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Abstract

We study compactifications of eleven-dimensional supergravity on a Calabi-Yau
threefolds times a circle, with a duality twist along the circle a la Scherk-Schwarz.
This leads to four-dimensional N = 2 gauged supergravity with a semi-positive
definite potential for the scalar fields, which we derive explicitly. Furthermore,
inspired by the orientifold projection in string theory, we define a truncation to
N = 1 supergravity. We determine the D-terms, Kähler- and superpotentials
for these models and study the properties of the vacua. Finally, we point out a
relation to M-theory compactifications on seven-dimensional manifolds with G2

structure.
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1 Introduction and motivation

Scherk-Schwarz reductions [1, 2] provide a way to construct gauged supergravities
from higher dimensional ungauged ones. They typically lead to semi-positive defi-
nite potentials for the scalar fields with local minima that can describe Minkowski
or de Sitter vacua. Such models have been studied intensely over recent times in
the context of compactifications of string- and M-theory, with and without fluxes.
For some background material and earlier references, see e.g. [3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14].

Two classes of Scherk-Schwarz reductions are usually considered: the case of
twisted tori (or twistings of the cohomology of other manifolds), and the case of
reductions over a circle with a duality twist along the circle. Sometimes, these
two classes are related to each other, and reductions with duality twists can be
understood in terms of compactifications on twisted tori. For a discussion on
this, see e.g. [12]. This relation will also appear in our investigation, as we will
discuss, although we focus primarily on reductions with a duality twist.

In this paper, we present a detailed study of a Scherk-Schwarz reduction of eleven-
dimensional supergravity compactified on a Calabi-Yau threefold, denoted by X ,
times a circle, with a duality twist along the circle. Equivalently, this model
can be formulated as a compactification on a seven-dimensional manifold, which
is a Calabi-Yau fibration over a circle. This yields gauged N = 2 supergrav-
ity in four dimension with a scalar potential for the vector- and hypermultiplet
scalars. Moreover, there appear Chern-Simons like terms in four dimensions con-
sistent with N = 2 supersymmetry, induced from the Chern-Simons terms in
five dimensions. These models have also been investigated in [9, 15], which we
reproduce and elaborate on, and extend to include also the hypermultiplet sector.

The second part of the paper deals with truncations of our models from N = 2 to
N = 1 supersymmetry. Inspired by the rules of the orientifold projection in string
theory, we define a truncation of eleven-dimensional supergravity on Y = X ×S1

to N = 1 supergravity in four dimensions. In the absence of the duality twist, our
rules are consistent with the results from compactifications of type IIA strings on
Calabi-Yau orientifolds [16]. Here, we study the extension of this truncation to
the case when the duality twist is non-trivial. On top of the Kähler potential,
this yields a class of superpotentials and D-terms which we compute explicitly.
It leads to formulas (5.41) and (5.40), which form one of the main new results
in this paper. Alternatively, in the picture of the compactification on the seven-
dimensional manifold Y , the N = 1 supergravity is described by the Kähler
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potential

K = − log
[

8R3
]

− 2 log

[

2V 1

3R−1

∫

Y

Re
(

CΩ
)

∧ ⋆7Re
(

CΩ
)

]

, (1.1)

and superpotential

W =
1

4

∫

Y

(

C3 + i
√
8Re(CΩ)

)

∧ d
(

C3 + i
√
8Re(CΩ)

)

, (1.2)

where R denotes the radius of the circle, V is the volume of the Calabi-Yau
threefold X while Ω represents its holomorphic three-form, and C3 is the three-
form of eleven-dimensional supergravity. Due to the truncation, Ω loses some
degrees of freedom and the remaining ones are contained in Re(CΩ), where the
compensator C will be defined in (5.18). Interestingly, similar formulas for the
superpotential have also been obtained in the context of (flux) compactifications
of M-theory onG2-manifolds, see e.g. [17, 18, 13], building on earlier work [19, 20].
This suggests a connection between those models and the ones considered here,
which we will discuss in more detail towards the end of this paper.

2 M-theory on Calabi-Yau manifolds

In this section, we review aspects of compactifications of eleven-dimensional su-
pergravity on Calabi-Yau threefolds. Almost all material in this section is known,
and collected from various places in the literature, which we refer to below. We
give this review to recall some of the duality symmetries in five dimensions, and
to set our notation for subsequent sections. The reader who is very familiar with
five-dimensional matter coupled to N = 2 supergravity might skip this section
and go straight to section 3 where we present the Scherk-Schwarz reduction to
four dimensions.

The low-energy limit of M-theory can be described in terms of eleven-dimensional
supergravity. In form-notation, the bosonic part of this action reads [21]

Ŝ =
1

2

∫
(

R̂ ⋆ 1− 1

2
F̂4 ∧ ⋆F̂4 −

1

6
F̂4 ∧ F̂4 ∧ Ĉ3

)

. (2.1)

Here, R̂ denotes the eleven-dimensional Ricci scalar and ⋆ stands for the eleven-
dimensional Hodge star operator. Furthermore, Ĉ3 is a three-form potential,
F̂4 = dĈ3 denotes the corresponding field strength and we have set the eleven-
dimensional Planck constant to one.

In the following, we compactify M-theory on a simply-connected Calabi-Yau
three-fold X , which leads to a supergravity theory in five dimensions with eight
supercharges [22].
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2.1 Calabi-Yau manifolds and dimensional reduction

Notation

We begin by establishing some notation for the Calabi-Yau three-fold X . Let us
denote a basis of harmonic (1, 1)-forms on X by

ωA , A = 1, . . . , h1,1 , (2.2)

where here and in the following hp,q denote the Hodge numbers of the Calabi-Yau
threefold. The triple intersection numbers for X are defined by

KABC =

∫

X

ωA ∧ ωB ∧ ωC . (2.3)

For the third cohomology group H3(X ) we denote a real basis by

{

αK , β
L
}

, K, L = 0, . . . h2,1 , (2.4)

which is chosen such that
∫

X

αK ∧ βL = δK
L ,

∫

X

αK ∧ αL = 0 ,

∫

X

βK ∧ βL = 0 . (2.5)

The Calabi-Yau threefold is endowed with a Kähler form J and a holomorphic
three-form Ω. In terms of the bases (2.2) and (2.4), these can be decomposed in
the following way

J = vAωA , Ω = ZKαK −GKβ
K , (2.6)

where the expansion coefficients vA are real. The functions (ZK , GK) are the
holomorphic sections of special geometry and depend on the complex structure
moduli zr of the Calabi-Yau manifold, where r = 1, . . . , h2,1. The volume of X
can be expressed in terms of the Kähler form J as follows

V =
1

3!

∫

X

J ∧ J ∧ J =
1

3!
KABCv

AvBvC . (2.7)

Ansatz for the compactification

To perform the dimensional reduction of the action (2.1), we make the following
ansatz for the eleven-dimensional metric

ĜMN =

(

g̃µ̃ν̃ 0
0 Gmn

)

,
µ̃, ν̃ = 0, . . . , 4 ,

m, n = 1, . . . , 6 ,
(2.8)
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where g̃µ̃ν̃ denotes a five-dimensional metric and Gmn is the metric of a Calabi-Yau
threefold. For the three-form potential, we chose the expansion

Ĉ3 = c̃3 + AA ∧ ωA + C3 , C3 =
√
2 ξKαK −

√
2 ξ̃Kβ

K , (2.9)

with c̃3(x̃
µ̃) a three-form in five dimensions which depends solely on the five-

dimensional coordinates x̃µ̃. Similarly, AA(x̃µ̃) are five-dimensional one-forms
while ξK(x̃µ̃) and ξ̃K(x̃

µ̃) are five-dimensional scalars. Note that since the pure
Calabi-Yau part C3 features in the superpotential (1.2), we have separated these
terms from c̃3 and AA.

Five-dimensional supergravity

Performing the dimensional reduction to five dimensions is straight-forward and
is briefly reviewed in appendix A. The resulting five-dimensional low-energy-
effective action has been presented in equation (A.15) which we recall for conve-
nience [23, 24]

S(5) =

∫

R4,1

[

+
1

2
R(5) ⋆5 1−

1

4
d logV ∧ ⋆5d logV +

1

4
KABCν

CdνA ∧ ⋆5dν
B

+
1

4

(

KABCν
C − 1

4
KACDν

CνDKBEFν
EνF

)

dAA ∧ ⋆5dA
B

− 1

12
KABC dAA ∧ dAB ∧AC −Grsdz

r ∧ ⋆5dz
s (2.10)

− 1

4V2

(

da+ ξKdξ̃K − ξ̃Kdξ
K
)

∧ ⋆5

(

da+ ξLdξ̃L − ξ̃Ldξ
L
)

+
1

2V
(

ImM
)−1KL

(

dξ̃K −MKNdξ
N
)

∧ ⋆5

(

dξ̃L −MLMdξM
)

]

.

The first term in this expression is the five-dimensional Ricci scalar, V is the
volume of the Calabi-Yau manifold and KABC denote the triple intersection num-
bers defined in (2.3). The matrix Grs as well as the period matrix M have been
introduced in appendix A.

