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1 Introduction

Supersymmetric invariants with higher-derivative couplings play a role in many applica-
tions. Here we will be dealing with N =2 supergravity, where the first higher-derivative
couplings that were considered involve the square of the Weyl tensor coupled to vector
supermultiplets [1]. This particular class of invariants is based on an integration over a
chiral subspace of N =2 superspace. It is relevant for the topological string [2, 3], and
furthermore, it has important implications for BPS black hole entropy [4]. Another class of
invariants for vector multiplets that involve terms quartic in the field strengths, was derived
in terms of N = 1 superfields, both for the abelian [5] and for the non-abelian case [6].
Unlike the previous class, this one is based on an integral over full superspace. It yields
important contributions to the effective action of N = 2 supersymmetric gauge theories
(for some additional references, see e.g., [7-10]). Only recently, a related class of locally
supersymmetric higher-derivative couplings was considered in [11]. Those couplings which
involve both the Weyl tensor and higher-order coupling of the vector field strengths, were
conjectured to describe certain deformations of the topological string partition function.
This paper deals with an explicit construction of this rather large class of invariant
couplings based on full superspace integrals. They are coupled to conformal supergravity
and are realized off-shell. This feature greatly facilitates their construction, which is based
on previous work on N =2 supergravity (in particular, on [12, 13]). The general procedure



underlying this construction will be presented, and, as an explicit example, many of the
bosonic terms of the supergravity-coupled invariants that contain F4-, R?F2- and R*-
terms, will be discussed. Here F' denotes the abelian vector multiplet field strengths and
R the Riemann tensor.

One of the motivations for this work is to study the possible contribution of these
new couplings to the entropy and the electric charges of BPS black holes. As it turns
out we can derive a ‘non-renormalization’ theorem according to which these contributions
vanish. This result is not entirely unexpected, in view of the fact that there was already
a good agreement for the subleading contributions to the BPS entropy obtained from
microstate counting and from supergravity, in which the new couplings had so far not
been incorporated. Hence the existence of the non-renormalization theorem offers a partial
explanation for this agreement.

This paper is organized as follows. Section 2 presents the superconformal transforma-
tions of chiral supermultiplets in a conformal supergravity background as well as a number
of related issues. Section 3 describes the general strategy for the construction of the higher-
derivative couplings, based on the use of the so-called ‘kinetic supermultiplet’, which can
be constructed from an anti-chiral supermultiplet of zero Weyl weight. The components
of this multiplet are given in considerable detail, fully taking into account the presence
of the superconformal background. The construction of the bosonic terms of the higher-
derivative couplings is presented in section 4, together with explicit examples based on a
class of Lagrangians that involves terms such as F*, R?F? and R*. A non-renormalization
theorem pertaining to the entropy and the electric charges of BPS black holes is proven in
section 5. Some concluding remarks are presented in section 6.

In view of future applications and for the convenience of the reader we have added
four appendices, A, B, C, and D, containing basic results on the superconformal multiplet
calculus. Many of these results have appeared at various places in the literature, but we
have updated them in uniform notation. While some of them may not have been overly
relevant in the past, they are now required in the context of the new invariant couplings.

2 Chiral multiplets

Chiral superfields in flat N = 2 superspace were first discussed in [14]. Subsequently
they were derived in a conformal supergravity background [12, 13]. The latter result was
formulated in components and the same approach is followed in this paper, although it
is convenient to make use of superfield notions at the same time. Chiral multiplets are
complex and N = 2 superspace is based on four chiral and four anti-chiral anticommuting
coordinates, " and 6;, so that a scalar chiral multiplet contains two times 2* field compo-
nents. These multiplets carry a Weyl weight w and a chiral U(1) weight ¢, which is opposite
to the Weyl weight, i.e. ¢ = —w. The weights indicate how the lowest-0 component of the
superfield scales under Weyl and chiral U(1) transformations. Anti-chiral multiplets can
be obtained from chiral ones by complex conjugation, so that anti-chiral multiplets will
have equal Weyl and chiral weights, hence w = ¢.



Chiral multiplet

field A v, B;; F, A; C
w w w—{—% w+1 w—+ 1 w—i—g w + 2
c —w —w—l—% —w+1 —w+1 —w—i—g —w + 2
V5 + +

Table 1. Weyl and chiral weights (w and ¢) and fermion chirality (y5) of the chiral multiplet
component fields.

The components of a generic scalar chiral multiplet are a complex scalar A, a Majorana
doublet spinor ¥;, a complex symmetric scalar B;;, an anti-selfdual tensor F,, a Majorana
doublet spinor A;, and a complex scalar C'. The assignment of their Weyl and chiral
weights is shown in table 1. The Q- and S-supersymmetry transformations for a scalar
chiral multiplet of weight w, are as follows,!
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The spinors €' and 7; are the positive chirality spinorial parameters associated with Q- and
S-supersymmetry. The corresponding negative chirality parameters are denoted by ¢; and
n'. We note that hermitian conjugation is always accompanied by raising or lowering of
the SU(2) indices.

The transformation rules (2.1) are linear in the chiral multiplet fields, and contain also
other fields associated with the conformal supergravity background, such as the self-dual
tensor field Tg;; and the spinor x'. Other conformal supergravity fields are contained in
the superconformal derivatives D,. The superconformal multiplet of fields is described in
more detail in appendix A.

Products of chiral superfields constitute again a chiral superfield, whose Weyl weight
is equal to the sum of the Weyl weights of the separate multiplets. Also functions of chiral
superfields may describe chiral superfields, assuming that they can be assigned a proper

!Observe that [12, 13] employ different conventions, in particular for (anti)symmetrization. Here
(anti)symmetrization is always applied with unit strength.



Vector multiplet

fild X O W, Yy
3
w 13 0 2
1
c -1 -} 0 0
Y5 +

Table 2. Weyl and chiral weights (w and ¢) and fermion chirality (y5) of the vector multiplet
component fields.

Weyl weight. For instance, homogeneous functions of chiral superfields of the same Weyl
weight w define a chiral supermultiplet whose Weyl weight equals the product of w times
the degree of homogeneity. The relevant formulae are presented in appendix C.

