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1 Introduction

Supersymmetric invariants with higher-derivative couplings play a role in many applica-

tions. Here we will be dealing with N = 2 supergravity, where the first higher-derivative

couplings that were considered involve the square of the Weyl tensor coupled to vector

supermultiplets [1]. This particular class of invariants is based on an integration over a

chiral subspace of N = 2 superspace. It is relevant for the topological string [2, 3], and

furthermore, it has important implications for BPS black hole entropy [4]. Another class of

invariants for vector multiplets that involve terms quartic in the field strengths, was derived

in terms of N = 1 superfields, both for the abelian [5] and for the non-abelian case [6].

Unlike the previous class, this one is based on an integral over full superspace. It yields

important contributions to the effective action of N = 2 supersymmetric gauge theories

(for some additional references, see e.g., [7–10]). Only recently, a related class of locally

supersymmetric higher-derivative couplings was considered in [11]. Those couplings which

involve both the Weyl tensor and higher-order coupling of the vector field strengths, were

conjectured to describe certain deformations of the topological string partition function.

This paper deals with an explicit construction of this rather large class of invariant

couplings based on full superspace integrals. They are coupled to conformal supergravity

and are realized off-shell. This feature greatly facilitates their construction, which is based

on previous work on N=2 supergravity (in particular, on [12, 13]). The general procedure
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underlying this construction will be presented, and, as an explicit example, many of the

bosonic terms of the supergravity-coupled invariants that contain F 4-, R2F 2-, and R4-

terms, will be discussed. Here F denotes the abelian vector multiplet field strengths and

R the Riemann tensor.

One of the motivations for this work is to study the possible contribution of these

new couplings to the entropy and the electric charges of BPS black holes. As it turns

out we can derive a ‘non-renormalization’ theorem according to which these contributions

vanish. This result is not entirely unexpected, in view of the fact that there was already

a good agreement for the subleading contributions to the BPS entropy obtained from

microstate counting and from supergravity, in which the new couplings had so far not

been incorporated. Hence the existence of the non-renormalization theorem offers a partial

explanation for this agreement.

This paper is organized as follows. Section 2 presents the superconformal transforma-

tions of chiral supermultiplets in a conformal supergravity background as well as a number

of related issues. Section 3 describes the general strategy for the construction of the higher-

derivative couplings, based on the use of the so-called ‘kinetic supermultiplet’, which can

be constructed from an anti-chiral supermultiplet of zero Weyl weight. The components

of this multiplet are given in considerable detail, fully taking into account the presence

of the superconformal background. The construction of the bosonic terms of the higher-

derivative couplings is presented in section 4, together with explicit examples based on a

class of Lagrangians that involves terms such as F 4, R2F 2 and R4. A non-renormalization

theorem pertaining to the entropy and the electric charges of BPS black holes is proven in

section 5. Some concluding remarks are presented in section 6.

In view of future applications and for the convenience of the reader we have added

four appendices, A, B, C, and D, containing basic results on the superconformal multiplet

calculus. Many of these results have appeared at various places in the literature, but we

have updated them in uniform notation. While some of them may not have been overly

relevant in the past, they are now required in the context of the new invariant couplings.

2 Chiral multiplets

Chiral superfields in flat N = 2 superspace were first discussed in [14]. Subsequently

they were derived in a conformal supergravity background [12, 13]. The latter result was

formulated in components and the same approach is followed in this paper, although it

is convenient to make use of superfield notions at the same time. Chiral multiplets are

complex and N = 2 superspace is based on four chiral and four anti-chiral anticommuting

coordinates, θi and θi, so that a scalar chiral multiplet contains two times 24 field compo-

nents. These multiplets carry a Weyl weight w and a chiral U(1) weight c, which is opposite

to the Weyl weight, i.e. c = −w. The weights indicate how the lowest-θ component of the

superfield scales under Weyl and chiral U(1) transformations. Anti-chiral multiplets can

be obtained from chiral ones by complex conjugation, so that anti-chiral multiplets will

have equal Weyl and chiral weights, hence w = c.
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Chiral multiplet

field A Ψi Bij F−
ab Λi C

w w w + 1
2 w + 1 w + 1 w + 3

2 w + 2

c −w −w + 1
2 −w + 1 −w + 1 −w + 3

2 −w + 2

γ5 + +

Table 1. Weyl and chiral weights (w and c) and fermion chirality (γ5) of the chiral multiplet

component fields.

