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Artificial staggered magnetic field for ultracold atoms in optical lattices
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A time-dependent optical lattice with staggered particle current in the tight-binding regime was considered
that can be described by a time-independent effective lattice model with an artificial staggered magnetic field.
The low-energy description of a single-component fermion in this lattice at half-filling is provided by two copies
of ideal two-dimensional massless Dirac fermions. The Dirac cones are generally anisotropic and can be tuned
by the external staggered flux φ. For bosons, the staggered flux modifies the single-particle spectrum such that
in the weak coupling limit, depending on the flux φ, distinct superfluid phases are realized. Their properties
are discussed, the nature of the phase transitions between them is established, and Bogoliubov theory is used
to determine their excitation spectra. Then the generalized superfluid–Mott-insulator transition is studied in the
presence of the staggered flux and the complete phase diagram is established. Finally, the momentum distribution
of the distinct superfluid phases is obtained, which provides a clear experimental signature of each phase in
ballistic expansion experiments.
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I. INTRODUCTION

The preparation of clean condensed-matter systems is typ-
ically limited by disorder resulting from inevitable impurities,
and relevant physical parameters often cannot be controlled to
high precision. In contrast, ultracold gases confined in optical
lattices can be controlled to perfection, which permits stringent
confrontations between experiments and many-body theory. A
prominent example is the superfluid-Mott insulator transition
in the Bose-Hubbard model in two [1] and three dimensions
[2], where experiments have provided a unique quantitative
test ground for the respective theoretical predictions [3,4]. Re-
cently, major efforts have been focused on reaching the quan-
tum degenerate regime of the fermionic Hubbard model with
ultracold atoms [5], with the hope of promoting our present
understanding of strongly correlated electronic systems
(e.g., high-Tc superconductors).

The remarkable versatility of optical potentials should allow
for the realization of the exotic physics known to occur for
lattice electrons in strong magnetic fields. Until recently, the
generation of artificial gauge fields for neutral atoms has been
limited to spinning up the entire system, thereby mimicking the
Lorentz force as experienced by a charged particle subjected to
a magnetic field [6–9]. For such systems, the regime of strong
correlations has been shown to be very rich [10]. Reaching
this regime, however, remains a technical challenge due to the
requirement of rotation frequencies on the order of the trapping
frequencies. Realizations of artificial gauge fields, which do
not rely on large-scale rotations, have been proposed in a
variety of theoretical works [11–14]. The recent experimental
demonstration of a light-induced artificial magnetic field by
Lin et al. [15], and most recently its application to excite a
vortex lattice, has been a first step to overcome the limitations
imposed by schemes based on large-scale rotation [16].

In conventional solids, the creation of a magnetic flux
strength on the order of a flux quantum �0 = h/e through
a plaquette is a yet-unaccomplished challenge, which has
impeded access to the rich physical regime characterized by
the famous Hofstadter butterfly single-particle spectrum [17].

Experiments have thus been limited to artificial superlattices
with lattice constants on the order of 100 nm, where in fact
indications of a fractal energy spectrum could be observed
[18]. In optical lattices, it should be possible to achieve
artificial magnetic fields with a magnetic length comparable
to the lattice length scale. Nontrivial topological properties,
such as the fractional quantum Hall effect [19] and the
anomalous quantum Hall effect [20], may thus become
accessible. Theoretical studies of optical lattices with an
artificial uniform magnetic field [21] and their generalization
to a non-Abelian gauge field [22], where phenomena such as
the Escher “staircase” [23] and the Hofstadter “moth” [24] are
predicted, have attracted broad interest because experimental
realizations with ultracold atoms may be possible.

Finally, because of their slow motional time scale, cold
atoms in optical lattices are well suited for precise manipula-
tion of the lattice dynamics by external driving [25–29]. The
theoretical predictions of coherent control in an optical lattice
with a time-periodic optical potential using Floquet theory [25]
were successfully tested in a recent experiment [29]. These
studies have shown that a temporal modulation, which acts to
shake the lattice, can be used to modify the effective tunneling
strength and even to tune it into the regime of negative
values. Driven tunneling has also been studied for cold atoms
subjected to double well potentials; phenomena predicted long
ago, such as coherent destruction of tunneling [30], have been
recently observed [31].

This paper discusses how driven tunneling can be used to
generate an artificial staggered magnetic field for atoms in a
two-dimensional square optical lattice. A detailed description
of the new physical phenomena that arise when the lattice
is loaded with bosons is presented, thus extending a recent
publication [27]. In addition, a discussion for fermions is
included. The paper is organized as follows. In Sec. II, two
different methods are used to show how the time-dependent
problem yields a time-independent effective lattice model with
a staggered magnetic field. Section III describes a study of
the effective Hamiltonian when the lattice is loaded with
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single-component fermionic atoms. The low-energy excita-
tions at half-filling are shown to behave like Dirac particles.
The anisotropic Dirac cones are discussed, the slope of which
is tunable via the strength of the staggered flux. At π flux we
obtain the π -flux phase [32]. Section IV contains a study of the
generalized Bose-Hubbard model in the presence of staggered
flux at zero temperature. In the weak coupling limit, depending
on the flux φ, distinct superfluid phases are realized: a
homogeneous zero-momentum superfluid; a staggered-vortex
superfluid, characterized by a vortex-antivortex lattice with
one vortex per plaquette; and a staggered-sign superfluid
with an order parameter with opposite sign for adjacent
lattice sites. The nature of the phase transitions between the
different superfluid phases is established via a Hartree ansatz,
and their excitation spectra are studied using Bogoliubov
theory. In Sec. V, the superfluid–Mott-insulator transition in
the strong coupling regime is determined in two different
ways. The staggered flux renormalizes the phase boundary
and, thus, the generalized phase diagram is obtained with
respect to the chemical potential, the onsite interaction, and the
strength of the artificial magnetic field. In Sec. VI, the distinct
momentum distributions of the different superfluid phases are
calculated, which allow for their discrimination in standard
ballistic expansion experiments. Finally, the paper closes with
conclusions in Sec. VII.

II. TIME-DEPENDENT OPTICAL LATTICE AND THE
GENERALIZED HUBBARD MODEL

A. Time-dependent Hubbard model

The starting point is the proposal of Ref. [26], which pointed
out that a refined modulation technique can be employed to
induce an orbital current with a dx2−y2 symmetry in a two-
dimensional optical lattice. The optical potential takes the form
V (r, t) = V0(r) + V1(r, t), consisting of a stationary part V0(r)
and a temporal modulation V1(r, t) with

V0(r) = −V̄0ρ(r),

V1(r, t) = κV0(r) cos[2S(r) − �t], (1)

where ρ(r) = sin2(2πx/λ) + sin2(2πy/λ),

S(r) = tan−1

[
sin(2πx/λ) − sin(2πy/λ)

sin(2πx/λ) + sin(2πy/λ)

]
, (2)

λ is the wavelength of the laser light, V̄0 is the mean well depth
of the square lattice potential, � is the rotation frequency,
and κ is a parameter that quantifies the admixture of the
temporal modulation term. It was shown in Ref. [26] that
this optical potential can be engineered in experiments by
superimposing two bichromatic optical standing waves such
that V̄0 can be varied between zero and hundreds of the recoil
energy ER ≡ 2π2h̄2/mλ2, where m denotes the mass of the
atoms and κ can be adjusted within the interval [0, 1]. The
stationary component V0(r) of the optical potential provides
a regular square lattice potential with spacing λ/2, whereas
the temporal modulation term V1(r, t) induces local rotation
around each plaquette with opposite directions for neighboring
plaquettes [see Fig. 1(a)]; that is, it drives a staggered current
that possesses (dx2−y2 )-like symmetry.
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FIG. 1. (Color online) (a) Schematic of the staggered current
(black arrows) driven by the time-dependent optical lattice, which
leads to two inequivalent sublattices A and B. (b) d1 and d2

are the unit vectors of the A sublattice with length d = λ/
√

2,
and el (l = 1, 2, 3, 4) are the nearest-neighbor vectors connecting
the sublattices. In (c) and (d), two distinct plaquette summation
conventions are defined, denoted by

∑
� and

∑
� in the text. In (c) the

lattice is composed by translating an elementary plaquette (shaded
area) by means of the primitive vectors d1 and d2 of the A sublattice.
In (d) plaquettes are translated by the vectors 2e1 and 2e2. The four
corners of an elementary plaquette are numbered consecutively by 1,
2, 3, and 4, as shown.

