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Pluralitas non est ponenda sine necessitate.

WILLIAM OF OCKHAM

For games with a measure space of players a tandem pair, consisting of a mixed and a pure
Cournot-Nash equilibrium existence result, is presented. Their generality causes them to be
completely mutually equivalent. This provides a unifying pair of Cournot-Nash existence results
that goes considerably beyond the central result of [11, Theorem 2.1]. The versatility of this pair
is demonstrated by the following new applications: (¢) unification and generalization of the two
equilibrium distribution existence results for anonymous games in [44], (¢7) generalization of the
equilibrium existence result for Bayesian differential information games in [38], (ziz) inclusion
of the Bayesian Nash equilibrium existence results in [41, 6] for games with private information

in the sense of Harsanyi [33].

1 Introduction

In [11, Theorem 2.1] a central existence result was proposed for Cournot-Nash equilibria (CNE,
for short) in (pseudo)games with a measure space of players. In the present paper this result will
be considerably extended in the form of a tandem pair of CNE existence results, one mixed and
one pure, that are mutually equivalent. Theorem 2.1.1, one half of this pair, is a mixed CNE
existence result, just as Theorem 2.1 in [11], which it improves in several respects. It is paired with
Theorem 2.2.1, an extension of a recent pure CNE existence result [15, Theorem 2.1] that is based on
a new, so-called feeble topology. This topology owes its importance to the compactness conditions for
player’s action spaces that we impose throughout. In such a situation the feeble topology is a very
flexible instrument: Examples 2.2.1 and 2.2.2 show that it simultaneously subsumes the two usual
situations in the literature on games with a measure space of players, which work either with the
weak topology o(L!, L°) or with its weak star counterpart o(L°, L'). As shown here, under those
same compactness conditions for player’s action spaces the feeble topology also subsumes the narrow
topology that lies at the base of Theorem 2.1.1, the twin mixed CNE existence result mentioned
before. This causes Theorems 2.1.1 and 2.2.1 to be completely equivalent (see Proposition 3.3.1),
which testifies to the high level of generality of our results.

As a consequence of this generality, the present paper unifies CNE existence in the following three
areas: (1) games with a measure space of players, as used by Schmeidler and others, (2) anonymous
games d la Mas-Colell and (3) games with private information in the sense of Harsanyi and others.

This is not only evident from the applications already given in [9, 11, 13, 15] (these now also
follow a fortiori from our central pair and will not be repeated here), but also from the following
new applications in quite different directions: First, Theorem 2.1.1 is used to generalize and unify
two separate CNE distribution existence results obtained by Rath in [44] (these in turn generalize
[39]). This continues the approach to CNE equilibrium distributions given in [9, 11, 13], by which
CNE distributions are seen as special mixed CNE’s (i.e., they correspond to a special externality).
Secondly, a generalization of the main existence result for Bayesian pure CNE’s of Kim and Yannelis
[38], who use a model with priors regarding interim beliefs, is given by means of Theorem 2.2.1.



A complete reduction of their model to the (pseudo)game form used in this paper is achieved
via the formulation of a suitable “global” o-algebra that keeps track of differential information.
Thirdly, Theorem 2.2.1 is shown to generalize the existence results in [6, 21]. Those results, in
turn, extended the well-known Bayesian CNE existence result of Milgrom-Weber [41] for games
with private information ¢ la Harsanyi [33] to the more natural situation where players’ type spaces
are non-topological.

In forthcoming work the methods of this paper will be devoted to a very general treatment of
upper semicontinuity of the CNE correspondence [23].

2 Cournot-Nash equilibrium existence results

This section presents a tandem pair of mixed/pure Cournot-Nash equilibrium (CNE) existence
results for continuum pseudogames, that is to say, pseudogames with an abstract measure space
of players. In subsection 2.1 Theorem 2.1.1, the mixed CNE existence result, i1s formulated for
a pseudogame I'. Theorem 2.2.1, the pure CNE existence result, is given in subsection 2.2 for a
pseudogame T".

Common elements of the pseudogames I' and T are as follows. Both have a separable complete
measure space (T, 7, p) of players (or, if so desired, player’s types); thus, the models are in the spirit
of Aumann and Schmeidler [3, 45]. Recall that (7,7, p) is said to be separable if the (prequotient)
space LY(T, 7T, p) is separable for the usual £'-seminorm. This separability assumption plays an
important part in the proofs below (essentially, by allowing sequential arguments, which is sometimes
very critical in measure theory). However, by exploiting a trick based on a result of Castaing and
Valadier [25, p. 78], the separability assumption can be removed from all the existence results
below — as opposed to their proofs — at the cost of only a slight strenghtening of the measurability
conditions. Details about this trick can be found in [12] and in [15, Remark 4.2]. The present paper
also extensively discusses it, but only in connection with (step 2 of) the proof of Theorem 4.4.1.
The completeness assumption for (7,7, ) can be removed from the existence results as well. This
goes by well-known reasoning involving measurable modifications, based on the fact that the central
existence results allow for an exceptional null set (see [15, Remark 4.2] again). Both T' and T” have
for each player ¢ a set S; of (individually) feasible actions. All sets Sy, t € T, are supposed to lie in
an action universe S.

2.1 Mixed Cournot-Nash equilibrium existence result

This subsection centers around Theorem 2.1.1, a mixed CNE existence result for the pseudogame
T := (S, At, Up)rer. The following assumptions must hold:

Assumption 2.1.1 S is a completely reqular Suslin space.

Recall that a topological space is said to be Suslin if it 1s a topological Hausdorff space that is the
surjective image of a Polish space under a continuous mapping; cf. [28, TIT], [46, IT]. For instance,
any Polish space S (i.e., a separable metric and complete space) or any Borel subset S of a Polish
space meets the above assumption, and it continues to do so when equipped with a completely
regular topology that is coarser than the original one. E.g., a separable Banach space meets As-
sumption 2.1.1, both for the norm-topology, for which 1t 1s a Polish space, and for the usual weak
topology. Other examples include spaces that are countable unions of Polish spaces, such as the
dual of a separable Banach space, when equipped with the weak star topology.

Assumption 2.1.2 (i) For everyt € T the set S; C S is nonempty and compact.
(7)) gph € T x B(S).

Here X : T' — 2° is defined by X(¢) := S; and its graph is given by gph X := {(t,s) € T x S : s € S;}.
As usual, the symbol B(S) refers to the Borel o-algebra on S and 7 x B(S) denotes the product
o-algebra. The trace of the latter o-algebra on gph X is denoted by (7 x B(S)) N gph .



By Assumption 2.1.1, S has metric p that is not finer than its original topology (apply [25, T11.32]
or [28, TI1.66] — see [15, section 3] for an explicit description). Hence, Assumption 2.1.2(¢) ensures
that on the compact sets S;, ¢t € T, these two topologies coincide. In other words: one might suppose
Just as well that the original topology on S is metrizable to begin with. Let us do this from now on.

The mized action universe of I' is the set Ml"'(S), consisting of all probability measures on
(S, B(S)). This set is equipped with the classical narrow topology; cf. [24], [28, III]. The canonical
mized action profiles of I' are the functions 6 : T — Ml"'(S), measurable with respect to 7 and
B(M;t(S)). Such 8’s can be seen as descriptions/prescriptions of how all the players could or should
act (in a mixed way) in the game. The set of all such mixed action profiles is denoted by R. A
mixed action profile § € R is said to be feasible if 6(2)(S;) = 1 for a.e. (meaning p-almost every) ¢
in T'; note carefully that there is an exceptional null set involved in this definition. The set of all
such feasible profiles is denoted by Ryx.

Observe that Assumptions 2.1.1, 2.1.2 entail that Ry is nonempty. Indeed, the von Neumann-
Aumann measurable selection theorem [25, II1.22] can be applied here. This gives the existence of
a function f : 7T — S, measurable with respect to 7 and B(S), such that f(¢) € S; for a.e. t € T}
hence setting 6(¢) := €;(¢) := Dirac point measure at f(¢) defines a feasible mixed action profile.