The components of a generic scalar chiral multiplet are a complex scalar A, a Majorana

doublet spinor Ψi, a complex symmetric scalar Bij, an anti-selfdual tensor F−
ab, a Majorana

doublet spinor Λi, and a complex scalar C. The assignment of their Weyl and chiral

weights is shown in table 1. The Q- and S-supersymmetry transformations for a scalar

chiral multiplet of weight w, are as follows,1

δA = ǭiΨi ,

δΨi = 2 /DAǫi +Bij ǫ
j +

1

2
γabF−

ab εijǫ
j + 2wAηi ,

δBij = 2 ǭ(i /DΨj) − 2 ǭkΛ(i εj)k + 2(1 − w) η̄(iΨj) ,

δF−
ab =

1

2
εij ǭi /DγabΨj +

1

2
ǭiγabΛi −

1

2
(1 + w) εij η̄iγabΨj ,

δΛi = −
1

2
γab /DF−

abǫi − /DBijε
jkǫk + Cεij ǫ

j +
1

4

(

/DAγabTabij +wA /DγabTabij

)

εjkǫk

− 3 γaε
jkǫk χ̄[iγ

aΨj] − (1 + w)Bijε
jk ηk +

1

2
(1 − w) γab F−

abηi ,

δC = − 2 εij ǭi /DΛj − 6 ǭiχj ε
ikεjlBkl

−
1

4
εijεkl

(

(w − 1) ǭiγ
ab /DTabjkΨl + ǭiγ

abTabjk /DΨl

)

+ 2wεij η̄iΛj . (2.1)

The spinors ǫi and ηi are the positive chirality spinorial parameters associated with Q- and

S-supersymmetry. The corresponding negative chirality parameters are denoted by ǫi and

ηi. We note that hermitian conjugation is always accompanied by raising or lowering of

the SU(2) indices.

The transformation rules (2.1) are linear in the chiral multiplet fields, and contain also

other fields associated with the conformal supergravity background, such as the self-dual

tensor field Tabij and the spinor χi. Other conformal supergravity fields are contained in

the superconformal derivatives Dµ. The superconformal multiplet of fields is described in

more detail in appendix A.

Products of chiral superfields constitute again a chiral superfield, whose Weyl weight

is equal to the sum of the Weyl weights of the separate multiplets. Also functions of chiral

superfields may describe chiral superfields, assuming that they can be assigned a proper

1Observe that [12, 13] employ different conventions, in particular for (anti)symmetrization. Here

(anti)symmetrization is always applied with unit strength.
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Vector multiplet

field X Ωi Wµ Yij

w 1 3
2 0 2

c −1 −1
2 0 0

γ5 +

Table 2. Weyl and chiral weights (w and c) and fermion chirality (γ5) of the vector multiplet

component fields.

Weyl weight. For instance, homogeneous functions of chiral superfields of the same Weyl

weight w define a chiral supermultiplet whose Weyl weight equals the product of w times

the degree of homogeneity. The relevant formulae are presented in appendix C.

Chiral multiplets of w = 1 are special, because they are reducible [12, 14]. Some details

about these multiplets are given in appendix D. For a scalar chiral multiplet with w = 1

the tensor F−
ab+F

+
ab is subject to a Bianchi identity, which can be solved in terms of a vector

gauge field. The reduced scalar chiral multiplet thus describes the covariant fields and field

strength of a vector multiplet, which encompasses 8+8 bosonic and fermionic components.

Table 2 summarizes the Weyl and chiral weights of the various fields belonging to the vector

multiplet: a complex scalar X, a Majorana doublet spinor Ωi, a vector gauge field Wµ, and

a triplet of auxiliary fields Yij. There also exists an anti-selfdual tensor version of the chiral

multiplet with w = 1 that is reducible. This multiplet is the so-called Weyl supermultiplet,

which contains all the covariant fields and curvatures of N = 2 conformal supergravity. It

contains 24 + 24 bosonic and fermionic degrees of freedom. Both vector supermultiplets

and the Weyl multiplet play a central role in this paper.

