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1 Introduction

The attractor phenomenon for BPS black branes [1–3] is caused by full supersymmetry
enhancement at the horizon, which induces stringent restrictions on the values of the fields
and the space-time geometry. When supersymmetry is realized off shell, the resulting
attractor equations can be analyzed in a way that is independent of the action. In this way
universal results can be obtained even when the action contains higher-derivative couplings,
as was first demonstrated for N=2 supergravity in four dimensions [4].

In five space-time dimensions, supersymmetric attractors come in two varieties, asso-
ciated with the near-horizon geometry of the rotating black hole [5, 6], and of the black
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ring [7]. In the context of the two-derivative effective action, these attractors have been
studied in [6, 8–12], using mostly on-shell methods. It is possible to include higher-
derivative couplings into the conventional two-derivative supergravity action, but those
require the use of off-shell methods. Such a (four-derivative) supersymmetric action has
been constructed in [13]. Both the two- and the four-derivative couplings involve a Chern-
Simons term, which is a characteristic feature of five-dimensional supergravity. In the
two-derivative case the Chern-Simons term is cubic in the gauge fields, whereas the higher-
derivative mixed Chern-Simons term involves also the spin connection field. As a result the
Lagrangian is only gauge invariant up to a total derivative, a feature that causes certain
technical complications.

A study of BPS black holes and black rings that includes these higher-derivative in-
teractions was initiated some time ago in [14–17]. In these works, a number of black hole
solutions was constructed, and the corresponding attractors were studied by taking the
near-horizon limit. In addition, the entropy function formalism [18] was used to determine
the macroscopic entropy of these black holes, after reducing to four dimensions to restore
gauge invariance of the action. A corresponding analysis for black rings was hampered by
the difficulty in obtaining full asymptotically flat solutions.

In this work, we present a comprehensive treatment of five-dimensionalN=2 attractors
in the presence of the same four-derivative couplings, using the tools provided by the off-
shell calculus. This analysis of the near-horizon behaviour thus relies only on the full
supersymmetry enhancement and does not take into account the more global aspects of
possible solutions. In particular, no assumptions are made concerning the existence of
interpolating solutions towards asymptotic infinity, and no use is made of any information
from outside the near-horizon region. This is in line with the idea that the entropy of black
branes should be determined fully by the horizon properties, in the spirit of the Bekenstein-
Hawking area law.1 As in the four-dimensional analysis, we find that the allowed space-time
geometry is the same as for the two-derivative theory, which in the case at hand is described
by the AdS2 × S2 × S1 geometry of [20]. Because this geometry interpolates between
the black hole and the black ring attractors, we can treat both types of five-dimensional
attractors in a unified way for a large part of the analysis.

The higher-derivative corrections in the action enter into the expressions for both the
entropy and the attractor equations pertaining to electric charges and angular momenta.
For the Wald entropy [21–23] we obtain a universal formula expressed in terms of the hori-
zon fields, which applies to both black holes and rings. This is an intriguing result, because
the derivation in these two cases proceeds rather differently due to a number of subtleties
associated with the mixed gauge-gravitational Chern-Simons term. Our treatment of this
mixed Chern-Simons term is inspired by, but not completely identical to, the approach fol-
lowed in [24]. The existence of a universal entropy formula is in line with previous results
based on the entropy function upon reduction to four dimensions, and we confirm this by
confronting the results with the four-dimensional near-horizon analysis.

The charges and the angular momenta can also be defined at the horizon. In view of

1See, however, [19], for a possibly different perspective.
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the first law of black hole mechanics, this requires the use of the same Noether potential
that enters into the determination of the Wald entropy. The evaluation of the full Noether
potential is rather involved, and, as alluded to above, the relevant potentials do not take
the same form for black rings and for black holes. The electric charges defined at the
horizon are conserved by construction (although they are not invariant under large gauge
transformations in the case of black rings). Subtleties arise with the proper definition of
the gauge fields in the presence of the Chern-Simons terms, and those have important
implications on the attractor equations for black hole and black ring charges.

There exists an extended literature on how to define the electric charges (for a general
discussion, see for instance [25]). In the case at hand, it is worth mentioning that the
results of this paper differ from those of [15–17]. Many of these differences reside in the
definition of the electric charges that was adopted in these references, which was based
on the asymptotic fall-off of the electric fields at spatial infinity. As a result the charges
for asymptotically Taub-NUT solutions are different from the charges for asymptotically
flat solutions, and furthermore these charges depend on the distance from the horizon. In
contrast, the charges employed in this paper are insensitive to the asymptotic structure of
the space-time and do not depend on the distance from the horizon.

As mentioned above, the BPS near-horizon geometries come in two varieties. In the
case of a spacelike horizon cross section with spherical topology, we recover the AdS2×S3

near-horizon geometry of the rotating black hole [5, 6]. In the other case we find the AdS3×
S2 near-horizon geometry of the supersymmetric black ring [7]. The latter constitutes a
special limit of the generic BPS near-horizon geometry for which the spacelike cross section
of the horizon has the topology of S2 × S1, as is appropriate for a ring. Unlike the black
hole, the black ring carries two independent angular momenta associated with rotations in
two orthogonal planes. There are some other new features related to the non-contractible
S1. The first one concerns the fact that this background allows for non-trivial magnetic
charges on the circle, because magnetic charges are not pointlike in five dimensions, but are
stringlike objects. Hence the ring carries magnetic dipole charges. The second one concerns
the non-trivial moduli associated with Wilson lines along the circle. We present a careful
treatment of the gauge fields in this topology, which enables us to recover the correct
electric charges and their associated attractor equations, following the strategy of [12].
Using this same strategy we also establish the modified electric charges that are additive.

Our results for the entropy agree with the results of microscopic counting for large black
holes [5, 26, 27] and for black rings [28, 29]. So far this agreement holds for static black
holes, because at present there exists no analytic expression for the microscopic entropy
of rotating black holes.2 In contrast, we disagree with the microscopic counting [27] for
small black holes, whose macrocsopic entropy depends sensitively on the higher-derivative
couplings. This puzzle may be characteristic for small black holes; also in four dimensions,
the supergravity description of small black holes was often problematic, although there
the problems did not pertain to the leading contribution. For black rings the effect of the

2In theories with 16 supersymmetries explicit expressions are available [30, 31]. It is an interesting

question as to whether there exist asymptotic limits thereof which will agree with the results of this paper.
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higher-derivative couplings was not included in [28, 29], but we will exactly reproduce the
result known from the (4, 0) conformal field theory, which leads to an expression propor-
tional to

√
cL q̂0 (c.f. [32]). Here, cL is the central charge, which can be expressed in the

dipole charges and which includes the effect of the higher-derivative correction. Its form is
in agreement with arguments based on the AdS3 near-horizon geometry [14, 33, 34]. Fur-
thermore, q̂0 is an appropriately defined quantity expressed in the angular momenta and the
charges. As noted in [35], this quantity is naturally written in terms of the aforementioned
modified electric charges that are additive.

On the other hand, our results for rotating black holes only partially agree with the
macroscopic results of [15–17], as was already alluded to above in connection with the
definition used for the electric charges. Our results also disagree with the prediction of [36]
for the first-order contribution from the angular momentum to the black hole entropy,
based on the addition of the Euler density to the supergravity action. In this work, also
a correction to the black ring entropy was determined based on the Euler density. In
hindsight, it is difficult to see how the Euler density could possibly capture, at the same
time, all contributions to the entropy, the angular momenta and the electric charges for
both black holes and black rings, as it does not include the contributions from the mixed
Chern-Simons term, which, especially for black rings, is responsible for subtle effects.

Another issue concerns the connection between corresponding black hole solutions and
their associated entropy in four and in five dimensions. This connection is motivated by
the fact that the four-dimensional theory can be obtained by dimensional reduction on a
circle from the five-dimensional one [12, 37, 38], although there may be subtleties. One
such subtlety, related to the supersymmetry preserved by five-dimensional attractors upon
reducing to four dimensions, was already discussed in [39]. Following this reasoning, our
five-dimensional attractor equations should be related to the four-dimensional attractors
with a specific R2-coupling. Indeed, we find agreement with four dimensions in the case
of the black ring, except that the quantity q̂0 in four dimensions will only depend on the
unmodified electric charges. We explain the reason for this fact, which is of topological
origin and not related to the presence of higher-derivative couplings. For the case of
the rotating black hole, we find a clear discrepancy in the contributions from the higher-
derivative couplings to the electric charges. A similar, though somewhat different, deviation
from the four-dimensional situation was observed in [15–17]. One way to understand the
discrepancy in the electric charges follows from the observation that the reduction to four
dimensions of the higher-derivative term will involve an extra vector multiplet associated
with the Kaluza-Klein photon, which will also be subject to higher-derivative interactions.
So far, such interactions have never been considered directly in four dimensions, and in
fact the precise form of these four-dimensional couplings is not fully known although there
are indications that they should not affect the formula for the Wald entropy for BPS black
holes. But most likely they will have an effect on the electric charges, and this may resolve
the present discrepancy between the electric charges in four and five dimensions.

This paper is organized as follows. Section 2 contains a concise but comprehensive
review of the superconformal transformation rules for the supermultiplets of interest. In
section 3 the product rules and supersymmetric density formulae are presented, using the
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notation of this paper. Section 4 is devoted to the derivation of the attractor equations and
their consequences. The attractor equations are derived in subsection 4.1, and the resulting
geometry is discussed in subsection 4.2. Subsequently the horizon values of the gauge fields
and the linear supermultiplets are discussed in subsections 4.3 and 4.4, respectively. The
invariant action is given in section 5 from which the attractor equations for the electric
charges can be determined. In section 6 we discuss the entropy and angular momentum for
black holes and rings. As it turns out the mixed Chern-Simons term requires a different
approach for black holes and black rings. Therefore, after a review of the more generic
situation for black holes, a subsection 6.1 is devoted to the alternative treatment of the
mixed Chern-Simons term that is required for the black rings. The final results of this paper
for spinning black holes and black rings, together with a discussion and a comparison to
results in the literature, are presented in section 7 and section 8, respectively. Readers
who are not primarily interested in the technical details, may proceed directly to these
two sections. There are two appendices: appendix A introduces the spinor and space-time
notation used in the first part of this paper, and appendix B contains a brief review of
extended conformal supergravities in five space-time dimensions.

2 Superconformal multiplets

A convenient method for dealing with off-shell formulations of supergravity theories is pro-
vided by the superconformal multiplet calculus. This calculus was originally set up for
N=2 supergravity in d=4 dimensions [40–43], following early work for N=1, d=4 super-
gravity [44, 45]. The N =1 case was worked out more fully in [46], and shortly thereafter
the formalism was also applied to N = 1, d= 6 supergravity in [47]. For d= 5 dimensions
superconformal methods were developed relatively recently by several groups [13, 48–50],
and these results were exploited in the work of [14, 15, 17]. However, these groups use
different field and symmetry definitions, which have features that are qualitatively differ-
ent from the conventions used in d = 4 dimensions. Obviously this poses no problem of
principle, but in order to make the connection with the four-dimensional theory as direct
as possible, we have chosen to adopt slightly different conventions.

In this section we give a self-contained summary of the transformation rules of super-
conformal multiplets in five space-time dimensions, namely the Weyl multiplet, the vector
multiplet, the linear multiplet and the hypermultiplet for supergravity in five space-time
dimensions with eight supercharges. With the exception of the hypermultiplet, these mul-
tiplets define off-shell representations of the algebra of superconformal transformations.
We refer to appendix A for spinor and space-time conventions. Some additional material
about the Weyl multiplets in four and five dimensions with eight and sixteen supercharges
is presented in appendix B. The fields of conformal supergravity are dual to the components
of the supermultiplet of currents, and are subject to a number of gauge transformations
directly related to the conservation laws of these currents. The bosonic gauge transfor-
mations are those of the conformal group, diffeomorphisms, local Lorentz transformations
with generators Mab, scale transformations with generator D and special conformal trans-
formations (also called conformal boosts) with generators Ka. Furthermore there are local
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R-symmetry transformations. In five space-time dimensions, the R-symmetry group equals
USp(2N) so that for simple supergravity we have USp(2) ∼= SU(2). The fermionic gauge
transformations are the conventional Q- and the special conformal S-supersymmetry trans-
formations.

2.1 The Weyl multiplet

The Weyl multiplet of five-dimensional simple conformal supergravity is shown in table 3.
The independent fields consist of the fünfbein eµ

a, the gravitino field ψµ
i, the dilatational

gauge field bµ, the R-symmetry gauge fields Vµij (which is an anti-hermitean, traceless
matrix in the SU(2) indices i, j) and a tensor field Tab, a scalar field D and a spinor field
χi. The three gauge fields ωµab, fµa and φµ, associated with local Lorentz transforma-
tions, conformal boosts and S-supersymmetry, respectively, are not independent and will
be discussed later. The infinitesimal Q, S and K transformations of the independent fields,
parametrized by spinors εi and ηi and a vector ΛK

a, respectively, are as follows,

δeµ
a =

1
2
ε̄iγ

aψµ
i ,

δψiµ = Dµεi +
1
4

iTab(3 γabγµ − γµγab)εi − iγµηi ,

δVµi
j = 3iε̄iφµj − 8ε̄iγµχj − 3iη̄iψµj + δij

[
− 3

2
iε̄kφµk + 4ε̄kγµχk +

3
2

iη̄kψkµ

]
,

δbµ =
1
2

iε̄iφiµ − 2ε̄iγµχi +
1
2

iη̄iψiµ + 2ΛKaeµa ,

δTab =
2
3

iε̄iγabχi −
1
8

iε̄iRabi(Q) ,

δχi =
1
4
εiD +

1
128

Rµνj
i(V )γµνεj +

3
128

i(3 γab /D + /Dγab)Tab εi

− 3
32
TabTcdγ

abcdεi +
3
16
Tabγ

abηi ,

δD = ε̄i /Dχ
i − iε̄iTabγabχi − iη̄iχi . (2.1)

Under local scale transformations the various fields and transformation parameters trans-
form as indicated in table 1. The derivatives Dµ are covariant with respect to all the bosonic
gauge symmetries with the exception of the conformal boosts. In particular we note

Dµεi =
(
∂µ −

1
4
ωµ

cd γcd +
1
2
bµ

)
εi +

1
2
Vµj

i εj , (2.2)

where the gauge fields transform under their respective gauge transformations according
to δωµ

ab = Dµλab, δbµ = DµΛD and δVµi
j = DµΛij , with (Λij)∗ ≡ Λij = −Λj i. The

derivatives Dµ are covariant with respect to all the superconformal symmetries.

In order to discuss the dependent gauge fields, we first introduce the following curvature
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Weyl multiplet parameters
field eµ

a ψµ
i bµ Vµ ij Tab χi D ωµ

ab fµ
a φµ

i εi ηi

w −1 −1
2 0 0 1 3

2 2 0 1 1
2 −1

2
1
2

Table 1. Weyl weights w of the Weyl multiplet component fields and the supersymmetry transfor-
mation parameters.

tensors,

Rµν
a(P ) = 2D[µeν]

a − 1
2
ψ̄[µiγ

aψν]
i ,

Rµν
ab(M) = 2 ∂[µων]

ab − 2ω[µ
acων]c

b − 8 e[µ
[afν]

b] + iψ̄[µiγ
abφν]

i

−1
4

iT cd ψ̄[µi(6γ
[aγcdγ

b] − γabγcd − γcdγab)ψν]
i

−1
2
ψ̄[µi(γν]R

abi(Q) + 2 γ[aRν]
b]i(Q)) + 8 e[µ

[a ψ̄ν]iγ
b]χi ,

Rµν(D) = 2 ∂[µbν] − 4 f[µ
aeν]a − iψ̄[µiφν]

i + 4 ψ̄[µiγν]χ
i .

