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We study fermionic superfluidity in an ultracold Bose-Fermi mixture loaded into a square optical lattice
subjected to a staggered flux. While the bosons form a Bose-Einstein condensate at very low temperature and
weak interaction, the interacting fermions experience an additional long-ranged attractive interaction mediated
by phonons in the bosonic condensate. This leads us to consider a generalized Hubbard model with on-site and
nearest-neighbor attractive interactions, which give rise to two competing pairing channels. We use the Bardeen-
Cooper-Schrieffer theory to determine the regimes where distinct fermionic superfluids are stabilized and find
that the nonlocal pairing channel favors a superfluid state which breaks both the gauge and the lattice symmetries,
similar to unconventional superconductivity occurring in some strongly correlated systems. Furthermore, the
particular structure of the single-particle spectrum leads to unexpected consequences, for example, a dome-shaped
superfluid region in the temperature versus filing fraction phase diagram, with a normal phase that contains much
richer physics than a Fermi liquid. Notably, the relevant temperature regime and coupling strength are readily
accessible in state of the art experiments with ultracold trapped atoms.
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I. INTRODUCTION

Superconductivity in low dimensional systems is more than
ever an active field of research. Despite decades of research,
one of its holy grails remains a thorough understanding of
high-temperature superconductivity (high-Tc) in the cuprates
[1,2]. Even though the Bardeen-Cooper-Schrieffer (BCS)
theory has been proven to be very successful in addressing
ordinary superconducting phenomena, its straightforward ap-
plication to understand the strongly correlated regime (e.g., in
high-Tc superconductors) remains a challenge.

In this article we argue that, in combination with uncon-
ventional single-particle spectra, BCS theory gives rise to
phenomena reminiscent of the physics known to occur in
strongly correlated systems. We therefore study an ultracold
atom system with a Dirac-like spectrum with linear rather than
the ordinary quadratic dispersion, arising via a time-reversal
symmetry breaking term in the Hamiltonian. At first sight,
the relevance of Dirac fermions appears to be limited to a
relativistic context. However, such fermions do emerge in
condensed matter systems under certain circumstances. Exam-
ples include high-Tc cuprate superconductors, which exhibit a
dx2−y2 symmetry in the superconducting order parameter, such
that fermionic excitations along the nodal lines on the Fermi
surface are Dirac-like [3], and graphene, where the hexagonal
crystal lattice gives rise to Dirac-like excitations [4,5].

Indeed, the recent breakthrough in fabricating sheets of
graphene has provided us with a solid-state model of two-
dimensional Dirac fermions [6]. The half-integer quantum Hall
effect [7] and Klein tunneling [8,9] in graphene, for example,
are hallmarks of two-dimensional relativistic physics taking
place in a condensed matter system. Interesting theoretical
works have explored the importance of interaction effects in
graphene, where phenomena such as room-temperature super-
fluidity of excitons in graphene-based bilayers [10], an anoma-
lously low shear viscosity in the vicinity of quantum criticality
[11], and novel superconductivity [12,13] have been predicted.

On the experimental front, the anticipated fractional quantum
Hall effect has only been observed very recently in an exfo-
liated graphene sample [14,15]. Nevertheless, it still requires
ingenuity to prepare a clean, highly controllable, graphene-
based system in order to fully explore its rich physics.

In ultracold atomic systems, on the other hand, the
remarkable progress made in the last decade has allowed
for experimental demonstrations of prototypical many-body
phenomena, such as the superfluid–Mott insulator transition in
the Bose-Hubbard model [16–19] and the crossover between
the Bardeen-Cooper-Schrieffer (BCS)–Bose-Einstein conden-
sation (BEC) regimes [20–25]. One of the major tasks in the
field is the use of optical lattices for systematic emulations of
the Hubbard model, a model which is believed to capture the
physics of high-Tc superconductors. A particularly interesting
option in optical lattices is the study of degenerate Bose-Fermi
mixtures. The relative ease in tuning the parameters, such
as the interspecies interaction strength and the density and
mass ratios, offers a wide window for studies confronting
theory with experiments. Many interesting phenomena have
been investigated, which include the prediction of exotic
quantum matters, such as supersolids [26–28], composite
fermions [29], charge density waves [30], and polaron-like
quasiparticles [31]. Also more common effects arise, such as
the enhancement of different types of fermionic superfluidity
mediated by the phonon background provided by the bosons
[32,33], which would otherwise be difficult to control in other
systems. On the experimental side, the ability to control the
experimental parameters in Bose-Fermi mixtures in optical
lattices is steadily progressing [34–36].

In this work, we study a system of Bose-Fermi mixtures
in a two-dimensional optical square lattice that provides an
inherent staggered flux. In a recent article we have shown
the emergence of Dirac fermions and the stabilization of
various fermionic superfluid states for this system [37]. Here,
we present the details of the calculations and extend the
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work to include a discussion on the competing particle-hole
correlation. In addition, we study the re-entrant behavior due
to the specific pairing states and the evolution of the Fermi
surface as a function of the staggered flux.

The article is organized as follows: in Sec. II, we use
the Bogoliubov theory to study the mediation effects of the
condensed bosons on the fermions in the presence of the
staggered flux, thus providing a method to realize an extended
Hubbard interaction. In Sec. III, we develop a mean-field
theory to study superfluidity with the model. We first discuss
possible pairing states in the various local and nonlocal
interaction channels and their associated symmetries. We then
construct the free energy and obtain the gap equations. We
find a re-entrant behavior, which is unique to the local pairing
channel. As for the nonlocal pairing channel, we compare the
transition temperatures of the various possible pairing states.
We then discuss the evolution of the Fermi surface as the
staggered flux is tuned away from the case of a π flux. In
Sec. IV, experimental signatures are discussed for the detection
of the various order parameters and the evolution of the Fermi
surfaces. Finally, we close the article with a discussion and
conclusions in Sec. V.

II. BOSE-FERMI MIXTURES

We start from the microscopic single-band Bose-Fermi
Hubbard Hamiltonian subjected to a staggered flux φ [38,39],

H = H0,B + H0,F + HBB + HFF + HBF , (1)

where

H0,B ≡ −JB

∑
r∈A

l=1−4

(
eiφ(−1)l /4a†

rbr+el
+ H.c.

)
,

H0,F ≡ −J
∑
r∈A

l=1−4

∑
σ

(
eiφ(−1)l /4a†

r,σ br+el ,σ + H.c.
)
,

HBB ≡ UBB

2

∑
r∈A⊕B

nB
r

(
nB

r − 1
)
, (2)

HFF ≡ UFF

2

∑
r∈A⊕B

∑
σ

nr,σ nr,−σ ,

HBF ≡ UBF

∑
r∈A⊕B

∑
σ

nB
r nr,σ .