Given the time-dependent confining potential V (r, t), the
Hamiltonian in the second quantized form describing the
quantum gas in the ultracold regime can be written as

H (t) =
∫

d2rψ†(r)

[
− h̄2

2m
∇2 + V (r, t)

]
ψ(r)

+ 1

2

4πash̄
2

m

∫
d2rψ†(r)ψ†(r)ψ(r)ψ(r), (3)

where ψ(r) describes a bosonic (fermionic) field obeying
commutation (anticommutation) relations, m is the mass of
the bosons (fermions), and as is the s-wave scattering length.
Following Ref. [4], we write the atomic field operator ψ(r) in
terms of the Wannier wave functions ψ(r) = ∑

i w(r − Ri)ai ,
where Ri denotes the potential minima of V0(r), at which the
atoms are localized. The corresponding annihilation (creation)
operator is denoted by ai (a†

i ). The staggered rotation yields
a decomposition of the square lattice into two sublattices A
and B [see Fig. 1(b)]. The Bravais lattice is then given by one
of the sublattices A or B and the unit cell is spanned by the
lattice unit vectors [see Fig. 1(b)]

d1 = e1 + e4, d2 = e1 + e2, (4)

with the lattice constant d = λ/
√

2. The four vectors el (l =
1, 2, 3, 4), connecting an A site to its four nearest neighboring
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B sites, are defined by

e1 = −e3 = λ

2
x̂, e2 = −e4 = λ

2
ŷ, (5)

where x̂ and ŷ are the unit vectors in x and y directions
shown in Fig. 1. In order to distinguish the two sublattices
in our description, we introduce two sets of annihilation
(creation) operators, ai (a†

i ) and bi (b†i ), corresponding to the
operation on site i of the sublattice A and B, respectively. By
substituting the Wannier expansion into Eq. (3), we obtain the
well-known Hubbard model with additional time-dependent
one-body terms:

H (t) = −
∑
r∈A

4∑
l=1

J0
(
a†

rbr+el
+ H.c.

)+ 1

2
U0

∑
r∈A⊕B

nr (nr − 1)

+χ1 sin(�t)
∑
r∈A

4∑
l=1

(−1)l+1
(
a†

rbr+el
+ H.c.

)
+χ2 cos(�t)

∑
r∈A

(
nr − nr+e1

)
, (6)

where nr is the number operator on site r. The first two
terms describe the well-known Hubbard model with the
nearest-neighbor hopping energy J0 and the onsite inter-
action strength U0 given in terms of microscopic parame-
ters in the standard manner: J0 = − ∫ d2r w∗(x + λ/4, y +
λ/4)[−(h̄2/2m)∇2 + V0(r)]w(x − λ/4, y + λ/4) and U0 =√

8π (h̄2as/mσz)
∫

d2r|w(r)|4. Here, harmonic confine-
ment of the atoms in the third direction is as-
sumed with a localization radius of σz. The modu-
lation amplitudes are given by χ1 = κV̄0

∫
d2r w∗(x +

λ/4, y)[sin2(2πx/λ) − cos2(2πy/λ)]w(x − λ/4, y) and χ2 =
2κV̄0

∫
d2r |w(r)|2 cos(2πx/λ) cos(2πy/λ). Note that in

Eq. (6) we have made the assumption that a single-band
description, with all atoms residing in the lowest band, is
sufficient. This requires the rotor frequency � to be detuned
from interband resonance transitions of the system.

For the calculations that follow, it is convenient to rewrite
the Hamiltonian (6) as

H (t) = H0 + W (t) + Hint,

H0 = −J0T , T ≡
∑
〈i,j〉

a
†
i bj ,

W (t) = Q†ei�t + Qe−i�t , Q ≡ 1

2
(χ2N + iχ1M) ,

M ≡
∑

r∈A,l=1−4

(−1)l+1(a†
rbr+el

+ H.c.),

N ≡
∑
r∈A

(nr − nr+e1 ),

Hint = 1

2
U0

∑
r∈A⊕B

nr (nr − 1), (7)

where H0 is the stationary kinetic term and Hint is the two-body
onsite interaction. As is evident from the anisotropy of W (t),
the time-dependent part of the optical potential V1(r, t) renders
the two sublattices inequivalent: an anisotropic (quadrupole-
like) time modulation of the nearest-neighbor hopping (M)
and of the local chemical potential (N ) arises with a π/2

relative temporal phase lag, which introduces an alternating
rotational sense to adjacent plaquettes.

B. Effective staggered magnetic field

In the following, we discuss two different approaches
to obtain an effective time-independent description of the
time-dependent Hamiltonian (7). We begin with an expansion
of the time-evolution operator of the one-body Hamiltonian
H1B(t) = H0 + W (t) in a Dyson series. Making use of its
temporal periodicity and neglecting higher-order many-body
terms, we obtain an effective time-independent Hamiltonian,
which turns out to be the conventional Bose-Hubbard model
with the kinetic term renormalized by a gauge field. The
same result is obtained upon replacing the classical harmonic
oscillation with an auxiliary bosonic quantum field, which
is subsequently integrated out. Finally, we discuss the gauge
structure underlying the effective Hamiltonian.

1. Dyson series

The time-evolution operator for the one-body
Hamiltonian, H1B(t) = H0 + W (t), is U1B(t) =
T {exp[(−i/h̄)

∫ t

0 dt ′H1B(t ′)]} where T { } denotes the
time-ordering operation. For times t which are multiples of
the revolution time τ ≡ 2π/� of the rotor potential (i.e.,
t = nτ with some integer n), the corresponding Dyson series
(up to second order in −i/h̄) is calculated as

U1B(t) = 1 +
(−i

h̄

)∫ t

0
dsH1B(s)

+
(−i

h̄

)2 ∫ t

0
ds

∫ s

0
ds ′H1B(s)H1B(s ′) + · · ·

= 1 − i

h̄
H0t − 1

ih̄2�
([H0,Q − Q†] + [Q,Q†])t

+O(� 2B,� t), (8)

where O(�2B,�t) denotes terms with at least two-body char-
acter scaling with t or higher powers of t . Note that each ex-
pansion order of the Dyson series proportional to (−i/h̄)n with
n � 2 can contribute terms linear in t , however, each exhibiting
at least n − 1-body character. With Q as defined in Eq. (7)
and upon neglecting the O(� 2B,� t) many-body terms, we
find

U1B(t) � 1 − i

h̄
H eff

0 t

(9)

H eff
0 = −J0T + iJ0χ1

h̄�
[T ,M] − iχ1χ2

2h̄�
[M,N ].