For a proper understanding of the following topologization of R, attention is called to the fact
that, mathematically speaking, the mixed action profiles in R are precisely transition probabilities
with respect to (T,7) and (S, B(S)) in the sense of [42, IIT] (see also [1, 2.6]); here the earlier obser-
vation about the metric p on S is instrumental. In one direction this is by [42, Proposition II1.2.1]
or [1, 2.6.4]; the other direction goes by Baire approximation [1, A6.6] and a Dynkin class argument
[1, 4.1.2]. In connection with the following topology the elements of R are also often referred to
as Young measures. Recall from [5, 6, 7] that the narrow topology on R (and on its subset Ryx) is
defined as the coarsest topology on R for which all functionals

o [ L] attsodudn,o € Go(r;s).

are continuous. Note that those integrals are well-defined by [42, TII]. Here G (T'; S) stands for
the collection of all Carathéodory integrands on T x S. Recall that this is the set of all 7 x B(S)-
measurable functions g : T'x S — R for which g(¢, ) is continuous on S for every ¢ € T and for
which there is an integrable function ¢, € Lx(T,7,p) with sup,cg |g(t,s)| < ¢4(¢) for all ¢t € T'.
Equivalently (apply [6, Theorem 2.2]), the narrow topology on R is the coarsest topology for which
all functionals

5 H/ / ()(ds)]u(dt), g € G(T; ),

are lower semicontinuous. Here G**(T'; S) is the collection of all normal integrands on T x S that
are integrably bounded below; these are the T' x B(S)-measurable functions ¢ : 7' x S — R such that
g(t,-) is lower semicontinuous on S for every ¢ € T and for which there is an integrable function
¢y € L&(T, T, p) withinfses g(t,s) > ¢,4(t) for all t € T'. Evidently, the narrow topology on M (S),
to which reference was already made, can be seen as a special case of the above narrow topology
on R (e.g., consider what happens to the constant mixed action profiles or what happens when T
is a singleton). To distinguish it from the latter, it will from now on consistently be called the
classical narrow topology, In connection with subsection 3.3, the following addition fact i1s useful:
The restriction of the narrow topology to Ry, C R is precisely the coarsest topology for which all
functionals

5 H/ / () (ds)]u(dt), g € Ges(T),

are continuous on Ryx. Here Ge x(T) is the set of all (7 x B(S)) N gph Y-measurable functions
¢ : gph ¥ — R for which g(¢, ) is continuous on S; for every ¢t € T and for which there exists an
integrable function ¢, € Lg(T, 7T, p) with sup,cg, |g(t,s)| < ¢g4(t) for all ¢ € T. This is a direct
consequence of the above equivalence: one has g1, g2 € G**(T'; S) by setting g; :== (—1)’g on gph &
and g; := 400 on (T' x S)\gph X, with I, (6) = —1,,(é) for all 6 € Ry.

As a social feature of T', each player must choose his/her actions in accordance with the other
players as follows: given the profile 6 € Ry, player ¢’s socially feasible actions constitute a given



subset A;(6) C S;. In a truly noncooperative situation one can of course eliminate such social
interaction by choosing

Ai(8) :=S; forall t € T and § € Ry. (2.1)

Assumption 2.1.3 (i) For every (t,6) € T X Ry the set Ay(8) C St is nonempty and closed.
(i1) For every t € T the multifunction A; : Ry — 25 is (narrowly) upper semicontinuous.
(#it) For every § € Rx the graph of the multifunction t — A.(8) belongs to T x B(S).

To measure the consequences of player ¢’s actions in the face of his/her opponents; one introduces
the payoff function Uy : Sy x Ry — [—o00,4+00]. Given the mixed action profile § € Ry, player ¢
receives Uy(s, §) for taking action s € S; (see also the comments following Theorem 2.1.1).

Assumption 2.1.4 (i) For every t € T the function Uy 1 Sy x Ry — [—00, 4] is upper semicon-
tinuous.

(#8) For every 6 € Ry the function (¢,s) — Ui(s,8) is (T x B(S)) Ngph X-measurable.
The final assumption requires a certain interplay between social feasibility and payoft:

Assumption 2.1.5 For every t € T the function 6 — sup ¢ 4,(s) Ui(s,8) is (narrowly) lower semi-
continuous.

Remark 2.1.1 (i) In the strictly noncooperative situation of (2.1) Assumption 2.1.3 holds auto-
matically; also, in that situation Assumption 2.1.5 certainly holds if Uy(s, ) is narrowly lower semi-
continuous on Ry for every (t,s) € gph X (of course, together with Assumption 2.1.4(i) this implies
that Uy(s, ) is then narrowly continuous).

(#8) In the terminology of the highly tautological [{7, Proposition 1], Assumption 2.1.5 states that
Ui(s,8) is feasible path transfer lower semicontinuous in s with respect to A; for every t € T.

(#i1) The measurability Assumptions 2.1.3(iit) and 2.1.4(i7) serve exclusively to make the graph of
the multifunction t — argmax,¢ 4,5 Ui(s,6) T x B(S)-measurable.

The main result of this subsection, a result about existence of a mixed Cournot-Nash equilibrium
profile in ', can now be stated. Observe below that under such an equilibrium profile p-almost every
player ¢ randomizes over actions that maximize his/her own payoff in a socially feasible way. The
proof of this result will be given in subsection 3.1.

Theorem 2.1.1 (mixed equilibrium existence result) Under the Assumptions 2.1.1 to 2.1.5
there exists a mixed Cournot-Nash equilibrium for the above pseudogame I'. That s, there exists a
mized action profile 6, € Ry such that

I (t)(argmaxseAt(é*)Ut(s, 8.)) =1 for p-a.e. t in T.

This result improves Theorem 2.1, the main result of [11], in the following respects: (1) Assump-
tion 2.1.5 improves upon the continuity requirement in [11, Assumption 2.6]; cf. Remark 2.1.1(7).
(2) In [11] only the purely noncooperative situation with (2.1) is considered. (3) Theorem 2.1.1
deals directly with U;(s,8). In contrast, in [11] a U;(s, 8) of the form Uy (s, e+(8)) is used, with the
technical complication that all mappings e;, t € T, on Ry should map into a common space that is
itself Sushin and metric.

2.2 Pure Cournot-Nash equilibrium existence result

In this subsection a pure counterpart to the above existence result Theorem 2.1.1 is presented. This
result (partially) allows for purification by nonatomicity. The counterpart to T' is now a pseudogame
I := (S, A, UDer in pure actions. Let us suppose that 7" is partitioned into two different groups
of players, i.e., T=TUT and TNT = .

Assumption 2.2.1 (i) T,TeT.
(#8) T is contained in the nonatomic part of the measure space (T, 7, p).



Purification by nonatomicity is to take place on the part T.
Assumption 2.2.2 S is a Suslin locally conver topological vector space.

Observe that this assumption entails that S is completely regular as well, which makes it a special-
ization of Assumption 2.1.1. As before, we define ¥ : T' — 2° by X(¢) := S;. and denote its graph
by gph X.

Assumption 2.2.3 (i) For everyt € T the set S; C S is nonempty, conver and compact.
(#8) For everyt € T the set Sy C S is nonempty and compact.
(#i1) gph T € T x B(S).

A pure action profile of T' is a function f: T — S that is measurable with respect to 7 and B(5)
or, which is equivalent, for which all scalar functions ¢ —< f(t),s* >, s* € S*, are T-measurable.
Here S* stands for the topological dual of S. Such equivalence of ordinary and scalar measurability
is due to the Suslin nature of S, which causes B(S) to coincide with the Borel o-algebra for the weak
topology o(S, S*) (apply [46, Corollary 2, p. 101]). Let & denote the set of all such action profiles.
A pure action profile f € § is feasible if f(t) € Sy for p-a.e. t in T. The set of all feasible action
profiles is denoted by Sx. Also, let Sx be the set of all restrictions to 7' of functions in Sy; it is only
this set that needs to be topologized. Recall from [15] that the feeble topology on S, is defined as
the coarsest topology for which all functionals

Jo i f /T oL, F(O)(dt), g € Gres,

are continuous. Here GLC’E is the collection of all (7 NT') x B(S)-measurable functions g : T'x S — R
for which g(¢, -) is linear and continuous on S for every ¢ € T and for which there there is an integrable
function ¢, € L&(T, T NT, x) with Sup,eg, 9(t,8)| < ¢y4(t) for all t € T. Note that this causes the
above functional to be well-defined. In the special case T' = T' we shall write Gr¢ = instead of Gr¢ x.
The following two examples show that, quite remarkably, the feeble topology can simultaneously
subsume the two customary topologies that have been used in the literature on games with a measure
space of players.

Example 2.2.1 Let S be a separable Banach space, equipped with either the norm topology or
the weak topology o(S,S*). In addition to what is required in Assumption 2.1.2, let ¥ : T — 29
be integrably bounded; that is to say, there exists ¢x € L(T,7 , ) such that sup,cg, [|s|| < ¢x(?)
for every t € T. Here || - || stands for the norm on S. In this situation S is a Suslin locally convex
topological vector space, and Sy is precisely the prequotient space L, consisting of all Bochner-
integrable y-a.e.-selectors of the multifunction ¥. Also, on Sy, = L3, the feeble topology coincides in
this situation with the usual (prequotient) weak £'-topology o(LL(T, T, ), LL[S)(T, T, ). Recall
here from [35, IV] that LX.[S](T, 7, p) is the space of all bounded and scalarly measurable functions
from 7" into S*, which can be identified with the dual of £LL(7,7,u) for the usual £'-seminorm.
The coincidence of these two topologies can be seen as follows. First, observe that on Sy the feeble
topology is at least as fine as the weak L!-topology, simply because to every b € L2[S] there
corresponds a canonical g5 € Gre x, given by gy(t, s) ;=< s,b(t) > (observe that sup,cg, |9s(t, s)| <
¢ (t)ess supp||b(-)|*). Also, by [15, Proposition 3.2], which is a corollary of Theorems 3.1.1 and
3.2.2 used below, Sy, is feebly compact. Unlike the feeble topology itself, the quotient of the feeble
topology for the usual equivalence relation “equality p-almost everywhere” is Hausdorff (denote this
equivalence relation on the set of all measurable functions from 7" into S by #). So on the quotient-
feebly compact set 7(Sx) the quotient-feeble topology coincides with the usual quotient topology
o(LY, L%[S]). Since the defining functionals J;, g € Grc 5, for the feeble topology are constant on
every m-equivalence class, it follows that the coincidence of these topologies can be carried back to
the original prequotient setting.

