�
not necessarily integrable� For this we can use the following general construction of
�in�nitesimal� �ows� Let us assume that E is a vector bundle over M � A derivation
on E is a pair �D�X� where D � ��E� � ��E� is a di�erential operator� X is a
vector �eld on M � satisfying the Leibniz rule

D�f�� � fD��� � X�f��� � f � C��M �� � � ��E�
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Now� any time�dependent derivation �D�X� on E has an associated �in�nitesimal�
�ow� It is a family of linear isomorphisms

�t�sD �x� � Ex � E�t�s
X
�x��

which is characterized uniquely by the properties

�a� �t�sD �s�uD � �t�uD � �t�tD � Id�

�b� d
dt




t�s

��t�sD ��� � Ds���� for all sections � � ��E��

Here Dt is D at the �xed time t� and ��t�sD ��� � �s�tD ��t�s
X � This follows by the

standard arguments�
Alternatively� one can use the groupoid Aut�E� over E� whose arrows from x

to y are all linear isomorphisms Ex � Ey� Its Lie algebroid is usually denoted
by DO�E�� and its sections are precisely derivations of E �cf� ��
� ����� Hence
�D�E� can be viewed as a time�dependent section of DO�E�� and then �t�sD is just

the associated �ow on Aut�E�� Both de�nitions of �t�sD �x� show they are de�ned

whenever �t�s
X �x� is de�ned�

Most �ows in di�erential geometry �e� g� the �ows of vector �elds� parallel trans�
port� are obtained in this way�

A��� The in�nitesimal �ow of a section� We we apply the previous construc�
tion to a time dependent section � of the Lie algebroid A� where X � �� and
D � ����� � ��A� � ��A�� The resulting �ow

�t�s� �x� � Ax � A�t�s���x�

is uniquely determined by �t�s� �s�u� � �t�u� � �t�t� � Id� and the formula �A��� above�
In particular� if A is integrable� then �t�s� coincides with �A��� above� As in the case
of vector �elds� if � is autonomous� then �t�s� � �t�s� only depends on t� s�

Let us indicate an alternative description� Recall that on A� one has a Poisson
bracket f � gA which is linear on the �bers� A section � of A de�nes in a natural
way a function f� � A� � R which is linear on the �bers ��evaluation��� and we
denote by X� the Hamiltonian vector �eld associated with f�� It is easy to see
�cf� ����� that�

�a� The assignment � �� f� de�nes a Lie algebra homomorphism ���A�� � � �� �
�C��A��� f � gA��

�b� X� is ��related to ��� ��X� � ��� where � � A� � M is the natural
projection�

For each t� the �ow �s�t of X� de�nes a Poisson automorphism of A� �wherever
de�ned�� which maps linearly �bers to �bers of A�� So� in fact� �s�t � A� � A�

is a bundle map and from �b� we have that it covers �s�t
��� the �ow of ��� By

transposition we obtain the in�nitesimal �ow �t�s� �x� � Ax � A�t�s���x�
�

Example A��� As a simple example� consider a Lie algebra A � g as a Lie alge�
broid over a point� and � � g �a constant section�� The Poisson bracket on the dual
g� is the Kirillov Poisson structure and so the hamiltonian �ow on g� of the evalu�
ation function f� is given by the co�adjoint action� It follows that the in�nitesimal
�ow of � is then �t� � Ad�exp�t����

This example shows that one can think of the in�nitesimal �ow of a section as
a generalization of the adjoint action� although for a general Lie algebroid it does
not make sense to speak of the adjoint representation%
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