Note that the periodicity H1B(t + τ ) = H1B(t) implies that
U1B(nτ ) = [U1B(τ )]n. Thus, it suffices to justify neglecting
the many-body terms in the derivation of H eff

0 for a single
revolution time τ . By using the commutator (anticommu-
tator) relations of the atomic operators according to their
bosonic (fermionic) nature, after some algebra we find
[T ,M] = 0 and

[M,N ] = 2
∑

r∈A,l=1−4

(−1)l{a†
rbr+el

− H.c.}, (10)
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and thus

H eff
0 = −J

∑
r∈A,l=1−4

{
eiφ(−1)l /4a†

rbr+el
+ H.c.

}
, (11)

where J ≡ √
J 2

0 + W 2
0 , φ ≡ 4 tan−1(W0/J0), and W0 ≡

χ1χ2/h̄�. As shown, within an effective time-independent
description, the temporal modulation W (t) renormalizes the
real isotropic hopping amplitudes J0 of the conventional Hub-
bard model by adding an anisotropic imaginary contribution.
Note that the value of the phase φ in Eq. (11) is limited to
the interval [−2π, 2π ], since only J0 > 0 can be accessed
with the rotor technique. As discussed below, the effective
Hamiltonian (11) mimics the action upon charged particles
of a staggered magnetic field alternating in sign for adjacent
plaquettes. A similar effective description has also been used
to derive a uniform artificial magnetic field in an optical lattice
in Ref. [19].

2. Auxiliary field method

The harmonic time dependence in the temporal modula-
tion W (t) = Q†ei�t + Qe−i�t in Hamiltonian (7) suggests a
quantization procedure that allows the time dependence of
the system to be eliminated. This method, which is similar to
the “adiabatic elimination” of the excited state of a two-level
atom coupled to an off-resonant light field [33], amounts to
replacing the classical oscillation terms e±i�t with auxiliary
creation (annihilation) operators p̂† (p̂), which obey bosonic
commutation relations:

e−i�t → p̂,
(12)

ei�t → p̂†.

The one-body part H1B(t) = H0 + W (t) of Hamiltonian (7)
thus becomes

H1B = −J0T + Q†p̂† + p̂Q. (13)

Note that the replacements are carried out such that the
resulting Hamiltonian is written in an inherently Hermitian
form. The Heisenberg equation for p̂ then reads ih̄ d

dt
p̂ =

[p̂, H1B ] = Q†, where [p̂, p̂†] = 1 has been used. Assuming
that the evolution of the auxiliary field is entirely determined
by external driving, thus neglecting any back action of the
atoms upon the rotor potential, leads us to write d

dt
p̂ = −i�p̂

and thus p̂ = Q†/h̄�. The latter may be reintroduced into the
Hamiltonian (13), yielding

H1B = −J0T + 2

h̄�
Q†Q

= −J0T − iχ1χ2

2h̄�
[M,N ] − χ2

1

2h̄�
M2 − χ2

2

2h̄�
N 2.

(14)

Comparison with Eq. (9) shows that the same one-body term
is recovered, which gives rise to the staggered magnetic field.
The nonlocal two-body terms (proportional toN 2 andM2) are
artifacts resulting from the inappropriate implicit assumption
that all atoms interact with the same quantized mode, a scenario
not met in experiments, where the rotor potential is essentially
classical. Alternatively, the time dependence can be eliminated

by means of a path integral method, where the operators p̂ and
p̂† are treated as c-numbers in a coherent-state representation.
The Lagrangian associated with Hamiltonian (13) contains
terms up to quadratic order in the auxiliary quantum field and
we may thus integrate them out exactly to arrive at the same
effective Hamiltonian (14) [34].

3. Staggered flux

A particularly intuitive illustration of the structure of the
effective one-body Hamiltonian (11) is obtained if the lattice
is composed of plaquettes translated by the primitive vectors
d1 and d2 of the A sublattice [see Fig. 1(c)]:

H eff
0 = −J

∑
�

eiφ/4(a†
1b2 + b

†
2a3 + a

†
3b4 + b

†
4a1) + H.c.

(15)

Indices 1–4 indicate the four corners of a plaquette numbered
in clockwise order, starting with the lower left corner. This
representation immediately points out that a particle hopping
around an elementary plaquette picks up an Aharonov-Bohm
phase φ with a sign alternating across adjacent plaquettes,
which is equivalent to the presence of a staggered flux with
strength φ (in units of the fundamental flux quantum) in
each plaquette. For φ = ±2π we have one flux quantum per
plaquette. Notice that, to realize this situation for condensed
matter, lattice electrons would require unrealistically large
magnetic fields in the 102–103 Tesla range.

The time-modulation technique used to derive Hamiltonian
(15) lets us only access fluxes φ in the interval [−2π, 2π ]
because J0 > 0. Note, however, that Hamiltonian (15) displays
an 8π periodicity with respect to φ, which reflects the existence
of a second inequivalent flux domain for φ ∈ [−4π,−2π ] ∪
[2π, 4π ]. This domain corresponds to negative values of J0.
A 4π change of φ, connecting the two domains, reverses the
sign of the Hamiltonian. The 8π periodicity with respect to φ

is in contrast to the case of a uniform magnetic field in a lattice,
where the flux per plaquette is defined up to an integer multiple
of 2π . The staggered flux in general breaks time-reversal and
inversion symmetries, except for the cases of φ = 2πn with
n ∈ Z, where the hopping amplitudes attain real (n = even) or
imaginary (n = odd) values.

The complex hopping amplitudes are gauge-dependent pa-
rameters, whereas the total flux passing through a closed path
is gauge-invariant. Recall that an arbitrary lattice Hamiltonian

H =
∑
〈i,j〉

χij c
†
i cj + H.c., (16)

with complex nearest-neighbor hopping amplitudes obeying
χji = χ∗

ij , is invariant under the local U(1) gauge transforma-
tion

ci → ci exp[−iθi],
(17)

χij → χij exp[i(θj − θi)].

It is interesting to note that, by means of a gauge change in
Eq. (15), one can obtain a new Hamiltonian with a periodicity
in the flux φ reduced to 2π : on the plaquette at position d1n +
d2m, n,m ∈ Z, the replacements aν → aνe

−iφ(ν+2n+2m)/4 are
made, where ν ∈ {1, 2, 3, 4} and the A and B operators are not
explicitly distinguished here. The resulting gauge-transformed
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Hamiltonian

H eff
0 = −J

∑
�

(a†
1b2 + b

†
2a3 + a

†
3b4 + eiφb

†
4a1) + H.c. (18)

trivially exhibits 2π periodicity with regard to φ.
To describe a finite system, one conveniently chooses a

periodic boundary condition where the opposite sides of the√
N × √

N square lattice are identified. This choice results in
a topology of a torus for the system considered. If we now
compare the total flux gained around a noncontractible loop
on the torus, the two Hamiltonians in Eqs. (15) and (18) give
rise to distinct physical realizations. Although there is no net
global flux (or φ/4 flux) gained in Hamiltonian (15) for N even
(odd), a nonzero global flux of

√
Nφ/2 is accumulated in the

e1 direction for Hamiltonian (18). Throughout this paper we
work in the original gauge of Hamiltonian (15), which gives
the desired physical realization.