Rµνi
j(V ) = 2 ∂[µVν]i

j − V[µi
kVν]k

j

−6i ψ̄[µiφν]
j + 16ψ̄[µiγν]χ

j + δi
j
[
3i ψ̄[µkφν]

k − 8ψ̄[µkγν]χ
k
]
,

Rµν
i(Q) = 2D[µψν]

i − 2i γ[µφν]
i +

1
2

iTab(3 γabγ[µ − γ[µγ
ab)ψν]

i . (2.3)

The conventional constraints (which are not invariant under Q- and S-supersymmetry) are
as follows,

Rµν
a(P ) = 0 ,

γµRµν
i(Q) = 0 ,

ea
µRabµν(M) = 0 . (2.4)

These conditions determine the gauge fields ωµab, fµa and φµi. The conventional constraints
lead to additional constraints on the curvatures when combined with the Bianchi identities.
In this way one derives R[abc]d(M) = 0 = Rab(D) and the pair-exchange property Rabcd =
Rcdab from the first and the third constraint. The second constraint, which implies also
that γ[µνRρσ]

i(Q) = 0, determines the curvature Rµνi(S), which we refrained from defining
previously. It turns out to be proportional to Rµνi(Q) and derivatives thereof,

Rµν
i(S) = −i /DRµνi(Q)− iγ[µD

ρRν]ρ
i(Q)− 4 γµνT ρσRρσi(Q)

+18 γσT ρσγ[µRν]ρ
i(Q)− 5T ρσγρσRµνi(Q)− 12T ρ[µRν]ρ

i(Q) . (2.5)

The remaining curvature Rµνa(K) does not play a role in what follows.
Whereas the first constraint is invariant under S- but not under Q-supersymmetry, the

other two constraints are invariant under neither supersymmetry. This implies that the
dependent gauge fields will acquire terms in their transformation rules proportional to the
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constrained curvature tensors,

δωµ
ab = Dµλab + 4ΛK [aeµ

b] − 1
2

iεiγabφµi +
1
2

iηiγabψµi

+
1
8

iT cd ε̄i(6γ[aγcdγ
b] − γabγcd − γcdγab)ψµi

+
1
4
ε̄i(γµRabi(Q) + 2 γ[aRµ

b]i(Q)) + 4 eµ[a ε̄iγ
b]χi ,

δφµ
i = Dµηi +

1
4

iTab(γµγab − γabγµ)ηi + ifµaγaεi − iΛKaγaψµi

− 1
48

i(2 γabγµ − γµγab)Rabji(V )εj +
1
4
(
/DT abγabγµ +DaT

abγµγb
)
εi

+i
(
− 3

4
T abT cdγµabcd + TµaTbcγ

abc − 4TµaT abγb −
3
4
γµT

2

)
εi

−9
4

i ε̄jψµj χi +
7
4

i ε̄jγaψµj γaχi −
1
8

iε̄kγabψµk
(
γabχ

i +
1
4
Rab

i(Q)
)

+
1
4

iε̄kγabψµi
(
γabχ

k +
1
4
Rab

k(Q)
)
,

δfµ
a = DµΛKa +

1
2
ηiγ

aφµ
i + · · · , (2.6)

where here and henceforth T 2 ≡ (Tab)2. With these results we obtain the following Q- and
S-variations that will be needed in due course,

δRab
i(Q) = − 1

24
(γcdγab − 4 δa[cδb

d])Rcdii(V )εj − 1
4
Rab

cd(M)γcdεi

+
1
2

i
(
3D[aT

cdγcdγb] −D[aT
cdγb]γcd − γ[a /DT

cdγcdγb] −DcT
cdγabγd

)
εi

− 2
(
TabTcdγ

cd + TacTbdγ
cd + 2Tc[aT

cdγb]d +
1
4
T 2γab

)
εi

+
(
γcdγab − 4 δa[cδb

d]
)
ηi Tcd ,

δRabi
j(V ) = 3i ε̄iRabj(S) + 16 ε̄iγ[aDb]χ

j − 4i ε̄i
(
3 γ[aγ

cdγb] − γcdγab
)
χj Tcd

− 3i η̄iRabj(Q)− 16i η̄iγabχj − trace . (2.7)

The above transformations coincide with those of [48, 50], upon including a T -
dependent S-supersymmetry transformation into the Q-supersymmetry variations and
rescaling the tensor field by a factor 4/3. The difference with the conventions of [13, 49]
are a bit more involved. The commutator of two Q-supersymmetry transformations closes
into the superconformal transformations as follows,

[δQ(ε1), δQ(ε2)] = ξµD̂µ + δM (λ) + δS(η) + δK(ΛK) , (2.8)

where ξµD̂µ denotes the effect of a supercovariant general coordinate transformation. The
parameters appearing on the right-hand side associated with the general coordinate trans-
formation and the Lorentz transformation are given by

ξµ =
1
2
ε̄2iγ

µε1
i ,

λab =
1
8

iT cd ε̄2i(6γ[aγcdγ
b] − γabγcd − γcdγab)ε1i , (2.9)
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whereas the parameters associated with S-supersymmetry and conformal boosts are not
given as they are not needed below. The commutator of two S-supersymmetry transfor-
mations and the commutator of a Q- and an S-supersymmetry transformation close as
follows,

[δS(η1), δS(η2)] = δK(ΛK) ,

[δS(η), δQ(ε)] = δD(ΛD) + δM (λ) + δR(Λ) + δK(Λ̃K) , (2.10)

where

ΛKa =
1
2
η̄2iγ

aη1
i ,

ΛD =
1
2

i ε̄iηi ,

λab = −1
2

i ε̄iγabηi ,

Λij = 3i
(
ε̄iη

j − 1
2
δi
j ε̄kη

k

)
,

Λ̃Ka = − 1
16
ε̄i[5γaγbc − 4γbcγa]ηi Tbc . (2.11)

Furthermore, we note the following commutation relation,

[δK(ΛK), δQ(ε)] = δS(i /ΛKεi) . (2.12)

2.2 The vector supermultiplet

The vector supermultiplet consists of a real scalar σ, a gauge field Wµ, a triplet of (auxil-
iary) fields Y ij , and a fermion field Ωi. Under superconformal transformations these fields
transform as follows,

δσ =
1
2

iε̄iΩi ,

δΩi = − 1
4

(F̂ab − 4σTab)γabεi −
1
2

i /Dσεi − εjk Y ijεk + σ ηi ,

δWµ =
1
2
ε̄iγµΩi − 1

2
iσ ε̄iψiµ ,

δY ij =
1
2
εk(i ε̄k /DΩj) + iεk(i ε̄k

(
− 1

4
Tabγ

abΩj) + 4σχj)
)
− 1

2
iεk(i η̄kΩj) . (2.13)

where (Y ij)∗ ≡ Yij = εikεjlY
kl, and the supercovariant field strength is defined as,

F̂µν = ∂µWν − ∂νWµ − Ω̄iγ[µψν]
i +

1
2

iσ ψ̄[µiψν]
i . (2.14)

The commutator of two Q-supersymmetry transformations closes as in (2.8) modulo an
extra gauge transformation, δWµ = ∂µ(1

2 iσ ε̄2iε1i). We also note the transformation rule,

δ(F̂ab − 4σTab) = − ε̄iγ[aDb]Ω
i − 8

3
σ ε̄iγabχ

i

+
1
4

iε̄i(3 γ[aγ
cdγb] − γcdγab − 8 δcaδ

d
b )Ωi Tcd + iη̄iγabΩi . (2.15)

The fields behave under local scale transformations according to the weights shown in
table 2.
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vector multiplet
field σ Wµ Ωi Yij

w 1 0 3
2 2

linear multiplet
field Lij Ea ϕi N

w 3 4 7
2 4

hypermultiplet
field Ai

α ζα

w 3
2 2

Table 2. Weyl weights w of the vector multiplet, the tensor (linear) multiplet, and the hypermul-
tiplet component fields.

2.3 The linear supermultiplet

The linear multiplet consists of a triplet of scalars Lij , a divergence-free vector Êa, an
(auxiliary) scalar N , and a fermion field ϕi. The superconformal transformation rules for
these fields are as follows,

δLij = − i εk(i ε̄kϕ
j) ,

δϕi = − 1
2

i εjk /DLijεk +
1
2

(N − i /̂E)εi + 3εjkLijηk ,

δÊa = − 1
2

i ε̄iγabDbϕi +
1
8
ε̄i(3γaγbc + γbcγa)ϕiTbc − 2η̄iγaϕi ,

δN =
1
2
ε̄i /Dϕ

i +
3
4

iε̄iγabϕiTab − 4i εjk ε̄iχkLij +
3
2

iη̄iϕi . (2.16)

The constraint on Êa,
DaÊ

a = 0 , (2.17)

can be solved in terms of a three-rank anti-symmetric tensor gauge field Eµνρ, which
transforms as follows under the superconformal transformations,

δEµνρ =
1
2
ε̄iγµνρϕ

i − 3
2

i ε̄iγ[µνψρ]
k εjkL

ij . (2.18)

These transformations close according to the commutation relations (2.8), (2.10) and (2.12),
up to a tensor gauge transformation, δEµνρ = ∂[µ(−2

3 i ε̄2iγνρ]ε1
k εjkL

ij). The supercovari-
ant field strength associated with Eµνρ equals

Êµ =
1
6

i e−1εµνρσλ
[
∂νEρσλ −

1
2
ψ̄νiγρσλϕ

i +
3
4

i ψ̄νiγρσψλk εjkLij
]
. (2.19)

The behaviour under local scale transformations follow from the weights shown in table 2.
The tensor field Eµνρ is inert under scale transformations and thus carries zero weight.

2.4 Hypermultiplets

Hypermultiplets are necessarily associated with target spaces of dimension 4r that are
hyperkähler cones [51, 52]. The supersymmetry transformations are most conveniently
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written in terms of the sections Aiα(φ), where α = 1, 2, . . . , 2r,

δAi
α = i ε̄iζα ,

δζα = −1
2

i /DAiαεi +
3
2
Ai

αηi . (2.20)

The Aiα are the local sections of an Sp(r) × Sp(1) bundle. The existence of such an as-
sociated bundle is known from general arguments [53]. We also note the existence of a
covariantly constant skew-symmetric tensor Ωαβ (and its complex conjugate Ωαβ satis-
fying ΩαγΩβγ = −δαβ), and the symplectic Majorana condition for the spinors reads as
C−1ζ̄α

T = Ωαβ ζ
β. Covariant derivatives contain the Sp(r) connection ΓAαβ, associated

with rotations of the fermions. The sections Aiα are pseudo-real, i.e. they are subject to
the constraint, AiαεijΩαβ = Ajβ ≡ (Ajβ)∗. The information on the target-space metric is
contained in the so-called hyperkähler potential,

εij χ = Ωαβ Ai
αAj

β . (2.21)

For the local scale transformations we refer again to the weights shown in table 2. The
hypermultiplet does not exist as an off-shell supermultiplet. Closure of the superconformal
transformations is only realized upon using fermionic field equations, but this fact does not
represent a serious problem in what follows.

3 Tensor calculus

In the previous section we introduced various superconformal multiplets. With the excep-
tion of the hypermultiplets, these multiplets are truly off-shell, so that the superconformal
symmetries close without the need for imposing field equations. The tensor calculus for
these multiplets consists of various multiplication rules and decompositions, as well as in-
variant density formulas. With these results one can construct a rather general class of
invariant actions.

In five space-time dimensions the linear multiplets play an important role. At the
linearized level in flat space, linear and vector supermultiplets are related. For instance,
starting with the field Y ij belonging to a vector supermultiplet, one can generate a linear
multiplet upon the following identification,

Lij → 2Y ij ,

ϕi → i/∂Ωi ,

Eµ → ∂νFνµ ,

N → 2σ , (3.1)

as the reader can easily verify by explicit calculation. At this point one can generate
a new vector multiplet, by starting with the field N and identifying it with a new field
σ, etcetera, at the price of including higher and higher powers of derivatives. It is easy
to see that the linear multiplet precisely corresponds to the field equations of the vector
multiplet. Conversely, the vector multiplet will arise as the field equations of the linearized
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tensor multiplet action in flat space. This relationship is clearly embodied in the density
formula that we will define at the end of this section (c.f. (3.10)) and this feature has
been exploited extensively in four space-time dimensions, both for N = 1 and in N = 2
supersymmetry, but in five dimensions the restrictions are much stronger.

In the superconformal setting the relationship between vector and linear supermulti-
plets must, however, be modified in view of the additional restrictions posed by super-
conformal symmetries. For instance, the fields Lij and Y ij behave differently under scale
transformations, and, moreover, Lij is invariant under S-supersymmetry, whereas Y ij is
not. Nevertheless the relationship can still be established provided one gives up linear-
ity. In the absence of the superconformal background fields in flat space-time, the first
component of the correspondence (3.1) is then replaced by (for a single multiplet),

Lij → 2σ Y ij +
1
2

i εk(iΩ̄kΩj) , (3.2)

To establish the existence of this composite linear multiplet one verifies that the lowest
component has the correct Weyl weight and is S-supersymmetric, and furthermore, that
its supersymmetry variation is expressed in terms of a simple doublet spinor which can then
act as the representative of the linear multiplet spinor ϕi. If these criteria are not met,
then one will not be dealing with a linear multiplet consisting of 8 + 8 degrees of freedom,
but with a much larger multiplet. When dealing with several vector multiplets, labeled
by indices I, J, · · · = 1, 2, . . . , n, the expression (3.2) generalizes only slightly. It remains
quadratic on the vector multiplets and depends on it in a symmetric fashion. Hence we
start with

Lij(IJ) = 2σ(I Y ijJ) +
1
2

i εk(i Ω̄k
(IΩj)J) , (3.3)

For clarity of the notation, we will henceforth suppress the explicit indices (I, J) on the
right-hand side. In the presence of several vector multiplets, σ2 generalizes to σ(IσJ), σΩi

to σ(IΩiJ), etcetera.

The other components of the corresponding linear multiplet follow by applying suc-
cessive supersymmetry variations and one finds the following expressions, all manifestly
quadratic in the vector multiplet components,

ϕi(IJ) = iσ /DΩi +
1
2

i /DσΩi − 8σ2 χi + Y ijεjkΩk − 1
4

(F̂ab − 6σ Tab)γabΩi ,

Ea(IJ) =
1
8

iεabcdeF̂bcF̂de +Db(σ F̂ ba − 6σ2 T ba) + · · · ,

N (IJ) =
1
2
DaDaσ

2 − 1
2

(Daσ)2 + |Y ij |2

− 1
4
F̂abF̂

ab + 6σ F̂abT ab − σ2

(
4D +

39
2
T 2

)
+ · · · , (3.4)

where supercovariant terms of higher-order in the fermion fields have been suppressed. It
is also possible to derive the expression for the three-rank tensor gauge field associated
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with this multiplet, by requiring (2.18),

E(IJ)
µνρ =

1
2

i e εµνρσλ (σ F̂ σλ − 6σ2 T σλ) +
3
2
W[µFνρ] +

1
4

Ω̄iγµνρΩi

− 3
2

iσ Ω̄iγ[µνψρ]
i − 3

4
σ2 ψ̄[µiγνψρ]

i . (3.5)

The above construction can be generalized to non-abelian vector multiplets as well. In
principle, a linear multiplet can also be constructed from hypermultiplets, but the resulting
linear multiplet will not be fully realized off-shell.