The scalars νA are related to the expansion coefficients vA of the Kähler form J
by a rescaling with the volume (see equation (A.14)), such that they satisfy

1

6
KABCν

AνBνC = 1 . (2.11)

Thus, there are h1,1 − 1 scalar degrees of freedom in these fields. Accordingly,
the vector fields AA comprise the graviphoton and h1,1 − 1 additional vector
fields to form five-dimensional vector multiplets. The remaining scalar fields
{V, a, zr, zr, ξK , ξ̃K} form h2,1+1 hypermultiplets that parametrize a quaternion-
Kähler manifold [22].
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2.2 Symmetries of the five-dimensional theory

2.2.1 Symmetries in the vector multiplet sector

We begin our discussion on the symmetries of (2.10) with the vector multiplets.
Besides the usual gauge invariances acting on the vector potentials, there are
additional symmetries in the scalar sector. In particular, the scalars in the vector
multiplets parametrize a so-called real special geometry, whose isometries have
been studied in [23]. As explained in [25], not all isometries extend to symmetries
of the full Lagrangian, but only transformations

δνA = MA
Bν

B , δAA = MA
BA

B , (2.12)

where the constant, real matrix MA
B is subject to the constraint

0 = KD(ABM
D
C) = KDBCM

D
A +KADCM

D
B +KABDM

D
C , (2.13)

lead to symmetries of the full action, including the Chern-Simons terms.

Generically, the real special manifolds parametrized by the scalars in the vector
multiplets need not be homogeneous, and solutions to (2.13) are not known in
general. However, for homogeneous spaces a classification can be found in [26, 27].
A special subclass of the latter is given by the manifolds

SO(1, 1)× SO(n+ 1, 1)

SO(n+ 1)
, (2.14)

for any integer n, with isometry group SU(1, 1)× SO(n+ 1, 1). This case arises
in compactifications in which the Calabi-Yau manifold is a K3-fibration over a
base P 1. In the present context, this situation has been studied in [15].

2.2.2 Symmetries in the hypermultiplet sector

Notation To study the isometries for the hypermultiplets, we first introduce
some notation. The hypermultiplet scalars were given by {V, a, zr, zr, ξK , ξ̃K},
which parametrize a particular type of quaternionic manifolds called ‘very special’
in [27].

Since we consider M-theory on a Calabi-Yau manifold, the subspace of complex
structure deformations zr is described by special Kähler geometry, for which there
exists a prepotential. In the large complex structure limit, it is given by 1

G(Z) = − 1

3!
drst

ZrZsZt

Z0
, r, s, t = 1, . . . , h2,1 . (2.15)

1We reserve the usual notation F and X for the special geometry in the vector multiplets.
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Here, drst is a real symmetric tensor, the ZK appear in the expansion (2.6) of
the holomorphic three-form Ω. The connection to the scalars zr is made by
introducing projective coordinates

zr =
Zr

Z0
, r = 1, . . . , h2,1 . (2.16)

The corresponding Kähler potential reads

Kcs = − ln

(

i

∫

X

Ω ∧ Ω

)

= − ln

(

4

3

∣

∣Z0
∣

∣

2
d

)

, (2.17)

where here and in the following we employ the notation

d = drstx
rxsxt , dr = drstx

sxt , drs = drstx
t , (2.18)

with xr = Im zr. From (2.17), we can then compute the Kähler metric as 2

Grs =
∂2

∂zr∂zs
Kcs = −3

2

drs
d

+
9

4

drds
d2

. (2.19)

With Grs denoting the inverse of (2.19), the curvature for this metric can be
computed as follows [27]

Rr
st
v = δrsδ

v
t + δrt δ

v
s −

4

3
Crvudstu , where Crst =

27

64

1

d2
GruGsvGtw duvw .

(2.20)

Symmetries for zr Since the scalars zr appearing in the action (2.10) can
be described by a Kähler potential, their kinetic term is invariant provided that
(2.17) does not change under the transformations of interest.3 We then make the
following ansatz for the transformation of the sections (ZK , GK) appearing in the
holomorphic three-form Ω

δ

(

ZK

GK

)

=

(

QK
L RKL

SKL TK
L

)(

ZL

GL

)

, (2.21)

where, Q, R, S and T are constant, real, square matrices of dimension h2,1 + 1.
Imposing the invariance of the Kähler potential (2.17) under this transformation,
i.e.

δ

∫

X

Ω ∧ Ω = 0 , (2.22)

2The identification of (2.19) with the metric (A.7) can be made by noting that χr = ∂zrΩ+
(

∂zrKcs
)

Ω as well as that
∫

X
∂zrΩ ∧ Ω = 0.

3Strictly speaking, (2.17) should be invariant up to Kähler transformations, but we will
ignore those in the present analysis.
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we are lead to the constraints

T = −QT , S = ST , R = RT , (2.23)

which means that these isometries have to be contained in the symplectic group
Sp
(

2(h2,1 + 1),R
)

. However, because we are considering a Calabi-Yau manifold,
we know that the sections GK are related to ZK through a prepotential G(Z) as
GK = ∂G(Z)/∂ZK . Therefore, in the ansatz (2.21) the transformation δGK is
not independent of δZK , but we have to require

δGK =
∂GK

∂ZL
δZL . (2.24)

Recalling that GK is a homogeneous function of degree one in the ZK , that is
(∂GK/∂Z

L)ZL = GK , we infer from (2.24) that [27]

0 = GTQZ +GTRG− ZTS Z − ZTT G , (2.25)

where matrix multiplication is understood. Furthermore, to leading order in
the large zr-expansion, for Calabi-Yau threefolds the prepotential G(Z) is given
by (2.15). The solution to (2.25) in this case can be found in [27] which we
briefly recall. In particular, the matrices Q,R,S and T appearing in (2.21) can
be parametrized as

QK
L = −

(

T T
)K

L =

(

β as
br Br

s +
1
3
β δrs

)

,

SKL = −
(

0 0
0 drstb

t

)

, RKL = −
(

0 0
0 4

3
Crstat

)

,

(2.26)

with β, br, as and Br
s constant parameters. The matrix Br

s is subject to the
constraint

Br
(sdtu)v = 0 , (2.27)

where (· · ·) denotes symmetrization and the constants as are constrained by

0 = asE
s
tuvw where Es

tuvw = Cyzs dy(tudvw)z − δs(tduvw) . (2.28)

With this information, we can compute the transformation of the projective co-
ordinates zr introduced in (2.16). Employing (2.26) as well as (2.16), we find
[27]

δzr = br − 2

3
β zr +Br

sz
s − 1

2
Rr

st
vzsztav , (2.29)

and we note that the condition (2.28) implies that Rr
st
vav is constant.
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Symmetries for ξK and ξ̃K To promote the symmetry of the complex struc-
ture deformations zr to a symmetry for the full hypermultiplets, and hence to
isometries of the quaternionic space, we follow again [27]. First we note that the
period matrix M appearing in the action (2.10) (as well as in equations (A.10))
satisfies the relation

GK = MKLZ
L . (2.30)

From the transformation of (ZK , GK) shown in (2.21), we infer thatM transforms
as

δM = S + TM−MQ−MRM . (2.31)

Requiring the kinetic term of the scalars (ξK , ξ̃K) in (2.10) to be invariant implies
their following transformation

δ

(

ξK

ξ̃K

)

=

(

QK
L RKL

SKL TK
L

)(

ξL

ξ̃L

)

, (2.32)

which also leads to the invariance of the
(

ξKdξ̃K − ξ̃Kdξ
K
)

terms and agrees

with [27]. Hence, just like (ZK , GK), the (ξK , ξ̃K) form a symplectic pair.

Finally, we should add that the hypermultiplet space in general possesses more
symmetries than the ones described here, for instance the Heisenberg algebra
of isometries (which include the Peccei-Quinn shifts on (ξK , ξ̃K)) that act on the
coordinates (ξK, ξ̃K) and a only. Furthermore, there are additional isometries that
act non-trivially on the volume V and the axion a – for a complete classification
see [27]. Including these in a Scherk-Schwarz reduction would be an interesting
extension of our work. We will not consider them in our present discussion.

3 Scherk-Schwarz reduction to four dimensions

In this section, we compactify the five-dimensional theory given by (2.10) on a cir-
cle of radius R. In addition, we impose a non-trivial dependence on the coordinate
of the circle. Such a setup was studied first in [9] and, without hypermultiplets,
further worked out in [15].

3.1 Ansatz for the compactification

To perform the compactification from five to four dimensions, we split the five-
dimensional coordinates as

{x̃µ̃} −→ {xµ, z} ,
µ̃ = 0, . . . , 4 ,

µ = 0, . . . , 3 ,
(3.1)

10



where z denotes the coordinate of the circle normalized as z ∼ z + 1. The
dependence of the five-dimensional scalars νA and the five-dimensional vectors
AA on the coordinate z is chosen in the following way

∂zν
A = MA

Bν
B , ∂zA

A = MA
BA

B , (3.2)

where MA
B satisfies (2.13). These expressions can be integrated to obtain

νA(z) =
[

exp(Mz)
]A

B
νB(0) , AA(z) =

[

exp(Mz)
]A

B
AB(0) , (3.3)

where the exponential of the matrix M is understood as a matrix product and
where only the z-dependence of the fields is shown explicitly.