III. TWO-DIMENSIONAL MASSLESS DIRAC FERMIONS
WITH ANISOTROPY

We now consider loading the optical potential with single-
component fermionic atoms. In this case, s-wave scattering of
the atoms is absent due to the Pauli principle. Furthermore,
for the low temperatures considered here, higher angular
momentum collision channels are negligible. The effective
Hamiltonian in Eq. (11) thus provides a complete description
of the system in the tight-binding limit, realizing an ideal
lattice Fermi gas in the presence of a staggered flux φ. By
Fourier-transforming the operators

ar = 1√
NA

∑
k∈1BZ

ake
ik·r,

(19)
br+el

= 1√
NB

∑
k∈1BZ

bke
ik·(r+el ),

Hamiltonian (11) is expressed in momentum space by

H eff
0 = −

∑
k∈1BZ

ε∗
ka

†
kbk + H.c., (20)

with

εk = 4J [cos(φ/4) cos(k1d/2) cos(k2d/2)
− i sin(φ/4) sin(k1d/2) sin(k2d/2)], (21)

and the lattice momentum summation is restricted to the first
Brillouin zone (1BZ) with kν ≡ k · dν/d ∈ [−π/d, π/d], ν ∈
{1, 2}. The total number of lattice sites is N = 2NA = 2NB

with NA and NB denoting the number of A- and B-sites,
respectively. Upon performing the canonical transformation

ak = 1√
2

ε∗
k

|εk| (−αk + βk), bk = 1√
2

(αk + βk), (22)

Hamiltonian (20) becomes

H eff
0 =

∑
k∈1BZ

(−|εk|β†
kβk + |εk|α†

kαk), (23)

where the single-particle spectrum is given by

|εk| = 2J [cos2(k+d) + cos2(k−d)
+ 2 cos(φ/2) cos(k+d) cos(k−d)]1/2 (24)

FIG. 2. (Color online) Single-particle spectra of the ideal lattice
fermions subjected to different staggered fluxes: (a) φ = 0, (b) φ =
π/4, (c) φ = π , (d) φ = 7π/4, and (e) φ = 2π .

with k± ≡ (k1 ± k2)/2. The energy spectrum (shown in Fig. 2
for different flux values φ) consists of an upper band and a
lower band due to the bipartite lattice structure. The operators
α
†
k and β

†
k create a quasiparticle in the upper band with energy

|εk| and in the lower band with energy −|εk|, respectively.
Note that εk shares the 8π periodicity of Hamiltonian (15)
with respect to φ, whereas the energy spectrum |εk| exhibits
a 4π periodicity.

For zero flux φ = 0, the upper and lower energy bands
recombine at the Brillouin zone edges. By mapping the upper
energy band to the second Brillouin zone, we recover the
standard tight-binding energy dispersion in the absence of a
gauge field, with the unit cell consisting of an elementary
plaquette (and the new Brillouin zone is then rotated by π

4 and
expanded by a factor of

√
2). The presence of the staggered

flux immediately leads to interesting properties in the energy
band structure. For φ �= 2nπ , n ∈ Z, the upper and lower
energy bands intersect at four conical points (±π/d, 0) and
(0,±π/d) on the Brillouin zone edges. However, there are
only two inequivalent points, which we denote K+ = (π/d, 0)
and K− = (0, π/d), given by the zeros of the energy spectrum
|εK±| = 0. At half-filling, the lower energy band is completely
filled and the Fermi level coincides with the conical points,
giving rise to exact particle-hole symmetry. An expansion of
the energy dispersion for small momenta around either of the
conical points K± gives

|εK±+k| =
√

2Jd
{
[1 ± cos(φ/2)]k2

1

+ [1 ∓ cos(φ/2)]k2
2

}1/2 + O(|k|2). (25)
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We see that the low-energy excitations disperse linearly in
momentum (i.e., they are Dirac-like) in contrast to the case
of ordinary particles with a quadratic dispersion. By defining
the Fermi velocity h̄vF = √

2Jd, the low-energy Hamiltonian
becomes

H eff
0 �

√
2h̄vF

∑
k∈1BZ

{[cos(φ/4)k1 − i sin(φ/4)k2]a†
+,kb+,k

+ [cos(φ/4)k2 − i sin(φ/4)k1]a†
−,kb̂−,k + H.c.}, (26)

which contains two copies of Dirac-like particles described
by the operators (a+,k, b+,k) and (a−,k, b−,k), one around each
individual Dirac point K±, respectively. Notice that several re-
markable phenomena, for example, the Klein paradox and the
phenomenon of Zitterbewegung, expected for noninteracting
Dirac particles in two dimensions, are to be met here. We refer
the interested reader to the review work about graphene, the
prototypical system exhibiting Dirac electrons, in Ref. [35].

The Dirac cones arising here are generally anisotropic (cf.
Fig. 2), which results in anisotropic propagation velocities.
The anisotropy of the cone is controlled by the staggered
flux. Only at the special value φ = π do the Dirac cones
become isotropic. At this point, the system simulates the
mean-field Hamiltonian of the π -flux phase proposed by
Affleck and Marston to describe the pseudogap regime of the
high-Tc cuprates [32]. Furthermore, the picture also becomes
reminiscent of graphene tight-binding physics.

The adjustable anisotropy of the Dirac cones is a specific
feature of the staggered-flux scenario in a square lattice
and is intimately connected to the breaking of time-reversal
and inversion symmetries. It does not arise in graphene
or graphene-like systems with cold atoms in a hexagonal
optical lattice [36]. For graphene, the insertion of a time-
reversal symmetry breaking perturbation would move the two
inequivalent Dirac points toward each other, or produce a gap
in the spectrum, while the isotropy of the cones is maintained
[37]. According to Ref. [38], anisotropic Dirac cones could be
engineered in graphene by growing the graphene on top of a
suitably patterned periodic potential. However, the anisotropy
would then be fixed. The in situ tuning of the cone anisotropy
in our system is reminiscent of options arising in organic
compounds (see Ref. [39]), which provide Dirac cones with a
tunable tilt.

In summary, by loading the staggered optical lattice with
single-component fermions, we obtain an ideal Dirac system
with tunable anisotropic Dirac cones at half-filling. The next
section discusses the case for bosons, where interactions
become important.

IV. BOSONIC SUPERFLUID STATES

For single-component bosons, the nonvanishing s-wave
collisions between the atoms give rise to the onsite Hubbard
interaction Hint of Eq. (7). The staggered flux modifies the
hopping term of the conventional Hubbard model according
to Eq. (11). Therefore, we now study the generalized Bose-
Hubbard model

HBH = H eff
0 + 1

2
U
∑

r∈A⊕B
nr (nr − 1), (27)

FIG. 3. Contour plots of the single-particle spectra for different
staggered fluxes. Dark regions indicate low energy. (a) For φ = n 4π ,
n integer, the minimum occurs at k = (0, 0). (b) For φ = π + n 2π ,
n integer, degenerate minima occur at (0, 0) and (±π/d,±π/d).
(c) For φ = 2π + n 4π , n integer, equivalent minima occur at
(±π/d, ±π/d).

with H eff
0 given by Hamiltonian (11). This section considers

the weakly interacting regime governed by the physics of
Bose-Einstein condensation. It is shown that, for different
flux values φ, distinct superfluid phases can be realized: a
homogeneous zero-momentum superfluid for −π < φ < π ; a
finite-momentum superfluid for −3π < φ < −π or π < φ <

3π , characterized by a vortex-antivortex lattice with one vortex
per plaquette and different rotational directions for the two flux
intervals; and finally, for −4π < φ < −3π and 3π < φ < 4π ,
a finite-momentum superfluid with an order parameter that has
opposite sign for adjacent lattice sites.

For sufficiently weak interactions and low temperatures,
the atoms Bose-condense in the lowest-energy single-particle
state. The many-body ground state is then well described
by the Hartree expression |�k0〉 = (β†

k0
)N0 |0〉, where N0 is

the number of condensed atoms, k0 is the quasimomentum
of the lowest-energy single-particle state, and β

†
k0

is the
corresponding quasiparticle creation operator introduced in
Eq. (22).