Chiral multiplets of w = 1 are special, because they are reducible [12, 14]. Some details
about these multiplets are given in appendix D. For a scalar chiral multiplet with w =1
the tensor F a_b—l—F;) is subject to a Bianchi identity, which can be solved in terms of a vector
gauge field. The reduced scalar chiral multiplet thus describes the covariant fields and field
strength of a vector multiplet, which encompasses 8 + 8 bosonic and fermionic components.
Table 2 summarizes the Weyl and chiral weights of the various fields belonging to the vector
multiplet: a complex scalar X, a Majorana doublet spinor €};, a vector gauge field W,,, and
a triplet of auxiliary fields Y;;. There also exists an anti-selfdual tensor version of the chiral
multiplet with w = 1 that is reducible. This multiplet is the so-called Weyl supermultiplet,
which contains all the covariant fields and curvatures of N = 2 conformal supergravity. It
contains 24 + 24 bosonic and fermionic degrees of freedom. Both vector supermultiplets
and the Weyl multiplet play a central role in this paper.

Another special chiral multiplet is the so-called ‘kinetic’ multiplet, which has Weyl
weight w = 2. This multiplet is constructed from an anti-chiral multiplet with w = 0. It
will be discussed in detail in the next section.

Finally, scalar chiral multiplets with w = 2 lead to superconformal actions when in-
cluding a conformal supergravity background. Their highest component C has Weyl weight
4, and chiral weight 0. To define an action that is invariant under local superconformal
transformations one makes use of a density formula,
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3 The kinetic chiral multiplet

The term ‘kinetic’ multiplet was first used in the context of the N = 1 tensor calculus [15],
because this is the chiral multiplet that enables the construction of the kinetic terms,



conventionally described by a real superspace integral, in terms of a chiral superspace
integral. In flat N = 1 superspace, this construction is simply effected by the conversion,

/d29 d?0 o' ~ /d29 dT(P), (3.1)

up to space-time boundary terms. Here ® and ®' are two chiral superfields and @’ is the
anti-chiral field obtained from ®' by complex conjugation. The kinetic multiplet equals
T(®') = D?®’, where D denotes the supercovariant f-derivative. Obviously the kinetic
multiplet contains terms linear and quadratic in space-time derivatives, so that, upon
identifying ® and @', the right-hand side of (3.1) does indeed give rise to the kinetic terms
of an N =1 chiral multiplet.

In [13] a corresponding kinetic multiplet was identified for N = 2 supersymmetry,
which now involves four rather than two covariant f-derivatives, i.e. T(®) oc D*®. As a
result, T(®) contains now up to four space-time derivatives, so that the expression

/ d*9 d*0 @' ~ / d*9 o T(d'), (3.2)

does not correspond to a kinetic term, but to a higher-order derivative coupling. Further-
more, for N = 2 supersymmetry one has the option of expressing the chiral multiplets in
terms of (products of) reduced chiral multiplets. In that case, expressions such as (3.2)
will correspond to higher-derivative couplings of vector multiplets. Since we are consid-
ering the kinetic multiplets in a conformal supergravity background, their Weyl weight is
relevant. Both in N = 1,2 supergravity the kinetic multiplet carries Weyl weight w = 2.
The conversion starts from a w = 1 chiral multiplet for N = 1 and from a w = 0 chiral
multiplet for N = 2 supersymmetry, respectively.

To demonstrate this in more detail, consider an anti-chiral N = 2 supermultiplet in
the presence of the superconformal background. Its supersymmetry transformations follow
from taking the complex conjugate of (2.1). Precisely for w = 0 we note that the field C
is invariant under S-supersymmetry and transforms under Q-supersymmetry as the lowest
component of a chiral supermultiplet with w = 2. This observation proves that we are
dealing with a w = 2 chiral supermultiplet, as is also confirmed by the weight assignments
specified in table 1. What remains is to identify the various components of this multiplet
in terms of the underlying w = 0 multiplet. This can be done by applying successive Q-
supersymmetry transformations on C, something that requires rather tedious calculations
in the presence of a superconformal background.

Denoting the components of T(®,—¢) by (A, ¥, B, F A, C)lr@), while
(A, U, B,F~,A,C) will denote the components of the original w = 0 chiral multi-

plet, we have established the following relation,
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where in the last expression we suppressed terms quadratic in the covariant fermion fields.
Obviously terms involving the fermionic gauge fields, %ﬁ and qﬁui, are already contained
in the superconformal derivatives. Observe that the right-hand side of these expres-
sions is always linear in the conjugate components of the w = 0 chiral multiplet, i.e.
in (A, U, BY, F} A", C). As an extra test of the correctness of (3.3) we verified that these
expressions satisfy the correct transformation behaviour under S-supersymmetry. This test
cannot be performed on the last component C|pg), because we refrained from collecting
the fermionic contributions. As an extra check we have therefore verified that the bosonic
terms of C'lyg) are invariant under special conformal boosts.

The definition of the superconformal D’Alembertian O., defined by the contraction
of two superconformal derivatives D,, as well as multiple superconformal derivatives in
general, may require further comment. Therefore we have presented some relevant material
in appendix B. Below we give the most non-trivial transformation rules under special
conformal boosts that are needed in this paper,
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These results follow from (B.6), upon making use of the relevant curvatures.

4 Invariant higher-derivative couplings

Using the results of the previous section one can construct a large variety of supercon-
formal invariants for chiral multiplets with higher-derivative couplings. For unrestricted
chiral supermultiplets one cannot write down Lagrangians that are at most quadratic in
derivatives, so they usually play a role as composite fields that are expressed in terms
of reduced chiral multiplets, such as the vector multiplets and the Weyl multiplet. The
construction of the higher-order Lagrangians therefore proceeds in two steps. First one
constructs the Lagrangian in terms of unrestricted chiral multiplets of the appropriate
Weyl weights, and subsequently one expresses the unrestricted supermultiplets in terms
of reduced supermultiplets. In these expressions it is natural to introduce a variety of
arbitrary homogeneous functions.