Clearly, the fields are not periodic around the circle, but are related to each other
by the duality transformations (2.12) generated by M . These duality transfor-
mations form a group G, and therefore one should have

exp(M) ∈ G . (3.4)

Classically, the group G is taken over the real numbers, and hence the entries
of M can be taken as arbitrary real constants. They determine the masses of
the fields in four dimensions, and are treated as continuous parameters which we
can take to be arbitrary small – or at least to be smaller than the masses of the
Kaluza-Klein (KK) modes that we neglected. In the quantized theory, however,
we expect the duality group to be defined over the integers, and hence the masses
will be quantized in some units. This no longer guarantees that they are smaller
than the masses of the KK modes. In turn, this could lead to complications
in the truncation of the theory to the lightest modes, which we will ignore in
this paper. For discussions on this issue for toroidal compactifications, see for
instance [7, 12]. Essentially, this problem is similar to what one encounters in
flux compactifications, where one has to make sure that there is a separation of
mass scales, in particular the mass scale induced by the fluxes and the KK mass
scale.

After this important side comment, we now turn to the hypermultiplets. For the
dependence of the scalars (ξK , ξ̃K) on the coordinate z of the circle we take

∂z

(

ξK

ξ̃K

)

=

(

QK
L RKL

SKL TK
L

)(

ξL

ξ̃L

)

, (3.5)

and for the complex structure moduli zr we choose in a similar fashion

∂zz
r = br − 2

3
β zr +Br

sz
s − 1

2
Rr

st
vavz

szt ≡ N r . (3.6)
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The finite version of these transformations can easily be written down for (ξK , ξ̃K).
For zr, one first expresses them as transformations for the sections ZK , after which
one can integrate. For the scalars a and V, we choose

∂za = 0 , ∂zV = 0 . (3.7)

Note that, since we have chosen the dependence of the fields on the circle co-
ordinate z such that they correspond to Killing vectors of the five-dimensional
theory, the full action does not depend on z and so we can evaluate the terms at
a particular reference point, say z0 = 0.

For the five-dimensional metric, we make the following ansatz for the dimensional
reduction

g̃µ̃ν̃ =

(

R−1gµν +R2A0
µA

0
ν −R2A0

µ

−R2A0
ν R2

)

, (3.8)

where gµν is the four-dimensional metric, R is the radius of the circle and where
the four-vector A0

µ will become the graviphoton. The factor R−1 is chosen such
that we end up in Einstein frame. For the five-dimensional gauge fields appearing
in the action (2.10), we choose

AA
(5) = AA

(4) + bA
(

dz − A0
)

, (3.9)

where we added subscripts to distinguish between five- and four-dimensional
quantities. Using the above ansätze within the action (2.10), one can perform
the dimensional reduction, which is outlined in appendix B. Below, we present
the results.

3.2 The four-dimensional action

The dimensional reduction from five to four dimensions as well as bringing the
result into the standard form of N = 2 supergravity can be found in appendix B.
In particular, the four-dimensional action takes the form

S(4) =

∫

R3,1

[

1

2
R(4) ⋆4 1 +

1

4
ImNΛΣ FΛ ∧ ⋆4F

Σ +
1

4
ReNΛΣ FΛ ∧ FΣ

− gAB DtA ∧ ⋆4Dt
B − 1

6
AAMA

B ∧AC ∧ dADKBCD

−huvDqu ∧ ⋆4Dqv − V

]

,

(3.10)

where Λ,Σ = 0, . . . , h1,1 while A,B, . . . = 1, . . . , h1,1, and where we have omit-
ted labels on the vector fields indicating four-dimensional quantities. We have
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furthermore defined

φA = RνA and V = e−2φ , (3.11)

as well as the complexified Kähler moduli and their derivatives

tA = bA + i φA , DtA = dtA −MA
B

(

AB − tBA0
)

, (3.12)

where bA appeared in (3.9). The Kähler metric gAB is written as

gAB = − 1

4R3

(

KAB − KAKB

4R3

)

, (3.13)

where we have employed the following notation

KA = KABCφ
BφC , KAB = KABCφ

C , (3.14)

with KABC the triple intersection numbers defined in (2.3). Using these as well
as (3.11) in the constraint (2.11), we also find

R3 =
1

6
KABCφ

AφBφC . (3.15)

The metric (3.13) is a special Kähler metric and can be derived from the following
prepotential

F = − 1

3!
KABC

XAXBXC

X0
, A, B, C = 1, . . . , h1,1 , (3.16)

where we employ coordinates {X0, XA} with XA = X0 tA. The corresponding
Kähler potential reads

Kvec ≡ − log
[

iX
Λ
FΛ − iXΣFΣ

]

= − log
[

8R3
]

, (3.17)

where due to the symmetries of the theory we can set X0 = 1. The expressions
for the period matrix NΛΣ are given in (B.12), and the field strengths appearing
in (3.10) are written as

FΛ = dAΛ +
1

2
fΛ

ΣΓA
Σ ∧AΓ , Λ,Σ,Γ = 0, . . . , h1,1 . (3.18)

The structure constants are [9, 15]

f 0
AB = 0 , fC

AB = 0 , fB
A0 = −MB

A , (3.19)

and they define the gauge group which we elaborate on in the next subsection.
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We mention here that gauge invariance of the action (3.10) requires the presence
of Chern-Simons-like terms, which are inherited from the five-dimensional Chern-
Simons term. These arise when the matrix ReNΛΣ transforms nontrivially under
the action of the gauge group, in such a way that it needs to be compensated
by an additional term in the action, the last term on the second line in (3.10).
The existence of such terms in gauged supergravity was found in [28], and in the
present context it was discussed in [15]. Some further applications of these terms
in the study of N = 2 supersymmetric vacua can be found in [29].

Turning to the hypermultiplet sector, we find that it is described by

huvDµq
uDµqv = GrsDµz

rDµzs + ∂µφ ∂µφ

+
e4φ

4

(

∂µa+ ξKDµξ̃K − ξ̃KDµξ
K
)(

∂µa + ξLDµξ̃L − ξ̃LD
µξL
)

− e2φ

2

(

ImM
)−1KL

(

Dµξ̃K −MKPDµξ
P
)(

Dµξ̃L −MLQD
µξQ
)

,

(3.20)

where µ = 0, . . . , 3 and Grs has been introduced in (2.19). The covariant deriva-
tives appearing here are

Dµz
r = ∂µz

r −N rA0
µ , Dµ

(

ξ

ξ̃

)

= ∂µ

(

ξ

ξ̃

)

−N

(

ξ

ξ̃

)

A0
µ , (3.21)

where N r had been defined in (3.6), where appropriate indices for (ξ, ξ̃) are
understood and where the matrix N is given by

N =

(

QK
L RKL

SKL TK
L

)

. (3.22)

Finally, the scalar potential can be expressed in the following way

V =
1

R3
N rN s

Grs +
e4φ

4R3

[

(

ξ

ξ̃

)T

NT

(

ξ̃

−ξ

)

]2

− e2φ

2R3

(

ξ

ξ̃

)T

NT

(M
−1

)

(

ImM
)−1
(M
−1

)T

N

(

ξ

ξ̃

)

− 1

4R6

(

MA
Cφ

C
) (

MB
Dφ

D
)

KAB ,

(3.23)

where matrix multiplication with correct contraction of indices is again under-
stood. We will study the properties of this potential in section 6.
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3.3 Gauged N = 2 supergravity formulation

The ungauged part of the Lagrangian (3.10) is already written in the usual form
of four-dimensional N = 2 supergravity. The only changes we have to explain
are the modifications due to the gauging, in particular the covariant derivatives
for the scalars, and the scalar potential.

Covariant derivatives, Killing vectors and isometries

The covariant derivatives are given by

Dµq
u = ∂µq

u + k̃u
ΛA

Λ
µ , Dµt

A = ∂µt
A + kA

ΛA
Λ
µ , (3.24)

where the quantities k̃u
Λ and kA

Λ are Killing vectors on the quaternionic and special
Kähler spaces, respectively. For the scalars tA in the vector multiplets, from (3.12)
we read off that

kA
0 = MA

Bt
B , kA

B = −MA
B ,

which means that on the special Kähler space defined by (3.16), the isometries
we are gauging are given by

δtA = −MA
Ba

B +MA
Bt

Ba0 , (3.25)

for some arbitrary parameters a0 and aA. That these are indeed isometries follows
from the analysis of the special Kähler subsector of the hypermultiplets given in
(2.29), which is completely analogous. Here, the symmetries (3.25) correspond to
the first and third term in (2.29), namely a shift in tA and a linear transformation
with a matrix satisfying (2.13). The gauge group is thus a subgroup of the duality
group of isometries on the special Kähler manifold. This duality group contains
the one from the five-dimensional theory, but in four dimensions it gets extended
to a larger group [27]. The structure constants of the gauge group are given by
(3.19), and define a solvable Lie algebra which is the semi-direct product of two
Abelian subalgebras of dimension one (graviphoton) and h1,1 (the other vector
potentials) [9, 15].

The isometry group for the hypermultiplets can easily be read off from (3.21). It
is a U(1) group, realized linearly on the scalars (ξK , ξ̃K) but non-linearly on zr

(see equation (3.6)). The gauge group acts on it only via the graviphoton.