As illustrated in Fig. 3, the minima of the lower band
of the single-particle spectrum −|εk| in Eq. (24) arise at
positions in k-space depending on the value of the flux φ. Two
distinct cases arise: the lowest-energy state occurs at the center
of the Brillouin zone k0 = (0, 0) ≡ 0 if −π < φ + 4πm0 <

π , or it occurs at the four corners of the Brillouin zone
k0 = (±π/d,±π/d) ≡ π if π < φ + 4πmπ < 3π . Here, m0

and mπ are arbitrary integers. In the k0 = 0 case, using
ε∗

k=0/|εk=0| = sgn[cos(φ/4)] in Eq. (22), we may calculate
|�k0〉 in configuration space,

|�0,(−1)m0 〉 =
{

1√
N

∑
r∈A

[(−1)m0a†
r + b

†
r+e1

]

}N0

|0〉. (28)

Depending whether m0 is even or odd, we obtain different
superfluid phases. For even m0, which corresponds to positive
values of the hopping strength J0, we recover the familiar
zero-momentum homogeneous superfluid state known from
the conventional Bose-Hubbard model. For odd m0, the boson
operators occur with different signs for the two sublattices A
and B; that is, the order parameter is constant except for a
different sign at the A and B sites (referred to as a staggered-
sign superfluid).

To understand better how the staggered-sign superfluid
arises, note that although the energy band structure (in Fig. 2)
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remains invariant under the transformation

ak → ak, bk → −bk, (29)

the corresponding upper- and lower-band states are inter-
changed. The staggered-sign superfluid and the uniform
superfluid are thus distinct, despite the fact that they arise
for the same lattice momentum k = 0.

In the case k0 = π , each of the four equivalent minima
at the corners of the Brillouin zone, which are related to
each other by reciprocal lattice vectors, yields ε∗

k=π/|εk=π | =
isgn[sin(φ/4)]. Introducing this into Eq. (22) leads to the
k-space expression

|�π,(−1)mπ 〉 =
{

1√
2

[(−1)mπ ia†
π + b†π ]

}N0

|0〉. (30)

After Fourier-transforming the creation operators
a†

π = N
−1/2
A

∑
m,n∈Z a

†
(m,n)e

iπ(m+n) and similarly b†π =
N

−1/2
B

∑
m,n∈Z b

†
(m,n)+e1

eiπ(m+n+1) with (m, n) ≡ md1 + nd2,
we obtain the ground-state wave function (30) in
real space

|�π,(−1)mπ 〉 =
[
i(−1)mπ

√
N

]N0
{∑

�
[a†

1 + (−1)mπ ib
†
2

− a
†
3 − (−1)mπ ib

†
4]

}N0

|0〉, (31)

where
∑

� denotes the summation over the shaded plaquettes
shown in Fig. 1(d). One recognizes that this wave function (re-
ferred to as staggered-vortex superfluid) accumulates a phase
of ±2π when moving around an elementary plaquette, with
alternating sign for adjacent plaquettes. This forms a lattice of
singly quantized staggered vortices, which are commensurate
with the external staggered flux. The Bose-Einstein condensate
(BEC) formed for the magnetic flux π < φ + 4πmπ < 3π

is thus characterized by a vortex-antivortex lattice, whereas
the rotational direction on a given plaquette is determined by
whether mπ is even or odd.

Next, we consider the stability of the two BECs which can
arise for flux values in the interval [−2π, 2π ], given by the
states |�0,(−1)m0 〉 and |�π,(−1)mπ 〉 in Eqs. (28) and (31) for both
m0 and mπ even. We employ a variational approach for the
BEC ground state with the ansatz

|ξ, σ 〉= 1√
N0

[e−iξ/2 cos(σ )β†
0 + eiξ/2 sin(σ )β†

π ]N0 |0〉, (32)

where the two variational parameters ξ and σ are to be
determined by minimizing the ground-state energy at zero
temperature. With respect to Hamiltonian (27), the variational
ground-state energy is calculated to be

〈HBH〉 = −4N0J sin

(
φ

4

)
− UN0(N0 − 1)

N
cos4(σ )

+
{

4J

[
sin

(
φ

4

)
− cos

(
φ

4

)]
+ U (N0 − 1)

N

}

×N0 cos2(σ ) + UN0(N0 − 1)

2N
≡ EMF. (33)

The first observation is that the ξ dependence drops out
completely in the mean-field energy EMF. This can be
understood at the variational level from the fact that the
Hamiltonian is not sensitive to the relative phase difference
between the condensation points. Next, we see that for 0 �
φ < π (π < φ � 2π ) the k = 0 uniform BEC with σ0 = 0
(the k = π staggered-vortex BEC with σ0 = π/2) is indeed
the absolute minimum of the mean-field energy. Finally, the
stability of the different ground states is verified by allowing a
small deviation ε from the condensation point k0. The variation
in energy is then given by

〈HBH〉σ0+ε = EMF + 4ε2N0J

[√
2 sin

(∣∣∣∣φ − π

4

∣∣∣∣
)

+ N0U

4JN

]
+O(ε4). (34)

Since the quantity in the bracket is positive definite, we
conclude that the ground state is stable against small variations.

For φ = π , the mean-field energy exhibits two degenerate
minima at the two points σ0 = 0 and σ0 = π/2 separated by an
energy barrier ∼UN2

0 /4N . The absence of a ξ dependence in
the mean-field energy precludes a coherent superposition state
of the two condensation points at the flux value φ = π . It thus
suggests that the two superfluid phases are separated by a first-
order quantum phase transition, where the order parameter
changes discontinuously across this point. We remark that the
Bose-Hubbard model with φ = π is equivalent to the fully
frustrated Josephson junction model [40].

Having shown the stability of the distinct BEC ground
states, we now study their excitation spectrum using Bogoli-
ubov theory. We first write Hamiltonian (27) in the grand
canonical ensemble by introducing a chemical potential µ:

H eff
0 − µN =

∑
k∈1BZ

[(−|εk| − µ)β†
kβk + (|εk| − µ)α†

kαk],

(35)

and for the interactions

Hint = U

N

∑
k1 + k2

= k3 + k4

(
a
†
k1

a
†
k2

ak3ak4 + b
†
k1

b
†
k2

bk3bk4

)
(36)

we perform the canonical transformation (22). By identifying
the condensation mode βk0 → √

N0 + βk0 , we perform the
Bogoliubov approximation while keeping the fluctuation
modes only up to quadratic order. The chemical potential is
chosen such that the terms which are linear in the fluctuation
vanish; that is,

µ = −|εk0 | + n0U, (37)

where n0 = N0/N is the condensate density. After some
algebra, we obtain the action for the fluctuations

S[�,�†] ≈ −1

2
n0UN0 − h̄

2

∑
k,m

�
†
k · G−1

k · �k, (38)

where �
†
k ≡ (α∗

k, α−k, β
∗
k, β−k) are the fluctuation fields and

the one-particle Green function Gk in the Nambu space is
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given by

−h̄G−1
k ≡

⎛
⎜⎜⎜⎜⎝

−ih̄ωm + |εk| + Mk0
1
2n0UAk,k0 0 1

2n0UBk,k0

1
2n0UA∗

k,k0
ih̄ωm + |εk| + Mk0

1
2n0UB∗

k,k0
0

0 1
2n0UBk,k0 −ih̄ωm − |εk| + Mk0

1
2n0UAk,k0

1
2n0UB∗

k,k0
0 1

2n0UA∗
k,k0

ih̄ωm − |εk| + Mk0

⎞
⎟⎟⎟⎟⎠ .

where Mk0 = |εk0 | + n0U , Ak,0 = Bk,π = 1 + exp(−2iϕk),
Bk,0 = Ak,π = 1 − exp(−2iϕk), and ϕk = arg(εk). To obtain
the excitation spectrum, we go back from the Matsubara
frequency to real time ih̄ωm → h̄ω and find the poles of
the 4 × 4 one-particle Green function. This can be easily
done by determining the eigenfrequency of the equation
det[−h̄G−1

k ] = 0, which yields

h̄ω =
√

|εk|2 + |εk0 |2 + 2n0U |εk0 | ± 2n0U |εk|
√

Fk,k0 ,

where Fk,k0 = cos2(ϕk) + 2|ε0|(|ε0|/2n0U + 1)/n0U . Once
again, the two branches of the excitation spectrum are due
to the sublattice degrees of freedom. To examine the long
wavelength modes, we perform a Taylor expansion around
the condensation momentum k0 in the lower branch and get
Ek ≈ v(k − k0), with the speed of sound

v =
√

J cos

(
φ

4
− k0d

2

)[
4J cos

(
φ

4
− k0d

2

)
+ 2n0U

]
,

corresponding to the Goldstone mode of the broken gauge
symmetry.