In view of the above example, the referenced compactness result of [15, Proposition 3.2] can be
considered as an extension of Diestel’s theorem [48, Theorem 3.1]. Another situation considered on
some occasions (e.g., cf. [36, p. 101]) is the following:



Example 2.2.2 Let S be the dual of a separable Banach space R and let .S be equipped with the
weak star topology ¢(S, R). Then S is the countable union of metrizable compacts (by the Alaoglu-
Bourbaki theorem), whence a Suslin space. Following [36, p. 101], consider the situation where
Assumption 2.2.3 holds and where all sets Sy, ¢ € T, are contained in a single dual norm-bounded
set K. Then Sy is obviously the prequotient space L [R](T, 7, i) that consists of all bounded and
R-scalarly measurable p-a.e.-selectors of 3. In this situation on Sy the feeble topology coincides
with the weak star topology o(LY[R], £LL). Notice that on Sy, the feeble topology is at least as fine
as the weak star topology, simply because to every ¢ € L} there corresponds a canonical g¢ € Grc 5,
given by g,(t,s) :=< £(t),s > (observe that sup,cs, [g¢(t,s)] < rx||{(t)||r, where rg denotes the
diameter of the set K). Again, the compactness result [15, Proposition 3.2] and a quotient argument
can be used to show that these two topologies on Ss actually coincide.

Let us now define as the externality of each player ¢t € T the mapping d := (J, ci) : Sy — Sy xR™,
which is defined by

A1) = 1l d) = ale FOdR,.
Here f |7€ Sy stands for the restriction to 17" of f € Sx. Also, g1,...,9m : gph ¥ N (T x S) — R are
given functions that satisfy the following condition.

Assumption 2.2.4 ¢1,...9, € QCVE(T).

Thus, the externality d is such that on 7' the restriction f |4 of f € Sy, which completely describes

the action f(t) by each player ¢ in T, is replaced by the aggregate ci(f) over all of 7. Observe that
in the special situation with 7 := ¢ and 7 := T we have d(f) = f and Sy = Sx. Each player
t € T must choose his/her actions in accordance with the other players as follows: given the pure
action profile f € Sx, player t’s socially feasible actions constitute a given subset AL(d(f)) C S:.
Observe that the externality intervenes here. Of course, for a truly noncooperative situation one
can always choose A} = S;, quite similar to (2.1). Further, every player ¢ € T has a payoff function
Ul:S; x 8 x R™ — [~o00, +c0].

Assumption 2.2.5 (i) For every (¢, f,y) € T x Sg x R™ the set AL(f,y) C S; is nonempty and
closed. B

(1) For every t € T the multifunction Al Ss x R™ — 25t s upper semicontinuous.

(#i1) For every (f,y) € Ss x R™ the graph of the multifunction t — AL(f,y) belongs to T x B(S).

Assumption 2.2.6 (i) For every t € T the function U] : S; x S x R™ — [~o00, +00] is upper
semicontinuous.

(ii) For every (f,y) € Sz x R™ the function (t,s) — Ul(s, f,y) is (T x B(S)) N gph Y-measurable.

Again, the final assumption requires certain relationships between A’ and U’ to hold; this time,
a convexity condition is added to what was required in the corresponding Assumption 2.1.5, but
only for players in 7"

Assumption 2.2.7 (i) For everyt € T the function (f,y) — SUDse Al (Fy) U{(s, f,y) is lower semi-
continuous on Sx X R™. - - -
(#8) For everyt € T and (f,y) € Sg x R™ the set argmaxseA;(ﬁy)Ut’(s, f,y) is conver.

Of course, a counterpart to Remark 2.1.1 applies here:

Remark 2.2.1 (i) If A, = S; for all t € T (noncooperative situation), Assumption 2.2.5 holds
automatically and Assumption 2.2.7(i) holds if U/(s, -, ") is continuous on Sy, x R™ for every s € S;.
(ii) In the terminology of [47, Proposition 1], Assumption 2.2.7(i) states that Ul(s, f,y) is feasible
path transfer lower semicontinuous in s with respect to A} for everyt € T.

(iii) Assumption 2.2.7(ii) holds if for every t € T and (f,y) € Ss x R™ the set AL(f,y) is convex
and the function Ul(-, f,y) is quasiconcave on A'(f, y).



(1v) Assumptions 2.2.5(iit) and 2.2.6(ii) serve purely to guarantee (T x B(.S)) Ngph X-measurability
of the graph of the multifunction t — argmaxseA;(ﬁy)U (s, f,y) for every (f,y) € Sz x R™.

(v) As will become clear in the proof, the linearity of the action universe S, as postulated in As-
sumption 2.2.2, is really only needed to obtain barycenters (pointwise) of mived actions by players
t €T. In other words, one could introduce two separate action universes, viz. S (for players t € T)
and S (for players t € T) In such a setup only S would have to be as in Assumption 2.2.2, and S
could be of the same type as in Assumption 2.1.1. In particular, this means that for the special case
T =0, T:=T in Theorem 2.2.1 we can replace Assumption 2.2.2 by Assumption 2.1.1.

(vi) Another extension that is easy by the way purification is used in the proof of Theorem 2.2.1
is as follows. Instead of the externality component d, defined above, we could also have d equal
to a countable sequence (LZ]) This sequence would correspond to some countable measurable par-
titioning (T]) of T, and each d would have the same structure as d studied above, but relative
to T] mstead ofT Thus, for each j there would be m; integrands gl, . ..,gﬁnj m ggyc(T}), with

fT gl (t, F()p(dt))ir,, and the new externality ci(f) would now be (cZ](f))]

Theorem 2.2.1 (pure equilibrium existence result) Under the Assumptions 2.2.1 10 2.2.7 there
erists a pure Cournot-Nash equilibrium for the above pseudogame T, That is, there exists a pure
action profile f. € 8s such that

f@) € argmaxseA;(d(f*))U{(s, d(f.)) for p-a.e. t in T.

Observe that in the extreme case T = T, with (T, T, ) nonatomic, this result is entirely about pu-
rification by nonatomicity. In this capacity, for instance, it was shown in [11] to generalize the main
result of [43, Theorem 2]; that result has a finite-dimensional action universe S, uses g;(¢, s) := i-th
coordinate of s and works with integrable boundedness assumptions for X, as in Example 2.2.1. See,
however, [37, Theorem 1] for a rather special equilibrium result by purification that is apparently
not covered by Theorem 2.2.1. The above result, which will be proven later in subsection 3.2, is
[15, Theorem 2.1], but with two additional improvements: (1) The current formulation of Assump-
tion 2.2.7 means that certain continuity conditions that appear in [15, Assumptions 2.4, 2.5] can be
replaced by mere upper semicontinuity conditions. (2) Assumption 2.2.5(i¢%) is less demanding than
the corresponding part of [15, Assumption 2.4]. As explained in [15], Theorem 2.2.1 subsumes the
extensions of Schmeidler’s original result, obtained in [36, Theorems 7.1, 7.8, 7.11, 7.13] and [34,
Theorem 4.7.3].

There is an obvious consistency question regarding the modeling of the payoffs in the pseu-
dogames I' and I"”; it seems to have received only scant attention in the literature. Let us discuss
this question only in terms of I”; a quite similar discussion can also be given for I'. The point is that,
any given action profile f completely specifies player t’s action f(t), which could affect the freedom
of choice for the variable s in the payoff function U/(s, d(f)). In response, let us observe first that for
playerst € T (these are “nonatomic players” by Assumption 2.2.1(7)) the consistency issue does not
arise: The action profile f |; only influences the payoff U/(s, d(f)) via the aggregate ci(f) = ci(f l#)
and this clearly does not determine the action f(t) for any nonatomic player. However, for players ¢
in T the response has to be more subtle, since ci( f):= f |p. For such players the model used in this
paper still reflects proper modehng practlce if U/(s,d(f)) is in addition supposed to be of a composite
form, say Ul(s,d(f)) := Ul'(s, m(d([)), d(f)), where the mapping , is such that m,(d(f)) does not
determme the value f(t), i.e., player ¢’s own action under f. So, rather than directly depending on
d(f), the payoff depends on some “abstract” m,(d(f)) of d(f). As a concrete example, let us observe
that in the original model of Schmeidler [45] (who, in the present terminology, works with 7' = T),
all such mappings m; can be taken identically equal to the canonical L'-space quotient mapping
7. That is to say his “abstract” of d(f) = f is simply the Li-equivalence class w(f) consisting of
all functions that are a.e. equal to f. This choice reflects proper modeling, because knowledge of
the equivalence class 7(f) does not specify anything about the action f(¢) taken by any particular
player ¢ under the profile f (recall that [45] works with 7' = [0, 1] and Lebesgue measure, so that
each player is nonatomic). Much of the subsequent literature on continuum games has more or less



adopted this model, although not always with the understanding that the measure space (7,7, p)
1s nonatomic.