15



Scalar potential

The explicit form of the scalar potential is given in (3.23). It can be written in
the standard form of N = 2 supergravity which reads 4

V = 2 eK
vec
(

4 huvk̃
u
Λk̃

v
Σ + gAB kA

Λ kB
Σ

)

XΛXΣ , (3.26)

where Kvec and gAB were defined in (3.17) and (3.13), respectively. In the general
expression for the N = 2 scalar potential, there is an additional term proportional
to the quaternionic moment maps (see e.g. [30, 31])

V P = 2
(

gABfΛ
Af

Σ
B
− 3LΛLΣ

)

P x
ΛP

x
Σ . (3.27)

These moment maps in turn are proportional to a covariant derivative on k̃u
Λ.

However, as can be seen from (3.21), the hypermultiplets are only gauged with
the graviphoton A0

µ. Therefore k̃u
Λ = 0 for Λ 6= 0 and their covariant derivative

also vanishes, so P x
Λ = 0 for Λ 6= 0. The only term in (3.27) that can contribute

is the term with Λ = 0. We then utilize that the vector geometry is specified
by (3.16), from which one calculates gABf 0

A
f 0
B
− 3L0L0 = 0. Combining these

properties, one finds that V P = 0. This analogue of the N = 1 no-scale property
reduces the full scalar potential to (3.26).

To see that (3.26) reproduces our scalar potential, we use kA
ΛX

Λ = 2iMA
BX

0φB,
and as (2.13) implies KAM

A
Bφ

B = 0, with the help of (3.17) we find

2 eKgAB kA
Λk

B
Σ XΛXΣ = − 1

4R6
KABM

A
Cφ

CMB
Dφ

D . (3.28)

Employing the expressions for the covariant derivatives of the hyperscalars above,
it is then straight-forward to check that (3.26) reproduces (3.23).

4 M-theory on twisted seven-manifolds

The Scherk-Schwarz reduction described above, yielding the gauged supergrav-
ity Lagrangian (3.10), can also be obtained from a compactification of eleven-
dimensional supergravity on a seven-manifold. This point of view had also been
taken in [15] for the vector multiplets. We will briefly review and extend this
procedure in the present section to also include the hypermultiplet sector.

4The overall factor 2 compared to the potential of [30] is due to the different normalization
in (3.10). When rescaling the four-dimensional metric in (3.10) as g → 1

2
g, one arrives at the

form of [30].
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The seven-dimensional space we are going to compactify on, denoted by Y in the
following, is chosen as a fibration of a Calabi-Yau three-fold X over a circle S1.

X → Y
↓
S1

(4.1)

The coordinates of X will be denoted by y and the coordinate z of the circle is
again normalized such that z ∼ z + 1. At a particular reference point z0 = 0, we
choose a basis of harmonic two- and three-forms of the corresponding Calabi-Yau
three-fold as in section 2. We then must indicate how this data changes when
moving around the circle.

In words, the difference to the point of view taken in section 3 can be explained
as follows: instead of specifying the z-dependence in the coefficient functions (i.e.
the five-dimensional fields) as we do in the Scherk-Schwarz reduction, we can shift
the z-dependence from the fields into the basis of two- and three-forms of X . This
produces a seven-dimensional manifold of the type (4.1), which by construction
is equivalent to the Scherk-Schwarz reduction. We now explain this in some more
detail.

Cohomology

Let us begin our discussion with the cohomology of the compactification space
Y . Analogous to the harmonic (1, 1)-forms on X we introduce

ω̂A(y, z) , A = 1, . . . , h1,1(X ) , (4.2)

with y denoting the coordinates on X and z denoting the coordinate of the circle.
The dependence of ω̂A on z is taken as

ω̂A(y, z) =
[

exp
(

zMT
)

] B

A
ωB , (4.3)

where the exponential of the matrix (MT )A
B is understood as a matrix product

and ωB is a basis of harmonic (1, 1)-forms on the Calabi-Yau three-fold at a
particular reference point z0 = 0. The matrix MB

A is not arbitrary but, as
explained in [15], has to satisfy the constraint shown in (2.13). Infinitesimally,
the relation (4.3) can be written as

dω̂A =
(

MT
)

A
Bω̂B ∧ dz , ω̂B(y, 0) = ωB , (4.4)

so we see that in general the forms ω̂A are not closed. Their non-closure will
be the origin of the gaugings in the resulting four-dimensional action. The triple
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intersection numbers for the Calabi-Yau three-fold in the present context are given
by

K̂ABC ≡
∫

Y

ω̂A ∧ ω̂B ∧ ω̂C ∧ dz =

∫

X

ωA ∧ ωB ∧ ωC = KABC , (4.5)

where the second equality follows by using (2.13).

Analogous to the second cohomology, for the third cohomology we introduce

{

α̂K(y, z), β̂
L(y, z)

}

, K, L = 0, . . . , h2,1(X ) . (4.6)

Their dependence on the coordinate z of the circle is chosen as
(

α̂(y, z)

−β̂(y, z)

)

=
[

exp
(

zNT
)

]

(

α

−β

)

, (4.7)

where the matrix N was defined in (3.22) and proper contraction of indices is
understood. Furthermore, {αK , β

K} denotes the basis of harmonic three-forms on
the Calabi-Yau manifold at a particular reference point z0 = 0, and the minus sign
has been chosen to match the results from the previous section. Infinitesimally,
we can express (4.7) as

d

(

α̂

−β̂

)

= −NT

(

α̂

−β̂

)

∧ dz ,

(

α̂(y, 0)

−β̂(y, 0)

)

=

(

α

−β

)

, (4.8)

where proper contraction of indices is again understood. Finally, using (2.5) and
(4.7), one can show that

∫

X

α̂K ∧ β̂L = δK
L ,

∫

X

α̂K ∧ α̂L = 0 ,

∫

X

β̂K ∧ β̂L = 0 . (4.9)

Dimensional reduction

For the dimensional reduction of the M-theory action (2.1) on the seven-manifold
Y we make the following ansatz for the space-time metric

ds211 = e
4

3
φR−1gµν dx

µdxν + e
4

3
φ R2

(

dz − A0
)2

+Gmndy
mdyn , (4.10)

where R is the radius of the circle satisfying (3.15), A0 denotes the graviphoton
one-form and Gmn is the metric of the Calabi-Yau threefold, whose fluctuations
depend on δvA and zr. For the three-form potential Ĉ3, we consider an ansatz
similar to [15] but are more specific about the sector corresponding to the hyper-
multiplets. In particular, we consider

Ĉ3 = c3 +B ∧ (dz − A0) + (AA − bAA0) ∧ ω̂A + bAω̂A ∧ dz + C3 ,

C3 =
√
2 ξKα̂K −

√
2 ξ̃K β̂

K ,
(4.11)
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where c3 is a four-dimensional three-form, B denotes a four-dimensional two-form,
AA are one-forms and bA as well as (ξK, ξ̃K) are scalars in four dimensions. For
the corresponding field strength F̂4 = dĈ3, employing (4.4) as well as (4.8), one
finds

F̂4 = dc3 + dB∧
(

dz − A0
)

− B ∧ F 0 + F a ∧ ω̂A − bAF 0 ∧ ω̂A

+DbA ∧ ω̂A∧
(

dz − A0
)

+
√
2

[

d

(

ξ

ξ̃

)T

−
(

ξ

ξ̃

)T

NTdz

]

∧
(

α̂

−β̂

)

,
(4.12)

where F 0 and FA are defined in (3.18). Using the above ansätze in the eleven-
dimensional action (2.1), one can perform the dimensional reduction. However, to
make contact with (3.10), we have to dualize B to a scalar a and c3 to a constant
e0, chosen to be zero. A non-zero choice for e0 would correspond to a non-trivial
z-dependence for the five-dimensional field a in the Scherk-Schwarz reduction of
section 3, which we did not consider.

Taking into account these points, we then recover the four-dimensional action
(3.10), as we have checked explicitly.

5 Truncation to N = 1 supersymmetry

We now perform a truncation of the theory studied in section 3.2 from N =
2 to N = 1 supersymmetry. To motivate this truncation, we note that M-
theory compactifications on seven-manifolds of the form X ×S1 can be related to
orientifold compactifications of type IIA string theory [32]. In particular, consider
M-theory on

X × S1

(σ,−1)
, (5.1)

where σ is an anti-holomorphic involution acting on the Calabi-Yau three-fold X
and where (−1) acts on the circle coordinate as z → −z. Upon dimensionally
reducing on S1, the resulting theory is type IIA string theory on

X
(−1)FLΩ σ

, (5.2)

where FL is the left-moving space-time fermion number and Ω is the parity op-
erator on the string world-sheet. Motivated by this observation, in the present
work we will impose a truncation similar to (5.1).

For later purpose, we also observe that σ being anti-holomorphic means that
σ ∗Ω ∼ Ω, where Ω is the holomorphic three-form of the Calabi-Yau manifold and
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σ ∗ denotes the action of σ induced on the cohomology. Utilizing the relation

Ω ∧ Ω ∼ J ∧ J ∧ J , (5.3)

and applying σ ∗ to both sides, we infer that the Kähler form J has to be odd
under the anti-holomorphic involution σ ∗.