The same strategy can also be used for constructing a linear multiplet from the square
of the Weyl multiplet. In view of the fact that the transformations for the Weyl multiplet
fields are not linear, this construction is considerably more complicated than the one above.
The starting point, as before, is to define a composite field LWij in terms of the Weyl mul-
tiplet fields, which satisfies all the requirements for the lowest-dimensional component of a
superconformal linear multiplet. This linear multiplet has originally been determined in [13]
(with different conventions). In the conventions of this paper we found the following result,

LijW = − εk(i

[
1
32

iR̄abk(Q)Rj) ab(Q) +
32
3

iχ̄kχj) −
1
4
T abRabk

j)(V )
]
. (3.6)

which, indeed, is S-invariant and transforms under Q-supersymmetry into a spinor doublet.
Furthermore it scales with Weyl weight 3, as is appropriate for a linear multiplet. By
applying successive supersymmetry transformations, we identify the other components of
this linear multiplet,

ϕiW =
1
64
Rab

cd(M) γcdRabi(Q) +
1
32
Rabj

i(V )Rabj(Q)− 3
4
T abRab

i(S)

− 1
6
Rabj

i(V )γabχj − 3
8

iDaTbc γ
cRabi(Q) +

3
16
T abTcd γ

cdRab
i(Q)

+ 4iT abγaDbχ
i − 1

2
i
(
γab /DTab + 3 /DγabTab

)
χi +

8
3
(
2D + 3T 2

)
χi ,

ÊaW = − 1
128

i εabcde
[
Rbc

fg(M)Rdefg(M) +
1
3
Rbcj

i(V )Rdeij(V )
]

+
3
2

i εabcdeDb

[
TcfD

fTde +
3
2
TcfDdTe

f

]
−Db

[
3
8
R(M)cdab T cd + 2T abD +

3
4
T ab T 2 − 9T acTcdT db

]
+ · · · ,

NW =
1
64
Rab

cd(M)Rcdab(M) +
1
96
Rabj

i(V )Rabij(V ) +
15
8
T abTcdRab

cd(M)

+ 3T abDcDaTbc −
3
2
(
DaTbc

)2 +
3
2
DcTabD

aT cb

− 9
4

iεabcdeT abT cdDfT
fe +

8
3
D2 + 8T 2D − 33

8
(T 2)2 +

81
2

(T acTbc)2

+ · · · , (3.7)

where the dots refer to fermionic terms, which we will not need for what follows.3

3Note that (3.4) and (3.7) contain second-order superconformally covariant derivatives. For convenience
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In order to represent a linear multiplet, the vector ÊaW should satisfy the constraint
DaÊ

aW = 0, as a consequence of which this vector can be expressed in terms of a three-
rank tensor field EW

µνρ. In principle, we can determine the full expression of this composite
tensor by verifying its supersymmetry transformation (2.18). This is how we originally
obtained (3.5). For the Weyl multiplet, however, this calculation is considerably more
involved, so that we restrict ourselves to the expression for the purely bosonic terms. The
result reads as follows,

EW
µνρ = − 3

16
ω[µ

ab

(
∂νωρ] ab −

2
3
ων ac ωρ]

c
b

)
− 1

16
V[µi

j

(
∂νVρj

i − 1
3
Vνj

k Vρ]k
i

)
− 9

(
Tσ[µDσTνρ] +

3
2
Tσ[µDνTρ]

σ

)
+ i e εµνρσλ

(
3
16
R(M)κτ σλT κτ + T σλD +

3
8
T σλT 2 − 9

2
T σκTκτT

τλ

)
+ · · · , (3.9)

where the dots represent the fermionic contributions. It is not difficult to verify that this
expression is invariant under scale transformations and conformal boosts, up to tensor
gauge transformations and up to terms proportional to fermions (we recall that the spin
connection depends both on bµ and ψµi), and that the tensor field strength corresponding
to it reproduces the bosonic terms in ÊaW shown in (3.7).

Finally, we note the existence of a superconformally invariant density for a product of a
vector with a tensor supermultiplet. The corresponding expression takes the following form,

e−1Lvt =
(
Yij −

1
2

Ω̄iγ
µψµ

k εkj

)
Lij + σ

(
N − 1

2
ϕ̄iγ

µψµ
i

)
+ i Ω̄iϕ

i

+
1
6

ie−1εµνρσλWµ ∂νEρσλ +
1
4

iσ Lij ψ̄µiγµνψνkεkj . (3.10)

By using the composite linear multiplets defined previously, this density formula thus
enables the construction of superconformally invariant actions. This represents a standard
way of constructing actions that is also well-known in the context of four space-time
dimensions. We will make use of this result in section 5.

4 BPS attractor equations

In this section we derive the conditions for full supersymmetry of the field configuration.
Here we follow the systematic approach outlined for four space-time dimensions in [54].
In this section the analysis is done entirely at the off-shell level and we obtain the full

we exhibit the bosonic structure of three such expressions,

DµDaσ = DµDaσ + 2 fµa σ ,

DµDaAi
α = DµDaAiα + 3 fµaAi

α ,

DµDaTcd = DµDaTcd − 4 fµ[cTd]a + 4 fµ
e ηa[cTd]e + 2 fµaTcd . (3.8)
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space-time geometry. Our analysis differs from the one of [17], where on-shell information
was already introduced at an earlier stage of the calculation. Only in the next section 5
we will make use of the supersymmetric action. Although our analysis is different in spirit
and covers a much larger class of supergravity theories, the results turn out to overlap
substantially with those of [8].

4.1 Supersymmetry

To analyze supersymmetry one chooses a purely bosonic field configuration and re-
quires that the supersymmetry variation of all fermion fields vanish up to a uniform S-
supersymmetry transformation. In this context it is convenient to define two ‘compensat-
ing’ spinor fields, ζiV and ζiH, belonging to the vector multiplet sector and the hypermultiplet
sector, respectively, which transform linearly under S-supersymmetry,

ζiV =
1

C(σ)
CIJKσ

IσJ ΩiK , ζiH = − 2
3χ

εij ΩαβAj
αζβ . (4.1)

Here we have introduced a symmetric three-rank tensor CIJK and a corresponding function
C(σ) = CIJKσ

IσJσK . The tensor CIJK must be non-vanishing, but other than that there
are no immediate restrictions.

It is straightforward to write down the supersymmetry variations of these two spinor
fields (which both carry scaling weights equal to 1

2),

δζiV =
(
Tab −

1
12
Fab

I∂I lnC(σ)
)
γabεi − 1

6
i /D lnC(σ) εi − 1

3
εjkY

ijI∂I lnC(σ) εk + ηi ,

δζiH = −1
6

i /D lnχ εi +
1
3

i/kj i εj + ηi , (4.2)

where here and henceforth we suppress terms proportional to the fermion fields. Further-
more we made use of the identity [51],

χ−1Ωαβ Ai
αDµAjβ =

1
2
εij Dµ lnχ+ kµi

kεkj , (4.3)

where kµji is proportional to the SU(2) Killing vectors of the underlying hyperkähler cone.
We now require that the S-supersymmetric linear combinations, ζiV−ζiH, ζα− 3

2Ai
α ζiH,

ΩiI−σIζiV, ϕi−3 εjkLijζkV, and χi− 3
16Tabγ

abζiV, do not transform under Q-supersymmetry.
This leads to the following conditions,

Dµ(χ−1/2Ai
α) = 0 ,

∂µ(C−1/3(σ)σI) = 0 ,
Dµ
(
C−1(σ)Lij

)
= 0 ,

C(σ)χ−1 = constant ,
Fab

I = 4σITab ,
D[a

(
C1/3(σ)Tbc]

)
= 0 ,

Db
(
C2/3(σ)T ba

)
= iεabcdeTbcTdeC2/3(σ) ,

kµj
i = 0 ,

Rµνi
j(V ) = 0 ,
Y ijI = 0 ,
N = 0 ,
Êa = 0 ,
D = 0 ,

(4.4)

which were also given in [17] in the conventions of [13, 49]. However, there are further con-
straints in view of the fact that all fermionic quantities must vanish under supersymmetry.
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Experience from the corresponding analysis in four space-time dimensions [54] indicates
that one must also consider the variations of Rabi(Q)− (Tcdγcdγab− 4Tab)ζiV, and of DµζH.
Combining the result of the first variation with the previous results, one finds,

DcTab =
1
2

i ηc[aεb]defg T
deT fg

− 1
3

[
2D[a lnC(σ)Tb]c −Dc lnC(σ)Tab − 2Dd lnC(σ)Td[a ηb]c

]
,

Rab
cd(M) = −2

[
T 2 δab

cd + 4TabT cd + 4T[a
cTb]

d − 8Te[aT
e[cδb]

d]
]
. (4.5)

In addition one considers the variation of the S-invariant combination, Dµζ
i
H −

1
6 [δij /D lnχγµ − 2/̂kj iγµ − 6iTµaγa]ζ

j
H, subject to the conditions (4.4). This confirms the

consistency of the previous results and, in addition, gives rise to one more condition,

fµ
a = −1

6
DµDa lnχ+

1
18
Dµ lnχDa lnχ−4TµbT ab+

1
4

[
3TbcT bc −

1
9

(Db lnχ)2

]
eµ
a . (4.6)

Using the arguments presented in [54], we conclude that the above equations (4.4), (4.5)
and (4.6) comprise all the conditions for a supersymmetric field configuration consisting
of the Weyl multiplet, vector multiplets, linear multiplets and hypermultiplets, without
imposing equations of motion. Because the fermionic equations of motion must be satisfied,
simply because of supersymmetry, most of the bosonic equations of motion must be satisfied
as well. There are, however, exceptions, such as the equation of motion associated with the
scalar field D belonging to the Weyl multiplet, which does not appear as the supersymmetry
variation of a fermionic expression.

Combining the second equation of (4.5) with (4.6), we derive the following equation,

Rabcd(ω, e) = 2 eaµebν
(
∂[µων]

cd − ω[µ
ceων]e

d
)

= − 8
(
TabT

cd + Ta
[cTb

d]
)

+ δc[aδ
d
b]

(
4TefT ef −

2
9

(De lnχ)2

)
− δ[a

[c

(
16Tb]eT

d]e +
4
3
Db]Dd] lnχ− 4

9
Db] lnχDd] lnχ

)
. (4.7)

4.2 Space-time geometry

Before discussing the resulting space-time geometry we have to impose a number of gauge
choices. We set the dilatational gauge field bµ = 0 (in fact, K-invariance implies that the
equations found above are already independent of bµ) and furthermore we set the function
C(σ) equal to a constant C. This implies that also χ becomes a constant. The ratio of the
two constants C and χ will eventually be defined by the equation of motion for the field
D, but at the moment we proceed without making reference to any particular Lagrangian.
Note that the various fields will still be subject to constant scale transformations which
are a remnant of the full space-time dependent dilatations. Physical results should, of
course, be insensitive to these scale transformations. In addition we set the SU(2) gauge
connections to zero, in view of the fact that their field strength is vanishing (c.f. (4.4)). In
this situation the various scalar fields σI and Lij are all constant.
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The resulting geometry is now of a special type, as the tensor Tµν is an example of
a conformal Killing-Yano tensor [55]. Locally, in five space-time dimensions, this tensor
generically induces a family of pairs of two-surfaces which together with the fifth orthogonal
dimension foliate the space-time. It also leads to a Killing vector associated with this fifth
dimension and a symmetric Killing tensor,

ξµ = ie−1 εµνρστ Tνρ Tστ , Kµν = Tµρ Tν
ρ , (4.8)

where e = det(eµa). Using the properties of the tensor Tµν (in the gauge indicated above),
we obtain the following results for the Riemann tensor and for the derivative of Tµν ,

Rabcd = −8
(
TabT

cd + Ta
[cTb

d]
)
− 16 δ[a

[c Tb]eT
d]e + 4 δc[aδ

d
b] TefT

ef ,

DρTµν =
1
2
gρ[µ ξν] . (4.9)

Furthermore we note the results,

Dµξν = −ie εµνρστξρT στ ,
DρKµν = −1

2ξ(µTν)ρ ,

ξµTµν = 0 ,
T 2 ≡ (Tab)2 = constant .

(4.10)

From these equations it is clear that ξµ is indeed a Killing vector. Furthermore one may
easily verify that the Riemann tensor satisfies the Bianchi identity.

If ξµ vanishes then the tensors Tµν and Kµν are covariantly constant and so is the
Riemann tensor so that we are dealing with a locally symmetric space. In this particular
case the space is in fact the product of a two- and a three-dimensional maximally symmetric
space, as the Riemann tensor decomposes into two Riemann tensors corresponding to these
subspaces satisfying Râb̂

ĉd̂ ∝ c T 2 δ[â
ĉδb̂]

d̂, with proportionality c = −16 and c = 4 for the

two- and the three-dimensional subspace, respectively. Here the indices â, b̂, ĉ, d̂ refer to
the tangent-space projected onto the two- or three-dimensional subspaces.

Rather than considering this case any further, we concentrate on the more general
case where ξµ 6= 0 and return to the limit of vanishing ξµ at the end. Obviously the
line element must reflect the isometry associated with the Killing vector ξµ. Choosing a
coordinate ψ by ξµ∂µ = ∂/∂ψ, we decompose the coordinates into ψ and four-dimensional
coordinates xm, where m = 1, 2, 3, 4, without committing ourselves to a certain signature
yet.4 Correspondingly, the tangent-space indices a = 1, 2, . . . , 5 are decomposed into a = 5
and indices p, q, . . . = 1, 2, 3, 4. Upon a suitable local Lorentz transformation, the fünfbein
is brought into the form,

eµ
5 dxµ = eg

[
dψ + σm dxm

]
, eµ

p dxµ = e−g/2 êmp dxm . (4.11)

In view of the isometry corresponding to shifts of the coordinate ψ we may assume that
g, σm and the vierbein field êm

p do not depend on ψ. The corresponding inverse fünfbein
4At this point we are using Pauli-Källén metric conventions, where the signature is determined by making

one of the coordinates purely imaginary. This enables us to consider all possible signatures at once, so that

this analysis encompasses the solutions for minimal supergravity found in [8]. Momentarily we will assume

that the Killing vector ξµ is spacelike.
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components are given by,

e5
ψ = e−g , e5

m = 0 , ep
ψ = −σp eg/2 , ep

m = eg/2 êpm , (4.12)

where, on the right-hand side, four-dimensional tangent-space and world indices are con-
verted by the vierbein êm

p and its inverse (so that, e.g. σp = êp
m σm, and the covariant

derivative ∇p contains the spin connection ω̂m
pq, associated with the vierbein êm

p). This
leads to the following expressions for the spin connection, ωabc ≡ eaµ ωµcd,

ωpqr = eg/2
[
ω̂pqr + δp[q∇r]g

]
,

ω5pq = ωqp5 =
1
2

e2gQpq ,

ω55p = −eg/2∇pg , (4.13)

where Qpg equals,
Qpq = êp

mêq
nQmn , Qmn = ∂mσn − ∂nσm . (4.14)

Let us now return to (4.9) and consider the second equation, which we write in tangent-
space indices as,

ec
µ ∂µTab + 2ωc[a

d Tb]d =
1
2
δc[aδb]5 ξ , (4.15)

where we made use of the fact that T5a = 0 and defined ξ = iεpqrsTpqTrs, where εpqrs =
ε5pqrs so that ξψ = e−g ξ. Changing the overall sign of the epsilon tensor is irrelevant as it
only corresponds to a sign change of the coordinate ψ.5 Imposing the equations contained
in (4.15) leads to the following results,

∂ψTab = 0 , Qpq = −2ie−2g εpqrsT
rs , ∇pTqr = 0 , g = constant . (4.16)

These results are consistent with what is found when considering the Riemann tensor
from the connections (4.13) upon comparison with the first equation (4.9).6 Here and hence-
forth we will be assuming that the four-dimensional subspace has signature (−,+,+,+), so
that the Killing vector ξµ is spacelike and ξ is real. The various curvature components read,

Rpq5r = −1
2

e5g/2
[
∇rQpq +∇rgQpq +∇[pgQq]r − δr[pQq]s∇sg

]
,

R5p5q = eg
[
∇p∇qg −

1
2
δpq (∇rg)2 + 2∇pg∇qg

]
− 1

4
e4gQprQqr ,

Rpqrs = egRpqrs(ω̂)− 2 eg δ[p[r

[
∇s]∇q]g +

1
2
∇s]g∇q]g −

1
4
δs]q] (∇ug)2

]
+

1
2

e4g
[
QpqQrs −Qp[rQs]q

]
, (4.17)

where the right-hand side is consistently written in four-dimensional notation. Obviously
Rpq5r must vanish in order to be consistent with the first equation (4.9), and this is indeed

5In Pauli-Källén notation we now fix convention such that εµνρστx
µxνxρxσxτ = i 5!x0x1x2x3x5.