Another special chiral multiplet is the so-called ‘kinetic’ multiplet, which has Weyl

weight w = 2. This multiplet is constructed from an anti-chiral multiplet with w = 0. It

will be discussed in detail in the next section.

Finally, scalar chiral multiplets with w = 2 lead to superconformal actions when in-

cluding a conformal supergravity background. Their highest component C has Weyl weight

4, and chiral weight 0. To define an action that is invariant under local superconformal

transformations one makes use of a density formula,

e−1L =C − εij ψ̄µiγ
µΛj −

1

8
ψ̄µiTab jkγ

abγµΨl ε
ijεkl −

1

16
A(Tab ijε

ij)2

−
1

2
ψ̄µiγ

µνψνj Bkl ε
ikεjl + εijψ̄µiψνj

(

F−µν −
1

2
AT µν

kl ε
kl

)

−
1

2
εijεkle−1εµνρσψ̄µiψνj(ψ̄ρkγσΨl + ψ̄ρkψσj A) . (2.2)

3 The kinetic chiral multiplet

The term ‘kinetic’ multiplet was first used in the context of the N = 1 tensor calculus [15],

because this is the chiral multiplet that enables the construction of the kinetic terms,
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conventionally described by a real superspace integral, in terms of a chiral superspace

integral. In flat N = 1 superspace, this construction is simply effected by the conversion,

∫

d2θ d2θ̄ Φ Φ̄′ ≈

∫

d2θ Φ T(Φ̄′) , (3.1)

up to space-time boundary terms. Here Φ and Φ′ are two chiral superfields and Φ̄′ is the

anti-chiral field obtained from Φ′ by complex conjugation. The kinetic multiplet equals

T(Φ̄′) = D̄2Φ̄′, where D̄ denotes the supercovariant θ̄-derivative. Obviously the kinetic

multiplet contains terms linear and quadratic in space-time derivatives, so that, upon

identifying Φ and Φ′, the right-hand side of (3.1) does indeed give rise to the kinetic terms

of an N = 1 chiral multiplet.

In [13] a corresponding kinetic multiplet was identified for N = 2 supersymmetry,

which now involves four rather than two covariant θ̄-derivatives, i.e. T(Φ̄) ∝ D̄4Φ̄. As a

result, T(Φ̄) contains now up to four space-time derivatives, so that the expression

∫

d4θ d4θ̄ Φ Φ̄′ ≈

∫

d4θΦ T(Φ̄′) , (3.2)

does not correspond to a kinetic term, but to a higher-order derivative coupling. Further-

more, for N = 2 supersymmetry one has the option of expressing the chiral multiplets in

terms of (products of) reduced chiral multiplets. In that case, expressions such as (3.2)

will correspond to higher-derivative couplings of vector multiplets. Since we are consid-

ering the kinetic multiplets in a conformal supergravity background, their Weyl weight is

relevant. Both in N = 1, 2 supergravity the kinetic multiplet carries Weyl weight w = 2.

The conversion starts from a w = 1 chiral multiplet for N = 1 and from a w = 0 chiral

multiplet for N = 2 supersymmetry, respectively.

To demonstrate this in more detail, consider an anti-chiral N = 2 supermultiplet in

the presence of the superconformal background. Its supersymmetry transformations follow

from taking the complex conjugate of (2.1). Precisely for w = 0 we note that the field C̄

is invariant under S-supersymmetry and transforms under Q-supersymmetry as the lowest

component of a chiral supermultiplet with w = 2. This observation proves that we are

dealing with a w = 2 chiral supermultiplet, as is also confirmed by the weight assignments

specified in table 1. What remains is to identify the various components of this multiplet

in terms of the underlying w = 0 multiplet. This can be done by applying successive Q-

supersymmetry transformations on C̄, something that requires rather tedious calculations

in the presence of a superconformal background.