In contrast, in games or pseudogames with at most countably many players the consistency
question surfaces very keenly, because each player would be given positive p-measure with 7 := 27
— e.g., cf. [11, Theorem 3.1.1] (a quite similar situation arises if one considers additional “atomic
players” in the above continuum game model). The standard formulations of such games simply
realize consistency by working with m(f) := =" := (f(7))r2¢, etc. One might well wonder why
such an effective device has not been used for games with a measure space of players. The reason is
that in the continuum setting those same functions 7;(f) := f~* would suddenly present formidable
technical complications, because of the fact that the joint evaluation map (¢, f) — f(¢) need not be
measurable in any standard way [30]. This fact has been overlooked in the strand of the continuum
game literature that deals with models with unordered preferences @ la Shafer-Sonnenschein, where,
as a consequence, certain striking incompatibilities occur [19].

3 Proofs and equivalence

In this section we first prove Theorem 2.1.1 in subsection 3.1. Its proof is an application of Kakutani’s
fixed point theorem, which is topologically made possible by some of the most fundamental results
of Young measure theory (these are recapitulated for the convenience of the reader). Recall that
this theory centers around an extension of the classical narrow topology from probability measures
to transition probabilities. Following this, Theorem 2.2.1 is proven in subsection 3.2, essentially
by reformulating the existence problem of subsection 2.2 in terms of Theorem 2.1.1 and by adding
some purification arguments. Finally, the equivalence of Theorems 2.1.1 and 2.2.1 is demonstrated
in Proposition 3.3.1.

3.1 Proof of Theorem 2.1.1

In this subsection let us first recall the only three results about the narrow topology on R that we
shall need in the proof of Theorem 2.1.1.

Proposition 3.1.1 The narrow topology on R is semimetrizable.

This result depends heavily on our initial assumption that the measure space (7,7, ) is separable.
For a proof of the above result see [5, Proof of Lemma A.3], [18, Theorem 4.6] or [17, Theorem 4.5].

Theorem 3.1.1 The subset Rs of R is narrowly compact.

This follows directly from [6, Theorem 2.3], as extended from metrizable Lusin to metrizable Suslin
spaces in [7] or, using Proposition 3.1.1 above, from [18, Theorem 4.10], by observing that, because
of Assumption 2.1.2; setting h(¢,s) := 0 if s € S; and h(t,s) := +oo if s € S\S;, defines an inf-
compact normal integrand h (i.e., h belongs to the class H**(T; S) of [6, 7]). See [13, Corollary 2.2]
and its proof for more details. The next result can be found in [5, Theorem I], [10, Appendix A],
[18, Theorem 4.12] and in [17, Theorem 4.15].

Theorem 3.1.2 If ¢ sequence (1,) converges narrowly to i in R, then pointwise, for a.e t in T,
the support supp 7)(t) of the probability measure 7(t) is contained in the set N7 cl Up>psupp na(t).

This property expresses a kind of sequential upper semicontinuity of the (pointwise) supports; the
set figuring in the above statement is called the Painlevé- Kuratowsk: limes superior and denoted as

Lspsupp 0, (¢).
PrOOF oF THEOREM 2.1.1. Evidently, 6, € Ry is a mixed CNE if and only if 6, € F(é,), where

F(é) stands for the set of all n € Ry such that n(¢)(Ms(t)) = 1 for p-a.e. t in T. Here Ms(t) :=
argmaxseAt(é)Ut(s, 8)). Therefore, the proof is entirely based on an application of Kakutani’s fixed

point theorem to F' : Ry — 2%=. Steps 1-2 below guarantee that Ry, has the right compactness and



convexity properties for such an application, and steps 3-5 show that F" has the right semicontinuity
properties. Step 6 applies Kakutani’s theorem.

Step 1: compaciness/convezily/nonempliness of Ry,. By Theorem 3.1.1 the set Ry is compact
for the narrow topology. Also, Ry is trivially convex in R and it was already seen before that Ry
1s nonempty.

Step 2: a vector space setting for Rx. The intended application of Kakutani’s theorem requires
a topological vector space setting. Obviously, the classical narrow topology can be extended from
M (S) to the space M(S) of all signed bounded measures on (S, B(S)). Therefore, the vector
space M spanned by R is the space of all functions from T into M (S) that are measurable with
respect to 7 and B(M(S)). Equip M with the coarsest topology for which all functionals I, :
§ — fT [fS g(t,$)6(1)(ds)|p(dt), g € Go(T;S), are continuous (note that these functionals are well
defined). When restricted to R, this topology is the narrow topology that was defined previously.

Step 3: upper semicontinuity of M.(t). By the Weierstrass theorem, Ms(¢) is a nonempty compact
subset of S; for every ¢ € T and é € Ry (use Assumptions 2.1.2(¢), 2.1.4()). Moreover, § — Ms(t)
is upper semicontinuous for arbitrary ¢ € T'. To see this, it is enough to prove that M.(¢) has the
closed graph property (by compactness of S;): So let (s,,6,) — (5,6) with s, € Mj, (t) for every
n, i.e., sp € A1(8,) and Ui(sy, 8y) = SUP e A,(5,) Ui(s,6,). By Assumptions 2.1.4(7) and 2.1.5 this
identity leads to Uy(5,6) > SUD e A,(5) Ui(s,8) in the limit. Also 5 € A,(8), because A; has the closed
graph property by Assumption 2.1.3(i7). So § € Mj3(t), which proves the closed graph property of
M.(1).

Step 4: upper semicontinuity of F. Similar to step 3, it is enough to prove the closed graph
property for F'; because the values of F' are contained in the compact set Ry (step 1). Here it is
essential to convince oneself first that this classical result continues to hold on the semimetric space
Rsx. To prove the closed graph property of F, let (n,,8,) — (1, 8) with 5, € F(8,) for every n, i.e.,
nn(t)(Ms, (t)) = 1 for p-a.e. t in T'. This also means that for a.e. ¢ in T and every n the support
supp 7, (2) of the probability measure 7, (¢) is contained in M, (), for the latter set is closed by
step 3. By Theorem 3.1.2, for a.e. ¢ in 7', this implies that supp 7(¢) is contained in the Painlevé-
Kuratowski limes superior Ls, Ms, (1). By step 3, the latter set is contained in M3(¢), which finishes
the proof.

Step 5: F has nonemply closed conver values. Fix § € Ry. The closedness of F(8) follows «
fortiori from the proof of the closed graph property of F' in step 4. Convexity of F(é) is trivial.
Next, we prove nonemptiness of F'(§) by the application of a measurable selection theorem. To
begin with, Assumptions 2.1.3(¢) and 2.1.4(¢) imply that the set Ms(t) is nonempty for every t € T
(by the Weierstrass theorem). Secondly. we show that M;s has a measurable graph. Note that
s € Ms(t) if and only if s € A4(é) and Uy(s,é) = 7s(t), where ys(t) := SUP, ¢ 4,(6) arctan Us(s,8).
By [25, I11.39] the function vys is 7-measurable (here completeness of (7,7, ) is used), so gph M;
belongs to 7 x B(S) by Assumptions 2.1.3(éi7) and 2.1.4(é¢). It follows by the von Neumann-
Aumann measurable selection theorem [25, T11.22] that that there exists a measurable f : T — S
with f(t) € Ms(t) for every ¢ in T. This implies that the Dirac Young measure ¢; (defined earlier)
belongs to F'(8), which is thus seen to be nonempty.

Step 6: application of Kakutani’s fized point theorem. It 1s well-known that Ky Fan’s original
arguments in [32] do not require the Hausdorff space hypothesis [31, pp. 500-501]. In [15, Theo-
rem A.2] this was used to obtain a non-Hausdorff version of Kakutani’s theorem (in all other respect
it is standard). Above, we saw that all properties needed for this fixed point result hold. So there
exists 6, € Ry with é, € F(é.), as desired.

3.2 Proof of Theorem 2.2.1

The foremost results needed in the derivation of Theorem 2.2.1 from Theorem 2.1.1 are as follows.
The topological dual of S is denoted by S*, and < s,s* >:= s*(s) indicates the usual duality.



Theorem 3.2.1 ([26, Proposition 26.3]) If K C S is nonemply compact and convez, then for
every v in Ml'i'(S) with supp v C K there exists a unique s, € K for which

< 5,,8" >:/ < 8,8 >dv for all s* € S*,
K

This unique element s, ts denoted by bar v.
Recall that s, is called the barycenter of the probability measure v.

Corollary 3.2.1 7o every feasible mized action profile 6 € Ry there corresponds a pure action
profile f € S that satisfies f(t) = bar 6(t) for a.e. t in I'. This function f is essentially unique (i.e.,
but for null sets) and is denoted by bar §. Moreover, its restriction f | belongs to the class Sx.