Here, JB and J are the hopping amplitudes for bosons
and fermions, respectively, and UBB , UFF , and UBF are
the boson-boson, fermion-fermion, and boson-fermion on-
site interactions, respectively. The presence of the staggered
magnetic field leads to the appearance of two inequivalent A
and B sublattices [see Fig. 1(a)]. The operators ar and br+el

are
the bosonic annihilation operators acting on site r and r + el

of the A and B sublattices, respectively, and ar,σ and br+el ,σ

are the corresponding fermionic annihilation operators with
spin σ . Finally, nB

r and nr,σ are the boson and fermion number
operators on site r, respectively.

We write the grand canonical partition function Z in the
functional-integral representation

Z =
∫

DaDa∗DaσDa∗
σ exp

{
−1

h̄
(SB + SF + SI )

}
, (3)

A

B

a

a

1

2

ee

e e

12

3 4

−φ φ

−φφ

(a) (b)

λ/2 d

A

B

FIG. 1. (Color online) (a) Schematic of the two-dimensional
square optical lattice with a spacing of half the laser wavelength
λ/2. Under the presence of a flux φ passing through each plaquette
that alternates in sign across the neighboring plaquette—staggered
flux—it is then convenient to split the lattice into two inequivalent
sublatticesA andB. (b) The Bravais lattice is made of theA sublattice
with a lattice constant d = √

2λ/2. The unit cell consists of a basis,
which is defined on theB sublattice. The four vectors el , with l = 1–4,
connect each A site to its four nearest-neighboring B sites.

where the bosonic action SB is given by

SB =
∫ h̄β

0
dτ

[ ∑
i∈A⊕B

a∗
i (τ )(h̄∂τ − µ)ai(τ ) + H0,B + HBB

]
,

the fermionic action SF is given by

SF =
∫ h̄β

0
dτ

[ ∑
i∈A⊕B

∑
σ

a∗
i,σ (τ )(h̄∂τ − µσ )ai,σ (τ )

+ H0,F + HFF

]
,

and the boson-fermion interaction term SI is given by

SI =
∫ h̄β

0
dτHBF .

Here, µ is the chemical potential for bosons, and µσ is the
chemical potential for fermions with spin σ . The inverse
thermal energy at temperature T is given by β = 1/kBT .

We focus on the weakly interacting regime of the atomic
bosons where they form a BEC in the lattice. Such a
regime can be described accurately within the Bogoliubov
theory. Before we apply the theory, we need to identify
the condensation mode for the bosons, since the presence
of the staggered flux can give rise to a finite wave-vector
condensate.

We first note that the single-particle term H0,B can
be diagonalized in momentum space with the canonical
transformation

ak(τ ) = 1√
2

ε∗
k

|εk| [−αk(τ ) + βk(τ )],

(4)

bk(τ ) = 1√
2

[αk(τ ) + βk(τ )],

where

εk = 4JB

[
cos

(
φ

4

)
cos

(
kxd

2

)
cos

(
kyd

2

)

−i sin

(
φ

4

)
sin

(
kxd

2

)
sin

(
kyd

2

)]
(5)
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is the lattice dispersion, and the new operators αk(τ ),βk(τ )
correspond to the upper and lower energy band states. The
bosonic operator defined on the sublattice A can then be
written as

ai(τ ) = 1√
NA

∑
k∈1BZ

ak(τ )eik·ri

= 1√
N

∑
k∈1BZ

[
ε∗

k

|εk|βk(τ ) − ε∗
k

|εk|αk(τ )

]
eik·ri ,

where the lattice momentum k is defined in the first Brillouin
zone (1BZ) and the canonical transformation is used. Note
that the total number of lattice sites is N = 2NA. To simplify
the following calculations, we map the upper band operator
αk(τ ) in the first Brillouin zone to the second Brillouin zone
(2BZ) which is then denoted by βk(τ ). Since the transformation
coefficient changes an overall sign in the second Brillouin
zone, we have

ai(τ ) = 1√
N

∑
k∈1BZ⊕2BZ

ε∗
k

|εk|βk(τ )eik·ri

≡ 1√
N

∑
k∈1BZ⊕2BZ

gkβk(τ )eik·ri , (6)

where gk = ε∗
k/|εk|. Similarly, for the bosonic operators on

the B sublattice, we have

bi(τ ) = 1√
N

∑
k∈1BZ⊕2BZ

βk(τ )eik·(ri+e1). (7)

We may now identify the condensation mode k0 as the single-
particle state with the lowest energy and perform the c-number
substitution for the condensate field βk0 (τ ) → √

N0 as follows

ai(τ ) = gk0

√
n0e

ik0·ri + 1√
N

′∑
k

gkβk(τ )eik·ri ,

bi(τ ) = √
n0e

ik0·(ri+e1) + 1√
N

′∑
k

βk(τ )eik·(ri+e1),

n0 = N0/N defines the condensate density. The prime in the
momentum summation means that the k = k0 term is omitted.

By expanding also the fields in Matsubara frequencies

βk(τ ) = 1√
h̄β

∑
m

e−iωmτβk(ωm), (8)

with ωm = 2πm/h̄β, we make the Bogoliubov approximation
in the action SB + SI where the bosonic fluctuation field βk(τ )
is kept to the quadratic order to obtain (see Appendix)

SB + SI = −1

2
Nh̄βUBBn2

0 + 1

2

∑
k,m

(
βk(ωm)

β
†
−k(−ωm)

)† (−ih̄ωm + Ek − Ek0 + UBBn0
1
2M(k, − k,k0,k0)UBBn0

1
2M(k0,k0,k, − k)UBBn0 ih̄ωm + Ek − Ek0 + UBBn0

)

×
(

βk(ωm)

β
†
−k(−ωm)

)
+ UBF

√
n0

N

∑
k,m

(
Jk(ωm)

J
†
−k(−ωm)

)†

·
(

βk(ωm)

β
†
−k(−ωm)

)

≡ −1

2
Nh̄βUBBn2

0 + 1

2

∑
k∈1BZ⊕2BZ,

m

[ �φ† · (−h̄G−1) · �φ + �J † · �φ + �φ† · �J ], (9)

where

�φ ≡
(

βk(ωm)

β
†
−k(−ωm)

)
, �J ≡ UBF

√
n0

N

(
Jk(ωm)

J
†
−k(−ωm)

)
, (10)

with the source term containing the fermionic fields given by

Jk(ωm) ≡ gk0g
∗
k

∑
i∈A

∑
σ

ni,σ ei(k0−k)·ri

+
∑
i∈A

∑
σ

ni,σ ei(k0−k)·(ri+e1), (11)

Ek = ∓|εk| for k ∈ 1BZ (2BZ), and M(k1,k2,k3,k4) ≡ 1 +
g∗

k1
g∗

k2
gk3gk4 . Several symmetry properties have been em-

ployed: gk = g−k and k0 ≡ {±k0}, in the sense that for
r = αd1 + γ d2 one gets exp[ik0 · r] ≡ exp[iπ (±α ± γ )]. We
have chosen the bosonic chemical potential to obey the

Hugenholtz-Pines theorem, which depends also on the fermion
mean-field density ñσ ,

µ = E0 + UBBn0 + UBF

∑
σ

ñσ , (12)

so that the bosonic fluctuation field remains massless (the
Goldstone mode). The action Eq. (9) is now at most of
quadratic order in the bosonic fluctuation field �φ and we can
thus integrate it out analytically [40,41].