Denoting the components of T(Φ̄w=0) by (A,Ψ, B, F−,Λ, C)|
T(Φ̄), while

(A,Ψ, B, F−,Λ, C) will denote the components of the original w = 0 chiral multi-

plet, we have established the following relation,

A|
T(Φ̄) = C̄ ,

Ψi|T(Φ̄) = − 2 εij /DΛj − 6 εikεjlχ
jBkl −

1

4
εijεkl γ

abTab
jk

↔

/D Ψl ,

Bij |T(Φ̄) = − 2 εikεjl
(

2c + 3D
)

Bkl − 2F+
ab R(V)ab k

i εjk − 6 εk(i χ̄j)Λ
k + 3 εikεjlΨ̄

(k /Dχl) ,
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F−
ab|T(Φ̄) = −

(

δa
[cδb

d] −
1

2
εab

cd

)

×
[

4DcD
eF+

ed + (DeĀDcTde
ij +DcĀD

eTed
ij)εij

]

+ 2cĀ Tab
ijεij −R(V)−ab

i
k B

jk εij +
1

8
Tab

ij TcdijF
+cd − εkl Ψ̄

k
↔

/D R(Q)ab
l

−
9

4
εij Ψ̄iγcγabDcχ

j + 3 εij χ̄
iγab /DΨj +

3

8
Tab

ijεij χ̄kΨ
k ,

Λi|T(Φ̄) =22c /DΨjεij +
1

4
γcγab(2DcT

ab
ij Λj + T ab

ij DcΛ
j)

−
1

2
εij

(

R(V)ab
j
k + 2iR(A)abδ

j
k

)

γcγabDcΨ
k

+
1

2
εij

(

3DbD − 4iDaR(A)ab +
1

4
Tbc

ij
↔

Da T
ac

ij

)

γbΨj

− 2F+ab /DR(Q)abi + 6 εijD /DΨj + 3 εij
(

/Dχk B
kj + /DĀ /Dχj

)

+
3

2

(

2 /DBkjεij + /DF+
abγ

ab δk
i +

1

4
εmnTab

mn γab /DĀ δi
k

)

χk

+
9

4
(χ̄lγaχl) εijγ

aΨj −
9

2
(χ̄iγaχ

k) εklγ
aΨl ,

C|
T(Φ̄) =4(2c + 3D)2cĀ−

1

2
Da

(

T ab
ij Tcb

ij
)

DcĀ+
1

16
(Tabijε

ij)2C̄

+Da

(

εijDaTbcij F
+bc + 4 εijT ab

ij D
cF+

cb − Tbc
ij T ac

ij D
bĀ

)

+
(

6DbD − 8iDaR(A)ab

)

DbĀ+ · · · , (3.3)

where in the last expression we suppressed terms quadratic in the covariant fermion fields.

Obviously terms involving the fermionic gauge fields, ψµ
i and φµ

i, are already contained

in the superconformal derivatives. Observe that the right-hand side of these expres-

sions is always linear in the conjugate components of the w = 0 chiral multiplet, i.e.

in (Ā,Ψi, Bij , F+
ab,Λ

i, C̄). As an extra test of the correctness of (3.3) we verified that these

expressions satisfy the correct transformation behaviour under S-supersymmetry. This test

cannot be performed on the last component C|
T(Φ̄), because we refrained from collecting

the fermionic contributions. As an extra check we have therefore verified that the bosonic

terms of C|
T(Φ̄) are invariant under special conformal boosts.

The definition of the superconformal D’Alembertian 2c, defined by the contraction

of two superconformal derivatives Da, as well as multiple superconformal derivatives in

general, may require further comment. Therefore we have presented some relevant material

in appendix B. Below we give the most non-trivial transformation rules under special

conformal boosts that are needed in this paper,

δK2c2cA = − 2Λa
K

(

[Da,Db]D
b +Db[Da,Db]

)

A

=
1

4
Λa

K Tac
ij T bc

ij DbA− 3ΛK
aDDaA− 2ΛK

aDb(R̄(Q)baΨi)

−
3

4
ΛK

a χ̄iTab
ijγbΨj +

3

4
Ψi /ΛK /Dχ

i ,
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δK2c /DΨi = /ΛK

[

1

4

(

R(V)ab
j
i + 2iR(A)ab δ

j
i

)

γabΨj −
3

2
DΨi

]

+ /ΛK

[

3

2
Bij χ

j − εijF
− abR(Q)jab −

3

4
εijF

−
ab γ

abχj

]

, (3.4)

These results follow from (B.6), upon making use of the relevant curvatures.