Proor. By Theorem 3.2.1 the well-definedness of f follows from compactness in Assump-
tion 2.2.3(7)-(é7). Admittedly, there may be an exceptional null set N of #’s with §(¢)(S:) # 1,
but for ¢ € N one should set f(#) equal to an arbitrary, fixed element of S. Observe that
(bar §)(t) = bar (6(¢)) only for all ¢ in T\N. Tt follows that bar §(¢) belongs to S; for a.e. ¢ in
T, in view of Theorem 3.2.1 and Assumption 2.2.2(7). Measurability of f is seen as follows: For
every s* € S* the above definition yields < f(),s* >= fSt < s,8* > 6(t)(ds) for all t in T\N and
< f(t),s* > is constant on N. By [42, Proposition II1.2.1] (here Assumption 2.2.3(i4) is used),
one concludes that bar § is measurable with respect to 7 N7 and B(S). This shows f to belong to
S, because scalar and ordinary measurability of functions from 7" into S are equivalent, in view of
Assumption 2.2.2 (namely, we can apply [46, Corollary 2, p. 101]). QED

Theorem 3.2.2 The mapping & — bar § |p from Ryx into Sy is continuous with respect to the
narrow and feeble topologies.

Proor. Let g € GLQ,E and 6 € Ry be arbitrary. Recall from subsection 2.2 that one has
g(t, ) € S* for every t € T. So Theorem 3.2.1 and Corollary 3.2.1 give

g(t,bar é(1)) = /S g(t,$)6(t)(ds) = /Sg(t,s)é(t)(ds) :/S g(t,$)6(t)(ds)
for a.e. t in T. Integration over T' therefore gives that Jy(bar 8) = I3(8), where §(t,s) := g(t,s) if
t €T and s € S; and §(t,s) = 0 otherwise. Finally, note that § belongs to the class Go »(T). QED

Theorem 3.2.3 (Lyapunov’s theorem for Young measures) If {y,... ¢4 : T xS — R are
(T x B(S)) NT-measurable and if by € R is such that [;[[q |[6:(t,5)|60(2)(ds)]p(dt) < +oo for all
1 < i< d, then there exists a measurable function fy T — S such that Jo,(fo) = I, (80) for all i
and fo(t) € supp bo(t) for a.e. t in T.

This is well-known in less general forms. The present version is [18, Theorem 5.3].

Proor or THEOREM 2.2.1 Theorem 2.2.1 will be derived from Theorem 2.1.1 by the intro-
duction of a mixed version T' of the pseudogame IV, which meets all conditions of Theorem 2.1.1.
Thereupon, the mixed CNE action profile is transformed, both by barycentric arguments (on 7')
and purification (on T) into a pure CNE action profile.

Step 1: e and ils continuily. Following [11], let us define a mized externality mapping e : Ry —
Sx; x R by setting e := (¢, ¢) with

€(6) := bar 6 |5, é(8) := (/T /S[gi(t,5)6(t)(d5)]u(dt))§”:1.

Observe that e(6) = (/,(6))i2,, with §; € G¢ », where §; := g; on gph ¥ N (T x S) and §; :== 0 on
gph XN (T x S). Thus, the function € is continuous by the facts about the narrow topology that
were presented in subsection 2.1. By Theorem 3.2.2 €, the other component of e, is also continuous.
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Thus, e 1s continuous with respect to the narrow topology on Ry and the product of the feeble and
Euclidean topologies on Sy, x R™.

Step 2: definition of a mized pseudogame T'. Define A4(8) := A}(e(8)) and Uy(s, ) := U/(s, e(4)).
Then all assumptions of Theorem 2.1.1 are easily seen to be met by the current Assumptions 2.2.2
to 2.2.7, in view of Step 1.

Step 3: application of Theorem 2.1.1. By Theorem 2.1.1 there exists 8, € Ry such that
6. (t)(argmax, ¢ 41 (o(5,)) Ut (5, €(6+))) = 1 for ae. tin T

Step 4: purification on T.A Theorem 3.2.3 can be applied in view of Assumption 2.2.1. So there
exists a measurable function f. : T'— S such that f.(¢) € supp é.(¢) C argmaXseAi(e(é*))U{(S, e(64))
a.e. on 1 and ci(f*) = é(é.).

Step 5: construction of the pure CNE action profile. Set f.(t) := bar 6,(t) on T and f.(t) := . (t)
on T'; then e(6.) = d(f.). This gives f.(t) = f*(t) € argmaxseA;(d(f*))Ut’(s, d(f.)) a.e. on T.0nT
we can apply Theorem 3.2.1 to conclude that f.(t) := bar 8.(¢) € argmaxseA;(d(f*))Ut’(s, d(f.)) a.e.
on T'. This follows from the fact that the sets argmax, ¢ 41(4(s,))U{(5, d(f.)) are convex and compact
for every ¢ € T, in view of Assumptions 2.2.3(¢), 2.2.6(¢) and 2.2.7(¢¢). This finishes the proof. QED

3.3 Equivalence of Theorems 2.1.1 and 2.2.1

In the previous subsection Theorem 2.1.1 was shown to imply Theorem 2.2.1. In general, this is not
an unusual implication. However, to find the converse implication would seem to be extremely rare
(if not totally new), since the feasible mixed action spaces, i.e., the sets M (S;), t € T', are usually
stationed at a much higher level of generality than the action spaces S; themselves.

Proposition 3.3.1 (equivalence) Each of Theorems 2.1.1 and 2.2.1 implies the other resull.

Clearly, to prove this proposition it remains to derive Theorem 2.1.1 from Theorem 2.2.1. For
this, it will be enough to make the special choice T'=T'.

Step 1: definition of S and ¥'. Denote S’ := M(S), where M(S) is as in subsection 3.1. In view
of Assumption 2.1.1, S is a Suslin space for the classical narrow topology by [28, T11.60] and [46,
Theorem 3, p. 96]. Also, it is evident that .S is locally convex by definition of the classical narrow
topology. So Assumption 2.2.2 is met. Denote also S} := {v € M(S) : v € M;"(S) and v(S;) = 1}.
In view of Assumption 2.1.2(¢), S} is (classically) narrowly compact for every ¢ € T' [28, I11.60], and
it is trivially convex. By [25, Theorem IV.12] and Assumption 2.1.2(¢é), the graph of ¥’ : ¢t — S} is
measurable. So Assumption 2.2.3 holds.

Step 2: Sy is Ryx. By the above definition of ¥/, it follows that Sw is precisely the set Ry
(recall from subsection 3.2 that scalar and ordinary measurability are the same for functions in Ss).

Step 3: feeble topology on Sy is narrow topology on Rx. Observe first that to every ¢ € Go (T .5)
there evidently corresponds ¢’ € Grc s via the formula ¢'(t,v) := Js 9(t,s) v(ds) (recall again that
here T'=T). So all I, g € Geo(T;S), are feebly continuous on Ry = Sxi. Conversely, let
¢' € Gre be arbitrary. By [26, Proposition 22.4] the topological dual (S')* of S is the set of
all functionals v — [gedv, ¢ € Cp(S), on S’ := M(S). Thus, by definition of Gro s, for every
t € T there exists ¢; € Cp(S) such that ¢'(t,v) = fS e dv for all v € M(S). Observe that this
gives ¢'(t,e5) = ci(s) =: g(t,s) for all t € T and s € S. By evident measurability of (¢,s) — (¢, ¢;),
this implies that ¢ is 7 x B(S)-measurable. As in the previous case, the resulting formula is
g'(t,v) = fS g(t,s)v(ds). Finally, ¢ € Gro s also implies that there exists ¢, € [E[}R(T,’T,u) such
that ¢4/ (¢) > SUPp,, ¢ g lg'(t, V)| = supes, |¢'(L, €5)| = sup,es, |g(t, s)| for every t € T'. Hence, if one
sets §(t,s) := g(t,s) if t € T and s € S, and j(¢, s) := 0 otherwise, then § belongs to the class G¢ 5,
defined in subsection 2.1, and Jg:(8) = I;(8) for every § € Ssv = Rx. The conclusion is that the
two topologies on 8y = Ry are the same.

Step 4: definition and properties of A’. Recall again that here T = T, so that Sy, = Ry = Sw.
For § € Sxr one sets A4(8) := {v € M;"(S) : v(A;(6)) = 1}. Then Assumption 2.2.5(i) holds by [28,
T11.58, TI1.60]. Also, in view of Assumption 2.1.3(i¢), the corresponding Assumption 2.2.5(i¢) holds
by a well-known upper semicontinuity property ¢ la Kuratowski (for convergence in the classical
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narrow topology of the supports of a sequence in M;"(S) [10, Corollary A.2]. Note that this is
the “classical” analogue of a similar property already used for mixed action profiles in the proof of
Theorem 2.1.1 above.