Starting from the original action (3), by performing the
Bogoliubov approximation and integrating out the bosons, we
arrive at the effective action for the fermions,

S = SF + 1

2h̄

∑
k∈1BZ⊕2BZ

∑
m

�J †
k · Gk · �Jk

≡ SF + Sind, (13)

where the induced interaction is given by
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Sind = −U 2
BF n0

2N

∑
k,m

Yk,k0 (J †
kJk + JkJ

†
k ) − 1

2UBBn0(M̃J
†
kJ

†
−k + M̃∗J−kJk)

(h̄ωm)2 + Wk
. (14)

Here, short-hand notations are used for the form factor M̃ ≡
M(k, − k,k0,k0), Yk,k0 ≡ (Ek − Ek0 + UBBn0), and Wk ≡
Y 2

k,k0
− |M̃|2U 2

BBn2
0/4.

Next, we consider the frequency independent component of
the induced interaction, a well-studied regime for Bose-Fermi
mixtures (e.g., the widely used rubidium-potassium system
[42]) in the lattice. Due to differences in the laser detuning
as experienced by the different atomic species, the hopping
amplitude can be realized for JB 
 J so that the consideration
of the static limit is justified [32]. By setting h̄ωm = 0 and
converting the momentum summation into the momentum
integral (1/N )

∑
k → d2

∫
1BZ⊕2BZ d2k/(2π )2, we get

Sint = 1

2

∑
r,r′∈A

∑
σ,σ ′

VAA(r − r′)[nr,σ nr′,σ ′ + nr+e1,σ nr′+e1,σ ′]

+
∑

r,r′∈A

∑
σ,σ ′

VAB(r − r′ − e1)nr,σ nr′+e1,σ ′ , (15)

where the induced potentials are given by

VAA(r − r′)

= −U 2
BF n0d

2
∫

d2k
(2π )2

2

Wk

×{Yk,k0 cos[k0 · (r − r′)] cos[k · (r − r′)]
−UBBn0 cos[k · (r − r′)] cos[k0 · (r + r′)] cos2[θ0 − θk]}

≡ −4U 2
BF

UBB

V2

(
k4,

JB

UBBn0
,
|r − r′|

d

)
(16)

and

VAB(r − r′ − e1)

= −U 2
BF n0d

2
∫

d2k
(2π )2

4

Wk
{Yk,k0 cos[k · (r − r′ − e1)]

× cos[k0 · (r − r′ − e1) − θk + θ0]

−UBBn0 cos[k0 · (r + r′ + e1)] cos[θ0 − θk]

× cos[k · (r − r′ − e1)]}
≡ − 4U 2

BF

UBB

V1

(
k4,

JB

UBBn0
,
|r − r′ − e1|

d

)
. (17)

These are the nonlocal phonon-mediated fermion density-
density interaction terms, which take the form of a Yukawa
potential (screened Coulomb) in two dimensions. Mediated
by the phonons, a nonlocal attractive interaction is generated
between fermions of all spin states, which fall off on the scale
of the healing length ξ . Experiments in a bosonic 2D lattice
of rubidium atoms by Spielman et al. [19] show that typical
values of ξ are on the order of d/

√
2. For JB/UBBn0 = 1, the

induced potentials are VAB(e1) � −(4U 2
BF /UBB) 0.17 while

VAA(d1) is one order of magnitude smaller. We emphasize
that the condensation point k0 is chosen with respect to
the stable condensation point corresponding to the appropriate
flux regime. Even though the phase winding is different for

distinct condensates, we note that the density on the lattice site
for the distinct condensates is homogenous. Since the induced
interaction is derived from a microscopic interaction that has
a density-density form, it is not sensitive to the phase of the
condensate and, thus, to the condensation point k0.

It then follows that the effective interactions are
the renormalized on-site interaction g1 ≡ −UFF − VAA(0)
and the nearest-neighbor interaction g2 ≡ −VAB(e1) �
(4U 2

BF /UBB) 0.17. Note that the boson-boson interaction UBB

is taken to be positive for the stability of the Bose gas and,
thus, the induced interaction is always attractive. We write the
effective interaction for the fermionic Hamiltonian as

Hint = −g1

2

∑
r∈A⊕B

∑
σ

nr,σ nr,−σ − g2

∑
<r,r′>

∑
σ,σ ′

nr,σ nr′,σ ′

≡ H1 + H2. (18)

Notice that, since UFF can be tuned by changing the scattering
length as via Feshbach resonances, the relative strength
g1/g2 can be tuned in a straightforward manner. Furthermore,
the dependence of the induced potentials on the parameter
(JB/UBBn0) can also be taken as an extra tuning parameter;
both techniques thus allow for an independent control of both
g1 and g2.

III. NOVEL PAIRING STATE

In the last section, we studied the attractive mediation
effect of the condensate on the fermions, which is shown to
extend to the nearest-neighbor sites. The effective Hamiltonian
describing the interacting fermions,

H = H0,F + H1 + H2, (19)

provides the basis for the study of BCS instabilities
due to the competing on-site and the nearest-neighbor
attractive interactions. In Ref. [39], we discussed in detail
the structure of the local gauge invariance associated with the
presence of the staggered flux. In studying superfluid phases in
the following, the order parameter that spontaneously breaks
the global U (1) gauge symmetry is unaffected by the choice
of the gauge chosen for the staggered flux.

For clarity of presentation, we first identify the various
order parameters that are favored by the interaction terms
and carry out the analysis for the different pairing channels
independently. Then, we construct the full phase diagram in
the presence of both couplings.

A. Pairing Hamiltonian

For the on-site attractive interaction g1 > 0, we consider an
on-site spin-singlet pairing with the following superfluid order
parameter:

�1 ≡ −2g1

N

∑
i∈A

〈ai,↓ai,↑〉 = −2g1

N

∑
i∈B

〈bi,↓bi,↑〉.
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By performing a mean-field decoupling in H1 with respect to
this pairing order parameter and keeping fluctuations up to the
first order, we arrive at the following mean-field Hamiltonian:

H1,MF � N |�1|2
g1

+
∑

k

[�†
1ak,↓a−k,↑ + �

†
1bk,↓b−k,↑ + H.c.].