5.1 Defining the truncation

Cohomology

To define our truncation, we first consider an involution σ acting on a Calabi-Yau
three-fold X . The action σ ∗ induced on the cohomology groups of X splits them
into even and odd sub-spaces. In particular, the basis of harmonic (1, 1)-forms
introduced in (2.2) can be separated as

σ ∗ωα = +ωα , α = 1, . . . , h1,1
+ ,

σ ∗ωa = −ωa , a = 1, . . . , h1,1
− ,

(5.4)

where h1,1
+ + h1,1

− = h1,1. Since the Kähler form is odd under σ ∗, also the volume
form on X is odd. Thus, some triple intersection numbers have to vanish which
leads to

Kαβγ = Kαbc = 0 , Kαb = 0 , Kα = 0 . (5.5)

For the basis of the third cohomology group of X introduced in (2.4), we similarly
observe

σ ∗αk = +αk , σ ∗βk = −βk ,

σ ∗αλ = −αλ , σ ∗βλ = +βλ ,
(5.6)

where the indices k and λ jointly range from 0 to h2,1. For the period matrix M
introduced in equations (A.10), from (5.6) we then infer that

ReMκλ = 0 , ReMkl = 0 , ImMkλ = ImMλk = 0 . (5.7)

Truncation of vector multiplets

Motivated by our discussion at the beginning of this section about ordinary M-
theory compactifications, we will truncate our N = 2 supersymmetric theory
by

Σ =
(

σ,−1
)

, (5.8)

20



where σ is the anti-holomorphic involution considered above and (−1) acts on
the circle coordinate as z → −z. As noted below (5.3), the Kähler form J is odd
under σ ∗, which we extend to

Σ
∗
J = −J . (5.9)

In terms of the expansion J = vA(z)ωA,
5 we find that equation (5.9), evaluated

at z = 0, yields

vα(0) = 0
(A.14) and (3.11)−−−−−−−−−−−−−→ φα(0) = 0 . (5.10)

For general values of z, we employ (3.3) and (A.14) to express J as

J(z) = va(0)
[

ezM
T
] B

a
ωB . (5.11)

Inserting this expansion into (5.9) leads to the constraint that Ma
b = 0.

Next, concerning the vector fields AA, we require that the M-theory three-form
(2.9) satisfies

Σ
∗
Ĉ3 = +Ĉ3 . (5.12)

In particular, the term involving the five-dimensional vector fields AA
(5) has to be

even under Σ
∗
. Performing a analysis similar as for the Kähler form at z = 0,

and using equation (3.9), we obtain

Aa
(4)(0) = 0 , bα(0) = 0 . (5.13)

Furthermore, requiring AA
(5) ∧ ωA to be even under Σ

∗
for all values of z and

employing (3.2) implies that Mα
β = 0. We thus arrive at

MA
B =

(

0 Mα
b

Ma
β 0

)

. (5.14)

Finally, recalling the five-dimensional metric (3.8) and requiring it to be invariant
under the action (5.9), we see that the graviphoton A0 is projected out, that is

A0 = 0 . (5.15)

5To keep our notation short, we suppress the dependence of the fields on xµ but only indicate
the dependence on the circle coordinate z.
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Truncation of hypermultiplets

To define the truncation of the hypermultiplets, let us consider the action of
the anti-holomorphic involution on the holomorphic three-form Ω. Similarly as
in [16], we write

σ ∗Ω = e2iΘ Ω , (5.16)

where Θ is a constant phase. As for the Kähler form, we extend (5.16) to Σ in
the following way

Σ
∗
Ω = e2iΘ Ω . (5.17)

Employing then the expansion of Ω given in (2.6), at z = 0 equation (5.17) implies
that Im(e−iΘZk(0)) = 0 and similar relations for Zλ, Gk and Gλ. However, for
later purpose, let us introduce the compensator C defined in terms of the four-
dimensional dilaton φ and the Kähler potential (2.17) for the complex structure
moduli

C ≡ e−φeK
cs/2e−iΘ . (5.18)

Noting that φ as well as Kcs are invariant under Σ, (5.17) can be brought into
the form Σ

∗
(CΩ) = CΩ, whose implications at z = 0 read

Im
(

CZk(0)
)

= 0 , Re
(

CGk(0)
)

= 0 ,

Re
(

CZλ(0)
)

= 0 , Im
(

CGλ(0)
)

= 0 .
(5.19)

As carefully discussed in [16], the equations on the left in (5.19) project out h2,1

real scalars, corresponding to half of the complex structure deformations. The
set of equations on the right should not be interpreted as further truncations, but
as constraints on the triple intersection numbers drst in (2.15).

Next, requiring C3 in the M-theory three-form (2.9) to be invariant under Σ
∗

leads to

ξλ(0) = 0 , ξ̃k(0) = 0 . (5.20)

To study the five-dimensional three-form c̃3 in (2.9), we write

c̃3 = C3 + C2 ∧ dz , (5.21)

where C3 and C2 respectively are three- and two-forms in four dimensions. Since
c̃3 has to be even under Σ

∗
, we see that C2 is projected out. Furthermore, C3 in

four dimensions is dual to a constant e0, which in the analysis of section 3 and

22



4 we have chosen to be zero. Therefore, the contribution of c̃3 in the truncated
theory vanishes, which translates to

a = 0 . (5.22)

Combining then all these constraints, we see that 2h2,1 out of the 4(h2,1 + 1)
original hypermultiplet scalars survive the truncation. We will later show that
these scalars form chiral multiplets and that their target space is Kähler.

Finally, in the above analysis we studied (5.12) and (5.17) at z = 0. To satisfy
these constraints for all values of z, additional restrictions on the matrices Q, R,
S and T introduced in (2.21) arise. In particular, employing (2.21) as well as
(3.5), in a similar fashion as in (5.11) one obtains

Qk
l = 0 , Qλ

ρ = 0 , Rkλ = Rλk = 0 ,

Tk
l = 0 , Tλ

ρ = 0 , Skλ = Sλk = 0 .
(5.23)

5.2 Performing the truncation

After having specified the truncation of the fields appearing in the N = 2 theory
(at the point z0 = 0), we can now apply these results to (3.10). Recalling that
this action was obtained by evaluating all five-dimensional fields at a particular
reference point z0 = 0, and employing the results from section 5.1, we find

Strunc.
(4) =

∫

R3,1

[

1

2
R(4) ⋆4 1 +

1

4
ImNαβ dA

α ∧ ⋆4dA
β +

1

4
ReNαβ dA

α ∧ dAβ

− gab Dta ∧ ⋆4Dt
b − 1

6
AαMα

b ∧ Aγ ∧ dAδ Kbγδ (5.24)

−GIJ dM I ∧ ⋆4dM
J − V trunc.

]

.

Kinetic terms

In the truncated theory, the covariant derivative acting on the complexified Kähler
moduli ta takes the form

Dta = dta −Ma
βA

β . (5.25)

The gauge kinetic function fαβ for the vector fields is found using the explicit
formulas for the period matrix N given in (B.12), and (5.5) as

fαβ = −iN αβ = iKαβct
c , (5.26)
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which is holomorphic in ta, as required by N = 1 supersymmetry. Note that
the truncation splits the N = 2 vector multiplets into N = 1 vector and chiral
multiplets with bosonic fields Aα and ta, respectively.

Turning to the reduction of the hypermultiplets, since the graviphoton A0 is
projected out, the hyperscalars become uncharged. For the truncation of the
hypermultiplets fromN = 2 toN = 1, we can thus refer to the existing literature.
In particular, employing the results of appendix C in [16], the kinetic terms for
the hypermultiplet scalars are given by

−
∫

R3,1

GIJ dM I ∧ ⋆4dM
J
, (5.27)

where M I = {Nk, Tλ} collectively denotes the chiral fields

Nk =
1

2
ξk + iRe(CZk) , Tλ = iξ̃λ − 2Re(CGλ) . (5.28)

The metric GIJ = ∂
MI∂MJKQ in (5.27) is Kähler, and the corresponding Kähler

potential KQ is given by [16]

KQ = −2 log

[

2

∫

X

Re
(

CΩ
)

∧ ⋆6Re
(

CΩ
)

]

. (5.29)

Potential

Next, we consider the truncation of the scalar potential (3.23) leading to V trunc..
For the scalars φA we employ (5.10) and (5.14) to find

V (1) = − 1

4R6

(

Mα
c φ

c
) (

Mβ
d φ

d
)

Kαβ . (5.30)

For the truncation of the terms involving ξ and ξ̃ we use (5.20), (5.23) and (5.7).
These merely imply that we have to restrict the index ranges of ξ and ξ̃ in (3.23).
For later convenience, we express this result as

V (2) = − e2φ

2R3

(

ξ

ξ̃

)T

NT ΠN

(

ξ

ξ̃

)

+
e4φ

4R3

[

(

ξ

ξ̃

)T

NT∆

(

ξ

ξ̃

)

]2

, (5.31)

where we have defined

Π =

(M
−1

)

(

ImM
)−1
(M
−1

)T

, ∆ =

(

0 1
−1 0

)

. (5.32)
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As mentioned, these formulas are understood with the restrictions (5.20), (5.23)
and (5.7) applied.