The invariants are expressed as chiral superspace integrals, because all possible anti-
chiral fields are contained in the kinetic multiplets that we have introduced in section 3.
A simple example of this approach was already exhibited in (3.2). The fact that these
invariants are actually based on full superspace integrals implies that they must vanish
whenever all the chiral (or, alternatively, all the anti-chiral) fields are put equal to a con-
stant. In the chiral formulation of the integral, this phenomenon is reflected in the fact
that the kinetic multiplet of a constant anti-chiral multiplet vanishes. This result can easily
be deduced from (3.3). Invariants can be substantially more complicated than (3.2). The
integrand does not have to be linear in a kinetic multiplet, and can depend on a function
of kinetic multiplets. One can also consider ‘nested’ situations, where a kinetic multiplet is
constructed starting from an expression of superfields among which there are other kinetic
multiplets, thus leading to even higher multiple derivatives.

The above approach is a constructive one and in general it will be hard to classify all
these invariant couplings, say, in terms of a limited number of functions, as is often possible
for supersymmetric theories. For definiteness, we henceforth restrict attention to invariants
proportional to a single kinetic multiplet, as given in (3.2). In that case, expressing the
composite chiral multiplets in terms of vector multiplets, one obtains the supergravity-
coupled invariants corresponding to the actions derived in [5, 6] in the abelian limit, which
contain F*-couplings. By including the Weyl multiplet, one also obtains R?F?- and R*-
couplings. The R?F?-couplings will in principle overlap with part of a subclass of invariants
discussed recently in [11] in connection with certain deformations of the topological string
partition function. These couplings are encoded in terms of a single function of holomorphic
and anti-holomorphic fields. In a rigid supersymmetry background these actions exhibit
Kahler geometry with this function playing the role of a Kéhler potential, just as happens in
N = 1 supersymmetric actions for non-linear sigma models. As we will demonstrate below,



this feature survives in the presence of the superconformal background. Other examples of
higher-derivative couplings based on more than a single kinetic multiplet will be discussed
in section 6.

Hence we start by writing down the bosonic terms of the Lagrangian (3.2). It is
convenient to first note the following relation,

1 i1\2 A 2 <
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where we suppressed all fermionic contributions. In deriving this result we made use
of (A.6). Subsequently we derive the bosonic part of the Lagrangian corresponding to (3.2),
making use of the density formula (2.2) and of the product rule (C.1),
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Note that we suppressed the prime on the second chiral multiplet indicated in (3.2). In
general, however, we will not always identify the two multiplets, so that the complex
conjugated components in the above formula do not have to correspond to the same super-
multiplet. However, upon making this identification, the above Lagrangian is manifestly
real, which provides an additional check on the correctness of our result. The reason is
that the corresponding lowest-order Lagrangian (3.2) is also real in that case (up to total
derivatives that we have also suppressed in deriving the above result). Note also that the
Lagrangian (4.2) vanishes whenever either one of the multiplets is equal to a constant, thus
confirming the analysis presented at the beginning of this section.

We will now use the above results to write down the extension to local supersymme-
try of the class of vector multiplet Lagrangians constructed in [5, 6]. Just as above we
concentrate on the purely bosonic terms. The extension follows by writing the w = 0
chiral multiplets ® and ® as composite multiplets expressed in terms of vector multiplets.



In (3.2), and correspondingly in (4.2), one thus performs the following substitutions,
o — f(@), I —g(dh), (4.3)

where ® denote the (reduced) chiral multiplets associated with vector multiplets. Upon
expanding ® and @’ in terms of the vector supermultiplets, making use of the material
presented in appendices C and D, one obtains powers of the vector multiplet components
multiplied by derivatives of f(X) and g(X), where the X! denote the complex scalars of
the vector multiplets. Homogeneity implies that X' f7(X) =0 = X! g;(X), where f; and
g7 denote the first derivatives of the two functions with respect to X’ and X', respectively.
Here we recall that the expression (4.2) vanishes whenever f(X) or g(X) are constant. As
noted previously, the origin of this phenomenon can be traced back to the fact that the
full superspace integral of a chiral or an anti-chiral field vanishes (up to total derivatives).
Therefore the Lagrangian will depend exclusively on mixed holomorphic/anti-holomorphic
derivatives of the product function f(X)g(X). By summing over an arbitrary set of pairs
of functions f(™(X)g"™ (X), we can further extend this function to a general function
H(X, X) that is separately homogeneous of zeroth degree in X and X. Because H(X, X)
is only defined up to a purely holomorphic or anti-holomorphic function, it is thus subject

to Kéhler transformations,
H(X, X) — H(X, X)+ AX) +A(X). (4.4)

Hence H(X, X) can be regarded as a Kihler potential, which may be taken real (so that
AX) = [AX)]).

Carrying out the various substitutions leads directly to the following bosonic contri-
bution to the supersymmetric Lagrangian (for convenience, we assume H to be real, unless
stated otherwise),
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(4.6)

In view of the Kéhler equivalence transformations (4.4), the mixed derivative H; 7 can be

identified as a Kéahler metric. Hence we have the following results for the metric, connection,

and the curvature of the corresponding Kéahler space,
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The Lagrangian (4.5) can then be written in a Kéhler covariant form,
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The covariantizations in the various combinations can be understood systematically by
rewriting the chiral multiplet components of the vector multiplets such that they are co-
variant with respect to the complex reparametrizations of the Kéhler space (in the limit
where the fermions are suppressed). An easy way to appreciate these covariantizations is by
reorganizing the expansion of a composite chiral multiplet into vector multiplets according
to (C.2) by replacing the ordinary derivatives of the function G by covariant derivatives.

The Lagrangians (4.5) and/or (4.8) can also be used in the context of rigidly supersym-
metric theories upon suppressing all the superconformal fields. The resulting Lagrangian
is then superconformally invariant in flat Minkowski space. This invariance can be further
reduced to ordinary Poincaré supersymmetry by replacing one of the vector multiplets by
a constant.