(20)

For the nearest-neighbor attractive interaction g2 > 0, we
consider the following decomposition:

H2 = −g2

{∑
〈i,j〉

[(a†
i,↑b

†
j,↓ − a

†
i,↓b

†
j,↑)(ai,↓bj,↑ − ai,↑bj,↓)

+1

2
(ai,↑b

†
j,↑ + ai,↓b

†
j,↓)(a†

i,↑bj,↑ + a
†
i,↓bj,↓)

+1

2
(a†

i,↑bj,↑ + a
†
i,↓bj,↓)(ai,↑b

†
j,↑ + ai,↓b

†
j,↓)]

+1

2

∑
i,σ

(a†
i,σ ai,σ + b

†
i,σ bi,σ )

}
. (21)

The first term may give rise to a nonlocal pairing correla-
tion involving two nearest-neighbor sites with a spin-singlet
structure. It is the resonating-valence-bond (RVB) state that
was proposed by Anderson [43]. We take the nonlocal pairing
correlation to be of the form

�2(el) ≡ −2g2

N

∑
r∈A

〈ar,↓br+el ,↑ − ar,↑br+el ,↓〉,

which results in the superfluid order parameter

�2,k ≡
4∑

l=1

�2(el)e
ik·el . (22)

Note that this superfluid order parameter is determined by four
independent RVB components �2(el).

In the second and third terms of Eq. (21), a finite expectation
value amounts to a nontrivial particle-hole correlation κ† =
〈ar,↑b

†
r+el ,↑ + ar,↓b

†
r+el ,↓〉. The corresponding order parameter

is given by

� ≡ − g2

2N

∑
i∈A

4∑
l=1

〈
ar,↑b

†
r+el ,↑ + ar,↓b

†
r+el ,↓

〉
. (23)

By performing a mean-field decoupling in the Hamiltonian H2

with respect to the two orders, we obtain

H2,MF � N

2g2

4∑
l=1

|�2(el)|2 − 2N

g2
|�|2

+
∑

k

[�†
2,k(ak,↓b−k,↑ − ak,↑b−k,↓) + H.c.]

+�†
∑

k

γk(a†
k,↑bk,↑ + a

†
k,↓bk,↓)

−�
∑

k

γk(ak,↑b
†
k,↑ + ak,↓b

†
k,↓), (24)

where γk = γ−k = 4 cos(kxd/2) cos(kyd/2). It is worth noting
that the contribution from the second-order particle-hole
correlation is negative, as opposed to the contribution from

the superfluid order, which can be traced back to an additional
overall minus sign when performing the mean-field decoupling
for the particle-hole terms in Eq. (21).

B. Symmetry of the order parameters

Before we discuss the self-consistent procedure to deter-
mine the mean-field state, it is important to understand the
symmetry of the superfluid order parameter in a basis where
the single-particle term is diagonal. By transforming to that
basis, the mean-field interaction terms become

H1,MF =
∑

k

�
†
1e

iθk [cos(θk)(βk,↓β−k,↑ + αk,↓α−k,↑)

− i sin(θk)(βk,↓α−k,↑ + αk,↓β−k,↑)] + H.c.,

H2,MF �
∑

k

�
†
2,ke

iθk (βk,↓β−k,↑ − αk,↓α−k,↑) + H.c.

Here, βk,σ and αk,σ are the lower and upper band operators,
which obey anticommutation relations, θk ≡ εk/|εk|, and the
property εk = ε−k or θk = θ−k follows from Eq. (5). In H2,MF,
we have omitted the particle-hole correlation contribution
since we are only interested in the symmetry of the superfluid
order parameter here.

In the pairing potential H1,MF, we first note that the
superfluid order parameter �1 induces an intraband pairing
(β†

−k,↑β
†
k,↓ + α

†
−k,↑α

†
k,↓) as well as an an interband pairing

(β†
−k,↑α

†
k,↓ + α

†
−k,↑β

†
k,↓) in the band representation. With the

orbital part �
†
1e

iθk being an even function in the momentum
variable, the intraband pairing naturally gives rise to a
spin-singlet structure. For the interband pairing, since it is
symmetric in the band index, it also results in a spin-singlet
structure. Thus, the on-site pairing is described by a total order
parameter that has a spin-singlet structure.

On the other hand, the RVB order �2(el) induces only
intraband pairing (βk,↓β−k,↑ − αk,↓α−k,↑) in H2,MF. The spin
structure of the pairing is then determined by the parity of
the superfluid order �2,k, which depends on the choice of
the four-component RVB order. For an even parity, �2,k =
�2,−k, it results in a spin singlet, whereas for an odd parity,
�2,k = −�2,−k, it results in a spin triplet. It is important to
note that since the external staggered flux breaks the A-B
sublattice symmetry explicitly, the order parameter �2,k need
not have a definite parity. It can generally have a mixed parity
with a coherent mixture of states with even and odd parities,
and the resulting spin structure is also a coherent mixture of
spin-singlet and spin-triplet states.

C. Mean-field free energy

The mean-field procedure that we carried out until now
involves the introduction of five pairing states, that is, �1 and
�2(el) for l = 1,2,3,4, and a particle-hole correlation �. For
self-consistency, we need to minimize also the resulting free
energy. To evaluate the free energy, we first rewrite the grand-
canonical mean-field Hamiltonian in the following form:

HMF = E0 +
∑

k∈1BZ

�
†
kDk�k, (25)
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with �
†
k = (a†

k,↑,b
†
k,↑,b−k,↓,a−k,↓),

E0 = N |�1|2
g1

+ N

2g2

4∑
l=1

|�2(el)|2 − 2N

g2
|�|2,

and Dk is given by the following matrix:⎛
⎜⎜⎜⎜⎝

−µ −ε∗
k + �†γk �2,k �1

− εk + �γk −µ �1 �2,−k

�∗
2,k �∗

1 µ ε∗
−k − �†γ−k

�∗
1 �∗

2,−k ε−k − �γ−k µ

⎞
⎟⎟⎟⎟⎠.

The fermionic chemical potential with equal spin population
is µ, and the full lattice dispersion is given by Eq. (5).
Since the mean-field Hamiltonian (25) is quadratic, we
perform a canonical transformation (a Bogoliubov-Valatin
transformation) to diagonalize it. The system is then described
by two branches of noninteracting fermionic quasiparticles
and quasiholes with spectra ±Eν,k, with ν = 1,2. In the new
basis, the entropy of the system can be computed simply from
that for the ideal Fermi gas,

S = −kB

∑
k

{f (Eν,k) ln f (Eν,k)

+ [1 − f (Eν,k)] ln[1 − f (Eν,k)]},
where f (Eν,k) = 1/[exp(βEν,k) + 1] is the Fermi-Dirac dis-
tribution. The free energy is then given by

F (�1,�2(el)) = E − T S

= E0 − 1

β

2∑
ν=1

∑
k

{ln(1 + e−βEν,k )

+ ln(1 + eβEν,k )}. (26)

We see that the |�|2 term renders the free energy unbounded
below, which is an artifact of the mean-field decoupling for a
particle-hole correlation. Indeed, the mean-field procedure is
not suited to treat such a correlation. We will therefore ignore
its contribution and set it to zero � = 0 for the rest of the work.
In the following sections, we minimize the above expression
with respect to the variational parameters [�1,�2(el)] and
identify the regime of parameters where superfluidity can
occur.