6We note that (4.16) has been derived from (4.15) assuming det[T ] 6= 0. For det[T ] = 0 one can arrive

at the same result by also making use of (4.9) and (4.17).
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what is implied by the earlier results (4.16). Likewise the expression for R5p5q is consistent
with the corresponding equation (4.9). Hence we are left to analyse the last equation
of (4.17), which determines the four-dimensional Riemann tensor R(ω̂) according to

Rpqrs(ω̂) = −16 e−g
[
4 δ[p[r Ts]tTq]

t − δp[rδs]q T 2
]
. (4.18)

The Ricci scalar, Rabab(ω̂) = 0. Further inspection shows that this Riemann tensor
corresponds to a product of two two-dimensional spaces with equal radii, namely AdS2

and S2. The geometry thus takes the form of a circle (parametrized by the coordinate
ψ) non-trivially fibered over an AdS2 × S2 base space. We now adopt four-dimensional
coordinates by writing the respective metrics in the standard form of a Bertotti-Robinson
and a two-sphere metric, with coordinates t, r, and θ, ϕ, respectively, so that the five-
dimensional line element takes the following form (r is non-negative and θ and ϕ have
periodicity π and 2π, respectively),

ds2 =
1

16 v2

(
− r2dt2 +

dr2

r2
+ dθ2 + sin2 θ dϕ2

)
+ e2g

(
dψ + σ

)2
,

σ = − 1
4 v2

e−g
(
T23 r dt− T01 cos θ dϕ

)
, (4.19)

corresponding to,

Qtr =
1

4 v2
e−g T23 , Qθϕ = − 1

4 v2
e−g T01 sin θ . (4.20)

Here and henceforth we use the definition,

v =
√

(T01)2 + (T23)2 , (4.21)

where T01 and T23 are the nonvanishing components of the tensor field Tab, where the
local Lorentz indices are (0, 1, 2, 3). Note that the vierbein fields can be chosen diagonally;
their values can be read off from (4.19),

em
p dxm =

1
4 v

(
r dt,

dr
r
, dθ, sin θ dϕ

)
, (p = 0, 1, 2, 3) . (4.22)

In this Lorentz frame, the fields Tab are constant. For future use we also list the
nonvanishing spin-connection fields,

ωm
pq =

◦
ωm

pq +
1
2
σm e3gQpq ,

ωm
p5 =

1
2
emq e2gQpq ,

ωψ
pq =

1
2

e3gQpq , (4.23)

where
◦
ωt

01 = −r and
◦
ωϕ

23 = cos θ.
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Observe that σI , Tab, v and e−g transform with weight +1 under the (constant) scale
transformations inherited from the five-dimensional dilatations. As a result, the met-
ric (4.19) scales uniformly with weight −2 and the one-form σ is inert under scale trans-
formations. Note that σ is determined up to a four-dimensional gauge transformation as-
sociated with shifts of the coordinate ψ with a function depending on the four-dimensional
coordinates. Such diffeomorphisms leave the form of the line element invariant.

Let us now further discuss the line element (4.19). Assuming that T01 6= 0, we can
rewrite the line element in the form,

ds2 = − ρ4

16 v2

(
T01

v
dt+

T23

v ρ2

(
cos θ dϕ+

1
p0

dψ
))2

+
1

4 v2ρ2

(
dρ2 +

ρ2

4

(
dθ2 + dϕ2 +

1
(p0)2

dψ2 +
2
p0

cos θ dϕdψ
))

, (4.24)

where we used the definitions

ρ =
√
r , p0 =

e−g

4 v2
T01 . (4.25)

To make p0 unambiguous we fix the periodicity interval for ψ to 4π. The second term of
the line element then corresponds to a flat metric, up to an overall warp factor (2vρ)−2.
To see this we combine the four Cartesian coordinates into two complex ones, which we
parametrize as,

z1 = ρ cos θ/2 exp
1
2

i[ψ/p0 + ϕ] , z2 = ρ sin θ/2 exp
1
2

i[ψ/p0 − ϕ] . (4.26)

Clearly for |p0| = 1 we cover the whole four-dimensional space R4. For |p0| 6= 1 we have
a conical singularity at the origin. In all cases the three-dimensional horizon is located at
r = 0 and its cross-sectional area is equal to

A3 =
∫

Σhor

= π2v−2 eg . (4.27)

Observe that this result is not invariant under the scale transformations introduced earlier,
which simply reflects the fact that the line element is not invariant either. Furthermore
the bi-normal tensor at the horizon is the same in all cases when given with tangent space
indices. Its only non-vanishing components are,

ε01 = ±1 , (4.28)

so that εµνεµν = −2. Both (4.27) and (4.28) can be derived by first determining the bi-
normal tensor and the cross-sectional area in a coordinate frame that is non-singular at the
horizon, and subsequently converting the results to the singular frame used in the text.

The line element (4.24) describes the near-horizon geometry of the spinning charged
black hole [5] (see also, [6]), and we observe that the rotation is associated with a globally
defined one-form on S3, in view of Im [z1 dz1

∗+ z2 dz2
∗] = ρ2[(p0)−1dψ+ cos θ dϕ]. Clearly
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the angular momentum of the black hole is proportional to T23. When T23 = 0 we are
dealing with a static black hole and the near-horizon geometry is given by,

ds2 =
1

16 v2

(
−r2dt2 +

dr2

r2

)
+

1
4 v2

ds2(S3/Zp0) . (4.29)

Finally we turn to the case T01 = 0 where we find,

ds2 =
1

16T23
2

dr2

r2
+ e2g dψ2 − eg

2T23
r dψ dt+

1
16T23

2
ds2(S2) , (4.30)

where ds2(S2) is the line element belonging to the unit two-sphere. The first three terms
constitute a metric which is locally AdS3 so that the near-horizon geometry is that of
AdS3 × S2. This is the near-horizon geometry of a supersymmetric black ring, or, when
we drop the identification ψ ∼= ψ + 4π, of an infinitely long black string.

4.3 Gauge fields

According to (4.4), the field strengths FµνI are determined in terms of the tensor field Tab,

Ftr
I =

σI

4 v2
T01 , Fθϕ

I =
σI

4 v2
T23 sin θ . (4.31)

At this point we can define magnetic charges associated with Qθϕ and Fθϕ
I . Employing

the same conventions for these field strengths (apart from a relative sign between p0 and
pI), we define

p0 =
e−g

4 v2
T01 , pI =

σI

4 v2
T23 , (4.32)

with the same expression for p0 as given in (4.25). In the five-dimensional context, the pI

will play the role of dipole magnetic charges. They are proportional to T23, so they will
vanish for a static black hole. The definition of the electric charges, which involves the
equations of motion, will be discussed in later sections. From (4.31) we can determine the
vector potentials,

Wµ
I(x) dxµ = − σI

4 v2
(T01 r dt+ T23 cos θ dϕ) + dΛI(x) , (4.33)

up to an abelian gauge transformation, parametrized by ΛI(x).
For the spinning black hole, where T01 6= 0, the gauge transformation can be chosen

such that the gauge potentials are globally defined on S3. To see this one makes use of the
observation preceding (4.29) in the previous subsection, which leads to,

Wµ
Idxµ = − σI

4 v2

(
T01 r dt+ T23

(
dψ
p0

+ cos θ dϕ
))

. (4.34)

In the case of the black ring, where T01 = 0, the gauge transformations in (4.33)
introduce an uncontractible component corresponding to Wilson lines around the circle
parametrized by ψ. The proper definition of the Wilson line moduli is subtle due to the
presence of the charges pI and the S1×S2 topology, as we shall discuss below. In any case,

– 21 –



J
H
E
P
0
2
(
2
0
1
0
)
0
5
6

due to the presence of large gauge transformations (i.e. gauge transformations that cannot
be connected continuously to the identity), these moduli aI should be periodically identified
and furthermore they should be defined such that they are not subject to small gauge
transformations. At any rate the gauge fields are expected to contain the following terms,

Wµ
Idxµ = −pI cos θ dϕ+ aIdψ . (4.35)

However, unlike in the case of the spinning black holes, the gauge fields are not globally
defined, as is obvious from the fact that the monopole fields are sourced by Dirac strings.
This phenomenon implies that the gauge fields should be defined in patches, connected
by suitable gauge transformations. In the context of five space-time dimensions the Dirac
strings are degenerate and one is actually dealing with Dirac membranes. Just as in
the case of Dirac strings, the Dirac membranes are subject to constraints, some of them
related to charge quantization (to appreciate this, the reader may consult [56, 57], where
some of this is explained in the context of 2 + 1 dimensions).

For a single black ring and for multiple concentric black rings, the appropriate sections
have been considered in [12], guided by the explicit ring solutions [7] and [9]. Although these
results were obtained without taking into account possible higher-derivative interactions,
they should still apply to the general case, as the choice of the sections and the correspond-
ing Dirac membranes is entirely based on the topology of the underlying charge configura-
tion. With this in mind we replace (4.35) by the following sections (for a single ring),

Wµ
Idxµ = −pI

[
cos θ dϕ± d

(
ϕ+

1
2
ψ

)]
+ aIdψ , (4.36)

where we note that cos θ can be extended globally into the ring coordinate conventionally
denoted by x [7, 58]. For x = 1 and x = −1 one is dealing with the inner and the outer
part, respectively, of the two-dimensional plane that contains the ring. Hence the plus
sign in (4.36) refers to the section that is singularity free in the outer part of plane, and
the minus sign to the section that is singularity free in the inner part.

The nontrivial, and somewhat unexpected, feature of (4.36), is that the gauge trans-
formation between the two patches involves a dψ component, contrary to what one would
expect based on intuition from four dimensions. Indeed, in the case of an infinite black
string, this gauge transformation is just ∝ pIdϕ. However, the ring topology requires a
more extended gauge transformation.

One way to understand this difference is to appreciate the fact that, in order that
the Dirac membrane be unobservable, the gauge transformation between the patches must
allow for general deformations of its worldvolume irrespective of its topology. Choosing
a topologically trivial brane on each patch, say along the north and south pole of each
sphere on the ring (see the two figures on the left-hand side of figure 1), leads to the gauge
transformation −2pIdϕ between the patches. This is also the only possible choice for an
infinite string. But in the case of a proper ring embedded in a four dimensional space,7 the
topology of the spatial manifoldM4 corresponding to the embedding space minus the ring

7We assume a topologically trivial embedding space, like R4 or Taub-NUT, in the following discussion.
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Figure 1. The two figures on the left-hand side correspond to the two different gauge field patches
based on a topologically trivial choice for the two-dimensional Dirac brane. The three-dimensional
hypersurface bounded by the two branes is a ball B3. The gauge transformation associated with
the transition between the two patches has only components along the angle ϕ not shown in the
picture. On the right-hand side the two figures show a singular limit of the relevant but non-trivial
choice for the Dirac brane. The three-dimensional hypersurface connecting the two branes is the
sum of the B3 above and the generator of H3(M4). The corresponding gauge transformation has
an additional component along the ring circle, normal to the plane.

is nontrivial. Possible Dirac branes are classified as the boundaries of three-dimensional
spatial hypersurfaces. Thus it is important to know the third homology group H3(M4),
since the Dirac brane can also be the boundary of a non-trivial hypersurface, as opposed
to the trivial one discussed above.

In the case at hand it can be shown that H3(M4) = Z, so that the generator of the
group is a hypersurface with no boundary that wraps the ring once. A corresponding Dirac
brane is described as the boundary of the sum of the topologically trivial hypersurface and
this generator. Such a brane starts at the north pole of the sphere at some point along
the ring. When moving along the S1 of the ring, this brane rotates to the south pole and
subsequently it returns to the north pole when reaching the point of departure. A singular
limit of this surface is shown on the right-hand side of figure 1. Using the construction
based on de Rham currents in [56, 57, 59], this leads to a gauge transformation between
the gauge field patches that is proportional to the Poincaré dual of the generator described
above. A component along ψ is obviously necessary due to the plane in the centre. The
relative coefficient in the gauge transformation d(ϕ + 1

2ψ) has been fixed by demanding
periodicity of this generator. Finally, note that higher wrappings would introduce integral
multiples of the same one-form, and are therefore irrelevant in view of the integral shift
symmetry of aI .

The way to measure the Wilson line moduli aI now proceeds through the Chern-Simons
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charges of the ring, defined by the integral over the 3-cycle associated with the horizon Σ,

QCS
I ∝

∮
Σ
CIJKW

J ∧ FK . (4.37)

It was demonstrated in [12], by using the sections (4.36) and carefully evaluating the
integral, that the Chern-Simons charges are linearly related to the moduli aI , i.e., QCS

I ∝
CIJK a

JpK . The use of the sections (4.36) is essential for obtaining this relationship, so that
the aI , which are identified in this way, are no longer subject to small gauge transformations.
Here it is relevant that the Chern-Simons charges are also invariant under small gauge
transformations. This result is also consistent with large gauge transformations as both the
aI and the QCS

I change under a large gauge transformations by an integer (in proper units).
Although it is not the primary purpose of this paper to consider multi-ring solutions,

it is illuminating to briefly consider the situation of concentric rings [9]. Labeling the rings
by an index i, one introduces the moduli aI i and the charges pI i of the i-th ring. Following
the same logic as above, an extended set of sections generalizing (4.36) can be found that
matches the one used in [12]. One can then derive the following relation,

QCS
I ∝ CIJK

[∑
i

(2 aJ + pJ)i pKi −
(∑

i

pJ i

)(∑
j

pKj

)]
, (4.38)

which, for a single ring, reduces to the previous result. The above relation indicates that
the Chern-Simons charges are not additive, unlike the moduli (aI)i and the charges (pI)i
associated with the various rings. In fact, as we will establish later in section 8, the best
way to write this result is as follows,

QCS
I − 6CIJKP JPK = −12CIJK

∑
i

(
aJ +

1
2
pJ
)
i

pKi , (4.39)

where P I i =
∑

i p
J
i. This indicates that the expression on the left-hand side is in fact

additive. We will return to this topic in section 8.

4.4 Linear multiplets

As a last topic of this section we reconsider the two linear multiplets constructed in section 3
from the product of two vector multiplets and from the square of the Weyl multiplet both
vanish for BPS configurations, as the reader can easily verify. However, the corresponding
three-forms, denoted by Eµνρ, do not necessarily vanish. Since these quantities will play a
role in what follows, we will evaluate some of the corresponding expressions here.

First of all, we present some components of the tensor field E
(IJ)
µνρ , defined in (3.5).