Step 5: definition and properties of U'. For § € Sy one defines U/(v, 8) := fSt arctan Uy(s, 8)v(ds)
(the arctangent transformation serves to keep the integrand bounded, whence integrable). Then it
is standard (apply [24, Theorem 3.2]) to show that U] is upper semicontinuous on S; x Ry, thanks
to the fact that Ry is semimetrizable by Proposition 3.1.1). Also, it is standard to prove that
(t,v)— U/(v,é)is product measurable for every 4 € Sg/. So the conclusion is that Assumption 2.2.6
also holds.

Step 6: verification of Assumption 2.2.7. By the above definitions,

sup U/(v,8) = sup arctanU;(s,8) = arctan sup Us(s,§)
vEAL(S) sEAL(5) SEAL(5)

and the latter expression is clearly lower semicontinuous in § by Assumption 2.1.5(¢) and monotonic-
ity/continuity of the arctangent function. Also, the above shows that the set argmax, ¢ 41(5U{ (v, )
is identical to the set {v € M (S) : v(argmax,e 4,5 Ui(s,6)) = 1}, which is trivially convex.

The proof is now virtually finished: Theorem 2.2.1 has been shown to apply, and, writing 4. for
f«, this gives the existence of 6, € Ssv = Ry such that &, (t)(argmaxseAt(é*)Ut(s, 8.)) =1 for a.e.
in T'= T (here the last part of Step 6 is used again).

3.4 Nonmeasurable versions

Let us very briefly consider two cases where measurability plays no role, either because 7' is at most
countable and 7 = 27 (call this case (7)), causing measurability of the profiles to be automatic,
or because measurability of the profiles is no longer desired (call this case (é¢)). In both cases the
nonatomic part cannot figure; i.e., one has T:=0.

Case (1): Because the Suslin property is only instrumental for measurability with respect to
T, which is now automatic, the proofs of Theorems 2.1.1 and 2.2.1 show that one can remove the
adjective “Suslin” from Assumptions 2.1.1 and 2.2.2, provided that one continues to suppose them
metrizable (recall the introduction of p in subsection 2.1) or at least semimetrizable, as a closer
inspection of the adapted proof shows. Also, there is no longer a need to keep all Sy contained
in one and the same action universe S (but one could always re-create such inclusion by means of
direct sums). Further, one can systematically replace “for p-almost every ¢ in 77 by “for every
t € T, since one can work with, say, u({t;}) := 27%. Observe that now Ry = HteTMl"'(St) and
Sy = IyerSi, and on these Cartesian products the narrow and feeble topologies simply coincide
with the usual product topologies (here the factors M(‘"St), t € T, are equipped with the classical
narrow topology).

Case (4i): Unlike case (¢), which is a special case of the general model considered here, new proofs
have to be given of the counterparts of Theorems 2.1.1 and 2.2.1 that discard the measurability
aspect. However, their statements take the form indicated in the previous case (¢). Results of this
kind are well-known and need not be repeated here; cf. [34, Theorem 4.7.2].

4 New applications

As mentioned before, the applications given in [11] and [15] are also applications of Theorems 2.1.1
and 2.2.1. Their details can be found in those papers. Here we shall continue two major lines from
[11], viz. applications to existence of Cournot-Nash equilibrium distributions (subsection 4.1) and
to existence of Cournot-Nash equilibria in more or less complicated games with a measure space of
players (subsection 4.2). In addition, in subsection 4.4 new light is also shed on the connection of
our model with games with incomplete information in the sense of Harsanyi.
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4.1 CNE-distributions in anonymous games

In Theorem 4.1.1 below two separate results by Rath on the existence of CNE distributions in anony-
mous games ¢ {a Mas-Colell [39], namely Theorems 1 and 3 in [44], will be unified and generalized.
The contribution made by [44] is in the line of [27]; it consists of specifying conditions that allow
the payoff functions to be discontinuous (and more so than similar results of this kind, given in [9]).
However, just as other existence results involving CNE distributions [9, 13], these results can be seen
as a specialization of Theorem 2.1.1, that is, of a model for existence of CNE that goes considerably
beyond the CNE distribution setting.

Recall that in anonymous games in the sense of Mas-Colell a player’s type is made up entirely of
his/her payoff function. This payoff function only depends on the (mixed) action profile via some
marginal probability distribution generated by that profile on the action universe. The latter causes
the anonymity feature. Let us now specify the following anonymous game A. As before, let .S denote
an action universe. The following repeats Assumption 2.1.1:

Assumption 4.1.1 S is a completely regular Suslin space.

Let 1" be a set of functions ¢ : Sy x Ml"'(S) — R, where the factor S; C S determines the domain
of definition .Sy x Ml"'(S) of the function ¢. As before, the notation ¥ : ¢ — Sy is used frequently and
T is equipped with a o-algebra 7 and a measure pu, which is now also supposed to be a probability
measure. The following repeats Assumption 2.1.2:

Assumption 4.1.2 (i) For everyt € T the set S; C S is nonempty and compact.
(7)) gph € T x B(S).

Below the set of probability measures Ml"'(S) is equipped with the classical narrow topology
[24, 28, 46].

Assumption 4.1.3 (i) For everyt € T the function t : S; x M;t(S) — R is upper semicontinuous
and such that
v+ sup t(s,v) is lower semicontinuous on M (S).
SES

(ii) For every v € Mt (S) the function (t,s) — t(s,v) is (T x B(S)) N gph T-measurable.

Theorem 4.1.1 Under the above Assumptions 4.1.1 to 4.1.3 there exists a Cournot-Nash equilib-
rium distribution for the anonymous game A, That is, there exists a probability measure p, on T xS
such that

pu(- x S) = p and p.({(t,s) € gph ¥ : s € argmax,,cq,t(s,p.(T x -))}) = 1.

PRrROOF. Let us apply Theorem 2.1.1 by making the following substitutions: set A;(§) = S, as
n (2.1), and Uy(s,8) := t(s,vs), where vs € M; (S) is defined by

wlB) = [ s, 5 e Bs)

(recall that u(T) = 1). Now the mapping § — vs is continuous from R, equipped with the narrow
topology, into Ml"'(S), equipped with the classical narrow topology. This follows directly from the
fact that [gcdvs = I,(8) for any ¢ € C3(5), where g(t,s) := ¢(s) defines a Carathéodory integrand
on T x S. Hence, it is evident that Assumption 2.1.4(¢) holds, and Assumption 2.1.4(é¢) follows of
course by Assumption 4.1.3(i7). Also, Assumption 2.1.5 holds by sup, g, t(s, ¥s), in view of the above
continuity result and Assumption 4.1.3(¢). Finally, as observed in Remark 2.1.1(¢), Assumption 2.1.3
holds here automatically. So the theorem can be applied, which gives the existence of 8, € Ry with
the properties as stated in Theorem 2.1.1. Now the canonical product measure that is generated
by the “starting” probability measure u and the transition probability é, [42, II1.2], is immediately
seen to form the desired equilibrium distribution p,. QED
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The structural analogy of the above proof with the proof of Theorem 2.2.1 is worth noting:
apart from the separate purification on 7', in the latter proof it was the continuity of § — bar & |7
that immediately caused the result of Theorem 2.1.1 to apply. Here this continuity is replaced
by the continuity of the special externality mapping 6 — vs that characterizes the Mas-Colell
model. Theorem 4.1.1 generalizes both Theorem 1 and 3 of Rath [44] (in turn, Rath’s Theorem 1
generalizes the original result by Mas-Colell in [39]). Let us see why this is so. In [44] one has S
compact metric and S; = S; this obviously meets the Assumptions 4.1.1 and 4.1.2. Let P be the
set of all bounded upper semicontinuous functions ¢ : S x M;"(S) — R such that v +— sup, g t(s,v)
is lower semicontinuous on M;"(S). In [44] the set P is endowed with a probability measure p
on (P,B(P)); here the Borel g-algebra is taken with respect to either the usual supremum norm
topology (Theorem 1) or the hypotopology (Theorem 2). In the first situation P is denoted as P in
[44], and in the second situation as P . Now observe that each of the above choices of topology causes
the mapping (¢, s) — t(s,v) to be upper semicontinuous on P x S, whence B(P x S)-measurable,
for every fixed v € M(S).

First, let us bring Theorem 4.1.1 to bear on Theorem 1 of [44]. In that result p is tight, so
there exists a sequence of compacts K,, C P with u(P\T) = 0 for T := U;2; K,,. Let us also set
T := B(T), then T = B(P)NT. Since P = P is equipped with a metric (supremum norm),
it follows that T' is separable, whence second countable, so the restriction of the Borel o-algebra
B(P x S) to T xS is equal to the restriction of B(P)x B(S) to that same set. In view of the preceding,
this shows that the restriction of (¢,s) — t(s,v) to T x S is measurable with respect to 7 x B(S).
Hence, also the remaining Assumption 4.1.3(4¢) of Theorem 4.1.1 is met. Clearly, by p(P\T) = 0,
one can add the remaining functions in P\T to the statement resulting from Theorem 4.1.1 to regain
Theorem 1 of [44].