As an extension of the previous results we return to (4.2), and consider composite
chiral multiplets that depend on both vector multiplets and on the Weyl multiplet. Hence
we replace (4.3) by

o — f(el,w?), @ —g@ K Ww?, (4.9)
where W? refers to the square of the Weyl multiplet. The components of this reduced
chiral multiplet are given in (D.6). Upon expanding these functions and substituting the
results into (4.2), one obtains a Lagrangian that contains R*-, R2F?- and F*-terms. All
terms are proportional to mixed holomorphic/anti-holomorphic derivatives of a function
H(X,T? X, T?), where T? = (T, e;;)* and T? = (T )?, and where H is constructed
from pairs of products of functions f(X,7?) and g(X,T?). The fact that the composite
multiplets have w = 0 implies a modified homogeneity property,

X'Hp (X, T2 X, T?) 4+ 2T He (X, T%, X, T?) = 0, (4.10)

and likewise for the anti-holomorphic derivatives.

The Lagrangian consists of the Lagrangian (4.5) plus a large number of terms that
involve multiple derivatives of H with respect to 72, T2, X! and X'. Below we concentrate
on terms proportional to multiple derivatives of H with respect to only 7% and T2. Among
others those contain contributions of fourth order in R(M), whose leading contribution is

equal to the Weyl tensor,

(64)2e"lL =

4 HTQTQTQTQ Tabl] €ij TCdklekl Tefmnemn Tghpqepq

AN 1 . .
X [R(M)aba’b/R(M)cda b + QR(V)asz R(V)cd]i:|

e 1 ; ;
< [ROD. oy RODT + JBO)'s RV

— 11 —



+ 2 {HTQTQTQ Tablj 5ij TCdklc?kl

% [R(M)aba,b,R(M)cda’b’ + _RW)ap'j R(V)eds

1
2
1
efgh 9 ef J

> [R(M)+ R(M)Jrefgh + R(V)+ i, R(v)Jrefji _ ;TefmnDeDhThfmn:| + [h.c.] }

abc 1 1 abj 1 a e mn |2
+HT2T2{1R<M JapeaROM) T ROVYG G ROV 3= T DD Tep™ | + -+ }

(4.11)

Besides the terms quartic in R(M) we have retained some of the terms that come with
them as part of the basic building blocks that emerge in the calculation (similar blocks
appear in (4.5)). Besides giving a little more information in this way, this has the advantage
that the origin of the various term will be easier to track down.

In addition to the above terms there are mixed terms which lead to explicit contri-
butions from the vector multiplets (i.e. beyond the X and X dependence in the function
H). Those include, for instance, terms proportional to [R(M)]? times the product of two
vector multiplet field strengths, FH,,I . We will not exhibit those terms here (they can in
principle be deduced from (4.2) along the same lines as for the previous contributions).
Some of these terms will be shown in the equation below.

A special case, which is worth mentioning in view of the work of [11], corresponds to
functions H(X,T?, X) that do not depend on T2. Hence the function H is not real. Again
we do not present all the terms, but we give all the terms that contain R(M) (with some
completions), with the exception of terms proportional to derivatives of X and T,," or
their complex conjugates,

(64)te L =

- 1 1 . .
e T2 TMeu | RO RO + 5 BOV)o's RV)et']|
e 2 mn
y s 1 . .
- 4HT2T2K{TGbU5ij T ey, [R(M)aba’b’R(M)cda Y+ 2R(V)asz R(V)cd]i]

X

1 3
DCXK + 8FefKTer€ij:| + - }

1 B 1 ..
+ 2HT2 ,K{T“”melm [Fabl R(M) g™ — 2YW Eki R(V)cdkj]

1 )
x [O0.XE + 8FefKTef”€ij:| + - }
1 1 ..
- 8HT21KL{TCdlm51m [FabIR(M )ed™ — QY”I% R(V)cdkj]

1. .
x |:Fa-‘,l-)IF+abJ _ 2yZJKY'ijL:| + }
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g s [ROD RO T 4 ROV RV, = T4 DD T g
% |:F(;Ir)IF+abJ _ ;YinYijL:| . }

~ 2Haie] [ RO ROD 4 4 RN RV = T DD Lo

X -DCXK + ;FefKTeﬁjeij}

+ Tcdijgij R(M)cdab %

1 1 1
X | 5 Top ' T gy FETE - QFQZK R(w,e),® — o hm YleR(V)ablm]

+ Tcdijeij DaR(M)Cdab DeFngK 4. } . (4.12)

5 A non-renormalization theorem for BPS black hole entropy

The results of this paper can be used in the study of black holes. Based on any linear
combination of the various N = 2 locally supersymmetric Lagrangians, one can evaluate
the corresponding expressions for the Wald entropy and the electric charges in terms of
the values of the fields taken at the black hole horizon. In the case of BPS black holes, the
horizon values of the fields are highly restricted due to full supersymmetry enhancement
at the horizon, and therefore the resulting expressions for the entropy and the charges will
simplify. To explore this one must determine the possible supersymmetric field configu-
rations, preferably in an off-shell formulation so that the results do not depend on the
specific Lagrangian. This has already been done in [16], which provided a generalization
of the attractor equations found in [17-19]. So far, generic chiral supermultiplets were
not considered, but it is convenient to do so as well. As it will turn out, it suffices to
restrict oneself to chiral multiplets of Weyl weight w = 0, for which results are rather
straightforward to obtain.

The first relevant observation is that a constant chiral superfield (i.e. a supermultiplet
with constant A and all other components vanishing) is only supersymmetric provided it
has w = 0. In fact there exist no other supersymmetric values of the chiral superfield. All
this can be derived directly from the transformation rules (2.1). The second observation
is that the kinetic multiplet constructed from a w = 0 anti-chiral multiplet, vanishes when
the latter multiplet is equal to a constant. This follows by inspection of (3.3). These
two observations prove immediately that any invariant proportional to a kinetic multiplet,
must vanish for supersymmetric field configurations. This fact can immediately be verified
from (4.2), because when the fields A and A’ are constant and all other chiral multiplet
component fields are vanishing, the expression (4.2) indeed vanishes.