Subject to the BPS conditions, one obtains the following results,

E
(IJ)
ψθϕ =

sin θ
8 v2

[
− eg σIσJ T01 + σ(IWψ

J) T23

]
,

E
(IJ)
ψrt = − 1

8 v2

[
eg σIσJ T23 + σ(IWψ

J) T01

]
,

E
(IJ)
rtϕ = − cos θ

T01T23 σ
IσJ

32 v4
,

E
(IJ)
θtϕ = r sin θ

T01T23 σ
IσJ

32 v4
. (4.40)
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For EW
µνρ, defined in (3.9), one derives the following equation upon using the BPS condi-

tions,

EW
µνρ = − 3

16
ω[µ

ab

(
∂νωρ] ab −

2
3
ων ac ωρ]

c
b

)
− 3

4
ie εµνρσλ

(
T 2T σλ + 6T σκTκτT τλ

)
. (4.41)

This result leads to the following components,

EW
ψθϕ = − 3

8
sin θ eg T01 .

EW
ψrt =

3
8

eg T23 ,

EW
rtϕ = cos θ

T01T23

16 v2
,

EW
θtϕ = − r sin θ

T01T23

16 v2
. (4.42)

We note that the components listed in (4.40) and (4.42) are consistent with the fact that
these three-forms are closed. Furthermore they are invariant under the scale transforma-
tions mentioned previously.

5 The Lagrangian and the electric charges

The construction of the relevant Lagrangian follows from the results presented in section 3.
Linear multiplets can be constructed from the products of two multiplets, which can then
be coupled to a vector multiplet by using the superconformal density formula (3.10). The
linear multiplet constructed from two vector multiplets will be written by means of a sym-
metric three-rank constant tensor CIJK , which can be identified with the tensor that we
introduced earlier in (4.1), although this is by no means essential. Below we will also use
the notation C(σ) = CIJK σ

IσJσK . The lowest component of the linear multiplet asso-
ciated with the symmetrized product of two vector multiplets will thus be identified with
−CIJK Lij(JK), where we make use of (3.3). Higher components are defined accordingly.
The vector multiplet that couples to the linear multiplet quadratic in the Weyl multiplet
is characterized by constants cI , so that its scalar field equals cIσI . Finally we also include
the Lagrangian for hypermultiplets.

After these definitions we introduce the expression for the bosonic terms in the La-
grangian, with convenient normalizations, decomposed according to,

L = Lvvv + Lhyper + Lvww . (5.1)

Here the Lagrangian cubic in vector multiplet fields equals,

8π2Lvvv = 3CIJKσI
[

1
2
DµσJ DµσK +

1
4
Fµν

JFµνK − YijJY ijK − 3σJFµνKTµν
]

− 1
8

iCIJK e−1εµνρστWµ
IFνρ

JFστ
K − C(σ)

[
1
8
R− 4D − 39

2
T 2

]
, (5.2)
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the Lagrangian for hypermultiplets (one of which plays the role of a compensating super-
multiplet) reads,

8π2Lhyper = −1
2

Ωαβ ε
ijDµAiαDµAjβ + χ

[
3
16
R+ 2D +

3
4
T 2

]
, (5.3)

and the Lagrangian containing the higher-derivative couplings is given by,

8π2Lvww =
1
4
cIYij

I T abRabk
j(V ) εki

+ cIσ
I

[
1
64
Rab

cd(M)Rcdab(M) +
1
96
Rabj

i(V )Rabij(V )
]

− 1
128

ie−1 εµνρστ cIWµ
I

[
Rνρ

ab(M)Rστab(M) +
1
3
Rνρj

i(V )Rστij(V )
] ]

+
3
16
cI
(
10σI Tab − FabI

)
R(M)cdab T cd

+ cIσ
I

[
3T abDcDaTbc−

3
2
(
DaTbc

)2+
3
2
DcTabDaT cb+Rab

(
T acT bc−

1
2
ηabT 2

)]
+ cIσ

I

[
8
3
D2 + 8T 2D − 33

8
(T 2)2 +

81
2

(T acTbc)2

]
− cIFabI

[
T abD +

3
8
T ab T 2 − 9

2
T acTcdT

db

]
+

3
4

i εabcde
[
cIFab

I

(
TcfDfTde +

3
2
TcfDdTef

)
− 3 cIσITabTcdDfTfe

]
. (5.4)

We remind the reader that R and Rab refer to the Ricci scalar and tensor. The factor
8π2, which equals four times the volume of the unit sphere S3, has been included to avoid
explicit factors of π when defining electric charges.8 In the above result there are two terms
which cannot be written in a manifestly gauge invariant form, related to the appearence of
gravitational and SU(2) Chern-Simons terms. To avoid these Chern-Simons terms we have
chosen to write their contribution in a form that is explicitly proportional to the gauge
fields Wµ

I . This representation may lead to difficulty in case that the gauge fields are not
globally defined, as we shall discuss in due course.

For future use we present the equation of motion for the auxiliary field D that follows
from the above results,

16
3
cIσ

ID + cI(8σITab − FabI)T ab + 4C(σ) + 2χ = 0 . (5.5)

On the horizon, this relation yields

χ = −2C(σ)− 2 cIσI T 2 . (5.6)

To appreciate the implications of the above results, let us first consider (5.2) for a single
vector supermultiplet, so that C(σ) = σ3. When suppressing the coupling to the fields Tab,

8In four space-time dimensions one extracts a factor equal to two times the volume of the unit sphere

S2. In this way the Coulomb potential has the same normalization in four and in five dimensions, without

factors of π.
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D and to the Ricci scalar R, we are dealing with a Lagrangian based on a scalar field σ,
a gauge field Wµ and an auxiliary field Y ij . Upon re-introducing the fermion fields, this
Lagrangian is invariant under rigid superconformal transformations. Note that the overall
sign of the Lagrangian is irrelevant, as it can be absorbed into an overall sign of the vector
supermultiplet fields. To identify the kinetic terms one may expand about some constant
value of the field σ. The value of this constant is arbitrary and in fact it can be changed by
a scale transformation that acts on all the fields and belongs to the rigid superconformal
symmetry group. Note the presence of the Chern-Simons term, which implies that the
corresponding action is only gauge invariant up to boundary terms.

When coupled to the fields of the Weyl multiplet, this Lagrangian is invariant under
local superconformal transformations. However, it is inconsistent because the field D acts
as a Lagrange multiplier which requires σ to vanish. To avoid this difficulty one must
also introduce the superconformally invariant Lagrangian of a hypermultiplet. Introducing
one hypermultiplet, the field equation for D implies that χ = −2σ3. In view of the
local invariance under scale transformations σ can be fixed to a constant. The phases
contained in the hypermultiplet scalars can be fixed as well by making use of the local
SU(2) transformations of the superconformal group, so that none of the scalar fields will
correspond to physical degrees of freedom. Furthermore one can eliminate the auxiliary
fields, Y ij and Tab, by their (algebraic) field equations, which yields Y ij = 0 and Tab =
(4σ)−1Fab. Hence one is left with (for constant σ),

8π2L = −1
2
σ3R− 3

8
σ FµνF

µν − 1
8

i e−1εµνρστWµFνρFστ , (5.7)

which, upon including the gravitino field (the other fermions are either auxiliary or can be
set to zero by a gauge choice), is equal to the Lagrangian of pure five-dimensional super-
gravity. Observe that the vector gauge field is the only field of the vector multiplet and
the hypermultiplet that describes physical degrees of freedom. The other ones are compen-
sating fields (associated with scale transformations, R-symmetry and S-supersymmetry)
or auxiliary fields. The field σ is a constant and defines the Newton constant to be equal
to GN = σ−3, so that the Ricci scalar will appear in the Lagrangian with a multiplicative
factor (16π2GN)−1. This definition of Newton’s constant is different from the more conven-
tional one, where one adopts a prefactor (16πGN)−1, just as in four space-time dimensions.
As a result of the convention of this paper, the Bekenstein-Hawking area law, leads to the
area in Planck units, A/GN, with proportionality factor (4π)−1.

Let us briefly examine the relevant definition of the entropy defined in terms of the
Noether potential [21, 23],

Smacro = 2π
∫

Σhor

∂L
∂Rµνρσ

εµνερσ , (5.8)

where εµν is the bi-normal tensor associated with the horizon, normalized such that
εµνε

µν = −2. For L = −(16π2GN)−1R, this definition yields Smacro = 1
4(A/πGN), which

is the area law with the area described in units of πGN. This has a bearing on the various
normalization factors for the Noether potential and the entropy discussed later on.
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In the next section we present a more detailed discussion of the entropy and the angular
momentum. Before doing so we briefly discuss the electric charges, which follow from the
relevant integral over the 3-cycle that encloses the black hole or the black ring,

qI =
2

8π2

∫
dθ dϕdψ

[
−3CIJK EJKψθϕ + cI E

W
ψθϕ

]
, (5.9)

where the relative factor 3 results from the fact that the Lagrangian (5.2) is cubic in the
vector multiplets, whereas the Lagrangian (5.4) is only linear. An overall factor 2 has been
included to be consistent with the usual definition of the charge in terms of the electric dis-
placement field. Making use of the results (4.40) and (4.42), one obtains the following result,

qI =
3

2 v2
CIJK

(
σJσK egT01 − σJ [Wψ

K ]T23

)
− 3

2
cI egT01 , (5.10)

where we used the definition

[Wψ
I ] =

1
16π2

∫
dθ dϕdψ sin θ Wψ

I . (5.11)

which is gauge invariant under periodic gauge transformations. For spinning black holes,
where the gauge fields are globally defined, (5.10) takes the form

qI =
3 eg

2T01

[
CIJKσ

JσK − cIT01
2
]
. (5.12)

Observe that the above results are scale invariant.
To derive the corresponding result for the black ring is more subtle in view of the fact

that the gauge fields are not globally defined, as was discussed in subsection 4.3. This
will be discussed in subsection 8 and the resulting expression for the charges will be given
in (8.7).

The charges can also be determined by making use of the Noether potential associated
with abelian gauge transformations. Consider, for instance, a Lagrangian in five space-time
dimensions consisting of an invariant Lagrangian depending on the abelian field strength
Fµν , its space-time derivatives ∇ρFµν , and matter fields denoted by ψ and their derivatives
∇µψ, plus an abelian Chern-Simons term,

Ltotal = Linv(Fµν ,∇ρFµν , ψ,∇µψ) + εµνρστAµFνρFστ , (5.13)

For this Lagrangian, the Noether potential reads as follows,

Qµνgauge(φ, ξ) = 2LµνF ξ − 2∇ρLρ,µνF ξ + 6 e−1εµνρστ ξAρFστ , (5.14)

where φ generically denotes the various fields and ξ is the infinitesimal local parameter
associated with the gauge transformations. Here we use the notation,

δLinv = LµνF δFµν + Lρ,µνF δ(∇ρFµν) + Lψ δψ + Lµψ δ(∇µψ) (5.15)

It is straightforward to verify that ∂νQµν is equal to the field equation, up to terms pro-
portional to ∂νξ. The electric charge can be written as

q =
∫

Σhor

εµν Qµνgauge(φ, ξ) . (5.16)
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where εµν is the binormal tensor associated with the horizon and the gauge parameter
ξ must be taken constant so that the underlying field configuration is invariant and the
corresponding Noether current vanishes on-shell.

6 Entropy and angular momentum for black holes and rings

The evaluation of the entropy and the angular momentum proceeds from the expression for
the Noether potential associated with space-time diffeomorphisms [21–23]. In the case at
hand this is complicated in view of higher-derivative interactions, but it is especially subtle
because of the presence of the Chern-Simons terms. At the end, one must evaluate the
integral of the appropriate Noether potential over the horizon, and here one may encounter
an extra subtlety when the gauge fields are not globally defined. This will be discussed
further in section 8.

In this section we start with a systematic discussion of the relevant Noether potential
based on the Lagrangian specified in section 5. This Lagrangian contains two different
Chern-Simons terms, one of the type W ∧ F ∧ F , which is cubic in the abelian gauge
fields, and a mixed one of the type W ∧ Tr[R ∧ R], which is linear in the gauge fields
and quadratic in the Riemann curvature. The derivation of the corresponding Noether
potential is straightforward but subtle. We first evaluate this potential for a Lagrangian
that depends on the Riemann tensor, on the field strengths of abelian gauge fields, and on an
anti-symmetric tensor field Tµν with at most first-order space-time derivatives ∇µTνρ. This
Lagrangian does not contain the two Chern-Simons terms, which are considered separately.
Its Noether potential associated with space-time diffeomorphisms decomposes into two
different terms,

Qµν0 = Q̂µν(ξρ) + Q̂µνgauge(−ξρWρ
I) , (6.1)

corresponding to the following decomposition of the diffeomorphisms on the gauge field,

δξWµ
I = −∂µξνWν

I − ξν∂νWµ
I = ξνFµν

I + ∂µ(−ξνWν
I) . (6.2)

The first term, which does not contain the effect of the last term in (6.2), is given by

Q̂µν(ξρ) = −2LµνρσR ∇ρξσ + 4∇ρLµνρσR ξσ

+
[
Lµ,ρσT T νσ + Lρ,µσT T νσ + Lν,µσT T ρσ − (µ↔ ν)

]
ξρ , (6.3)

where ξρ parametrizes the diffeomorphisms, and Lµνρσ and Lµ,νρ denote partial derivatives
of the Lagrangian according to

δL = LµνρσR δRµνρσ + Lµ,νρT δ(∇µTνρ) . (6.4)

These derivatives are subject to the BPS attractor equations. As a result they take the
following form on the horizon,

8π2 LµνρσR =
(
− 1

2
C(σ)− 3

4
cIσ

I T 2

)
gµ[ρgσ]ν +

1
2
cIσ

I(TµνT ρσ − Tµ[ρT σ]ν) ,

8π2 Lρ,µνT = −3 cIσI
(

3D[µT ν]ρ +DρTµν +
5
4

iεµνσλτTσλTτ ρ
)

= − 9
4

i cIσI εµνσλτ TσλTτ ρ , (6.5)
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Obviously we also need the derivative ∇ρLµνρσR , which follows form (6.5) by means of the
attractor equations. The result reads as follows,

8π2∇ρLµνρσR =
5
8

i cIσI(Tµνεσρλκτ − T σ[µεν]ρλκτ )TρλTκτ . (6.6)

It remains to consider the second term in (6.1), Q̂µνgauge(−ξρWρ
I), which denotes the

Noether potential associated with the abelian gauge transformations with field-dependent
gauge parameters ξI = −ξρWρ

I . This potential was already presented in (5.14), where the
last term corresponding to the W ∧ F ∧ F Chern-Simons term has been suppressed. We
thus need the expression for LµνF I (c.f. (5.15)),

8π2 LµνF I =
3
2
CIJKσ

JFµνK − 9CIJKσJσK Tµν

− 3
16
cI Rab

µν(M)T ab +
3
4

icIεµνρστ Tρλ

(
DλTστ +

3
2
DσTτ λ

)
− cI

[
Tµν

(
D +

3
8
T 2

)
− 9

2
TµρTρσT

σν

]
= − 3CIJKσJσK Tµν +

3
4
cI
(
Tµν T 2 + 6TµρTρσT σν

)
, (6.7)

where the second equation represents the value taken at the horizon.
By combining the above contributions we obtain an explicit expression for (6.1). In

practice we need the contraction of the Noether potential with the bi-normal tensor (4.28)
associated with the horizon. Therefore we evaluate the following expression for (6.1),

8π2 εµνQµν0 = − 2 ε01C(σ)∇[0ξ1]

− 2 ε01 cIσ
I
[
3T23

2∇[0ξ1] − 2T01T23∇[2ξ3] + 11T01
2T23 ξ5

]
+ 2 ε01 ξ

ρWρ
I T01

[
−6CIJKσJσK + 3 cI(T23

2 + 2T01
2)
]
. (6.8)

Subsequently, we turn to the Chern-Simons terms contained in (5.2) and (5.4),

8π2 LCS = −1
8

i e−1εµνρστ
[
CIJKWµ

IFνρ
JFστ

K +
1
16
cIWµ

IRνρabRστab
]
, (6.9)

which contribute to the Noether potential as follows,

8π2QµνCS =
1
2

i e−1εµνρστ CIJK ξ
λWλ

IWρ
JFστ

K

+
1
32

i e−1εµνρστ cIWρ
I Rστ κλ∇κξλ

− 1
32

i e−1ερστλ[µ cIFρσ
I Rτλν]κ ξκ

+
1
64

i e−1 ερστλκ cIFρσ
I Rτλµν ξκ . (6.10)

We note that the first term is similar to what one expects from the expression for the
Noether potential associated with gauge transformations. However, it carries a different
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pre-factor than in (5.14), a feature that is well known (see e.g. [60]). Evaluating this
expression at the horizon, using (4.7) and (4.34), yields,

8π2 εµνQµνCS = 8 ε01 T23CIJK σ
IW5

JWλ
K ξλ

− ε01 cIW5
I
[
−2T01T23∇[0ξ1] + (T01

2 + 4 T23
2)∇[2ξ3]

]
− ε01 T01

2 cI
[
W3

I ∇[5ξ2] −W2
I ∇[5ξ3]

]
+ 2 ε01 cIσ

I T23

[
6T01

2 − T23
2
]
ξ5 . (6.11)

Note that the above results depend explicitly on the gauge fields Wµ
I . For black holes,

where the gauge fields are globally defined, this is not an issue. However, for black rings
the situation is different and extra care is required. As we discuss in subsection 6.1 we
will employ an alternative treatment of the mixed Chern-Simons term which will lead to
expressions that differ from (6.9)–(6.11).