To make the truncation of the potential for the complex structure moduli zr more
feasible, we first define

GLK = 2 (ImG)LK − 2
(ImG)LNZ

N (ImG)KMZM

ZN (ImG)NMZM
, (5.33)

with GLK = ∂ZLGK and (ZK , GK) the holomorphic sections introduced in equa-
tion (2.6). Recalling then (3.6) as well as that zr = Zr

Z0 , we can write

V (3) =
1

R3
N rN s

Grs

=
eK

cs

R3|C|2
(

−CZKTK
L + CGKRKL

)

GLM

(

QM
NCZN +RMNCGN

)

,

(5.34)

where the restrictions (5.19) and (5.23) are understood. Note that to arrive at the

second line in (5.34), we utilized GLKZ
K
= 0. The compensator C was introduced

in equation (5.18).

5.3 Superpotential and D-terms

We will now bring the potentials (5.30), (5.31) and (5.34) into the standard form
of N = 1 supergravity given by 6

V = 2 eK
(

GÎ ĴDÎWD
Ĵ
W − 3|W |2

)

+
[

(Ref)−1
]αβ

DαDβ = VF + VD , (5.35)

where we use M̂ Î = {Nk, Tλ, t
a} to label all chiral fields in the theory. Here, the

Kähler covariant derivative reads DÎW = ∂ÎW + (∂ÎK)W , Refαβ is the real part
of the gauge kinetic function (5.26) and Dα are the moment maps associated with
the gauging of the chiral multiplets. The Kähler potential K in (5.35) is the sum
of (3.17) subject to the truncation (5.10), and KQ given in (5.29),

K = Kvec +KQ . (5.36)

D-term potential

A non-trivial D-term potential arises as some of the chiral fields are gauged. In
our case, as can be inferred from (5.25), only the chiral fields ta originating from

6Again, there is an overall factor 2 with respect to the standard literature; see footnote 4.
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the projection of the N = 2 vector multiplets are gauged. We will therefore show
that their potential term (5.30) is given by the D-term potential.

To find an expression for Dα, we can use the truncation of the original moment
maps PK on the special Kähler space, given in [9]. We then obtain

Dα = i(MT )α
a ∂taKvec = − 1

4R3
(MT )α

a Ka . (5.37)

Noting that the Killing vectors after the truncation are given by ka
α = Ma

α as
well as that ∂b∂aKvec = gab, we see that the Dα’s obey

ka
α = −igab∂bDα , (5.38)

and therefore are moment maps for the Killing vectors ka
α. Contracting then

equation (2.13) with φbφc and restricting the index A to α, we find KaM
a
α =

−2KαβM
β
aφ

a, which allows us to bring (5.37) into the form

Dα =
1

2R3
KαβM

β
aφ

a . (5.39)

Employing finally the expression (5.26) for the real part of the gauge kinetic
function, that is Refαβ = −Kαβ , we arrive at

VD =
[

(Ref)−1
]αβ

DαDβ = − 1

4R6

(

Mα
c φ

c
) (

Mβ
d φ

d
)

Kαβ = V (1) . (5.40)

So indeed, in the truncated theory the potential term for the fields φa is a D-term
potential and thus fits into the framework of N = 1 supersymmetry.

Furthermore, notice that the gauge group has become abelian, G = U(1)h
1,1
+ , since

the Killing vectors are constant and hence commute. One can check explicitly
that the action is gauge invariant, and in particular, the D-term in (5.39) is gauge
invariant. Also, as we will analyze in section 6, the gauge group can be broken
further due to a Higgsing of the gauge fields.

F-term potential

We now turn to the F-term potential. As mentioned above (5.27), the chiral
fields (Nk, Tλ) are ungauged. Therefore, in an N = 1 supersymmetric theory
their contribution to their scalar potential has to originate from a superpotential
W . We will now show that the potential V (2) + V (3) for (Nk, Tλ) can indeed be
expressed in terms of

W =
1

2
UT∆N U , (5.41)
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where ∆ was defined in (5.32), the twisting matrix N had been introduced in
(3.22) and the restrictions (5.23) are to be imposed. Furthermore, we have com-
bined the chiral fields Nk and Tλ into the vector

U =

(

2iNk

Tλ

)

=

(

i ξk − 2Re(CZk)

i ξ̃λ − 2Re(CGλ)

)

= iUI + UR . (5.42)

To show that the superpotential (5.41) reproduces the scalar potential V (2)+V (3),
we first note that

∂taW = 0 , ∂
ta
K gab ∂

t
bK = 3 , (5.43)

where the Kähler potential K is given by (5.36) and gab denotes the Kähler metric
for the ta. This reduces VF in (5.35) to

VF = 2 eK
(

GIJDIWDJW
)

, (5.44)

with I labeling (Tλ, N
k). Next, we recall from [16] the expressions for the corre-

sponding inverse Kähler metric GIJ which are given by

GTκTλ = −2 e−2φ
[

ImM+ (ReM)(ImM)−1(ReM)
]

κλ
,

GTλN
k

= −i e−2φ
[

(ReM)(ImM)−1
] k

λ
,

GNkN
l

= −1

2
e−2φ

[

(ImM)−1
]kl

,

(5.45)

where in the present case (5.7) implies that some entries of ReM and ImM are
vanishing. From (5.45), we can then compute the contractions

GNkM
I

∂
M

IK = −(Nk −N
k
) , GTλM

I

∂
M

IK = −(Tλ + T λ) . (5.46)

Employing the above expressions as well as (3.17) and (5.29), one can bring
equation (5.44) into the following form

VF =
1

R3

1

UT
R ΠUR

[

UT
RN

T∆T

(

Π−1 − UR UT
R

UT
R ΠUR

)

∆N UR

+ UT
I N

T∆T Π−1∆N UI +

(

UT
I ∆N UI

)2

UT
R ΠUR

]

,

(5.47)

where UR and UI had been defined in (5.42) and the matrices Π as well as ∆ had
been introduced in equation (5.32). To proceed, we compute

UT
R ΠUR = −4

∣

∣C
∣

∣

2
ZK(ImM)KL Z

L = 2 e−2φ , (5.48)
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and, by carefully taking (5.19) into account, one finds

Π−1 − α
UR UT

R

UT
R ΠUR

=

(

1

M

)

(

−(ImM)−1 + α
Z Z

T

ZT (ImM)Z

)

(

1

M

)T

, (5.49)

where our case of interest is α = 0 and α = 1. With these relations, from the
terms involving UI one can now reproduce the potential V (2) for the fields ξ and
ξ̃. For the remaining terms, we note that the period matrix M can be expressed
using the matrix GLK = ∂ZLGK as follows

MKL = GKL + 2i
(ImG)KMZM ZN(ImG)NL

ZT (ImG)Z
. (5.50)

Employing then the relation (2.24), one can bring the terms involving UR into
the form (5.34).

In conclusion, we have outlined how the superpotential (5.41) indeed reproduces
the scalar potential V (2) + V (3) and thus fits into the framework of N = 1 super-
symmetry.

5.4 Connection to manifolds with G2 structure

In this subsection, we indicate a connection of the truncated theory studied above
to compactifications of M-theory on seven-manifolds with G2 structure.

A manifold has G2 structure if its structure group is contained in G2, and if it
features a globally defined, G2-invariant, real and nowhere-vanishing three-form
Φ. Note that if Φ is in addition harmonic, the manifold has G2 holonomy. In our
present setting, motivated by [33, 34, 35, 36, 16, 37], we define Φ as

Φ =
√
2
(

RV− 1

3 J ∧ dz +
√
8Re(CΩ)

)

, (5.51)

where we remind the reader that R denotes the radius of the circle, V is the
volume of the Calabi-Yau three-fold, J denotes its Kähler form while Ω is the
holomorphic three-form. Following then for instance [37], as dz, J and Ω are
globally defined and nowhere-vanishing, one can show that (5.51) defines a G2

structure on the seven-manifold Y .

Using (5.51), one can express the Kähler potential and the superpotential in the
following way [38, 35, 39, 17, 16]

K = −3 ln

(

1

7

∫

Y

Φ ∧ ⋆7Φ

)

, W =
1

8

∫

Y

(
√
2C3 + iΦ

)

∧ d7

(
√
2C3 + iΦ

)

.

(5.52)
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To verify that the formulas in (5.52) indeed reproduce the Kähler potential and
superpotential of our truncated theory, we first note that the sum of (3.17) and
(5.29) can be brought into the form

K = − log
[

8R3
]

− 2 log

[

2V 1

3R−1

∫

Y

Re
(

CΩ
)

∧ ⋆7Re
(

CΩ
)

]

. (5.53)

In the second term the integral is over the seven-manifold Y and its prefactor
arises from the zz-component of the metric (3.8) by taking into account the Weyl
rescaling mentioned above equation (A.13). From (5.18) and (B.15), utilizing
⋆6ReΩ = ImΩ, one also finds the relations

2V 1

3R−1

∫

Y

Re
(

CΩ
)

∧ ⋆7Re
(

CΩ
)

= 2

∫

X

Re
(

CΩ
)

∧ ⋆6Re
(

CΩ
)

= e−2φ = V ,

(5.54)

which allow one to reproduce (5.53) from the Kähler potential in (5.52). Concern-
ing the superpotential, employing (2.21) as well as (3.5), we can express (5.41) in
the following way

W =
1

4

∫

Y

Ωc ∧ d7Ωc , Ωc = C3 + i
√
8Re(CΩ) , (5.55)

where Y is the seven-dimensional space given by (4.1) and C3, subject to the
truncation (5.20), was defined in (4.11). One then shows that the superpotential
in (5.52) reproduces (5.55).