4 Invariant higher-derivative couplings

Using the results of the previous section one can construct a large variety of supercon-

formal invariants for chiral multiplets with higher-derivative couplings. For unrestricted

chiral supermultiplets one cannot write down Lagrangians that are at most quadratic in

derivatives, so they usually play a role as composite fields that are expressed in terms

of reduced chiral multiplets, such as the vector multiplets and the Weyl multiplet. The

construction of the higher-order Lagrangians therefore proceeds in two steps. First one

constructs the Lagrangian in terms of unrestricted chiral multiplets of the appropriate

Weyl weights, and subsequently one expresses the unrestricted supermultiplets in terms

of reduced supermultiplets. In these expressions it is natural to introduce a variety of

arbitrary homogeneous functions.

The invariants are expressed as chiral superspace integrals, because all possible anti-

chiral fields are contained in the kinetic multiplets that we have introduced in section 3.

A simple example of this approach was already exhibited in (3.2). The fact that these

invariants are actually based on full superspace integrals implies that they must vanish

whenever all the chiral (or, alternatively, all the anti-chiral) fields are put equal to a con-

stant. In the chiral formulation of the integral, this phenomenon is reflected in the fact

that the kinetic multiplet of a constant anti-chiral multiplet vanishes. This result can easily

be deduced from (3.3). Invariants can be substantially more complicated than (3.2). The

integrand does not have to be linear in a kinetic multiplet, and can depend on a function

of kinetic multiplets. One can also consider ‘nested’ situations, where a kinetic multiplet is

constructed starting from an expression of superfields among which there are other kinetic

multiplets, thus leading to even higher multiple derivatives.

The above approach is a constructive one and in general it will be hard to classify all

these invariant couplings, say, in terms of a limited number of functions, as is often possible

for supersymmetric theories. For definiteness, we henceforth restrict attention to invariants

proportional to a single kinetic multiplet, as given in (3.2). In that case, expressing the

composite chiral multiplets in terms of vector multiplets, one obtains the supergravity-

coupled invariants corresponding to the actions derived in [5, 6] in the abelian limit, which

contain F 4-couplings. By including the Weyl multiplet, one also obtains R2F 2- and R4-

couplings. The R2F 2-couplings will in principle overlap with part of a subclass of invariants

discussed recently in [11] in connection with certain deformations of the topological string

partition function. These couplings are encoded in terms of a single function of holomorphic

and anti-holomorphic fields. In a rigid supersymmetry background these actions exhibit

Kähler geometry with this function playing the role of a Kähler potential, just as happens in

N = 1 supersymmetric actions for non-linear sigma models. As we will demonstrate below,
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this feature survives in the presence of the superconformal background. Other examples of

higher-derivative couplings based on more than a single kinetic multiplet will be discussed

in section 6.

Hence we start by writing down the bosonic terms of the Lagrangian (3.2). It is

convenient to first note the following relation,

C|
T(Φ̄) =

1

16
(Tabijε

ij)2C̄ + 4
(

DµDµ

)2
Ā

− 8Dµ

[

(

Rµ
a(ω, e) −

1

3
R(ω, e) eµ

a −D eµ
a + iR(A)µ

a
)

DaĀ

]

+ Dµ

[

εijDµTbcij F
+bc + 4 εijT µb

ij D
cF+

cb − 2Tbc
ij T µc

ij D
bĀ

]

+ · · · , (4.1)

where we suppressed all fermionic contributions. In deriving this result we made use

of (A.6). Subsequently we derive the bosonic part of the Lagrangian corresponding to (3.2),

making use of the density formula (2.2) and of the product rule (C.1),

e−1L =4D2AD2Ā+ 8DµA

[

Rµ
a(ω, e) −

1

3
R(ω, e) eµ

a

]