By integrating the Noether potential over the horizon one obtains the entropy and the
angular momentum from the Noether potential associated with the relevant Killing vector
and contracted with the bi-normal tensor (4.28). For the entropy the relevant Killing vector
is the timelike one, ξµ∂µ = ∂/∂t, and in the integrand one drops all terms except the ones
proportional to ∇[0ξ1] = ε01,

Smacro = −π
∫

Σhor

εµνQµν(ξ)
∣∣∣
∇[µξν]=εµν ; ξµ=0

, (6.12)

For the angular momentum the Killing vector is associated with the corresponding periodic
isometry of the space-time, and one has

J(ξ) =
∫

Σhor

εµνQµν(ξ) . (6.13)

6.1 An alternative form of the mixed Chern-Simons term

In the above derivation of the Noether potential, we were able to handle the mixed Chern-
Simons term by writing it in the form W ∧Tr[R∧R], so that the Lagrangian is manifestly
diffeomorphism covariant at the expense of introducing explicit gauge fields Wµ

I . This
is acceptable in cases where the gauge fields are globally defined, such as for spinning
black holes. In the case of a black ring, however, the presence of magnetic charges implies
that the gauge fields are only defined in patches, making the use of the above formulae
questionable.

Therefore we consider an alternative derivation, based on a modification of the La-
grangian (5.4) proportional to εµνρστWµ

IRνρabRστab, by adding a suitable total derivative.
In this way the gauge field is converted to its field strength (which is globally defined), and
the square of the curvature tensor R is converted to a corresponding Chern-Simons term.
The alternative form of the mixed Chern-Simons term is thus,9

8π2LCS = − 1
64

ie−1 εµνρστ cIFµν
Iωρ

ab

(
∂σωτab −

2
3
ωσac ωτ

c
b

)
. (6.14)

9Note that in this subsection we suppress the W ∧ F ∧ F Chern-Simons term of (6.9), which is not

affected by the conversion and whose effect has already been evaluated.
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From the point of view of general coordinate invariance, this change does not seem crucial,
as the Lagrangian (6.14) still transforms as a scalar. On the other hand, the spin-connection
field ωµ

ab is a composite vector field associated with local Lorentz transformations. As a
result of the explicit spin-connection, this form of the Lagrangian is no longer invariant
under local Lorentz transformations, but transforms into a boundary term.

In this formulation diffeomorphism invariance of the relevant field configurations will
be defined up to a local Lorentz transformation. Therefore Lorentz transformations have
to be taken into account in the relevant Noether potential. In the previous form of the
mixed Chern-Simons term given in (6.9), the local Lorentz transformations were avoided
because that expression can be interpreted directly in the metric formulation without the
need for including vielbein fields. In principle, the invariance of the field configuration
could require additional components associated with gauge transformations other than
the Lorentz transformations, but the gauge fields turn out to be invariant under the rele-
vant diffeomorphisms without the need for including compensating gauge transformations.
Therefore it suffices to consider only diffeomorphisms and local Lorentz transformations in
the following.

Under the combined variation of a diffeomorphism and a local Lorentz transformation
with parameters ξµ and εab, the Lagrangian (6.14) corresponding to the mixed Chern-
Simons term transforms as

8π2δ (
√
gLCS) = −∂µ

(
ξµ
√
gLCS −

1
64

iεµνρστ cIFνρI ∂σ εab ωτ ab
)
. (6.15)

The corresponding Noether potential depending on both ξµ and εab, is then equal to

8π2QµνCS = − 1
32

ie−1 εµνρστ cIFρσ
Iωτ

ab

[
εab −

1
2
ξκωκ ab

]
+

1
32

ie−1 εµνρστ cI ξ
λWλ

Iωρ
ab

(
∂σωτab −

2
3
ωσac ωτ

c
b

)
− 1

32
i e−1ερστλ[µ cIFρσ

I Rτλν]κ ξκ

+
1
64

i e−1 ερστλκ cIFρσ
I Rτλµν ξκ . (6.16)

We note that the last two covariant terms proportional to F ∧ R are identical to the cor-
responding terms given in (6.10). This expression should be evaluated for backgrounds
that are invariant, which implies that the transformation parameter εab should be cho-
sen such that the vielbein is invariant under the diffeomorphisms. This implies that the
diffeomorphism is again generated by a Killing vector ξµ, and

εab = −∇[aξb] + ξλωλ
ab . (6.17)

This result for εab should be substituted into the expression (6.16) for the Noether potential.
The resulting expression is then expected to match the previous result (6.10) (without the
contribution of the W ∧ F ∧ F Chern-Simons term which has not been included above),
when both the gauge fields and the spin connection field can be globally defined. This
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is not the case for the black hole and black ring solutions, so that only one of the two
expressions will be applicable in either case. It should be of interest to compare the two
formulae in more detail by making explicit use of coordinate patches.

We should, however, briefly comment on the ambiguity in (6.16) related to the fact
that the extraction of the derivative ∂µ in (6.15) is not well motivated for the second term,
as we could have also left the derivative on the spin connection field ωτ ab and extracted the
derivative from the transformation parameter εab. The choice made above can be justified
along the lines of [24], which is consistent with the original description of Wald [21, 23]. One
considers the variation of the corresponding Noether current under a continuous change in
the space of solutions of the field equations, in order to derive the first law of black hole
mechanics. For the current relevant in this section, this variation equals,

8π2δJµ(φ, ξ, ε) = ∂ν
[
ξµθν(φ, δφ)− ξνθµ(φ, δφ)

]
+ ω(φ; δξφ, δφ)

− 1
8

i∂ν
[
εµνρστ cI δWρ

I ∂σε
ab ωτab

]
, (6.18)

where ξµ parametrizes a diffeomorphism and εab a Lorentz transformation, while the
variation δξ is defined as the combined effect of both transformations. The variations
δφ and δWµ

I connect two nearby solutions. At this point the diffeomorphism and the
Lorentz transformation are arbitrary and do not have to constitute an invariance of the
field configuration.

The first two terms on the right-hand side are generic. The first one, proportional
to the divergence of ξ[µθν], should be written as the variation of another term, which can
then be included into the Noether potential. This modification will not change the entropy
because it does not involve derivatives of ξµ, and furthermore it does not contribute to
the variations of the angular momenta at spatial infinity [23]. Actually, the form of this
term ensures that the angular momenta can be determined from the Noether potential and
remain constant as a function of the distance from the horizon [60].

The second term is equal to ω(φ, δ1φ; δ2φ) = δ2θ(φ, δ1φ) − δ1θ(φ, δ2φ), where δ1φ

and δ2φ denote independent field variations. When ξµ is the time evolution field, then
the integral of this quantity over a Cauchy surface will be equal to the corresponding
Hamiltonian in the covariant phase-space approach. The variation of the ADM mass follows
from this Hamiltonian, and the modification to the Noether potential related to ξ[µθν] will
thus contribute to it. It is also relevant that ω(φ; δξφ, δφ) will vanish for symmetric field
configuration, because δξφ = 0 in that case.

The hope is that the third term in (6.18) will behave in the same way. This term
will also lead to modifications of the Noether potential, and since it depends on ξµ as well
as on its derivatives, these modifications may affect the entropy. However, it is easy to
see that this will not be the case, because the relevant εab at the horizon is precisely the
bi-normal tensor (4.28), whose derivatives vanish. Therefore the third term in (6.18) will
not lead to extra terms in the entropy. For the angular momenta, the situation is similar
but more subtle. In that case the combination ∂σε

ab ωτab vanishes at the horizon, except
for ∂θεab ωϕab ∝ sin θ cos θ. Therefore this term vanishes upon integration over the horizon
for all δWρ

I that are allowed by the attractor equations. Hence the angular momenta at
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the horizon are not modified and can be determined from the Noether potential obtained
earlier. An obvious question is, whether the angular momentum whose variation appears
in the first law, and which is measured at spatial infinity, will coincide with the angular
momenta determined at the horizon. The answer to this question is not known, but the
results that we will present in section 8 indicate that the answer is affirmative. Obviously
a full derivation of the first law for the ring geometry is subtle in the presence of higher-
derivative couplings. Without the latter, the derivation of the first law has already been
pursued in [61] in connection with the presence of the dipole charges.

7 Spinning BPS black holes

In this section we apply the material derived in the preceding sections to the case of spinning
black holes. Subsequently we discuss various implications of our results and compare them
to results that have been obtained elsewhere.

We assume arbitrary non-zero values of p0. Using (4.27), we integrate the Noether
potential derived in (6.8) and (6.11) over the horizon. In this way we obtain the following
expression for the entropy,

SBH
macro =

π eg

4 v2

[
C(σ) + 4 cIσI T23

2
]
. (7.1)

The moduli are expressed in terms of the angular momentum Jψ and the charges qI and p0

by the attractor equations. The black holes have only one component of angular momen-
tum, associated with the Killing vector ξµ∂µ = ∂/∂ψ. Here we refrain from introducing
any additional normalization factor. This leads to ξ5 = eg and

∇[0ξ1] = 2T23 eg , ∇[2ξ3] = −2T01 eg . (7.2)

Substituting these results into (6.8) and (6.11), and setting ε01 = 1, yields the following
expression for Jψ,

Jψ =
T23e2g

T01
2

[
CIJK σ

IσJσK − 4 cIσI T01
2
]
. (7.3)

Note that there is no other non-vanishing component of angular momentum in this case.
The charges follow from (5.10) and (4.32),

qI =
3 eg

2T01

[
CIJKσ

JσK − cIT01
2
]
, p0 =

e−g

4 v2
T01 . (7.4)

It is convenient to express these results in terms of scale invariant variables defined by

φI =
σI

4T01
, φ0 =

e−gT23

4v2
=
p0 T23

T01
. (7.5)

In terms of these variables (7.1) reads

SBH
macro =

4πp0

(φ02 + p02)2

[
p02

CIJKφ
IφJφK +

1
4
cIφ

I φ02
]
, (7.6)
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whereas the attractor equations for the electric charges qI and the angular momentum Jψ
take the form,

qI =
6 p0

φ02 + p02

[
CIJKφ

JφK − 1
16
cI

]
,

Jψ =
4φ0p0

(φ02 + p02)2

[
CIJKφ

IφJφK − 1
4
cIφ

I

]
. (7.7)

This result shows that φ0 is proportional to the angular momentum, as is also obvious
from (7.5). To understand the limit in which the charges become uniformly large, we
consider uniform rescalings of the charges qI and p0 as well as of the moduli φI and φ0.
Obviously, the terms proportional to CIJK in the attractor equations are consistent with
this scaling, whereas the terms proportional to cI are suppressed inversely proportional to
the square of the charges and thus represent subleading contributions. The leading term of
the entropy then scales as the square of the charges, while the correction terms proportional
to cI , which originate from the higher-order derivative couplings, represent the subleading
contributions in the limit where all charges become large.

The above results can be compared to the corresponding results in four space-time
dimensions. The relevant holomorphic and homogeneous function in which the supergravity
action is encoded takes the form,

F (Y,Υ) =
DIJKY

IY JY K + dIY
I Υ

Y 0
. (7.8)

Here Y I and Y 0 are holomorphic variables related to the scalar fields of the four-dimensional
vector multiplets and Υ is the lowest component of the square of the Weyl multiplet, all
subject to some uniform rescaling. The quantities DIJK and dI should be identified with
CIJK and cI , up to suitable proportionality factors. In terms of these variables the attractor
equations read [4, 54, 62],

Y A − Ȳ A = ipA , FA − F̄A = iqA , (7.9)

where the index A denotes A = 0 or A = I and where the magnetic and electric charges
are denoted by pA and qA, respectively. Furthermore the BPS condition implies Υ = −64.

It is well-known that the theory based on (7.8) is invariant under the following sym-
metry transformations, which take the form of electric/magnetic dualities (see, e.g. [63]),

Y 0 → Y 0 ,

Y I → Y I + kIY 0 ,

F0 → F0 − kIFI − 3DIJKk
JkK Y I −DIJKk

IkJkK Y 0 ,

FI → FI + 6DIJKk
J Y K + 3DIJKk

JkK Y 0 , (7.10)

where the parameters kI are real. In principle there could be other dualities as well,
depending on the specific form of the coefficients CIJK and cI . The electric and magnetic
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charges will exhibit similar transformations,

p0 → p0 ,

pI → pI + kIp0 ,

q0 → q0 − kIqI − 3DIJKk
JkK pI −DIJKk

IkJkK p0 ,

qI → qI + 6DIJKk
J pK + 3DIJKk

JkK p0 . (7.11)

Parametrizing the Y A by Y A = 1
2(φA + ipA), so that the magnetic attractor equations

of (7.9) are satisfied, we obtain the following expressions for the entropy and the remaining
attractor equations for pI = 0 and p0 6= 0,

SBH
4D =

2πp0

(φ02 + p02)2

[
p02

DIJKφ
IφJφK + 256 dIφIφ02

]
, (7.12)

with

qI
4D = − 3 p0

φ02 + p02

[
DIJKφ

JφK − 256
3
dI

]
,

q0
4D =

2φ0p0

(φ02 + p02)2

[
DIJKφ

IφJφK − 256 dIφI
]
. (7.13)

The symmetry discussed in (7.10) and (7.11) is not manifest for the above result, in view of
the fact that we have fixed the pI to zero. However, it can be used to find the corresponding
expressions for non-zero charges pI .

Without giving a precise calibration between four- and five-dimensional quantities
(which is subtle in the presence of higher-derivative couplings) it is clear that the four-
and five-dimensional expressions are not compatible upon absorbing suitable normalization
factors in the quantities involved. The difference seems to reside exclusively in the attractor
equations for the electric charges qI , in the terms proportional to cI induced by the higher-
derivative couplings. The expressions for entropy and angular momentum agree assuming
that the charge q0

4D is identified with Jψ. These results are different from those obtained
in [16], especially in the case of non-zero angular momentum. For details, we refer to the
discussion at the end of this subsection.