D. Superfluid with s-wave pairing

In this section we consider only the local pairing channel
characterized by the order parameter �1. Setting �2,k = 0, the
quasiparticle spectra can readily be obtained as

E1,2,k =
√

|εk|2 + µ2 + �2
1 ∓ 2

√
|εk|2µ2 + (Imεk)2�2

1.

By substituting these into the free energy function, Eq. (26),
and extremizing the latter with respect to �1,

∂F (�1)

∂�1
= 0, (27)

we obtain the gap equation

1 = g1

4N

2∑
ν=1

∑
k

⎧⎨
⎩ tanh(βEν,k/2)

Eν,k

×
⎡
⎣1 + (−1)ν(Imεk)2√

|εk|2µ2 + (Imεk)2�2
1

⎤
⎦
⎫⎬
⎭ . (28)

To determine the second-order phase transition between the
normal and the superfluid phases, we take the limit �1 → 0 in
the gap equation where the order parameter vanishes smoothly.
The resulting equation,

1 = g1

4N

∑
k

{
tanh[βc(|εk| − µ)/2]

|εk| − µ

[
1 − (Imεk)2

|εk||µ|
]

+ tanh[βc(|εk| + µ)/2]

|εk| + µ

[
1 + (Imεk)2

|εk||µ|
]}

, (29)

0 3 6 9
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1

0

1

g1 J

L
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k B
T

c
J

0 0.15 0.3

0

1
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1
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(b)

FIG. 2. (a) Solutions to the gap equation for local singlet
pairing at the phase transition for different chemical potentials:
µ/J = 0 (solid), µ/J = 0.1 (dash), µ/J = 1 (dotted dash), and
µ/J = 2 (dotted). (b) To show the reentrant behavior, we plot the
evolution of the free energy at different temperatures, kBT /J =
0.8 (dashed), 0.56 (solid), and 0.1 (dotted), for a fixed coupling
g1/J = 6.1 and chemical potential µ/J = 0.
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determines the critical temperature βc = 1/kBTc for a given
coupling g1 and chemical potential µ [see Fig. 2(a)].

We first note that for zero chemical potential, the Fermi
level lies at the conical points of the Dirac cone. Due to the
vanishing of the density of states, the system is quantum
critical. This means that the system can undergo a phase
transition even at zero temperature, where there are no
thermal fluctuations. In the present case, it is a second-order
phase transition driven purely by quantum fluctuations. The
quantum critical point, which is found to be g1,c/J � 6.2
in this channel, separates the normal and the superfluid
phases. On the other hand, for finite chemical potential
the system ceases to be quantum critical. The usual BCS
picture of Fermi surface instability is then recovered where
an infinitesimal attractive interaction favors a superfluid
state.

Second, for a small chemical potential µ/J � 1, we
observe that the Tc curve displays a nonmonotonous
dependence on the coupling around the temperature region
kBTc/J ∼ O(1). This is due to the intrinsic nature of the
interband pairing in this channel. Interband pairing generally
requires more energy fluctuations, since there is an energy
gap in the pairing between a state from the upper energy band
and its time-reverse partner from the lower energy band. For
vanishingly small chemical potentials, we are left with two
energy scales in the problem, namely, the thermal energy and
the coupling. Whenever thermal fluctuations are suppressed
for kBT /J <∼ 1, a stronger coupling is therefore required to
promote the pairing. Thus, we see the increase in the coupling
strength required to induce pairing as thermal fluctuations
are cut off around the region kBT /J ∼ O(1). This feature is
called a re-entrant behavior because, even when the system
is in the symmetry-broken (ordered) phase below the critical
temperature, it can get back to the disordered phase by lower-
ing further the temperature. This is only valid for a coupling
around the critical value g1,c and a small chemical potential.
To confirm the re-entrant behavior, we also investigate the free
energy function at various temperatures for a fixed coupling
and zero chemical potential, as shown in Fig. 2(b). The
absolute minimum of the free energy indeed returns to the
origin where the system is disordered, as the temperature is
lowered.

E. Superfluidity with nonlocal pairing

Now, we want to study the extended interaction channel. In
this case, we set �1 = 0 in the Hamiltonian (25). Furthermore,
for the sake of simplicity, we assume the four-component RVB
order to be real. We then arrive at the following properties for
the superfluid order parameter:

�2,k = �∗
2,−k,

|�2,k|2 =
∑

l

�2(el)
2

+
∑
l �=m

�2(el)�2(em) cos[k · (el − em)],

Im�2,k =
∑

l

�2(el) sin(k · el).

The quasiparticle spectra are then given by

E1,2,k =
√

|εk|2 + |�2,k|2 + µ2 ∓ 2|εk|
√

(Im�2,k)2 + µ2.

Upon extremizing the free energy function

∂

∂�2(el)
F (�2(e1),�2(e2),�2(e3),�2(e4)) = 0, (30)

for l = 1,2,3,4, we obtain a set of four coupled gap
equations,

�2(el) = g2

2N

∑
k

{(
tanh(βE1,k/2)

E1,k
+ tanh(βE2,k/2)

E2,k

)

×
(

�2(el) +
∑
m�=l

�2(em) cos[k · (el − em)]

)

+
(

− tanh(βE1,k/2)

E1,k
+ tanh(βE2,k/2)

E2,k

)

×|εk| sin(k · el)Im�2,k√
(Im�2,k)2 + µ2

}
,

for l = 1,2,3,4. We now take the system to be close to the
phase transition, where the gap �2(el) is small, and expand
the right-hand side of the gap equations to leading order in the
gap to obtain the linearized gap equations

�2(el) = g1

2N

4∑
m=1

∑
k

[(
tanh[βc(|εk| + |µ|)/2]

|εk| + |µ|

+ tanh[βc(|εk| − |µ|)/2]

|εk| − |µ|
)

cos[k · el] cos[k · em]

+ sinh(βc|µ|)
|µ| cosh[βc(|εk| + |µ|)/2] cosh[βc(|εk| − |µ|)/2]

× sin(k · el) sin(k · em)

]
�2(em) (31)

for l = 1,2,3,4. The linearized gap equations can also be
written in the matrix form

1

g2
� =

⎛
⎜⎜⎜⎝

D B C B

B D B C

C B D B

B C B D

⎞
⎟⎟⎟⎠�,

where the four-vector � is defined by �T ≡
(�2(e1), �2(e2), �2(e3), �2(e4)) and D, B, and C are
matrix elements obtained from the coupled Eqs. (31). In fact,
a numerical evaluation shows that the matrix element B � 0.
It is clear now that the problem of determining the critical
temperature Tc amounts to finding nontrivial solutions to the
matrix equation. The eigenvalues and their corresponding
eigenvectors are classified as follows:

1

g2
=
{

C + D : (1,0,1,0),(0,1,0,1), d wave,

−C + D : (−1,0,1,0),(0, − 1,0,1), p wave,
(32)
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FIG. 3. Solutions to the gap equation with (a) d-wave symmetry
and (b) p-wave symmetry at the phase transition for different
chemical potentials: µ/J → 0 (solid line), µ/J = 1 (dashed line),
and µ/J = 2 (dotted line).

with

C + D = 1

2N

∑
k

2

{
tanh[βc(|εk| + |µ|)/2]

|εk| + |µ|

+ tanh[βc(|εk| − |µ|)/2]

|εk| − |µ|
}

cos2(k+d),

−C + D = 1

2N

∑
k

2
sinh(βc|µ|)

|µ| cosh[βc(|εk| + |µ|)/2]

× sin2(k+d)

cosh[βc(|εk| − |µ|)/2]
,

where k± = (kx ± ky)/2. The four eigenvectors come in two
classes of symmetries, which reflect the underlying irreducible
representation of the symmetry group of the square lattice.
In Fig. 3, we solve for the critical temperature as a function
of the coupling, for the two classes of eigenvectors. Again,
a quantum critical behavior is expected for zero chemical
potential. However, in contrast to the local pairing in the
previous section, this channel does not involve interband
pairing and the system should not display re-entrant features.
In Fig. 3(a) we show the Tc curves for the d-wave channel,
which behave as expected. The quantum critical coupling is

0 1 2

0

2

F
2

0 0.5 1

0

2

F
2

(a)

(b)

FIG. 4. (a) Evolution of the free energy for the
p-wave superfluid at different temperatures kBT /J =
3 (dotted line), 1.5 (dashed line), and 0.1 (solid line), at a fixed
coupling g2/J = 5 and chemical potential µ/J = 0. (b) Comparing
the free energy for the p-wave channel (−�2/

√
2,0,�2/

√
2,0)

(dotted line), the d-wave channel (�2/
√

2,0,�2/
√

2,0) (dashed
line), and the mixed channel (�2,0,0,0) (solid line) which yields the
lowest free energy, for µ = 0, kBT /J = 0.5, and g2/J = 5.

g2,c/J � 2.1, which is smaller than the critical local pairing
coupling.

On the other hand, the Tc curves for the p-wave channel
exhibit highly irregular features [see Fig 3(b)]. To understand
that this is an artifact of the solution of the gap equation, let
us analyze the free energy function in the p-wave channel
more closely. By decreasing the temperature below the critical
value given by the upper part of the Tc curve at a fixed
coupling, we obtain the change in the free energy, which is
shown in Fig. 4(a). While the absolute minimum is shifted
away from the origin, signaling that the system enters the
symmetry-broken phase, a new local minimum is also being
developed at the origin below the second critical temperature.
Since the linearized gap equation is an expansion around the
origin, the lower part of the Tc curve seen in Fig. 4(b) merely
describes the development of the new local minimum. We
thus conclude that there is no re-entrant behavior. However,
the development of another local minimum at the origin
gives rise to the possibility of a first-order phase transition
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(a)

(b)

FIG. 5. (Color online) (a) Real-space configuration of the local
pairing s-wave superfluid phase. (b) Real-space configuration of
the nearest-neighbor spin-singlet bonding with one nonvanishing
component.

where the Tc curve develops a vertical slope. Looking at the
free energy, we indeed find a first-order phase transition line
starting at a tricritical point, where it meets the upper part of
the second-order phase transition Tc curve.

Given the choices of pairing states with different sym-
metries, we need to determine the most favorable one by
comparing the free energy deep in the superfluid phase.
Comparing the Tc curves for the two channels in Figs. 3(a)
and 3(b), we see that the d-wave channel generally has
a higher critical temperature for coupling g2/J <∼ 2.8. For
g2/J >∼ 2.8, since the p-wave channel can be favorable, we
need to consider more general states with mixed symmetry.
As already discussed in Sec. III B, the lack of parity symmetry
for the pairing state in this channel allows for a coherent
mixing of order parameters with different symmetries. By
taking the four eigenvectors as a basis which spans the space
of the order parameter, we look for the vector which yields
the lowest free energy. As shown in Fig. 4(b), we find the
state (1,0,0,0) to be the most favorable (lowest free energy)
in the superfluid phase and the corresponding order parameter
reads

�2,k = �2

[
cos

(
kx+ky

2 d

)
+ i sin

(
kx+ky

2 d

)]
. (33)
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/
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FIG. 6. (Color online) Zero-temperature mean-field phase dia-
gram for the Hamiltonian (19) with zero chemical potential and a
staggered flux φ = π . The two superfluid phases (SF) are separated
by a first-order phase transition line (dash line) between them and a
second-order phase transition (full line) with the normal phase.

A comparison of the real-space configurations of the local
and nonlocal pairing, see Figs. 5(a) and 5(b), shows that
the latter leads to a superfluid state, where both the gauge
and the C4v crystal lattice symmetries are spontaneously
broken.

F. Phase diagram at quantum criticality

Until now we treated the two pairing channels separately.
Here we consider the competition between the distinct su-
perfluid phases at the quantum critical regime with zero
chemical potential and a staggered flux φ = π . The discussion
for general values of chemical potentials and flux values is
presented in the next section.

We have shown that the most favorable superfluid phase in
the separate channels are the constant gap �1 and the nonlocal
pairing state �2(el) = (1,0,0,0), respectively. We choose the
latter, even though we have already noted that the extended
pairing channel has a much richer behavior around the region
g2/J � 2.8. By taking into account the possibility of coexis-
tence between the two superfluid phases, we numerically min-
imize the free energy F (�1,�2,k) containing both superfluid
orders. By locating the global minimum in the free energy, we
find an unpaired phase (normal phase), a superfluid phase with
s-wave symmetry, and a superfluid phase with nonlocal pairing
in the phase diagram (see Fig. 6). The two superfluid phases are
separated by a first-order phase transition (dashed line) with
no region of coexistence. A multicritical point is identified
at (g1/J,g2/J ) = (6.2,2.1) at zero temperature, where the
first-order phase transition line and the two second-order lines
meet.

It is important now to justify the validity of the mean-
field approach to the superfluid pairing problem. The general
criterion for the validity of the mean-field theory in the weak
coupling regime is that the coupling strength must be smaller
than the energy bandwidth δE. For the system we study, the
energy bandwidth is given by

δE = 4J

√
2 + 2 cos

(
φ

2

)
. (34)
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FIG. 7. (Color online) Finite-temperature phase diagram in the
superfluid phase with nonlocal pairing for different doping δ, for
g1/J < 6.2. The shaded plane at a fixed coupling g2/J = 1 shows
a domelike-shaped superfluid phase embedded in the normal phase.
The latter interpolates Dirac liquid behavior at low doping to a Fermi
liquid behavior at high doping.