V. SUPERFLUID–MOTT-INSULATOR TRANSITION

In this section, we determine the complete phase diagram
of the generalized Bose-Hubbard model in the strong coupling
regime at zero temperature. In the absence of the external
staggered gauge field, the zero-temperature phase diagram
of the Bose-Hubbard model comprises a superfluid (SF)
phase and a Mott insulator (MI) phase. These phases are
separated by a second-order phase transition, driven by
quantum fluctuations, which is controlled by the dimensionless
number U/4J0. When crossing the phase boundary into the
SF phase, the U(1) gauge symmetry is spontaneously broken,
thus giving rise to an SF-order parameter. In Sec. IV it was
shown that, in the presence of the staggered flux φ, the
broken-symmetry phase consists of distinct SF phases. As the
interaction strength is increased, we expect a SF-MI transition
to take place for each of these SF phases. We first use Landau’s
theory of phase transitions by introducing a plaquette order
parameter, which takes into account the various SF phases.
Within this framework, we determine the critical coupling
strength (U/4J )c, where the SF order is destroyed. Next,
we study the Mott regime in detail and derive the excitation
spectrum using the path integral formalism. In contrast to the
Landau theory, we introduce a Hubbard-Stratonovich field in
the Mott regime to characterize the Mott state and treat the
hopping terms as perturbations.

A. Landau theory of phase transitions

For convenience, in this subsection we write Hamiltonian
(27) in the plaquette notation of Fig. 1(c). The creation
(annihilation) operators a†

ν (aν), with ν = 1, 2, 3, 4, are labeled
according to the four sites of an elementary plaquette without
explicitly distinguishing A and B operators. The Hamiltonian
then becomes

H =
∑

�

[
−Jeiφ/4(a†

1a2 + a
†
2a3 + a

†
3a4 + a

†
4a1) + H.c.

+ U

4

4∑
ν=1

nν(nν − 1)

]
, (39)

where nν = a†
νaν and

∑
� is the summation over the shaded

plaquettes, as shown in Fig. 1(c). We anticipate broken-
symmetry SF phases to emerge for weak interactions and
introduce a plaquette order parameter ψ ≡ (ψ1, ψ2, ψ3, ψ4)
to characterize them. By performing a mean-field decoupling
in the hopping term

a†
νaν ′ = (ψ∗

ν + a†
ν − ψ∗

ν )(ψν ′ + aν ′ − ψν ′ )

� ψ∗
ν aν ′ + a†

νψν ′ − ψ∗
ν ψν ′ , (40)

with ν, ν ′ ∈ {1, 2, 3, 4}, we find the mean-field Hamiltonian
H0,MF + H1,MF in the grand canonical ensemble

H0,MF =
∑

�

4∑
ν=1

[
U

4
nν(nν − 1) − µ

2
nν + Je−iφ/4ψ∗

ν ψν+1

+ Jeiφ/4ψνψ
∗
ν+1

]
,

H1,MF = 4J
∑

�
[(eiφ/4ψ1 + e−iφ/4ψ3)a†

2

+ (e−iφ/4ψ1 + eiφ/4ψ3)a†
4 + (e−iφ/4ψ2 + eiφ/4ψ4)a†

1

+ (eiφ/4ψ2 + e−iφ/4ψ4)a†
3 + H.c.].

We see that H0,MF is diagonal in the number-state basis. This
allows us to calculate the ground-state energy E[ψ] up to
second order with respect to the perturbation H1,MF to get

E[ψ] = n(n − 1)Ū − 2nµ̄

+
∑
ν,ν ′

ψ∗
ν Mνν ′(n, Ū , µ̄, φ)ψν ′ + O(ψ4), (41)

where n is the filling fraction and Ū ≡ U/4J , µ̄ ≡ µ/4J are
the dimensionless interaction strength and chemical potential,
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respectively. The 4 × 4 Hermitian matrix Mν,ν ′ is given by

M(n, Ū , µ̄, φ) =

⎛
⎜⎜⎜⎝

E(0)(n, Ū , µ̄) e−iφ/4 E(0)(n, Ū , µ̄) cos(φ/2) eiφ/4

eiφ/4 E(0)(n, Ū , µ̄) e−iφ/4 E(0)(n, Ū , µ̄) cos(φ/2)

E(0)(n, Ū , µ̄) cos(φ/2) eiφ/4 E(0)(n, Ū , µ̄) e−iφ/4

e−iφ/4 E(0)(n, Ū , µ̄) cos(φ/2) eiφ/4 E(0)(n, Ū , µ̄)

⎞
⎟⎟⎟⎠ , (42)

where

E(0)(n, Ū , µ̄) =
[

n

Ū (n − 1) − µ̄
+ n + 1

µ̄ − Ūn

]
. (43)

In the standard Landau theory, the free energy is expanded
with respect to a scalar order parameter and the vanishing
of the second-order expansion coefficient determines the
second-order phase transition point. In the present extension
of Landau’s theory, second-order phase transitions occur at the
zero crossings of the eigenvalues of the matrix M(n, Ū , µ̄, φ)
in Eq. (41). There are four eigenvectors and respective
eigenvalues of the matrix M(n, Ū , µ̄, φ) corresponding to the
four possible SF phases found in Eqs. (28) and (31), namely the
zero-momentum homogeneous SF and the staggered-sign SF,

ψ0,± = (1,±1, 1,±1),
(44)

ε0,± = 2 cos(φ/4)[E(0)(n, Ū , µ̄) cos(φ/4) ± 1],

and the two staggered-vortex SF order parameters with
opposite rotational directions,

ψπ,± = (1,±i,−1,∓i),
(45)

επ,± = 2 sin(φ/4)[E(0)(n, Ū , µ̄) sin(φ/4) ± 1].

Zero crossings exist for ε0,+ if −π < φ + 4πm0 < π and m0

is even, for ε0,− if −π < φ + 4πm0 < π and m0 is odd, for
επ,+ if π < φ + 4πmπ < 3π and mπ is even, and for επ,− if
π < φ + 4πmπ < 3π and mπ is odd. We may thus determine
the phase boundaries where there is a phase transition between
the SF and the MI in the different regimes of φ as

µ̄0,± = 1

2

[
Ū (2n − 1) ∓ cos

(
φ

4

)]

± 1

2

√[
Ū ∓ cos

(
φ

4

)]2

∓ 4nŪ cos

(
φ

4

)
(46)

and

µ̄π,± = 1

2

[
Ū (2n − 1) ∓ sin

(
φ

4

)]

± 1

2

√[
Ū ∓ sin

(
φ

4

)]2

∓ 4nŪ sin

(
φ

4

)
. (47)

In Fig. 4(a), the surfaces bounding the n = 1 and n = 2
Mott lobes, given by Eqs. (46) and (47), are shown
as a function of the experimentally relevant parameters
(U/4J0, µ/4J0,W0/J0) for the first quadrant of the complex
(J0 + iW0)-plane (0 � J0,W0; i.e., 0 � φ < 2π ). Outside the
Mott lobes, the two types of SF orders are separated by the
horizontal plane at W0 = J0, corresponding to a flux φ = π .
The plane spanned by the W0 axis and the white dashed
line in Fig. 4(a), given by µ/U = 2 − √

2, corresponds to

a filling factor of unity. For this plane, the complete phase
diagram covering the entire range [−4π, 4π ] of φ is plotted in
Fig. 4(b).