To investigate some of the consequences of this discrepancy, we again consider the
attractor equations (7.7), where we rescale the coefficients cI in the attractor equations for
qI by cI → α cI to account for the two different expressions. Hence we set the parameter α =
1 or 4

3 , depending on whether we consider D = 5 or 4 space-time dimensions, respectively.
Subsequently we solve the attractor equations for φI and φ0 to first order in cI , keeping

the charges constant. To do this we first determine the solution for the case that cI = 0,

φ̂I ≡ φI√
φ02 + p02

≈ q̂I√
p0

+O(cI) ,

φ0 ≈
Jψ p

02

2
√
p0Q3 − 1

4(p0Jψ)2
+O(cI) , (7.14)
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where the q̂I are defined by the requirement that they satisfy the attractor equations in
the limit of vanishing cI . Therefore we have,

qI = 6CIJK q̂J q̂K ,

Q3/2 = 2CIJ q̂J q̂K ,

CIJ = CIJK q̂
K . (7.15)

To first order in cI this result changes into,

φ̂I ≈ 1√
p0

{
q̂I +

α (p0Q3 − 1
4(p0 Jψ)2)

32 p02Q3
CIJ cJ

}
+O(cI2) ,

φ0 ≈
Jψ p

02

2
√
p0Q3 − 1

4(p0Jψ)2

{
1− (3α− 8) cI q̂I

16 p0Q3/2

}
+O(cI2) , (7.16)

where the matrix CIJ denotes the inverse of CIJ . Substituting these expressions into the
entropy formula (7.6), one obtains,

SBH
macro ≈ 2π

√
p0Q3 − 1

4
(p0Jψ)2

(
1 +

3α
16

cI q̂
I

p0Q3/2

)
+O(cI2) . (7.17)

We note that the terms proportional to cI are indeed subleading in the limit of large charges.
The expression (7.17) can be confronted with results from the literature. For the non-

rotating case, where a direct comparison with microscopic counting is possible, the above
result with α = 1 agrees with the results reported in [26, 27]. For the rotating black hole,
no analytic microscopic results are available, but our results can be compared to the super-
gravity results of [16, 17]. Here there is a clear discrepancy originating from the different
form of the attractor equations (7.3) for the electric charges and the angular momentum,
which reflects itself in a different dependence on J in (7.17). The expression (7.17) can also
be compared to the results of [36], where the only higher-derivative coupling included into
the action was the Euler density. For zero angular momentum one recovers the same rel-
ative factor for the subleading correction between the four- and five-dimensional entropies
represented by the parameter α in (7.17). For finite angular momentum the subleading
corrections determined by [16, 17] and [36] are mutually different and both fail to reproduce
the expression (7.17). As already mentioned in footnote 2 there exist microscopic results
for theories with 16 supercharges [30, 31], which could possibly be connected to the results
of this paper in certain asymptotic limits.

Irrespective of the discrepancies in the rotating case, our five-dimensional results, as
well as those in [16, 17, 26, 27] disagree with a naive uplift of the four-dimensional result.
Restricting ourselves to the static case, it appears that the 4

3 discrepancy in the attractor
equation for the charges is ubiquitous. A possible origin of these discrepancies follows from
the observation that the actions used in four and in five dimensions are not directly related
by dimensional reduction. Upon reduction the five-dimensional Weyl multiplet decomposes
into the four-dimensional Weyl multiplet and a four-dimensional vector multiplet, as is
obvious from table 3. Therefore we expect that the resulting four-dimensional action
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will also contain special higher-derivative couplings involving vector multiplets that have,
so far, not been considered in this context. Apparently these terms do not change the
expression for the Wald entropy expressed in the moduli. The latter is in accord with a
result of [64], where the construction of higher-derivative Lagrangians for tensor multiplets
leads to additional couplings to the Riemann tensor which all vanish in the BPS limit,
so that they will not contribute to the Wald entropy. Assuming that this phenomenon
holds in the general case, then the higher-order couplings of the vector multiplets may still
generate new contributions to the electric charges or to the angular momentum. At present
these couplings are not completely known so it is difficult to check whether or not this is
the correct explanation for the discrepancy. Observe that this phenomenon will not arise
for models with 16 supercharges, because in that case the five- and four-dimensional Weyl
multiplets carry the same number of degrees of freedom. See appendix B for details.

To further explore this difference between four and five space-time dimensions, let
us also consider the case of small black holes, whose entropy depends sensitively on the
higher-derivative couplings. We assume C1ab = ηab and ca = 0, which represents the typical
situation for K3 × T 2 heterotic string compactifications. From the attractor equations
(including the parameter α as before) we obtain

q1 =
6 p0

φ02 + p02

[
ηabφ

aφb − α

16
c1

]
,

qa =
12 p0 φ1

φ02 + p02 ηabφ
b . (7.18)

Using the above equations one easily derives,

SBH
macro =

2π p0 φ1

(φ02 + p02)2

[
p0q1(φ02 + p02) +

1
2

(
3α
4
p02 + φ02

)
c1

]
, (7.19)

ηabqaqb =
3 p0 (φ1)2

φ02 + p02

[
8 q1 +

3αp0

p02 + φ02 c1

]
. (7.20)

Let us now set q1 = 0, so that we are describing small black holes. In that case one finds,

SBH
macro =

π

4

√
|α c1 ηabqaqb|

{
1 +

4− 3α
3α

φ02

φ02 + p02

}
, (7.21)

where φ0 is related to the angular momentum according to

Jψ = − φ0

φ02 + p02

4− 3α
12α

√
|α c1 ηabqaqb| . (7.22)

For non-zero angular momentum this last relation does not allow a uniform rescaling of
the charges in the way indicated before. For zero angular momentum only the first term
in (7.21) contributes. In that case the entropy coincides with the four-dimensional result
for small black holes, except for an overall relative factor equal to

√
4/3 induced by the

α-dependence. This result was already discussed in [27] where exact expressions for micro-
scopic degeneracies of small static black holes in five space-time dimensions were derived.
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In this work it was found that the asymptotics of the entropy of the small black holes
in five dimensions is the same as in four, with the same normalization. To resolve this
puzzle it might perhaps be helpful to also have microscopic results for non-zero angular
momentum, so that one has a more detailed test for (7.21). However, such results are quite
difficult to obtain. As is well known, in four space-time dimensions the sub-leading contri-
bution to the entropy of small black holes is problematic in the supergravity description,
but the leading contribution is in perfect agreement with microstate counting arguments.
The five-dimensional result thus poses a puzzle in this respect.

It is also worth mentioning that, when Jψ 6= 0, the resulting values of the four-
dimensional charges will not correspond to four-dimensional small black holes. Indeed,
when setting α = 4

3 in (7.22), we find Jψ = 0, so that we are dealing with vanishing
q0, p

1, pa, which do characterize a small black hole in four dimensions. Hence the situation
remains unsatisfactory.

8 BPS black rings

In this final section we turn to the black rings, for which the relevant Noether potential
has been derived in section 6. In particular we refer to the treatment of the mixed Chern-
Simons term in subsection 6.1, which is crucial for the black ring. In this section we discuss
the resulting expressions for the entropy, and for the charges and angular momenta, which
are then confronted with results from the literature. As we shall see, the actual evaluation
still involves a number of non-trivial issues related to the integration over the spacelike
section Σ of the horizon.

The relevant Noether potential consists of (6.8) combined with the contributions from
the Chern-Simons terms that can be extracted from (6.11) and (6.16). Using that T01 = 0
for the black ring, it is easy to see that (6.8) gives rise to the following contribution,

8π2 εµνQµν0 = −2 ε01

[
C(σ) + 3 cIσI T23

2
]
∇[0ξ1] . (8.1)

Subsequently we add the contributions from (6.16), together with the first term in (6.11)
that originates from the W ∧ F ∧ F Chern-Simons term,

8π2QµνCS =
1
2

i e−1εµνρστ CIJK ξ
λWλ

IWρ
JFστ

K

− 1
32

ie−1 εµνρστ cIFρσ
Iωτ

ab

[
εab −

1
2
ξκωκ ab

]
+

1
32

ie−1 εµνρστ cI ξ
λWλ

Iωρ
ab

(
∂σωτab −

2
3
ωσac ωτ

c
b

)
− 1

32
i e−1ερστλ[µ cIFρσ

I Rτλν]κ ξκ

+
1
64

i e−1 ερστλκ cIFρσ
I Rτλµν ξκ . (8.2)

Observe that the last two terms in (8.2) have already been evaluated in (6.11). The third
term of (8.2) vanishes as can be readily deduced from (4.42). Straightforwardly combining
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the various contributions gives rise to the following additional contribution to the Noether
potential,

8π2 εµνQµνCS = 2 ε01 T23

[
4CIJK σIW5

J ξλWλ
K − cIσI T23

2 ξ5

]
− 2 ε01 cIσ

I T23
2

[
∇[0ξ1] −

1
2
ξλωλ01

]
, (8.3)

where we have used that ω5
ab vanishes with the exception of ω5

01 = −2T23.
From (8.3) we directly determine the expression for the entropy, which coincides with

the corresponding expression (7.1) for the black hole,

SBR
macro =

π eg

4 v2

[
C(σ) + 4 cIσI T23

2
]
. (8.4)

Observe that, in order to obtain this result, it was crucial to use the alternative form of
the Noether potential derived in subsection 6.1. Naive application of the Noether potential
that was used earlier for the black hole, will yield a different result. In any case, we should
stress that the mixed Chern-Simons term contributes to both the black hole and the black
string entropy. This raises some question about the derivation presented in [36] where the
Chern-Simons term was not taken into account.

To obtain the expression (8.4) we had to integrate over the horizon, which, in the case
at hand, was straightforward. However, to determine the electric charges and the angular
momenta, one is confronted with an integration of terms that depend explicitly on gauge
fields that are not globally defined. To perform the integral one therefore has to make use
of patches, as was already explained in section 4.3, in such a way that the result will be
invariant under ‘small’ gauge transformations continuously connected to the identity. The
precise procedure for doing this has already been proposed in [12], and we will adopt it here.

We thus define two coordinate patches on the S1 × S2 spacelike cross section Σ of
the horizon. As we shall discuss in due time, these patches have to be also defined away
from Σ, but for the moment we restrict our attention to Σ itself. One patch contains the
north pole N of the S2 factor. It is parametrized by −1 + ε ≤ cos θ ≤ 1, 0 ≤ ϕ < 2π and
0 ≤ ψ < 4π. This patch has the topology of a solid two-torus. The second patch, which
has the same topology, contains the south pole S of the S2 factor, and is parametrized by
−1 ≤ cos θ ≤ −1 + ε, 0 ≤ ϕ < 2π and 0 ≤ ψ < 4π. The boundary of these two patches is a
two-torus defined by cos θ = −1+ε, where the parameter ε will be taken to zero at the end of
the calculation. On these patches we define the gauge fields, WN I

µ and W S I
µ , respectively,

which are related by gauge transformations βI . These gauge transformations move the
Dirac brane singularities from the south to the north pole in a way that involves the ring
coordinate ψ, as was already described in subsection 4.3 (in particular, see (4.36)). Hence,

WN I
µ dxµ = −pI

[
cos θ dϕ− d

(
ϕ+

1
2
ψ

)]
+ aIdψ ,

W S I
µ = WN I

µ + βµ
I , βµ

Idxµ = −2 pId
(
ϕ+

1
2
ψ

)
. (8.5)

Integrals over the spacelike cross section Σ of the horizon, are now decomposed into
integrals over the sections N and S and an additional integral over the boundary of the
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coordinate patches that involves the gauge transformations βI . This last term must restore
the gauge invariance of the integral under small gauge transformations [12]. The limit
ε ↓ 0 is taken for convenience, so that the contribution from the section S will vanish, and
the contribution from N will cover the whole horizon with the exception of the singular
points related to the position of the Dirac brane.

Let us first consider the attractor equations for the electric charges qI . From the
evaluation of the charges for the black hole (c.f. (5.10)) it is clear that the only contribution
originates from the CIJKW I ∧ F J ∧ FK Chern-Simons term, since all other contributions
vanish when T01 = 0. Therefore we focus directly on the Chern-Simons term, which requires
to evaluate the integral of CIJKW J ∧FK over the spacelike cross section Σ of the horizon.
According to the prescription specified above, this integral is evaluated as follows,∫

Σ
CIJKW

J ∧ FK =
∫

N
CIJKW

N J ∧ FK +
∫

S
CIJKW

S J ∧ FK

+ 2
∫
∂N

CIJKW
N J ∧ βK , (8.6)

where the factor 2 arises because F I = 2 dW I . In the limit ε ↓ 0, the second integral
vanishes. The third integral extends over the boundary, ∂N = −∂S, of the two sections.
Now, observe thatWN J∧FK is proportional to (aJ+ 1

2p
J)pK dθ∧dϕ∧dψ, whileWN J∧βK is

proportional to (aJ− 1
2(1−ε)pJ)pK dϕ∧dψ. As it turns out, the contributions proportional

to pJpK from the first and the second integral cancel (in the limit ε ↓ 0), whereas the terms
proportional to aJpK add. This confirms the conclusion below (4.37) that the Chern-
Simons charge should be proportional to CIJK a

JpK . From comparison with (5.10), one
then easily determines the expression for the electric charges by substituting [Wψ

K ] = 2 aK .
The attractor equations for the black ring charges are therefore summarized by

qI = − 3
T23

CIJK σ
JaK , p0 = 0 , pI =

σI

4T23
. (8.7)

It is important to realize that the prescription of [12] is based on the fact that
d[W J ∧ FK ] = 1

2F
J ∧ FK is gauge invariant. Upon extending the patches outside the

horizon, we may calculate F J ∧ FK over a four-dimensional manifold by extending the
radial coordinate r, which can then be expressed as an integral over its three-dimensional
boundary. This is the justification for the prescription (8.6), as Σ constitutes (part of)
this boundary. However, we have simply ignored that the gauge fields must in principle
be extendable outside the horizon in the two patches, and in the above calculation this
feature does not seem to play a role as we obtain a result that is invariant under small
gauge transformations. Indeed, one can repeat the calculation without any difficulty for a
different choice of coordinate patches, such as, for instance, defined by cos θ0 ≤ cos θ ≤ 1
for the N patch and −1 ≤ cos θ ≤ cos θ0 for the S patch, so that the boundary is located at
θ = θ0. As it turns out the final result will not depend on θ0 and simply remains the same.

However, the situation is different when considering the evaluation of the angular
momenta and we shall see that the extension of the sections away from Σ will become an
issue. The expression for the angular momenta follows from the Noether potential (8.3),
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which is again not gauge invariant so that the integral is again subtle. The troublesome
term is the first one, depending on W5

J , which originates form the W ∧F ∧F Chern-Simons
term shown in the first line of (8.2). This term leads to

8π2 εµνQµνCS = ε01 ε
µνρCIJK ξ

λWλ
IWµ

JFνρ
K + · · · , (8.8)

where the dots denote the remaining gauge invariant contributions in (8.3), which can be
evaluated straightforwardly. Note that, unlike as on previous occasions, we converted the
above expression to a density over Σ, so that its integration will require only the surface
element dψ ∧ dϕ ∧ dθ.