The above result is interesting in its own right, but we are also interested in the first-
order variation of the action induced by a change of some of the fields, evaluated for a
supersymmetric background. Given the fact that all the invariants discussed in this paper
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will contain at least one kinetic multiplet, we thus consider
L / 4o [5@ T(3) + & 5’11‘@')] , (5.1)

where ® and @’ are composite chiral fields, which are themselves expressed in various chiral
fields, including possible kinetic multiplets. They are not necessarily uniquely defined, and
it is also possible to consider linear combinations of such terms. Since we will be evaluating
the variation at supersymmetric values of the fields, the first term in (5.1) vanishes, because
the kinetic multiplet vanishes, whereas the second term can be evaluated for constant .

However, rather than continuing in this way, we may simply return to (4.2) and consider
its variation. Observe that each term is proportional to a product of one component of
® and another one of ® (we remind the reader that in (4.2) we suppressed the prime
for notational clarity). All these components will be equal to zero in a supersymmetric
background, with the exception of A and A’, which will take constant values. However,
only space-time derivatives of A and A’ appear, and those will vanish as well. In other
words, (4.2) is always quadratic in quantities that are vanishing in the supersymmetry limit.
Hence any first-order variation of any Lagrangian of this type must necessarily vanish in a
supersymmetric background!

The above result suffices to derive a non-renormalization theorem for electric charges
and the Wald entropy [20-22] for BPS black holes. The reason is that these quantities
are always expressed in terms of first-order derivatives of the Lagrangian with respect
to certain fields, such as the abelian field strengths or the Riemann tensor, or possible
derivatives thereof. This concludes the proof of the non-renormalization theorem.

As we already mentioned in section 1, the existence of this non-renormalization theorem
is a welcome result. So far good agreement has been established for BPS black hole entropy
evaluated on the basis of supergravity and of microstate counting, suggesting that other
invariants in supergravity should contribute only marginally, or perhaps not at all, at the
subleading level. The result of this section lends support to this idea. Nevertheless the
possible existence of alternative supersymmetric invariants that do not belong to the class
of invariants discussed in this paper, cannot be excluded at this stage.

6 Concluding remarks

In this paper we studied a large class of N = 2 superconformal invariants involving higher-
derivative couplings, based on full superspace integrals. For a special subclass we have
presented explicit results for some of the bosonic terms. This is the subclass that contains
only a single kinetic multiplet.

As indicated already, there are further options. The most obvious one is to include
more kinetic multiplets, based on various composite chiral and anti-chiral multiplets with
suitable Weyl weights,

/ d*0 @y T(®y)---T(®,), (6.1)
where ®,...®,, are anti-chiral superfields of zero weight and ®; is a chiral superfield
of weight w = —2(n — 1). This leads to actions that contain four space-time derivatives.
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However, when treating the chiral multiplets as composites of reduced chiral multiplets, one
obtains invariants with terms of 2(14-n) powers of field strengths and /or explicit derivatives,
i.e., RZmF2p2(ntl=m=p) The case of n = 1 has been dealt with in considerable detail in
section 4. The expression of the composite chiral multiplets in terms of the reduced ones
allows again for the presence of functions H(™ which are subject to a generalized version
of the Kéhler transformations noted in section 4.

As alluded to before, one can also consider nested situations where the kinetic multiplet
is constructed from a combination of (anti)chiral fields that include again other kinetic
multiplets. In this way one constructs multiplets with multiple derivatives of arbitrary
power. We are then led to introduce quantities of the type,

T = T(®, T(®1)), TO =T(D3T(®T(d1))), ..., T™ =T($, T V),  (6.2)

which can be part of any superspace integrand, on the same footing as the kinetic multiplets
in (6.1). Here ®; has w = 0 and ®9, ®3,--- have w = —2. This extends the number of
invariants to all possible combinations of the form

/ d*0 o T T(2) ... () (6.3)

where ®g has w = —2(k — 1) and where we assume ny > 1 with T(®;) = T()). When
expressing all the chiral multiplets in terms of reduced ones, then one can show that the
maximal number of derivatives of the invariants (6.3) is equal to 2(1 + ), ng).

These types of invariants are not necessarily independent in the sense that there can be
linear combinations that are equal to a total derivative. For example, at the six-derivative
level, one has

/d40(I>0T((T)2T((I)1))%/ d*0 @, T (o) T(D1), (6.4)

up to total derivatives. Nevertheless it is clear that we are dealing with an infinite hierarchy
of higher-derivative invariants.

Of course, a relevant question is whether the invariant couplings presented in this
paper exhaust the possible higher-derivative invariants. Most likely, this will not be the
case. From the perspective of BPS black holes the question would then remain whether
these conjectured couplings could still contribute to the entropy and electric charges.
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Weyl multiplet parameters

field e,* %ﬁ b, A, Vﬂij T X' D wzb fu® .t € n'
w -1 -3 0 0 0 1 52 0 1 5 - 5
c 0 -3 0 0 0 -1 -2 0 0 0 -3 -1 -3
Vs - - -+ —

Table 3. Weyl and chiral weights (w and ¢) and fermion chirality (v5) of the Weyl multiplet
component fields and the supersymmetry transformation parameters.

A Superconformal calculus

Throughout this paper we use Pauli-Ké&llén conventions and follow the notation used e.g.
n [16]. Space-time and Lorentz indices are denoted by pu, v, ..., and a,b,..., respectively;
SU(2)-indices are denoted by i,j,.... As mentioned already in footnote 1, (anti-)sym-
metrizations are always defined with unit strength.

In this appendix we present the transformation rules of the superconformal fields and
their relation to the superconformal algebra, as well as their covariant quantities contained
in the so-called Weyl supermultiplet. The superconformal algebra comprises the generators
of the general-coordinate, local Lorentz, dilatation, special conformal, chiral SU(2) and
U(1), supersymmetry (Q) and special supersymmetry (S) transformations. The gauge fields
associated with general-coordinate transformations (e, *), dilatations (b,), chiral symmetry
(Vﬂij and A,) and Q-supersymmetry (1/)“’) are independent fields. The remaining gauge
fields associated with the Lorentz (wuab), special conformal (f,®) and S-supersymmetry
transformations ((;5“2) are dependent fields. They are composite objects, which depend
on the independent fields of the multiplet [13, 23, 24]. The corresponding supercovariant
curvatures and covariant fields are contained in a tensor chiral multiplet, which comprises
24 + 24 off-shell degrees of freedom. In addition to the independent superconformal gauge
fields, it contains three other fields: a Majorana spinor doublet x’, a scalar D, and a
selfdual Lorentz tensor Tip;;, which is anti-symmetric in [ab] and [ij]. The Weyl and chiral
weights have been collected in table 3.