DaĀ+ C C̄

−DµBij DµB
ij +

(

1

6
R(ω, e) + 2D

)

BijB
ij

−
[

εik Bij F
+µν R(V)µν

j
k + εik B

ij F−µνR(V)µνj
k
]

− 8DDµADµĀ+
(

8 iR(A)µν + 2Tµ
cij Tνcij

)

DµADνĀ

−
[

εijDµTbcijDµAF
+bc + εijD

µTbc
ijDµĀ F

−bc
]

− 4
[

εijT µb
ij DµADcF+

cb + εijT
µbij DµĀDcF−

cb

]

+ 8DaF
−ab DcF+

cb + 4F−ac F+
bc R(ω, e)a

b +
1

4
Tab

ij TcdijF
−abF+cd . (4.2)

Note that we suppressed the prime on the second chiral multiplet indicated in (3.2). In

general, however, we will not always identify the two multiplets, so that the complex

conjugated components in the above formula do not have to correspond to the same super-

multiplet. However, upon making this identification, the above Lagrangian is manifestly

real, which provides an additional check on the correctness of our result. The reason is

that the corresponding lowest-order Lagrangian (3.2) is also real in that case (up to total

derivatives that we have also suppressed in deriving the above result). Note also that the

Lagrangian (4.2) vanishes whenever either one of the multiplets is equal to a constant, thus

confirming the analysis presented at the beginning of this section.

We will now use the above results to write down the extension to local supersymme-

try of the class of vector multiplet Lagrangians constructed in [5, 6]. Just as above we

concentrate on the purely bosonic terms. The extension follows by writing the w = 0

chiral multiplets Φ and Φ′ as composite multiplets expressed in terms of vector multiplets.

– 8 –
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In (3.2), and correspondingly in (4.2), one thus performs the following substitutions,

Φ → f(ΦI) , Φ̄′ → ḡ(Φ̄I) , (4.3)

where ΦI denote the (reduced) chiral multiplets associated with vector multiplets. Upon

expanding Φ and Φ̄′ in terms of the vector supermultiplets, making use of the material

presented in appendices C and D, one obtains powers of the vector multiplet components

multiplied by derivatives of f(X) and ḡ(X̄), where the XI denote the complex scalars of

the vector multiplets. Homogeneity implies that XI fI(X) = 0 = X̄I ḡĪ(X̄), where fI and

ḡĪ denote the first derivatives of the two functions with respect to XI and X̄I , respectively.

Here we recall that the expression (4.2) vanishes whenever f(X) or ḡ(X̄) are constant. As

noted previously, the origin of this phenomenon can be traced back to the fact that the

full superspace integral of a chiral or an anti-chiral field vanishes (up to total derivatives).

Therefore the Lagrangian will depend exclusively on mixed holomorphic/anti-holomorphic

derivatives of the product function f(X) ḡ(X̄). By summing over an arbitrary set of pairs

of functions f (n)(X) ḡ(n)(X̄), we can further extend this function to a general function

H(X, X̄) that is separately homogeneous of zeroth degree in X and X̄. Because H(X, X̄)

is only defined up to a purely holomorphic or anti-holomorphic function, it is thus subject

to Kähler transformations,

H(X, X̄) → H(X, X̄) + Λ(X) + Λ̄(X̄) . (4.4)

Hence H(X, X̄) can be regarded as a Kähler potential, which may be taken real (so that

Λ̄(X̄) = [Λ(X)]∗).

Carrying out the various substitutions leads directly to the following bosonic contri-

bution to the supersymmetric Lagrangian (for convenience, we assume H to be real, unless

stated otherwise),

e−1L = HIJK̄L̄

[

1

4

(

F−
ab

I F−ab J−
1

2
Yij

I Y ijJ

)(

F+
ab

K F+ab L−
1

2
Y ijK Yij

L

)

+ 4DaX
I DbX̄

K

(

DaXJ DbX̄L+2F− ac J F+ b
c
L−

1

4
ηab Y J

ij Y
L ij

)]

+

{

HIJK̄

[

4DaX
I DaXJ D2X̄K

−

(

F−ab I F− J
ab −

1

2
Y I

ij Y
Jij

)(

2cX
K +

1

8
F−K

ab T abijεij

)

+ 8DaXIF− J
ab

(

DcF
+ cb K−

1

2
DcX̄

KT ij cbεij

)

−DaX
I Y J

ij D
aY K ij

]

+h.c.