Next, let us obtain Theorem 3 of [44]. In this case the choice T := P suffices, since P = P is
well-known to be separable and metrizable for the hypotopology (cf. Propositions 8,9 in [44]). So
satisfaction of the remaining Assumption 4.1.3(7¢) of Theorem 4.1.1 follows as above.

Note from the above two derivations that, given Rath’s compactness and semicontinuity condi-
tions, the application of Theorem 4.1.1 — or, in the background, Theorem 2.1.1 — is really reduced
to a measurability question (i.e., the identity of certain o-algebras).

4.2 Existence of BNE for games with differential information

We generalize the main Bayesian-Nash equilibrium existence result of Kim and Yannelis in [38].
Consider the following Bayesian game I'. Let S be an action universe. The following assumption
replicates Assumption 2.2.2.

Assumption 4.2.1 S is a Suslin locally conver topological vector space.

By an earlier remark, made in subsection 2.1, this is only more general in appearance than the
assumption that S be metrizable Suslin, in view of the other assumptions below. Let (2, F, P) be
a probability space of states of nature and, as before, let (7,7, ) be a measure space of players.
Every player ¢ € T' obtains information about the realized state of nature via his/her informational
o-algebra Fy, which is a given sub-o-algebra of F (differential information). As in [38], the following
drastic assumption is unavoidable for technical reasons; these are mainly of a topological nature —
cf. Proposition 4.3.2.

Assumption 4.2.2 The set Q is al most countable.

Rather than relabeling the atoms of F, we shall assume without loss of generality that F is the
power set 2. Let Y:TxQ—25bea given multifunction. For each player ¢ € T" his/her feasible
actions constitute the subset i(t, w), given that w € Q is the realized state of nature. Observe from
part (éi) of the following assumption that this feasibility restriction is in accordance with player ¢’s
informational o-algebra.

Assumption 4.2.3 (i) For every (t,w) € T x Q the set i(t,w) C S s nonempty, convexr and
compact.
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(%) gph Xl(t, ) € Fr x B(S) for everyt € T.
(7id) gph ¥ € T x F x B(9).

Let us write X, (t) = i(t,w) and denote the corresponding multifunctions by ¥, w € €. Then
parts (¢) and (i47) of the above assumption imply that these multifunctions have nonempty compact
convex values and a 7 x B(S)-measurable graph. Thus, for each w € 2 the set Sy s defined
in complete analogy to the set Sy of subsection 2.2. Hence, from now on each such space can be
considered to be equipped with the (i.e., its own) feeble topology.

A feasible pure action profile is a function f : T x Q — S that is measurable with respect to
7 x F and B(S), with f(t, -) being Fi-measurable for every t € T and with f(t,w) € i(t,w) for
p-a.e. t in T and P-a.e. w in . Note that this means that for every player ¢ € T' the description
f(t, -) of what player ¢ could/should do under the various states of nature, takes into account the
way in which player ¢ processes information about that state (i.e., by way of F;-measurability). The
set of all such feasible pure action profiles is denoted by Ss,. Note that for every w € Q and f € S
the w-section f(~,w) of f belongs to Ss_ -

The Bayesian nature of the model is reflected by the fact that each player ¢ € T possesses a
Bayesian prior distribution; this is a transition probability w; which expresses player t’s interim
beliefs about the actually realized state of nature, that is to say, beliefs formulated after having
gained him/herself information (i.e., partially, via F;) about it.

Assumption 4.2.4 (i) For everyt € T m is a transition probability with respect to (2, F;) and
(Q,F), t.e., for every A € F the function m(-)(A) is Fy-measurable.
(#8) For every A € F the function (t,w) — m(w)(A) is T x F-measurable.

For every (t,w) € T x Q let wy, @ Z; X Ss, — R be a given utility function. Here 7Z; :=
Uwegi(t,w). If player ¢ in T were to know the realized state w € § completely, he/she would
assign utility value uy (s, f(,w)) to his/her own action s € i(t,w) in the face of the action profile
f € Ss. Shortly, we shall see how, using his/her prior distribution 7;(w) as a Bayesian assessment
of the realized state of nature, player ¢ can convert this into an appraisal that is in line with his/her
informational sub-c-algebra F;.

Assumption 4.2.5 (i) For every (t,w) € T'x Q the function uyy : Zy X Sg_ — R is upper semi-
continuous.

(i) For every (t,w) € T x Q and s € Z; the function u; (s, ) : Sg_ — R is continuous.

(ii1) For everyw € Q and f € Sg_ the function (t,s) — us o (s, f) is (T x B(S))Ngph Z.-measurable.
(iv) For every (t,w) € T' x Q there exists ¢y € LE(Q, F, m(w)) such that for every w' € Q

s (s )] S 6.
seS(tw!) feSs

In part (ii7) above gph Z. refers to the graph of the multifunction ¢ — 7; := Uwegi(t,w), i.e., the
7 x B(S) measurable countable union U,eagph Xy, .

Assumption 4.2.6 For every (t,w) € T' x Q and f € Sg_ the function uq (-, f) is concave.

Following [38], let us introduce the following Bayesian object to overcome the informational limi-
tations inherent to the utility evaluation (¢,w, s, f) — Uy (s, f(~,w)), as mentioned above. Given
the state w € €, player t’s conditional expected interim utility function Uy, : i(t,w) x Sq — Ris
defined as follows:

Usw(s, f) = /ﬂuwl(s,f(.,w’))m(w)(dw'). (4.1)

Existence of this integral (actually, by Assumption 4.2.2it is an at most countable sum) is elementary,
in view of Assumption 4.2.5(iv) and the fact that 7;(w) is a probability on F = 2.
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Theorem 4.2.1 Under Assumptions 4.2.1 to 4.2.6 there exists a Bayesian Nash equilibrium action
profile for the game I, t.c., there exists f, € Sy such that

f*(t,w) € argmaxsei(tyw)Utyw(s,f*) for p-a.e. t in T and P-a.e. w in Q.

This result improves and generalizes the main result Theorem 5.2 of Kim and Yannelis [38] in
several respects. They need S to be a separable Banach space (equipped with its weak topology),
and their multifunction ¥ is, in addition to our conditions, also integrably bounded. This causes
their counterpart of our Sy to be in an L'-context (this is a very complicated quotient context,
borrowed from [22]). Hence, on their counterpart of Sy they can work with the weak topology
o(L', L>°), which the feeble topology used here generalizes (see Example 2.2.1). The remaining
comparisons, which are all in favor of the above set of conditions, are left to the reader. We must
only point out that Assumption B.1(¢%) of [38] (which would constitute an improvement over our
Assmuption 4.2.5) appears to be wrong, since such an assumption of strong-weak continuity of u,
does not by itself imply joint continuity for the weak topology (which is the topology they work
with), not even when u; (s, f) is concave in s. For instance, with their 7' x 2 a singleton, consider
the fact that the inner product mapping (z,y) — Y ;e @;y; from the product of the unit ball in £,
with itself into the reals is strong-weak continuous, bilinear, but not jointly weakly continuous.

4.3 Proof of Theorem 4.2.1

Let us prepare for an application of Theorem 2.2.1, of course with 7' = T and with noncooperativity
in force (i.e., 4; 0 = i(t,w)).

To begin with, let T C 27%2 be the collection of all E € 7 x F such that for every t € T
the t-section By := {w € Q : (t,w) € E} belongs to F;. Observe that 7 defines a o-algebra on
T := T x Q. It is called the progressive o-algebra in stochastics. For further coherence, let us denote
ji := px P for the product measure on (T, ’j')) The measure space (T, T, 1) will now take the place
of (T,7T, ) as used in Theorem 2.2.1. Hereupon, observe that Assumption 4.2.3(¢%)-(i4é) amounts
precisely to having gph ¥ € 7 x B(S). So, together with Assumption 4.2.3(¢), this means that
Assumption 2.2.2 has been met. In view of our adoption of noncooperativity, Assumption 2.2.5 is
met vacuously (Remark 2.2.1(7)).

Denote 7(t,w)(A) := m(w)(A). Then, by definition of the progessive g-algebra, Assumption 4.2.4
states precisely that 7 is a transition probability with respect to (T, ’j') and (2, F). Fix fe Ss. By
Assumption 4.2.5(iii) and F = 2% (i.e., Assumption 4.2.2) the function (¢,s) — wuy (s, f(~,w’)) of
(4.1)is (7 x B(S))Ngph Z.-measurable for every w’ in the countable set 2'. So the above progressive
measurability property of # implies that (t,w,s) — Uy . (s, f) is (’j' x B(S)) N gph Y-measurable.
Hence, Assumption 2.2.6(¢%) has been met.

We now use an analogue of Proposition 3.1.1 that can be proven just as easily, thanks to the
separability of (T, 7, ) and the fact that a countable subset of S* separates the points of S (by [25,
T11.32]). See [20] for details. We first phrase the result in the original context of subsection 2.2:

Proposition 4.3.1 The feeble topology on Sy is semimetrizable.

Of course, this proposition means that Sy is semimetrizable for its feeble topology (note that
(f,’j',ﬁ) is also separable). This allows us to use only sequential arguments to verify continu-
ity /semicontinuity in what follows.