We finally remark that in the literature on M-theory compactifications on man-
ifolds with G2 structure, one usually does not obtain D-terms. Studying this
question in more detail would be an interesting extension of our work.

6 Vacuum structure

The N = 2 theory

Let us now briefly analyze the vacuum structure of the N = 2 theory derived
in section 3.2. In particular, to determine the minima of the potential (3.23) we
first compute

φA ∂

∂φA
V = −3V , (6.1)

which means that the potential is a homogeneous function of degree three in the
fields φA. Thus, a necessary condition for a minimum is that the potential V
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vanishes. Since V shown in (3.23) is a sum of semi-positive terms, each of those
has to vanish independently. The non-degenerate solutions therefore are

0
!
= N r = br − 2

3
β zr +Br

sz
s − 1

2
Rr

st
vavz

szt ,

0
!
= N

(

ξ

ξ̃

)

, 0
!
= MA

B φB .

(6.2)

Notice that, from the last two equations, the flat directions of the potential (3.23)
for (ξK , ξ̃K) and φA are counted by the number of zero eigenvalues of the twisting
matrices N and M . The eigenvectors of these matrices define a finite dimensional
subspace, characterizing the directions where moduli are stabilized. In turn,
the directions orthogonal to this subspace correspond to the flat directions. We
remark that the analysis for the complex structure moduli zr is slightly more
involved.

Of course, there are also degenerate solutions which can lead to a vanishing po-
tential. Recalling (3.23), these include configurations such as (ξk, ξ̃λ) = 0, φA = 0,
φ → −∞, R → ∞, or where the matrices Grs, M and KAB have zero eigenvalues.

Furthermore, since some of the scalar fields of the theory are gauged, a mass
term for the gauge fields AΛ can be generated. More concretely, the Lagrangian
contains terms of the form

∫

R3,1

[

MΛΣ AΛ ∧ ⋆4A
Σ

]

, Λ,Σ = 0, . . . , h1,1 , (6.3)

with the mass matrix MΛΣ given by

MAB = −
(

MTgM
)

AB

∣

∣

∣

min.
,

M0A = +
(

bTMT gM
)

A

∣

∣

∣

min.
,

M00 = − bTMT gMb
∣

∣

∣

min.
.

(6.4)

Here g = gAB denotes the Kähler metric (3.13), bA = Re (tA) and matrix products
are understood. Note that M00 contains an additional term proportional to the
scalar potential, which however vanishes in the minimum.

The N = 1 theory

To study the vacua of the truncated theory, we first recall the D- and F-term
potential given in (5.40) and (5.44)

V = VD + VF = − 1

4R6

(

Mα
c φ

c
) (

Mβ
d φ

d
)

Kαβ + 2eK
(

GIJDIWDJW
)

. (6.5)
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Similarly as for the N = 2 case, a necessary condition for minima in the fields φa

reads

0
!
= φa ∂

∂φa
V = −3V , (6.6)

which, since (6.5) is a sum of semi-positive definite terms, implies that VD = VF =
0. The non-degenerate solution to VD = 0 is given by Dα = 0 which means

Mβ
cφ

c = 0 , (6.7)

whereas the non-degenerate solution to VF = 0 leads to FI = 0. One configuration
satisfying this constraint reads

N U = 0 , (6.8)

where the vector U was defined in (5.42). However, other solutions involving for
instance (ξk, ξ̃λ) = 0 are also possible.

For the mass terms of the vector fields we recall that the graviphoton A0 as well
as the fields Aa are projected out. We are thus left with

∫

R3,1

[

Mαβ A
α ∧ ⋆4A

β

]

, (6.9)

where with the help of (5.14) the mass matrix Mαβ is found to be

Mαβ = −
(

MT gM
)

αβ

∣

∣

∣

min.
, (6.10)

and the metric gab takes indices a, b = 1, . . . , h1,1
− .

7 Conclusions and outlook

In this paper, we have performed a detailed analysis of Scherk-Schwarz reduc-
tions of M-theory down to four spacetime dimensions, including both the vector
multiplet and hypermultiplet sectors. These reductions yield gauged N = 2 su-
pergravities, with a potential for the scalar fields that we explicitly computed.
We have focussed on the bosonic sector of the theory, though the fermions can
be treated in a similar way, such as to preserve supersymmetry of the full La-
grangian. Our analysis here is an extension of previous results in the literature
[9, 15].
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Furthermore, we have defined a truncation from N = 2 to N = 1, inspired
by the rules of orientifold projections in type IIA string theory. These models
are determined by the Kähler potential for the chiral N = 1 multiplets, the
superpotential, the gauge kinetic functions, and the D-terms, all of which we have
explicitly computed. Our results show a close relation to compactifications of M-
theory on manifolds with G2 structure, which would be interesting to understand
in further detail.

The models we obtained are not of immediate phenomenological relevance. This is
because not all moduli are stabilized, and we have not identified which of the vacua
lead to supersymmetry breaking. However, the inclusion of quantum corrections,
both perturbative and nonperturbative, could provide additional mechanisms to
stabilize the yet unfixed moduli. Due to the presence of D-terms in our models,
this might lead to metastable vacua with a positive cosmological constant that
could be relevant e.g. for inflationary models. We leave this interesting possibility
for future research.
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A Some details on the dimensional reduction to

D = 5

Let us begin with the dimensional reduction of the eleven-dimensional Ricci scalar
appearing in the action (2.1). We first decompose (up to total derivatives)

1

2

∫

R̂ ⋆ 1 =
1

2

∫

d11x̂
√

Ĝ

[

R(5) +RX − 1

4

(

Gab∂µ̃Gbc

)(

Gcd∂µ̃Gda

)

+
1

4

(

Gab∂µ̃Gab

)(

Gcd∂µ̃Gcd

)

]

,

(A.1)

where R(5) denotes the Ricci scalar computed from the five-dimensional metric
g̃µ̃ν̃ , RX = 0 is the Ricci scalar of the Calabi-Yau manifold X and ∂µ̃ are derivatives
with respect to the five-dimensional coordinates x̃µ̃. We then split the Calabi-Yau
metric Gmn into a constant background part G̊mn and fluctuations around this
background

Gmn = G̊mn + δGmn . (A.2)

Following [40, 41, 42, 43], the fluctuations (in a complex basis with holomorphic
indices a, b and anti-holomorphic indices a, b) can be expressed as

δGab = −i δvA (ωA)ab , A = 1, . . . , h1,1 ,

δGab =
V

∫

X
Ω ∧ Ω

zr (χr)aab Ω
ab

b , r = 1, . . . , h2,1 ,
(A.3)

where δvA are fluctuations around the background value v̊A of the expansion
parameters of the Kähler form given in (2.6). In the following, these will be
combined into

vA = v̊A + δvA . (A.4)

Furthermore, χr denotes a basis of harmonic (2, 1)-forms on X , and the holo-
morphic three-form Ω was introduced in (2.6). The volume V of the Calabi-Yau
threefold was defined in equation (2.7). At lowest order in the fluctuations, χr in
δGab does not depend on the five-dimensional coordinates whereas zr (as well as
δvA in δGab) are functions of x̃µ̃. We also note the relation

G̊ab(ωA)ab =
i

2

KABCv
BvC

V , (A.5)

and we define and compute

g(5)AB ≡ 1

4V

∫

X

ωA ∧ ⋆ωB = − 1

4V

(

KABCv
C − KACDv

CvDKBEFv
EvF

4V

)

, (A.6)
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as well as

Grs ≡ −
∫

X
χr ∧ χs

∫

X
Ω ∧ Ω

, r, s = 1, . . . , h2,1 . (A.7)

Up to second order in the fluctuations δG, we then find

1

2

∫

R4,1×X

R̂ ⋆ 1 =

∫

R4,1

[ V
2
R(5) ⋆5 1− V g(5)ABdv

A ∧ ⋆5dv
B − V Grsdz

r ∧ ⋆5dz
s

+
V
2
d logV ∧ ⋆5d logV

]

. (A.8)

Let us next turn to the kinetic term for the three-form potential Ĉ3. Using the
ansatz (2.9), we compute

−1

4

∫

R4,1×X

F̂4 ∧ ⋆F̂4 = −1

4

∫

R4,1

[

V dc̃3 ∧ ⋆5dc̃3 + 4V g(5)AB dAA ∧ ⋆5dA
B

− 2
(

ImM
)−1KL

(

dξ̃K −MKNdξ
N
)

∧ ⋆5

(

dξ̃L −MLMdξM
)

]

.