Under Q-supersymmetry, S-supersymmetry and special conformal transformations the

independent fields of the Weyl multiplet transform as follows,

5eua =é ’Yawui + & 7a¢ui ’

4 1 4

51/};/ = QDMGZ - 8Tabw'7ab'7u€j - ’Yunz
1, 3 1 a

5bﬂ = 26 (bm' — 46 YuXi — 2?7 Ibm‘ +h.c. + AKe;wa

1., 3
0A, = 216’@”' + 4
5Vﬂij =2 quﬁui — 36 X'+ 2n; z/)ui — (h.c. ; traceless),

o 1.,
i€y, xi + zmwm +h.c.,

0T = 8 R(Q)w” |
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) 1 . 1 ) 1 . ) 1 .
ox' = — 127“1) DTw" €5 + GR(V)MVZ]"}/MVEJ — 3iRW(A)'yWeZ + Dé' + 12’yabTab”77j ,
6D =& Dx; +& Dy (A1)

Here ¢’ and ¢; denote the spinorial parameters of Q-supersymmetry, 7° and 7; those of S-
supersymmetry, and A ® is the transformation parameter for special conformal boosts. The
full superconformally covariant derivative is denoted by D,,, while D, denotes a covariant
derivative with respect to Lorentz, dilatation, chiral U(1), and SU(2) transformations,

Dyue' = <8M - iqud Yed + ; by + ;Au> €+ ; Vi (A.2)
The covariant curvatures of the various gauge symmetries take the following form,
R(P)uw" = 20, e, +2b,e,)" —2 w[uab ey — ;(T,E[MiVGZZ)y}i +h.c.),
R(Q)w' = 2Dyby" — Yudu)' — 51; T oty V) »
R(A)w = 20,4, —1i (;%ﬁ%h + ilﬁ[uivu]xi - h-C-) :
ROV 'y = 20,V 5 + V' Vo5 + 200" b — g 6) — 30 %X — Vi x’)
— 85 (U b — Yy d)") + 25ji(7;[pk'7u]Xk — P X")
R(M)™ = 2000, — 2wy, w," — 4fp, %" + ;(%Z © )+ huc)
+ (i%i P T — i%f Y YXi = Pt 7 RQ): + h-C-> :

1
2

R(S),ul/i =2 ’D[,ugbu]i - Qf[ua7a¢u]i - $Tab 7 7 ;ﬂ;z)z/} 27a¢ %}jWan
1 . , 1. . :
+ 4R(V)ablj'7ab'7[,uwu]] + QIR(A)ab7 bV[uwu] >

1 . ~ .
R(K)ulla - QD[MfV}a - 4 (¢[u27a¢u}i + (b[mfya(ﬁu]l)

1- . 3- A ,
R(‘D)W/ = 28[ubu] - Qf[uaeu]a - 2¢ Z¢Vi + T/J[MZ%} ¢ ;uQSV}Z + 47/)[;“%}XZ )

w

1/ . . .
+ 4 <T;Z),uszTbaij¢u] - 3€[Ma%fﬁ)xi
3 TR 7ot a
+ 2D1/)[‘u ¥ ¢u]j — 4¢[ﬂ ’yy]DbR(Q)b i+ h.C.> . (A.3)

There are three conventional constraints (which have already been incorporated in (A.3),

'YMR(Q);wi + Q'YVXi =0,

. 1 3
¢’y R(M)ua” — iR(A)ua + 8TabijTubw —oDeua=0, (A.4)
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which are S-supersymmetry invariant. They determine the fields wuab, qﬁui and f,* as

follows,
wfjb = — 26”[“3[ﬂe,,}b] — e”[meb]”e,w&,eyC — Qeu[aeb}”by
1 . 5 -
- 4(2%7[“%] + %y + hee)
| . 1 . 1 y 1 4
¢uz = 9 <'7p T — 3'Yu7p > <Dp¢az - 16Tabw'7ab7p¢aj + 47anZ> )
I 1 1—1uupa’i 17ijuu 1’iu
T = 6R(w,e) -D - 19€ € Uu’ WDptoi — 12¢u T 5 — 41% Yxi+he | .

(A.5)
We will also need the bosonic part of the expression for the uncontracted connection f,*,

1

a a 1 1 a L~ a 1 ijrpa
Ju" = QR(W76)M 4 <D - 3R(wve)> €n QIR(A)M + T T, (A.6)

16

where R(w,e),% = R(w),,%ep” is the non-symmetric Ricci tensor, and R(w,e) the corre-

sponding Ricei scalar. The curvature R(w),,

is associated with the spin connection field
w,®, given in (A.5).

The transformations of wuab, gbﬂi and f,* are induced by the constraints (A.4). We
present their Q- and S-supersymmetry variations, as well as the transformations under
conformal boosts, below,

1. 1. . 3 .
6wﬂab — gl’)/ab(lsm' _ 2€271Z),uj Tabij + gl'Yu'Yain

2 4
1 ab 1 —1_ab [a, b
+ €9, R7(Q) — Nl Vi +he. + 2 Ag%e,”

A QIR(A)aw“b'mel - JpT By bV

3 o . . .
+ 9 [(Xj’yaej)’)’awuz - (Xj’yawuj)’)’aez] +2 Dunl + AKa'YawuZ )

1. . 3 ' 3
5fua — 2€z¢ﬂz DbTbaij _ 4e,uaglﬂ)Xi _ |

. 1 .
+ &, DyRY;(Q) + Qﬁwagbm +h.c. + D, Ak (A7)

6ot = — 2 £, %€ +  ROV)ap 7€ +

€i7a¢ui D

The transformations under S-supersymmetry and conformal boosts reflect the structure of
the underlying SU(2, 2|2) gauge algebra. The presence of curvature constraints and of the
non-gauge fields Tgy;;, x* and D induce deformations of the Q-supersymmetry algebra, as
is manifest in the above results, in particular in (A.3) and (A.7).