B. Effective action for the Mott state

We now employ a path integral formulation to derive the
excitation spectrum of the Mott state in the strong coupling
regime, thus generalizing a method presented in Ref. [41].
We first write the partition function for the generalized
Bose-Hubbard model in terms of the path integral Z =∫
Da∗Da exp{−S[a∗, a]/h̄}, where the Euclidean action in

FIG. 4. (Color online) (a) Phase diagram of the generalized Bose-
Hubbard model subjected to a staggered flux φ for the first quadrant
of the complex (J0 + iW0)-plane (0 � J0, W0; i.e., 0 � φ < 2π ).
Outside the Mott lobes, two types of superfluid orders arise, separated
by the horizontal plane at W0 = J0 corresponding to a flux φ = π .
The plane spanned by the W0 axis and the white dashed line, given
by µ/U = 2 − √

2, corresponds to a unity filling factor. (b) Phase
diagram for the unity filling factor covering the entire allowed range
[−4π, 4π ] of φ. The range φ ∈ [−2π, 2π ], corresponding to positive
J0, is accessible by the time-modulation technique discussed in
Sec. II, which yields a flux φ = 4 arctan(W0/J0). The superfluid
phases are indicated by their plaquette order parameters according
to Eqs. (44) and (45).
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the grand canonical ensemble is given by

S[a∗, a] =
∫ h̄β

0
dτ

⎡
⎣ ∑

i∈A⊕B
a∗

i (τ )(h̄∂τ − µ)ai(τ ) −
∑
〈i,j〉

χij

× a∗
i (τ )aj (τ ) + 1

2
U
∑

i∈A⊕B
a∗

i (τ )a∗
i (τ )ai(τ )ai(τ )

⎤
⎦

and the hopping matrix elements χij are given by χr,r±e1 =
J exp(iφ/4) and χr,r±e2 = J exp(−iφ/4) where r ∈ A. Since
we are interested in the Mott regime where onsite inter-
actions are important, we seek to treat the hopping terms∑

〈i,j〉 χija
∗
i (τ )aj (τ ) as perturbations. This is achieved by

introducing the Hubbard-Stratonovich field (ψi(τ ), ψ∗
i (τ )),

such that the hopping terms can be decoupled in the following
way:

Z =
∫

Dψ∗DψDa∗Da exp

⎧⎨
⎩−1

h̄

∫
dτ
∑
〈i,j〉

[ψ∗
i (τ ) − a∗

i (τ )]

× χij [ψj (τ ) − aj (τ )]

⎫⎬
⎭ exp

{
−S[a∗, a]

h̄

}

=
∫

Dψ∗Dψ exp

⎡
⎣−1

h̄

∫
dτ
∑
〈i,j〉

ψ∗
i (τ )χijψj (τ )

⎤
⎦

×
∫

Da∗Da exp

⎧⎨
⎩−1

h̄

∫
dτ
∑
〈i,j〉

[−ψ∗
i (τ )χijaj (τ )

− a∗
i (τ )χijψj (τ )]

⎫⎬
⎭ exp

{
− S̄0[a∗, a]

h̄

}
,

where the local action S̄0[a∗, a] is given by

S̄0[a∗, a] =
∫

dτ
∑

i∈A⊕B
a∗

i (τ )(h̄∂τ − µ)ai(τ )

+ 1

2
U
∑

i∈A⊕B
a∗

i (τ )a∗
i (τ )ai(τ )ai(τ ).

We then make use of the cumulant expansion formula

〈eAi 〉 = e〈Ai 〉+ 1
2 (〈A2

i 〉−〈Ai 〉2)+···

to expand the partition function Z =∫
Dψ∗Dψ exp{(−1/h̄)Seff[ψ∗, ψ]} in powers of

(ψi(τ ), ψ∗
i (τ )) to obtain the effective action Seff[ψ∗, ψ]. Here,

the expectation value of the field 〈Ai〉S̄0
taken with respect to

the weight exp{(−1/h̄)S̄0[a∗, a]} is defined in the usual way:

〈Ai〉S̄0
≡
∫

Da∗DaAi exp

{
−1

h̄
S̄0[a∗, a]

}
.

Close to the phase transition, where the Mott field vanishes,
we keep only terms up to quadratic order in the cumulant
expansion to get

Seff[ψ
∗, ψ] ≈

∫
dτ
∑
〈i,j〉

{
ψ∗

i (τ )χijψj (τ )

− 1

2h̄
〈[ψ∗

i (τ )χijaj (τ ) + a∗
i (τ )χijψj (τ )]2〉S̄0

}
.

We note that the expectation values with odd numbers of fields
(a∗

i , ai) vanish. Furthermore, the local nature of the action S̄0

results in the identities

〈ai(τ )a∗
j (τ ′)〉S̄0

= δij 〈a(τ )a∗(τ ′)〉S̄0
,

〈ai(τ )aj (τ ′)〉S̄0
= 〈a∗

i (τ )a∗
j (τ ′)〉S̄0

= 0.

By going to the momentum space, where the Mott fields are
expressed as ψi∈A(τ ) = ∑

k ak(τ ) exp(ik · ri) and ψi∈B(τ ) =∑
k bk(τ ) exp[ik · (ri + e1)], and simplifying, the effective

action becomes

Seff[ψ
∗, ψ] = −

∫
dτ
∑

k

[εka
∗
k(τ )bk(τ ) + ε∗

kb∗
k(τ )ak(τ )]

− 1

h̄

∑
k

∫
dτdτ ′〈a(τ )a∗(τ ′)〉S̄0

× [a∗
k(τ )ak(τ ′) + b∗

k(τ )bk(τ ′)]|εk|2.
Now, since the Mott state with vanishing hopping is spanned
by Fock states with a fixed number of particles, the two-point
Green function 〈a(τ )a∗(τ ′)〉 can be evaluated exactly to yield

〈a(τ )a∗(τ ′)〉S̄0
= θ (τ − τ ′)(n + 1)e−(−µ+nU )(τ−τ ′)/h̄

+ θ (τ ′ − τ )ne[−µ+(n−1)U ](τ ′−τ )/h̄.

Substituting this expression into the effective action, expand-
ing the fields in the Matsubara frequencies

ak(τ ) = 1√
h̄β

∑
m

e−iωmτ ak,ωm
,

(48)

bk(τ ) = 1√
h̄β

∑
m

e−iωmτ bk,ωm
,

and using a representation for the step function

θ (τ − τ ′) = −
∫ ∞

−∞

dς

2πi

e−iς(τ−τ ′)

ς + iη
,

we finally obtain the effective action up to quadratic order:

Seff
[
a∗

k,ωm
, ak,ωm

, b∗
k,ωm

, bk,ωm

]
= −

∑
k,m

[
εka

∗
k,ωm

bk,ωm
+ ε∗

kb∗
k,ωm

ak,ωm

+ |εk|2fωm

(
a∗

k,ωm
ak,ωm

+ b∗
k,ωm

bk,ωm

)]
≡
∑
k,m

(
ak,ωm

bk,ωm

)†
[−h̄G−1(k, iωm)]

(
ak,ωm

bk,ωm

)

where

fωm
= n + 1

−ih̄ωm − µ + nU
+ n

ih̄ωm + µ − (n − 1)U
.