In order that the integral over Σ of (8.8) is amenable to the same prescription as used
above, it is important that Σ and the gauge potentials are invariant under the isometries
associated with linear combinations, ξψ∂ψ + ξϕ∂ϕ, of the two Killing vectors associated
with rotations over the angles ψ and ϕ. One then observes that d[(ξ ·W )W ∧ F ] can be
written as a linear combination of two terms. One is the contraction of the Killing vector
with the five-form W ∧F ∧F whose integral must vanish for symmetry reasons. The second
term equals (ξ ·W )F ∧F , which changes by a total derivative under gauge transformations,
again because the gauge fields are invariant under the symmetry associated with the Killing
vector. Hence the integral over the four-dimensional manifold is invariant under small
gauge transformations, and, just as before, the integral of (8.8) over its boundary Σ can
be decomposed into integrals over the patches N and S and an additional integral over the
boundary ∂N of

εµνρCIJK [ξλWλ
N IWµ

N J − ξλWλ
SIWµ

S J ]FνρK =

+ εµνρCIJK ∂µ

[
ξλWλ

S I βν
JWρ

SK − 2 ξλβλI βνJWρ
SK
]

− 3
2
εµνρCIJK ξ

λβλ
IWµ

S JFνρ
K . (8.9)

Here we insisted in writing the last two lines in terms of sections Wµ
S I , which are well

defined at the south pole. Therefore, when writing the last term as a surface term over
ξλβλ

IWψ
S JWϕ

SK , its contribution will vanish in the limit ε ↓ 0 because Wϕ
SK vanishes

at the south pole.
Combining the results above the integral of (8.8) over Σ can therefore be written as,∫
Σ
εµνQµνCS =

ε01

4π2

∫
dθ dϕdψCIJK ξλWλ

N IWψ
N JFθϕ

K

+
ε01

4π2

∫
dϕdψCIJK [βIϕWψ

S J − βIψWϕ
S J ] (

1
2
ξλWλ

SK − ξλβλK)
∣∣∣
θ=π

.

(8.10)

For both of these integrals the limit ε ↓ 0 can be taken without difficulty, so that the first
one extends over the whole horizon section Σ and the second one over the boundary of the
sections on the horizon. A straightforward calculation then leads to 12CIJKpIpJ(aK− 1

6p
K)

and 6CIJKpI(aJaK + aJpK − 1
12p

JpK), for Jϕ and Jψ, respectively.
The same calculation can be repeated for a different choice of the patches, namely such

that, in the limit ε ↓ 0, the S patch will cover the whole horizon area Σ and the overlap of
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the N patch will shrink to the north pole. This requires to re-evaluate (8.9), but up to a few
signs the calculations proceeds in the same way. However, now the result is not the same,
and one finds instead, −12CIJKpIpJ(aK+ 1

6p
K) and 6CIJKpI(aJaK−aJpK− 1

12p
JpK), for

Jϕ and Jψ, respectively. The reason for this discrepancy resides in the last term in (8.9),
which we dropped because it does not contribute at the south pole of the horizon.

However, one must verify whether there is no obstruction away from the horizon. If
one assumes that the south poles are directed to the outward part of the ring, extending all
the way to spatial infinity as in [58], one expects an obstruction which will result in an extra
contribution from the integral at spatial infinity. On the other hand, for the inner region of
the ring which contains the north poles, there is obviously no obstruction, so that the sec-
ond result will be valid. In case the south poles are directed to the inward part of the ring, it
is the first result that would be valid. In other words, a minimal understanding of the topo-
logical embedding of the near-horizon region in the global solution is essential in order to
distinguish between the two prescriptions. It is possible that only one embedding leads to a
solution that is globally BPS, in line with what was found in [39]. For a space that is asymp-
totically flat, both embeddings seem possible and lead to two inequivalent BPS solutions.

In light of the above we adopt the second result, which must be combined with the con-
tributions from (8.3). Then we obtain the following result for the two independent angular
momenta, associated with the two independent rotations of the ring in orthogonal planes,

Jϕ = −12CIJpI
(
aJ +

1
6
pJ
)

Jψ − Jϕ = − e2g

2T23

[
C(σ) + 4 cIσI T 2

23

]
+ 6CIJ

(
aI +

1
2
pI
)(

aJ +
1
2
pJ
)
, (8.11)

where CIJ is the inverse of CIJKpK .
The above results are all invariant under scale transformations, as they should. Note

that the Wilson line moduli aI are scale invariant. As in the case of black holes, we
introduce a scale invariant variable,

φ0 =
e−g

4T23
, (8.12)

so that the above expressions for the entropy and the electric charges take a manifestly
scale invariant form,

SBR
macro =

4π
φ0

[
CIJK p

IpJpK +
1
4
cIp

I

]
,

qI = −12CIJK pJaK . (8.13)

The angular momenta can be expressed as follows,

Jψ − Jϕ −
1
24
CIJ(qI − 6CIKpK)(qJ − 6CJLpL) = − 2

φ02

[
CIJK p

IpJpK +
1
4
cIp

I

]
,

Jϕ = pI
(
qI −

1
6
CIJp

J

)
. (8.14)

– 43 –



J
H
E
P
0
2
(
2
0
1
0
)
0
5
6

The choice of the linear combination of the angular momenta in the first term is motivated
by the explicit dimensional reduction of the known two-derivative solution [65], which
showed that the rotation of the four-dimensional black hole cannot be identified with a
rotation of the S2 of the black ring but necessarily involves also a rotation along the ring.
Likewise the dimensional reduction is over a circle generated by a simultaneous rotation
around the ring and of the S2. The corresponding generator equals the linear combination
of two angular momenta, Jψ−Jϕ, which therefore corresponds to the charge associated with
the Kaluza-Klein photon. Hence we introduce a modified charge q̂0 in the usual fashion,

q̂0 = Jψ − Jϕ −
1
24
CIJ(qI − 6CIKpK)(qJ − 6CJLpL) . (8.15)

This expression coincides precisely with the one presented in [35].
With this definition the entropy takes its familiar form [4, 32],

SBR
macro = 2π

√
|2 q̂0

(
CIJK pIpJpK +

1
4
cIpI

)
| , (8.16)

This result for the corrected entropy agrees with the microscopic counting of [28, 29]. How-
ever, those results do not yet include the contribution from the higher-derivative couplings.
As we shall briefly review below, (8.16) takes the same form as the entropy for a corre-
sponding four-dimensional black hole. Namely, it is proportional to

√
cL q̂0, where cL is

the relevant central charge of an underlying (4, 0) superconformal field theory that arises
when wrapping the M-theory five-brane over a cycle S1 × P4, where P4 is a holomorphic
four-cycle of a Calabi-Yau manifold [32]. The modified momentum along the S1 is denoted
by q̂0. The modification is due to the presence of membrane charges. The subleading
contributions are associated with the second Chern class of the Calabi-Yau manifold, and
on the field-theory side this induces the higher-derivative couplings [4]. Without these sub-
leading corrections, results for other than Calabi-Yau compactifications have been obtained
in [66]. The above results are generally in line with the AdS/CFT results for the black ring
attractors [14, 33, 34].

Let us now confront the above results in more detail with the corresponding results in
four space-time dimensions, again based on the function (7.8). Hence we are dealing with
a black hole with p0 = 0, which leads to

SBH
4D = −2π

φ0

[
DIJK p

IpJpK + 256 dIpI
]
, (8.17)

with

qI
4D =

6
φ0
DIJK p

JφK ,

q̂0
4D ≡ q0

4D +
1
12
DIJqIqJ =

1
φ02

[
DIJK p

IpJpK + 256 dIpI
]
, (8.18)

where DIJ is the inverse of DIJKp
K . Just as before this gives rise to

SBH
macro = 2π

√
|q̂0(DIJK pIpJpK + 256 dIpI)| . (8.19)
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As the reader can easily verify, the expressions for q̂0 and for the entropy are invariant
under the transformations (7.11) with p0 = 0. Also the expression for the charges qI4D is
consistent with this symmetry as it acts on φI according to φI → φI + kI φ0. The latter
follows straightforwardly from (7.10).

The same transformations can be considered in the five-dimensional case. In five dimen-
sions there is no electric/magnetic duality but there is spectral flow [67], giving rise to the
same transformations, upon replacing DIJK by −2CIJK . These transformations are pre-
cisely generated by integer shift of the Wilson line moduli, aI → aI + kI . Observe that the
angular momenta will also transform under these shifts, and we find the following results,

qI → qI − 12CIJKpJkK ,

Jϕ → Jϕ − 12CIJKpIpJkK ,

Jψ → Jψ − qIkI − 6CIJKpIpJkK + 6CIJKpIkJkK , (8.20)

This shows that q̂0 remains invariant.
The difference between (8.18) and (8.15) resides in the shifts of the electric charges

proportional to CIJKpJpK . The presence of these shifts is consistent with many previous
results, both from field theoretic solutions and from microstate counting [9, 12, 28, 29, 35,
65, 67, 68]. The modified charges qI − 6CIJKpJpK in (8.14) are additive. This follows
from a calculation similar to the one leading to the attractor equation for qI , but now
for a configuration of concentric rings. Such a calculation has been performed in [12] and
resulted in the equations (4.38) and (4.39) that we discussed earlier. When combined
with the attractor equation for qI shown in (8.13), they establish the additivity of the
shifted charges. The latter is manifest in the results of [9, 67]. The modified charges
should therefore be used in the microscopic formula of [32] to match with the macroscopic
result (8.14), as was already emphasized in [28, 35, 67]. Note, however, that in spite of
the qualitative agreement of these conclusions, we should stress that we have adopted a
different definition of the electric charges qI , which is not based on the asymptotic fall-off
of the electric fields at spatial infinity. Therefore the modified charges should be the same,
but the electric charges may still be different.

The shifts in the electric charges cannot be removed in the four-dimensional results by
a suitable duality transformation of the form (7.11), because that transformation induces
shifts that are twice as large. The shifts are related to the terms ±1

2p
Idψ in the gauge field

sections in (4.36). From the point of view of subsection 4.3, they arise due to the non-trivial
topology of the full five-dimensional space-time. Therefore the four-dimensional black hole
should be compared to the reduction of an infinite magnetic string in five dimensions, which
is topologically trivial. In that case, both the terms ±1

2p
Idψ in (4.36) and the shifts in

the electric charges in (8.11) will be absent, so that one obtains full agreement with the
four-dimensional attractor results.
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A Conventions

In the first part of this paper, especially when dealing with spinors, we use Pauli-Källén
conventions. Five-dimensional world and tangent-space indices are denoted by µ, ν, . . . and
a, b, . . ., respectively, and take the values 1, 2, . . . , 5. We employ hermitean 4-by-4 gamma
matrices γa, which satisfy

CγaC
−1 = γa

T , CT = −C , C† = C−1 ,

γabcde = 1 εabcde . (A.1)

Here C denotes the charge-conjugation matrix and gamma matrices with k multiple indices
denote the fully antisymmetrized product of k gamma matrices in the usual fashion, so that
we have, for instance, γa γb = 1 δab + γab. In view of the last equation of (A.1), gamma
matrices with more than two multiple indices are not independent, and can be decomposed
into the unit matrix, γa and γab. Note that C, Cγa and Cγab constitute a complete basis
of 6 antisymmetric and 10 symmetric (unitary) matrices in spinor space. The gamma
matrices commute with the automorphism group of the Clifford algebra, USp(2N), where
N denotes the number of independent spinors. Spinors can be described either as Dirac
spinors, or as symplectic Majorana spinors. The latter description has the advantage that
it makes the action of the USp(2N) R-symmetry group manifest. We will thus employ
symplectic Majorana spinors ψi with i = 1, 2, . . . , 2N , subject to the reality constraint,

C−1 χ̄i
T = Ωij χ

j , (A.2)

where Ω is the symplectic USp(2N) invariant tensor. The Dirac conjugate is defined by
ψ̄ = ψ†γ5. Observe that we adhere to the convention according to which raising or lowering
of USp(2N) indices is effected by complex conjugation.

The gravitini ψµi and associated supersymmetry parameters εi transform in the 2N
representation of USp(2N). In principle we may also consider spinors transforming under
more complicated representations of USp(2N). For such a spinor χij···mn··· the symplectic
Majorana constraint would read

C−1 (χ̄ij···mn···)T = Ωik Ωjl Ωmp Ωnq · · · χkl···pq··· , (A.3)

Of course, the symplectic Majorana condition is defined up to a phase, and we made a
specific choice for that in (A.2) and (A.3). For fermionic bilinears, with spinor fields ψi
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and ϕi and a spinor matrix Γ constructed from products of gamma matrices, we note the
following result,

ψ̄iΓϕj = −Ωik Ωjl ϕ̄l C
−1 ΓTC ψk = (ϕ̄j γ5 Γ† γ5 ψ

i)† . (A.4)

Hence i ψ̄i ϕj , ψ̄iγaϕj and i ψ̄iγabϕj are pseudo-hermitean (provided a, b, . . . = 1, . . . , 4; in
Pauli-Källén convention the time component associated with a = 5 acquires an extra minus
sign) . Generalization of this result to spinors transforming according to more complicated
USp(2N) representations is straightforward.

Multiplication of symplectic Majorana spinors with spinor matrices Γ consisting of
products of gamma matrices are not automatically symplectic Majorana spinors. This
follows from

Γχi
T

= Ωij C γ5(C−1ΓTC)†γ5 χ
j . (A.5)

This means that iγaχi, γabχi, iγabcχi, γabcdχi are also symplectic Majorana spinors with
the same reality phase as (A.2).

B Conformal supergravity in 5 space-time dimensions

The independent bosonic fields in N = 1 conformal supergravity multiplet in five space-
time dimensions consist of the fünfbein field eµ

a, the SU(2) gauge fields Vµij , the gauge
field bµ associated with scale transformations, and an anti-symmetric tensor field Tab and a
scalar field D. Furthermore there are composite gauge fields ωµab and fµa associated with
the local Lorentz transformations and the conformal boosts. The independent fermionic
fields are the gravitino fields ψµi and an ordinary spinor χi. The composite gauge field φµi

is associated with the so-called special supersymmetry transformations. Together these
fields constitute the Weyl supermultiplet [69–71].

The field content of four-dimensional N = 2 and five-dimensional N = 1 supergravity
is rather similar, in view of the fact that spinors carry four components in both case,
Furthermore the R-symmetry groups are almost the same, and equal to SU(2)×U(1) and
USp(2), respectively. However, the number of degrees of freedom are different, as is shown
in table 3. The reason can be understood from the fact that the Weyl multiplet is conjugate
to the smallest massive supersymmetry representation containing spin-2 and spin-3/2 as
the highest spin states. For comparison we also display the situation for the N = 4 Weyl
multiplet in four dimensions, and the N = 2 Weyl multiplet in five dimensions, with
corresponding R-symmetry groups U(4) and USp(4), respectively. These two multiplets
comprise the same number of degrees of freedom.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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8 supercharges 16 supercharges
field d=4 d=5 d=4 d=5
eµ
a 5 9 5 9

Vµi
j 9 12 45 40

Aµ 3 - - 4
Tab

[ij] 6 10 36 50
D[kl]

[ij] 1 1 20 14
E(ij) - - 20 10
φ - - 2 1
ψµ

i 16 24 32 48
χi[kl] 8 8 80 64
Λi - - 16 16
bosons+fermions 24+24 32+32 128+128 128+128

Table 3. Bosonic and fermionic degrees of freedom of the Weyl multiplets in four and five dimen-
sions for the case of four and sixteen supercharges. All degrees of freedom can be assigned to a
product representation of the group of spatial rotations and the R-symmetry group. Decomposing
the states in the second column under the group of 3-dimensional rotations yields a reducible mul-
tiplet comprising the states of the four-dimensional Weyl multiplet (given in the first column) and
of an extra vector (or tensor) multiplet.
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