Combining the conventional constraints (A.4) with the various Bianchi identities one
derives that not all the curvatures are independent. For instance,

9 .
EadeDbR(M)cdef _ 2€abc[e R(K)bcﬁ + ) Ua[eXZVf}Xi

1, 1 y
+ o [BXYR(Q) + (DT TY) —hee | (A.8)
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Furthermore it is convenient to modify two of the curvatures by including suitable
covariant terms,

1 g g
R(M)a® = R(M)ap, “* + 16 (Tupij TN + TV T5)
. 3
’R'(S)abZ = R(S)abZ + TabZ]Xj . (Ag)

4

where we observe that v (R(S) —R(S))abi = 0. The modified curvature R(M) 4 satisfies
the following relations,

- 1 va 3 a
R(M),u™ e’y =iR(A) e + JDen’
1
45abef 5Cdgh 7?'(]\4)efgh = R(M)ade ’
Ecdea R(M) = peeg R(M) £ = 2R(D) gy = 21R(A)gp - (A.10)

The first of these relations corresponds to the third constraint given in (A.4), while the
remaining equations follow from combining the curvature constraints with the Bianchi
identities. Note that the modified curvature does not satisfy the pair exchange property;
instead we have,
R(M)as = R(M)*y + 4155 R(A), (A.11)
We now turn to the fermionic constraint given in (A.4) and its consequences for the
modified curvature defined in (A.9). First we note that the constraint on R(Q),,* implies
that this curvature is anti-selfdual, as follows from contracting the constraint with v* v,

R(Q)lwi = _R(Q),ul/i . (A.12)

Furthermore, combination of the Bianchi identity and the constraint on R(Q),u: yields the
following condition on the modified curvature R(S)a’,

YR(S)wp' = 2D*R(Q)wp’ = —2 D R(Q) o’ . (A.13)
This identity (upon contraction with v°v.4) leads to the following identity on the anti-
selfdual part of R(S)u’,

R(S)ws’ — R(S)a’ =2 (R(Qw‘ ; 3%bxi> | (A.14)

4

Finally we note the following useful identities for products of (anti)selfdual tensors,
1 1
+ + + + + + + +
G[a[c Hd]b] =+ 8Gef H*=e abed — 4(Gab Hcd + ch Hab) ’

G B 4 GEe T =401 HFe

;Eabcd G[ice Ha:zl]Ee _ 4 Gtla prEble
G:I:ac H:I:b + G:I:bc H:I:a — 177ab G:I:cd Hid
C C 2 cd
G*fHF'=G* HF",  G™HJ =0. (A.15)
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B Covariantization under special superconformal boosts

In principle covariant (multiple) derivatives are defined by the standard procedure by
adding gauge fields to absorb all symmetry variations proportional to derivatives of the
transformation parameters. In this procedure the gauge field f,* associated with the con-
formal boosts (parametrized by Ax®) appears somewhat indirectly, because the only other
fields that transform under the conformal boosts are the gauge fields b, wuab and qﬁui.
Therefore supercovariant derivatives of fields that are themselves invariant, will transform
under these K-transformations, and usually these variations take a relatively simple form.
We give some examples for a scalar field ¢, a spinor field ¢, and a tensor field t,;, each of
Weyl weight w,

OkDa¢ = —wAka®,
Ok Datpe = — w Akatpe + 2 7fa[bAKc] -2 na[btc]d AKd )

OxDatp = | —w Aka + ;AKb'Yab Y. (B.1)
These transformation rules simplify for certain contractions, such as in D%, or D,
kD ap = (2 — w) Ak tap ,
Ok Diatyg = (2 — w)Akatyq »

scpo = (5~ ) v, (B.2)

showing, for instance, that the Dirac operator on a spinor field of weight w = ;’ is invariant.

Applying an extra covariant derivative we explicitly indicate the presence of the K-
connection field f,*,

D,uDa¢ = DuDa¢ + wf,ua o,
DuDatab = DuDatab + (w - Q)f“a tab
3 a
DulD¢:DulDw+ (w_ 2>fu ’W/J, (B'?))

where D), denotes the covariant derivative without including the field f,%. Under K-
transformations these multiple derivatives transform as,

5KDMD(1¢ = - (w + 1) [AKuDa + AKaDu] (b + euaAKbDb(ba
5KDMDatab = — (w + 1)AKuDatab — AKbDataM + eubAKcDatac + (2 — w)AKaDMtab,
1 3
DD = | = (w0 D+ Y0 D0+ (3 = ) Dy (B.1)

Contracting the first equation with e shows that the conformal D’Alembertian transforms
under K-transformations as dxd.¢p = —2(w — 1)Ag*D4¢, which vanishes for w = 1.
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This pattern repeats itself when considering even higher derivatives. We present the
following results,

Dchgb :D/JDCQS + 2(w - 1)f,uaDa¢a
O0c0c¢ =D, D 0 + (w + 2) f,*0cd + 2(w — 1) fua D* D¢,

0P = DD Pt {0+ DA = o | it (w = ) fur D, (B5)

and,

5KDCDC¢ = - 2(w - 1)AKaDcDa¢ - 2(w + 1)AKaDaDC¢
= — 2wAg"” [DCDa¢ + DGDC] ¢+ 2Ak" [DCDQ - DGDC] ¢,

SkOeDb = — (2w — DA Dalt — N[0 = )0+ (D, D0 (B

For future use we have evaluated the previous two variations for the fields A and ¥;, which
1
99
derivatives in (B.6) appear with a certain degree of anti-symmetry, such that they become

have weights w = 0 respectively. In this case all the terms cubic and quadratic in

proportional to curvatures. Upon substituting the results for the various curvatures, one
obtains (3.4).

C Multiplication of chiral multiplets

In this appendix we summarize the product rules for two chiral supermultiplets and the
Taylor expansion for functions of these multiplets. In the local supersymmetry setting, we
will usually be dealing with homogeneous functions of chiral multiplets with equal Weyl
weight so that a scaling weight under Weyl transformations can be assigned to the function.