In order to determine the excitation spectrum, we perform an
analytic continuation in the frequency space ih̄ωm → h̄ω and
locate the poles of the Green function G(k, iωm). In this case,
it amounts to solving det[G−1] = 0, or

|εk|2
(|εk|2f 2

ω − 1
) = 0. (49)
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We then obtain two branches of the quasiparticle and quasihole
spectra in the Mott state,

h̄ω
qp,qh

1 = 1

2
[−|εk| − 2µ + (2n − 1)U

±
√

|εk|2 − (4n + 2)|εk|U + U 2],

h̄ω
qp,ph

2 = 1

2
[|εk| − 2µ + (2n − 1)U

±
√

|εk|2 + (4n + 2)|εk|U + U 2].

Since the quasiparticle and quasihole are produced pairwise in
the Mott state, we look for the difference in the quasiparticle-
quasihole spectra to obtain the excitation spectrum

Ek =
√

|εk|2 − (4n + 2)|εk|U + U 2, (50)

where the single-particle spectrum |εk| depends implicitly
on the staggered-flux strength. At a fixed filling, the SF-MI
transition is then located at the point where the gap vanishes.
Hence, by fixing n = 1 and evaluating Ek = 0 we find the
boundaries between the SF and the MI phases [see Fig. 4(b)].
Thus, the SF-MI transition has been generalized to the case
where the critical coupling (U/4J )c also depends on the
strength of the staggered flux.

VI. EXPERIMENTAL SIGNATURES OF THE DISTINCT
SUPERFLUIDS

A simple method to distinguish the bosonic superfluids
experimentally is to image their momentum distributions. This
is achieved by allowing the system to expand ballistically after
turning off the confining potential and subsequently imaging
the atomic density with standard techniques. For sufficiently
long expansion times, the atomic density reflects the initial
momentum distribution. The momentum distribution of the
condensed atoms is given by the quantity

〈�†(k)�(k)〉 = |w(k)|2
∣∣∣∣∣∣
∑
R∈�

eik·R

∣∣∣∣∣∣
2

v(k). (51)

The first factor accounts for the Fourier transform of the
Wannier function w(k). The second factor is the structure
factor of the Bravais lattice spanned by the vectors 2e1, 2e2;
that is, the sum extends over all shaded plaquettes according
to Fig. 1(d). The third factor, v(k), is the form factor of the
elementary plaquette defined by

v(k) =
4∑

ν,µ=1

eik·(�ιν−�ιµ)〈a†
νaµ〉 (52)

with �ιν (ν = 1, 2, 3, 4) indicating the positions of the four
sites in the plaquette. The expectation values 〈a†

νaµ〉 can be
evaluated for either of the wave functions in Eqs. (28) and
(31). This task is considerably simplified by observing that,
in the limit of large lattices, these wave functions (after some
algebra) can be expressed as products of coherent states formed
at each lattice site,

|�〉 =
∏
r∈�

∏
ν=1,2,3,4

|√n̄ψν〉ν,r, (53)

where ψν denotes the respective order parameter from Eq. (44)
or Eq. (45) and |√n̄eiγ 〉ν,r denotes a coherent state at corner

FIG. 5. (Color online) Momentum spectra for (a) the uni-
form (1, 1, 1, 1) superfluid, (b) the staggered-vortex (1,±i, −1, ∓i)
superfluid, (c) and the staggered-sign (1, −1, 1, −1) superfluid.

ν of plaquette r with an average of n̄ atoms and a phase
γ . With the help of Eq. (53), the plaquette form factors
v0,±(k) for the homogeneous (1, 1, 1, 1) and the staggered-sign
(1,−1, 1,−1) superfluids, and vπ,±(k) for the staggered-
vortex superfluids (1,±i,−1,∓i), are evaluated to give

v0,+(k) = 4 cos2

(
kx

λ

4

)
cos2

(
ky

λ

4

)
,

v0,−(k) = 4 sin2

(
kx

λ

4

)
sin2

(
ky

λ

4

)
,

vπ,±(k) = 4

{
sin2

[
(kx + ky)

λ

4

]
+ sin2

[
(kx − ky)

λ

4

]}2

,

(54)

with kx ≡ k · x̂, ky ≡ k · ŷ. The resulting momentum spectra
are shown in Fig. 5. One recognizes the absence of the
zero-momentum peak for the staggered-vortex and staggered-
sign superfluids in Figs. 5(b) and 5(c). Whereas for the
uniform phase lattice momentum and momentum are equal, the
staggered-sign phase is composed of momentum components
which differ from k = 0 by a primitive vector of the reciprocal
lattice. The clearly different patterns of Bragg peaks permit a
direct identification of the respective superfluid in experiments.

VII. DISCUSSIONS AND CONCLUSIONS

In this paper, a tight-binding model was studied provided
by an optical square lattice subjected to a time-dependent
modulation, which excites staggered currents. Two different
methods were used to show that the time-independent effective
description of the system is equivalent to the Hubbard model in
the presence of a staggered magnetic field. Due to the sublattice
degrees of freedom, the single-particle spectrum of the model
presents several interesting features, such as two inequivalent
conical points in the energy band and distinct energy minima
that depend on the magnitude of the staggered magnetic
field. Then two cases were considered, first an optical lattice
loaded with spinless fermions and then a lattice loaded with
bosons.

023404-11



LIH-KING LIM, ANDREAS HEMMERICH, AND C. MORAIS SMITH PHYSICAL REVIEW A 81, 023404 (2010)

When the optical lattice is half-filled with spinless fermions,
the low-energy excitations are governed by a Dirac-like
dispersion. The problem is then reminiscent of graphene.
However, here the cones are in general anisotropic, with the
Fermi velocity controlled by the staggered flux. This feature
cannot be easily implemented in graphene, where the Dirac
cones arise due to hexagonal lattice geometry. Nevertheless,
anisotropic Dirac cones can be obtained by growing the
graphene layer on top of a periodically patterned potential. This
method, however, imprints a fixed anisotropy which cannot
be tuned at will as in the case of the fermionic cold-atom
system.

When the optical lattice is loaded with bosons, novel super-
fluid states arise because the location of the minimum of the
single-particle spectrum depends on the staggered magnetic
field: for a staggered flux −π < φ < π , the minimum lies
at k0 = 0 and for weak interactions a conventional uniform
superfluid phase is realized. For π < φ < 3π , the minimum
lies at k0 = (±π/d,±π/d) and thus a finite-momentum
superfluid is realized. This phase corresponds to a vortex-
antivortex square lattice. An analog phase, however, with
opposite rotational direction is realized for −3π < φ < −π .
Finally, for −4π < φ < −3π and 3π < φ < 4π , a staggered-

sign superfluid phase emerges with an order parameter that
has opposite signs for the two sublattices. We note that
the time-modulation technique used here to generate the
staggered magnetic field does not permit access to flux
values φ outside the range [−2π, 2π ], where the conventional
tunneling strength J0 is positive. It was then shown that the
different superfluid states are separated from each other by
first-order phase boundaries within the mean-field analysis.
For larger U , a second-order phase transition to a Mott
insulator arises, where the staggered flux renormalizes the
critical coupling. Finally, the distinct experimental signatures
of the superfluids that could be observed in standard ballistic
expansion experiments were discussed.
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