(A.9)

Here, we have employed the period matrix MKL which satisfies [44, 45]

∫

X

αK ∧ ⋆6αL =
[

−
(

ImM
)

−
(

ReM
)(

ImM
)−1(

ReM
)

]

KL
,

∫

X

αK ∧ ⋆6β
L =

[

−
(

ReM
)(

ImM
)−1
] L

K
,

∫

X

βK ∧ ⋆6β
L =

[

−
(

ImM
)−1
]KL

,

(A.10)

with matrix products understood and {αK , β
L} denoting the basis introduced

in (2.4). For the topological term in the action (2.1) we compute (up to total
derivatives)

− 1

12

∫

R4,1×X

F̂4 ∧ F̂4 ∧ Ĉ3

= − 1

12

∫

R4,1

[

6 dc̃3 ∧
(

ξKdξ̃K − ξ̃Kdξ
K
)

+KABC dAA ∧ dAB ∧ AC

]

.

(A.11)

To dualize c̃3 to a scalar field, we introduce a Lagrange multiplier a for dc̃3 and add
this term to the combined action (A.9) and (A.11). After solving the equations
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of motion for c̃3 and substituting them back into the action, the terms involving
c̃3 become

− 1

4

∫

R4,1

V dc̃3 ∧ ⋆5dc̃3 + 2dc̃3 ∧ (ξ̃Kdξ
K − ξKdξ̃K) + 2dc̃3 ∧ da

= − 1

4

∫

R4,1

1

V
(

da+ ξKdξ̃K − ξ̃Kdξ
K
)

∧ ⋆5

(

da+ ξLdξ̃L − ξ̃Ldξ
L
)

.

(A.12)

Finally, we combine the above expressions and perform a Weyl rescaling g̃µ̃ν̃ →
V− 2

3 g̃µ̃ν̃ of the five-dimensional metric to arrive at

S(5) =

∫

R4,1

[

+
1

2
R(5) ⋆5 1−

1

6
d logV ∧ ⋆5d logV − g(5)ABdv

A ∧ ⋆5dv
B

−Grsdz
r ∧ ⋆5dz

s − V 2

3 g(5)AB dAA ∧ ⋆5dA
B

− 1

4V2

(

da+ ξKdξ̃K − ξ̃Kdξ
K
)

∧ ⋆5

(

da + ξLdξ̃L − ξ̃Ldξ
L
)

+
1

2V
(

ImM
)−1KL

(

dξ̃K −MKNdξ
N
)

∧ ⋆5

(

dξ̃L −MLMdξM
)

− 1

12
KABC dAA ∧ dAB ∧ AC

]

. (A.13)

As it turns out, the field V belongs to a hypermultiplet and so (A.13) contains
terms mixing hyper- and vector multiplets. To make contact with the standard
formulation of N = 2 supergravity in five dimensions, we introduce new fields

νA = V− 1

3 vA . (A.14)

By definition, due to (2.7), these satisfy 1
6
KABCν

AνBνC = 1 and so there are h1,1

scalar fields νA subject to one constraint, as well as the independent field V. We
then arrive at the following form of the five-dimensional action

S(5) =

∫

R4,1

[

+
1

2
R(5) ⋆5 1−

1

4
d logV ∧ ⋆5d logV +

1

4
KABCν

CdνA ∧ ⋆5dν
B

+
1

4

(

KABCν
C − 1

4
KACDν

CνDKBEFν
EνF

)

dAA ∧ ⋆5dA
B

− 1

12
KABC dAA ∧ dAB ∧AC −Grsdz

r ∧ ⋆5dz
s (A.15)

− 1

4V2

(

da+ ξKdξ̃K − ξ̃Kdξ
K
)

∧ ⋆5

(

da+ ξLdξ̃L − ξ̃Ldξ
L
)

+
1

2V
(

ImM
)−1KL

(

dξ̃K −MKNdξ
N
)

∧ ⋆5

(

dξ̃L −MLMdξM
)

]

.
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B Some details on the dimensional reduction to

D = 4

Computations

To perform the dimensional reduction of the five-dimensional action (2.10) (which
is the same as (A.15)), we note that the inverse of the metric (3.8) reads

g̃µ̃ν̃ =

(

Rgµν RA0 µ

RA0 ν R−2 +RA0
ρA

0 ρ

)

, (B.1)

where A0 µ is the graviphoton with indices raised by the inverse of the four-
dimensional metric gµν . The determinant of g̃µ̃ν̃ is given by

det gµ̃ν̃ = R−2 det gµν . (B.2)

For the five-dimensional Ricci scalar, we then find

∫

R4,1

1

2
R(5) ⋆5 1 =

∫

R3,1

[

1

2
R(4) ⋆4 1−

3

4
d logR ∧ ⋆4d logR − R3

4
dA0 ∧ ⋆4dA

0

]

.

(B.3)

Under the symmetries (2.12) discussed in section 2.2, due to equation (2.13), the
volume V is independent of z and so we have chosen ∂zV = 0. Upon dimensional
reduction, the corresponding term in the action keeps the same form, i.e.

∫

R4,1

[

−1

4
d logV ∧ ⋆5d logV

]

=

∫

R3,1

[

−1

4
d logV ∧ ⋆4d logV

]

. (B.4)

However, for the scalars νA there is a non-trivial dependence on the coordinate z
of the circle, which we have specified in equation (3.2). This leads to

∫

R4,1

[

1

4
KABC νCdνA ∧ ⋆5dν

B

]

=

∫

R3,1

[

1

4
KABCν

CDνA ∧ ⋆4DνB +
1

4R3
KABCν

C
(

MA
Dν

D
)(

MB
Eν

E
)

⋆4 1

]

,

(B.5)

where we have defined

DνA = dνA + A0MA
Bν

B . (B.6)
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The computation for the remaining five-dimensional scalar fields in the action
(2.10) is completely analogous. On the other hand, the reduction of the five-
dimensional vector fields is non-trivial. In particular, using (3.2) and (3.9), for
the kinetic term one finds

∫

R4,1

[

1

4

(

KABCν
C − 1

4
KACDν

CνDKBEFν
EνF

)

dAA
(5) ∧ ⋆5dA

B
(5)

=

∫

R3,1

[

1

4

(

KABCν
C − 1

4
KACDν

CνDKBEFν
EνF

)

×

×
(

RFA
(4) ∧ ⋆4F

B
(4) +

1

R2
DbA ∧ ⋆4DbB

)

,

(B.7)

with the definitions

FA
(4) = dAA

(4) −MA
BA

B
(4) ∧ A0 , DbA = dbA −MA

B

(

AB
(4) − bBA0

)

. (B.8)

For the Chern-Simons term in the five-dimensional action (2.10), employing the
constraint (2.13), we find in agreement with [15]

∫

R4,1

[

− 1

12
KABC dAA

(5) ∧ dAB
(5) ∧ AC

(5)

]

=

∫

R3,1

[

− 1

6
KABC FA

(4) ∧MB
D AD

(4) ∧ AC
(4) −

1

4
KABCb

CFA
(4) ∧ FB

(4)

+
1

6
KABCb

BbCdA0 ∧ FA
(4) −

1

12
KABCb

AbBbCdA0 ∧ dA0

]

.

(B.9)

Standard form of N = 2 gauged supergravity

Let us now bring the above results into the standard form of N = 2 gauged
supergravity in four dimensions. However, for ease of notation we will drop all
subscripts indicating four-dimensional quantities since this will be clear from the
context.

• The Einstein-Hilbert term shown in equation (B.3) is already in the stan-
dard form.

• Concerning the scalars νA and bA, we first define fields φA in the following
way

φA = RνA , R3 =
1

6
KABCφ

AφBφC , (B.10)

where we have included the constraint (2.11) in terms of the φA. Collecting

37



then all kinetic terms involving φA and bA from above, we can express them
as

∫

R3,1

[

−gAB DtA ∧ ⋆4Dt
B

]

, (B.11)

where we employed the definitions (3.12) as well as (3.13).

• For the four-dimensional vector fields AA and A0, we first recall the def-
initions (3.18) and (3.19) for the combined field strengths and structure
constants, respectively. Next, we note that the period matrix derived
from (3.16) reads

ImNAB = −4R3 gAB , ReNAB = −KABCb
C ,

ImNA0 = +4R3 gABb
B , ReNA0 = +1

2
KABCb

BbC ,

ImN00 = −R3
(

1 + 4gABb
AbB

)

, ReN00 = −1
3
KABCb

AbBbC .

(B.12)

With Λ,Σ = 0, . . . , h1,1, the kinetic and topological terms for the vector
fields are then expressed as

∫

R3,1

[

+
1

4
ImNΛΣ FΛ ∧ ⋆4F

Σ +
1

4
ReNΛΣ FΛ ∧ FΣ

]

. (B.13)

• In equation (B.9), there is one term not contained in (B.13) which can be
brought into the following form

∫

R3,1

[

−1

6
AAMA

B ∧ AC ∧ dADKBCD

]

. (B.14)

• For the hypermultiplets, we first note that the reduction from five to four
dimensions is very similar to the one presented in (B.5). Defining then

V = e−2φ , (B.15)

one arrives at the kinetic terms given in (3.20).

• Let us finally comment on the scalar potential. As one can see for instance
from (B.5), the non-trivial dependence of the scalar fields on the circle
coordinate z will lead to a scalar potential in four dimensions. Collecting
these terms also for the remaining scalar fields, one arrives at the potential
given in (3.23).
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