The product of two chiral multiplets, specified by the component fields
(A, U;, Bij, F,, A, C’) and (a, Vi bij, fops AN C), respectively, leads to  the
following decomposition,

(A, 03, By, Fp, Ni, ©) @ (a, i, by, fops Nis ) =
<Aa, A4+ a Vi, Abjj + aBij — Y1)y,
Afp+aF, — iaij@fmb% ;
S+ fan™ ).
Ac+aC — ;sikeﬂB@-j b+ Fop [~ + Y (U0 + %AJ')> : (C.1)

1
ANi+al; — 25kl(Bik Uy + b V) —
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A function G(®) of chiral superfields ®! defines a chiral superfield, whose component
fields take the following form,

Alg =G(4),
Wilg =G(A); v,
Bilo =G(A) B! — | G(A)1y U0,
Falo =0(A) Fy — (G(A)1y 9017,
Ailg =G(A) A — ;g(A)U [Bijlajk\llk‘] + ;Fagwabw]
+ 418Q(A)1JK N IRy T
Clg = G(A) O — ig(A)U (B By’ eifell — 2 F TR~ 4 4e* R 1y, 7],

1 " L
+ 4g<A)IJK |:€Zk€]lBijI\I’kJ\I’lK — 2€kl\I’kIFaszyab\I,lK:|

1

+ 192Q(A)1JKL ey U7 My Ky wy L (C.2)

This result follows straightforwardly from expanding the superfield expression in powers of

the fermionic coordinates.

D Reduced chiral multiplets

Chiral multiplets can be consistently reduced by imposing a reality constraint. This usually
requires specific values for the Weyl and chiral weights. The two cases that are relevant
are the vector multiplet, which arises upon reduction from a scalar chiral multiplet, and
the Weyl multiplet, which is a reduced anti-selfdual chiral tensor multiplet. Both reduced
multiplets require weight w = 1.

We will denote the components of the w = 1 multiplet that describes the vector mul-
tiplet by (A, ¥, B, F~, A, C)|vector- The constraint for a scalar chiral supermultiplet reads,
€9 DirapDj® = [¥ D;ryqpDj®]*, which implies that Clyector and A;|vector are expressed in
terms of the lower components of the multiplet, and imposes a reality constraint on B|yector
and a Bianchi identity on F~ |yector [12—14]. The latter implies that F'~ |yector can be ex-
pressed in terms of a gauge field W,,. This feature is not affected by the presence of the
superconformal background field.

Denoting the independent components of the vector multiplet by (X,Q,Y, F~), the

identification with the chiral multiplet components is as follows,

A|vector = X,
\Di‘vector — Qi7

kl
Bl’j|vector = YVij = 6ikejlyv )
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- 1 v
Fab|vector = <5ab6d - 26ab6d> ecteq a[MWV]
1.- . . _ . . _ -
+ 4 [W%WPQJ + X prWpOWaMboj - X Tab”] €ij »
Ai‘vector - - EileQj
_ 1 .. .
C‘Vector = -2 DCX - 4F;[; Tabijgw - 3XZQZ . (Dl)

The Bianchi identity on Fy; can be written as,

a

1 o1 3 o
Db <FJ2 — Fab + 4XTabij6U — 4XTabZ]€ij> + 4 (Xi’)/anc?U — XZ%QJeZ-j) =0, (D.2)

and the reality constraint on Yj; is included in (D.1).
The Q- and S-supersymmetry transformations for the vector multiplet take the form,

0X = EiQZ’,
1 . .
0Q; = 2D Xe; + QeijFW’YWGJ + Yijel +2Xn;
oWy = €ij€i(7qu + 21 X) + 5ij€i(7u9j + 2¢ﬂjX) ’
0V = 2D + 2ene " P, 05)

and, for w = 1, are in clear correspondence with the supersymmetry transformations of
generic scalar chiral multiplets given in (2.1).

Subsequently we turn to the Weyl multiplet, which is a chiral anti-selfdual tensor
multiplet subject to Dm“bDj O = [DmabDj ®,,9]*. Its chiral superfield components
take the following form,

Aglw =Ty e,

Uapilw =8¢, R(Q),

Bayijlw = = 8e,:RV) "5,

(Fop) “lw = — 8R(M) 5",
Aapilw =8 (R(S);bi + i’YaleXz) ,
Calw =4D}, D°T}).;;6” — dual. (D.4)
We give the Q- and S-supersymmetry variations for the first few components,
0T =8 R(Q)us,

. 1 g o 1
(SR(Q)abZ - - QlDTabU €5 + R(V) ablj e — R(M)ade ,.chez + 8Tcd” ’YCd’)’ab Ui

w N =

SROV) w'; =26 DR(Q)ap’ — 26 <R(S)abj + 4%1)@)@)

+ ﬁj(QR(Q)abi + 374 x") — (traceless) ,
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—c 1 c % 1 —i . C — 3
RO = LD RQu — e RSV + s

1 .3 .
— v R(Q)“ — Qﬁi’VCdR(Q)abz - ﬂmw“lxl- (D.5)

A scalar chiral multiplet with w = 2 is obtained by squaring the Weyl multiplet. The

various scalar chiral multiplet components are given by,

Az = (Twei5)?,
\I}i’WQ =16 Ez‘jR(Q)ib Tklab €kl »
Bijlwz = — 163 RWV)" jyap T €1y, — 64 i85 R(Q) ™ R(Q)'Y,

F™ e = — 16 R(M) o TH ey — 16 65 R(Q)L gy R(Q)*Y

Ailyz =325 Y R(Q)), R(M) Ly + 16 (R(S)aps + 37 Dy xi) TH e
— 64 R(V)at"i e R(Q)™"
Clyz =64R(M) L, R(M) 1 + 32 R(V) "%, RV) i
—32T%9 D, DTypyi5 + 128 R(S)%; R(Q)ap’ + 384 R(Q)® v, Dyx:.  (D.6)

These components can straightforwardly be substituted in the expression for the higher-

derivative couplings.
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