The weak coupling regime is then given, g1,2 < δE. Refer-
ring to the phase diagram in Fig. 6 and a bandwidth of
δE � 5.7J , we find that both the g1 and g2 channels are
approximately within the weak coupling regime, even though
the g1 channel is closer to an intermediate coupling regime.
Nonetheless, for coupling strength within the weak coupling
regime, the three distinct many-body phases are already
accessible.

G. Phase diagram away from quantum criticality

In this section, we consider arbitrary values of the chemical
potential. In this case, rather than the chemical potential, the
physical quantity that can be controlled in experiments is the
particle density, or the fermion filling fraction 〈n〉, the average
number of spin-1/2 fermions per lattice site. Furthermore,
comparing the two sets of solution for the gap equations in the
different channels at zero chemical potential, see Figs. 2(a)
and 3(b), we note that the superfluid phase with nonlocal
pairing yields the highest transition temperature Tc. Thus,
we shall consider only this channel with a varying fermion
filling fraction. At the phase transition T = Tc, where the gap
vanishes, the fermion filling fraction 〈n〉 can be determined

quite easily by the noninteracting limit (ignoring the Hartree
energy)

δ = |〈n〉 − 1| = 1

2N

∑
k

[
tanh

( |εk| + |µ|
2kBTc

)

− tanh

( |εk| − |µ|
2kBTc

)]
, (35)

where N is the total number of sites. The quantity δ is
conventionally called hole (particle) doping in solid state
materials, since it measures the departure of the electronic
density from the half-filling (particle-hole symmetric) limit.
By solving the doping equation (35) self-consistently with
the linearized gap equation (31), we obtain the Tc curve as a
function of doping summarized in Fig. 7.

We see that as soon as the system is tuned away from
the unit filling fraction (µ = 0, δ = 0), the system ceases
to be quantum critical (the exponential tail in the Tc curves
extending down to g2/J = 0 is, however, not visible in the
temperature scale of Fig. 7). Second, the shift of the Tc curves
is not a monotonous function of the filling fraction. The Tc

value increases as the filling fraction decreases from unity,
but below a filling fraction of approximately 0.3, the Tc value
decreases again (see the Tc curves for different filling fractions
in 7).

To understand better the nonmonotonous shift of the Tc

curves, it is illustrative to observe the evolution of the
noninteracting Fermi surface. As shown in Fig. 8, as we tune
the doping from zero to unity, the nature of the fermionic
carriers changes from holelike to particlelike at the doping
δ = 0.5, or at the quarter-filling fraction. For δ < 0.5, the
Fermi wave vector kF increases in the two inequivalent Fermi
pockets as the doping increases. For δ > 0.5, the Fermi wave
vector kF decreases instead as the doping continues to increase.
Qualitatively speaking, the nonmonotonous shift of the Tc

curve is based on the behavior of the Fermi wave vector.
The BCS picture relates the transition temperature to the
Fermi wave vector via an exponential function, Tc ∼ e−1/kF |a|,
where a is proportional to the scattering length in an atomic
system. This means that, for an increasing Fermi wave vector
in the doping region δ ∈ [0,1/2], there will be an increasingly
higher transition temperature, while for the decreasing Fermi
wave vector in the doping region δ ∈ [0,1/2], the transition
temperature decreases.

FIG. 8. (Color online) The intersection of the shaded plane with the lower branch single-particle spectrum represents the topology of the
Fermi pockets. The filling fraction determines the height of the shaded plane. From panels (a) to (c), the filling fraction is decreasing.
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FIG. 9. (Color online) (a) For flux φ �= π , the Fermi pockets
generally take the shape of a “banana” due to the anisotropic Dirac
cones. (b) At lower filling fraction, the resulting sets of nesting vectors
are also different from the π -flux case due to Fermi “squares” of
different sizes.

Finally, by plotting temperature versus doping for a fixed
value of the coupling strength g1, as shown in the shaded
plane in Fig. 7, we find a dome-shaped superfluid phase with
nonlocal pairing at intermediate filling fractions, surrounded
by the normal phase for fillings close to zero or unity, which
we termed Dirac liquid (Fermi liquid) on the left (right) side
of the phase diagram, where linear (quadratic) single-particle
dispersion prevails. The dome structure of the superfluid phase
with nonlocal pairing is similar to the phase diagram for high-
Tc cuprates and heavy fermions.

H. Away from isotropic Dirac cones

So far we have fixed the staggered flux value to be φ =
π . Except for the special values of φ = 2πν, ν ∈ Z, we do
not expect a qualitative change in the mean-field results. The
effect of the different staggered flux values is a change in the
anisotropy of the Dirac cones. For a finite doping, it results in
anisotropic Fermi surfaces (see Fig. 9).

IV. EXPERIMENTAL CONSIDERATIONS

The superfluidity considered in this article arises for
temperatures on the order of 10% of the Fermi temperature.
This temperature range can be accessed in state of the
art Bose-Fermi mixtures subjected to an optical lattice. A
possible experimental scenario is to employ the widely used
rubidium-potassium system composed of a balanced mixture
of fermionic 40K atoms prepared in the |F = 9/2,mF =
−7/2〉 and |F = 9/2,mF = −9/2〉 Zeeman components of
the F = 9/2 ground-state hyperfine level and bosonic 87Rb
atoms in the |F = 1,mF = 1〉 ground state [42]. The parameter
U 2

BF /UBB may be adjusted via its dependence on the well
depth, while an s-wave Feshbach resonance around 202 G can
be used to tune UFF independently. In order to experimentally
discriminate the two superfluid phases discussed here, one
could search for a signature of their distinct gap functions
in their momentum spectra [44]. Correlation measurements
similar to the one described in Ref. [45] should be another
powerful method to obtain information on the nature of the
pairing.

V. DISCUSSIONS AND CONCLUSIONS

We considered here an ultracold Bose-Fermi mixture in a
2D square optical lattice subjected to an effective staggered
magnetic field, which exhibits a Dirac-like single-particle
spectrum. The system is studied at low temperatures, such
that the bosons condense and mediate a longer-range (nearest-
neighbor) attractive interaction between the fermions. At half-
filling, the Dirac fermions experience both local (Hubbard)
and nearest-neighbor attractive interactions, which can be
tuned independently. The zero-temperature mean-field phase
diagram exhibits a competition between a local s-wave and a
non-local pairing superfluid phase. It is interesting to compare
the superfluidity occurring here to that of graphenelike systems
[46–48]. In the square lattice with a staggered flux, equivalent
Dirac cones are related to each other by time reversal. In
contrast, in the graphene lattice, the time-reversal operation
maps one Dirac cone to the other inequivalent Dirac cone.
Thus, when BCS-Cooper pairs are formed in the square
geometry, no different flavors of Dirac fermions are involved.
This is not the case for the hexagonal symmetry.