We also need the following feeble to feeble continuity property of the w-section mapping, which
again draws heavily on Assumption 4.2.2:

Proposition 4.3.2 For every w € € the mapping f — f(~,w) from S, equipped with the feeble
topology, into Sy, , also equipped with its own feeble topology, is continuous.

PRrRoOF. Fix any w € Q. Given an arbitrary g € G, 5 _, we define §(¢,0',s) 1= g(t,s) if v’ = w
and §(t,w’,s) :== 0 if w’ #w. Then § is easily seen to belong to G, «. Since

[t Fia ) = P [ ot S

T
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the result follows by definition of the respective feeble topologies. QED

Using these two results, it is now easy to see that for every (#,w) € T the function Ui, 1s upper
semicontinuous on i(t,w) x Sg by an application of Fatou’s lemma. Here Assumption 4.2.5(iv)
provides integrable boundedness from above for the sequence, and Assumption 4.2.5(¢) should be
combined with Proposition 4.3.2. Conversely, in view of Assumption 4.2.5(i7) a similar application
of Fatou’s lemma (or — which has the same effect — by Lebesgue’s dominated convergence theorem)
gives that for every (t,w) € T and s € i(t,w) the function Uy, (s,-) is continuous on Sg. So
Assumption 2.2.7(¢) holds by Remark 2.2.1(¢). Finally, the integration operation in (4.1) obviously
preserves the concavity, as guaranteed by Assumption 4.2.6. So Assumption 2.2.7(i7) holds by
Remark 2.2.1(é¢¢). We conclude that all assumptions of Theorem 2.2.1 have been shown to hold,
since the model of Kim and Yannelis has been reduced to the one used in subsection 2.2. Application
of Theorem 2.2.1 immediately implies that Theorem 4.2.1 holds.

4.4 Existence of BNE in games with private information

Let us show how the extensions of [6, 21] of the BNE existence result of Milgrom-Weber [41] (which
is in mixed action profiles) follow from Theorem 2.2.1 (which is in pure action profiles!). This
approach would seem to be somewhat in the spirit of [40]. Consider the following Bayesian game r
d la Harsanyi [33].

Assumption 4.4.1 The set T is al most countable.
Assumption 4.4.2 For everyt € T the set S; is a nonempty metrizable compact set.

For every t € T let (€2, F:) be a measurable space forming player ¢’s space of private observations.
Let P be a probability measure on the countable product space (,F) := Mier (4, Ft). The
realizations in § are governed by P, but player ¢ € T is only informed of his/her marginal outcome
on £ (“private information”). Clearly, this marginal outcome is governed by P;, the marginal of P
on the ¢-th factor space; i.e., Py(B) := P(Il;¢7 28 x B). The following condition was also used
in [41, 6, 21]:

Assumption 4.4.3 P is absolutely continuous with respect to the product measure e Py.

For each t € T let Ry be the space of all transition probabilities with respect to (¢, F;) and
(St, B(S:)); this space is equipped with the narrow topology, introduced in subsection 2.1. Clearly, in
using é; € Ry, player t € T keeps to his/her allowed private information restriction, and uses mixed
actions in Ml"'(St) (it would be possible to introduce wy-dependency of the feasible mixed actions
in the usual way, but this will not be done to keep the presentation simple). Let S := M;er.S;. We
also use S~ = ;e7 -2:S-. Each player t € T" has a payoff function u; : 2 x S — R, of which the
following is required.

Assumption 4.4.4 (i) For every (t,w) € T x Q the function uz(w, ) : S — R is continuous.
(#8) For everyt € T the function uy : Q x S — R is F x B(S)-measurable.
(itd) For everyt € T there exists ¢, € L(2, F, P) such that for every w €

sup |ug(w, s)| < ¢i(w).

SES

These assumptions allow us to introduce the following ezpected payoff functions V; : ll,c7 R, — R:

Vi@)rer) = [ [ e )[orers ) (d)Plde),
aJs
where ®@;¢p8; is the transition probability with respect to (@, F) and (S, B(S)), defined by

[®TET67](W) = HTET(ST (WT)

for w := (wr)rer (i-e., one takes pointwise product measures).
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Theorem 4.4.1 Under Assumptions 4.4.3 to 4.4.4 there exists a Bayesian Nash equilibrium action
profile for the game U, i.e., there exists 6, := (8ut)ter € Wher Ry such that!

bxt € argmaxg ¢, Vi(6r, 6, ) for everyt € T..

ProoF. Step 1: separable case. Suppose in addition that for every ¢ € T the o-algebra F; is
countably generated (in particular, it is then separable). By Proposition 4.3.1, this implies that
every Ry is semimetrizable for the topology of narrow convergence of transition probabilities. By
Assumption 4.4.1, we can simplify the application of Theorem 2.2.1 as discussed in subsection 3.4.
In particular, this means that a common action universe is not per se a requirement for the feasible
action sets, and also that those action sets are allowed to be semimetrizable. For ¢ € T set E( )= Sy,
with S, deﬁned to be the quotient of Ry for the obvious equivalence relation “equality Pi-a.e.”;
then by the above S; is metrizable. By Theorem 3.1.1 S; is compact for every t € T'; also, it is
trivially convex. So Assumption 2.2.3 has been shown to hold. Observe that Sg = HteTgt by
Assumption 4.4.1; as already mentioned in subsection 3.4, the feeble topology on 8¢ now coincides
with the product topology. We define U; : S; x Sy, — R by Uy (6, f) = Va(é, f_t). Here we adopt
standard notation that is explained in subsection 2.2 and the previous footnote. In addition, we
abuse the notation a little — in the accepted way — in connection with the quotient setting in
which we actually work (note, for instance, that a quotient counterpart of V; should be defined on
HTETST in an evident manner). Let us equip (2, F) with the measure I;e7 Py, and let Ry be the
set of all transition probabilities with respect to (2, F) and (S, B(S)). By well-known facts about
the tensor product of transition probabilities (see [6, Theorem 2.5] and [21, p. 389]), the mapping
(6+)ter — @rerbyi, defined from 8¢ = IRy into Ro, is continuous with respect to the narrow
topology on the latter space. Here Assumption 4.4.3 and the choice of II; P; as the leading measure
on € play an important role. Fix any ¢ € T'. Define v;(w, 5) := us(w, s)r(w), where r is any fixed
version of the Radon-Nikodym density of P with respect to Il,¢p P;. Assumption 4.4.4 causes —vy to
belong to the class G (£2; S) of Carathéodory integrands with respect to the measure I, ¢ Pr on .
Hence, I, is narrowly continuous on Rg. Hence, by the continuity of the tensor product, observed
above, and the obvious identity V;((é;)rer) = Iy, (®7er6:), the function Uy is upper semicontinuous
on S x Ss,. Hence, Assumption 2.2.6 is met (note that measurability in the variable ¢ is trivial here),
and also Assumption 2.2.7(¢) (invoke Remark 2.2.1(¢)). Finally, Assumption 2.2.7(¢7) holds by the
obvious affinity of U (-, f) on Ry for every (, f) € 1" x Ss. By an application of Theorem 2.2.1 it
now follows that there exists f. := (04t)ter € Sy such that f. (t) € argmaxgc ¢ Us(é, f*) for every
t € T, which is precisely to say that (é.¢);er has the equilibrium property stated in the theorem.

Step 2: general case. The trick is to reduce this case to step 1 by imitating an argument stated
on p. 78 of [25]. Let C be the collection of all sequences (G2);e7, where each G2 is a countably
generated sub-o-algebra of F,. The principal point to note is the following identity:

E = U{lLerG2 x B(S) : (G2),er € C} = F x B(S). (4.2)

Recall here that Il,¢7GY x B(S) indicates a product o-algebra. To prove (4.2), observe that &,
as defined, is a o-algebra. [For instance, if (Ay,) is a sequence in &, then each A, belongs to
I, e7rG™ x B(S) for some (G™),;er € C. But then U, A, belongs to Il,e7G% x B(S), where G is the
o-algebra generated by (GI")oo_,, etc.] This fact immediately proves (4.2). Indeed, one inclusion in
(4.2) is trivial, and the other one follows by the fact that for each product set F' := I, ¢p Fy, with
F, € F; for all 7, one has F' € Il,¢rG? with G? := {0,Q,, F;,Q,\F;} (observe that such sets F
form the generators of F).

Given the fact that the collection (v;):ep is at most countable, (4.2) implies that there exists
a sequence (F2) in C such that for every ¢ € T the function u; is F° x B(S)-measurable, with F°
defined as the product o-algebra Il,c7 FY. To see this, observe that it is enough to prove this fact
only for one of the v;, and, actually, to prove it only for a u; that is of the characteristic function form
up = lg, with G a F x B(S)-measurable set (indeed, once this is proven, an obvious approximation
of the original u; by step functions gives the entire proof). Since (4.2) implies G € &, the desired

fact for uy = 14 already follows. QED

1 As usual, (64, 5*_t) stands for (n;),cr defined by 1t := &; and 1, := §x7 for 7 # ¢.
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