At finite temperatures, the appearance of a superfluid phase
with nonlocal pairing below a dome reveals an intriguing
link to strongly correlated electronic materials. In addition,
the evolution of the normal phase (surrounding the superfluid

dome) from a Dirac liquid to a Fermi liquid upon increasing
doping is another essential feature of high-Tc cuprates and
heavy fermions, not easily captured by usual theoretical
descriptions of the system. Finally, the appearance of “banana-
shaped” Fermi pockets for flux values φ �= π , reminiscent of
the ones observed in high-Tc cuprates by means of ARPES
experiments [49], adds to the number of puzzling similarities.
The local anisotropies in the Fermi surface in Fig. 9 could
eventually lead to striped ground states, like those observed
in the cuprates [50]. The multitude of similarities between
the system considered here and the high-Tc superconductors
suggests that also for high-Tc materials a generalized Hubbard
model with complex rather than real hopping coefficients
might be the appropriate description. This speculation pre-
sumes that some physical mechanism could be breaking the
time-reversal symmetry already in the pseudogap phase of
cuprates, which is in fact supported by recent observations
[51]. A remaining open question is then to identify which
particle should be playing the role of the bosons in the cuprates,
to mediate a longer-range interaction, which ultimately leads
to unconventional superconductivity. In any case, cold atomic
systems are already proving to be a fascinating playground to
develop our understanding of high-Tc superconductors.
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APPENDIX

Here we provide the details of the Bogoliubov approx-
imation procedure for bosonic operators to arrive at the
mean-field action, Eq. (9). The procedure amounts to selecting
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out the condensation mode and making the replacement βk0 →√
N0 + β0 in the Hamiltonian. The Bogoliubov approximation

amounts to keeping only the terms with fluctuation operators

up to second order. For convenience, we define the various
coupling constants as a1 ≡ UBB/4N , and a2 ≡ UBF /N . For
the terms containing only bosonic operators we have

HB =
∑

k

(Ek − µ)β†
kβk + a1

∑
k1,k2,k3,k4

M(k1, . . . ,k4)β†
k1

β
†
k2

βk3βk4δ(k1 + k2 − k3 − k4)

� (E0 − µ)N0 + [(E0 − µ) + 4a1N0]
√

N0(β0 + β
†
0) + 2a1N

2
0 +

∑
k

(Ek − µ + 8a1N0)β†
kβk

+ a1N0

∑
k

M(k0,k0,k, − k)βkβ−k + a1N0

∑
k

M(k, − k,k0,k0)β†
kβ

†
−k,

where we have used M(k1,k2,k1,k2) = 2. And for the boson-fermion interaction term on the A- sublattice we get

HBF,A = a2

∑
r∈A

∑
σ

nr,σ nB
r = a2

∑
r∈A

∑
σ

{
nr,σ

∑
k1

g∗
k1

β
†
k1

e−ik1·r
∑

k2

gk2βk2e
ik2·r

}

= a2

∑
r∈A

∑
σ

{
(ñσ + nr,σ )

[
N0 +

√
N0(β†

0 + β0) +
√

N0g
∗
0e

−ik0·r
∑

k

gkβke
ik·r

+
√

N0g0e
ik0·r

∑
k

g∗
kβ

†
ke

−ik·r +
∑
k1,k2

g∗
k1

gk2β
†
k1

βk2e
−ik1·r+ik2·r

]}

� a2N0N
∑

σ

ñσ + a2

√
N0N

∑
σ

ñσ (β0 + β
†
0) + a2Nñσ

∑
k

β
†
kβk + a2N0

∑
r∈A

∑
σ

nr,σ

+ a2

√
N0

∑
r∈A

∑
σ

nr,σ g∗
0e

−ik0·r
∑

k

gkβke
ik·r + a2

√
N0

∑
r∈A

∑
σ

nr,σ g0e
ik0·r

∑
k

g∗
kβ

∗
ke−ik·r,

where we have introduced a mean-field density ñσ for the
spin σ fermions and, thus, fluctuation terms of higher order,
that is, O(nr,σ β

†
kβk), can be neglected. Performing the same

procedure for the boson-fermion interaction term on the B
sublattice yields a similar expression HBF,B. Collecting all the
terms we get

HB + HBF,A + HBF,B =
(

E0 − µ + UBBn0/2 + UBF

∑
σ

ñσ

)
N0 +

√
N0

(
E0 − µ + UBBn0 + UBF

∑
σ

ñσ

)
(β0 + β

†
0)

+
∑

k

(
Ek − µ + 2UBBn0 + UBF

∑
σ

ñσ

)
β
†
kβk + 1

4
UBBn0

∑
k

M(k0,k0,k, − k)βkβ−k

+ 1

4
UBBn0

∑
k

M(k, − k,k0,k0)β†
kβ

†
−k + UBF n0

∑
r∈A

∑
σ

(nr,σ + nr+e1,σ )

+UBF

√
n0

2N

∑
k

{∑
r∈A

∑
σ

nr,σ g∗
0gke

−i(k0−k)·r +
∑
r∈A

∑
σ

nr+e1,σ e−i(k0−k)·(r+e1)

}
βk

+UBF

√
n0

2N

∑
k

{∑
r∈A

∑
σ

nr,σ g0g
∗
ke

i(k0−k)·r +
∑
r∈A

∑
σ

nr+e1,σ ei(k0−k)·(r+e1)

}
β
†
k.

[1] J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).
[2] D. A. Bonn, Nature Phys. 2, 159 (2006).
[3] C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969

(2000).
[4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[5] A. K. Geim, Science 324, 1530 (2009).

[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Gregorieva, and A. A. Firsov, Science 306,
666 (2004).

[7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[8] A. F. Young and P. Kim, Nature Phys. 5, 222 (2009).

013616-12

http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1038/nphys248
http://dx.doi.org/10.1103/RevModPhys.72.969
http://dx.doi.org/10.1103/RevModPhys.72.969
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1126/science.1158877
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nphys1198


COMPETING PAIRING STATES FOR ULTRACOLD . . . PHYSICAL REVIEW A 82, 013616 (2010)

[9] N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys. Rev.
Lett. 102, 026807 (2009).

[10] H. Min, R. Bistritzer, J.-J. Su, and A. H. MacDonald, Phys. Rev.
B 78, 121401(R) (2008).

[11] M. Müller, J. Schmalian, and L. Fritz, Phys. Rev. Lett. 103,
025301 (2009).

[12] B. Uchoa and A. H. Castro Neto, Phys. Rev. Lett. 98, 146801
(2007).

[13] A. M. Black-Schaffer and S. Doniach, Phys. Rev. B 75, 134512
(2007).

[14] X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Nature
(London) 462, 192 (2009).

[15] K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and
P. Kim, Nature (London) 462, 196 (2009).

[16] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Phys. Rev. B 40, 546 (1989).

[17] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 (1998).

[18] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch,
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