}

+ HIJ̄

[

4

(

2cX̄
I +

1

8
F+ I

ab T ab
ijε

ij

)(

2cX
J +

1

8
F−J

ab T abijεij

)

+4D2XI D2X̄J

+ 8DaF
− abI DcF

+c
b
J−DaYij

I DaY ij J +
1

4
Tab

ij Tcdij F
−ab IF+cdJ

+

(

1

6
R(ω, e)+2D

)

Yij
I Y ij J +4F−ac I F+

bc
J R(ω, e)a

b
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+ 8

(

Rµν(ω, e)−
1

3
gµνR(ω, e)+

1

4
T µ

b
ij T νb

ij +iR(A)µν−gµνD

)

DµX
I DνX̄

J

−
[

DcX̄
J
(

DcTab
ij F− I ab+4T ij cb DaF− I

ab

)

εij +[h.c.; I ↔ J ]
]

−
[

εik Yij
I F+ab J R(V)ab

j
k+[h.c.; I ↔ J ]

]

]

, (4.5)

where (we suppress fermionic contributions),

F−
ab

I =

(

δab
cd −

1

2
εab

cd

)

ec
µed

ν ∂[µWν]
I −

1

4
X̄I Tab

ijεij ,

2cX
I =D2XI +

(

1

6
R(ω, e) +D

)

XI . (4.6)

In view of the Kähler equivalence transformations (4.4), the mixed derivative HIJ̄ can be

identified as a Kähler metric. Hence we have the following results for the metric, connection,

and the curvature of the corresponding Kähler space,

gIJ̄ =HIJ̄ ,

ΓI
JK = gIL̄ HJKL̄ ,

RIJ̄KL̄ =HIKJ̄L̄ − gMN̄ ΓM
IK ΓN̄

J̄L̄ . (4.7)

The Lagrangian (4.5) can then be written in a Kähler covariant form,

e−1L =RIK̄JL̄

[

1

4

(

F−
ab

I F−ab J −
1

2
Yij

I Y ijJ

)(

F+
ab

K F+ab L −
1

2
Y ijK Yij

L

)

+ 4DaX
I DbX̄

K

(

DaXJ DbX̄L + 2F− ac J F+ b
c
L −

1

4
ηab Y J

ij Y
L ij

)]

+ gIJ̄

[

4

(

2cX̄
I +

1

8
F+ I

ab T ab
ijε

ij −
1

4
ΓI

KL(F−
ab

K F−ab L −
1

2
Y ijK Y ij

L)

)

×

(

2cX
J +

1

8
F−J

ab T abijεij −
1

4
ΓJ̄

K̄L̄(F+
ab

K F+ab L −
1

2
Y ijK Y ij

L)

)

+ 4
(

D2XI + ΓI
KL DbX

K DbXL
) (

D2X̄J + ΓJ̄
K̄L̄ DbX̄

K DbX̄L
)

+ 8
(

DaF
− abI + ΓI

KL DaX
KF−abL

) (

DcF
+c

b
J + ΓJ̄

K̄L̄ DcX̄
K F+c

b
L
)

− (DaYij
I + ΓI

KL DbX
K Yij

L
) (

DaY J ij + ΓJ̄
K̄L̄ DbX̄

K Y ijL
)

+
1

4
Tab

ij Tcdij F
−ab IF+cd J

+

(

1

6
R(ω, e) + 2D

)

Yij
I Y ij J + 4F−ac I F+

bc
J R(ω, e)a

b

+ 8

(

Rµν(ω, e) −
1

3
gµνR(ω, e)+

1

4
T µ

b
ij T νb

ij+iR(A)µν−gµνD

)

DµX
I DνX̄

J
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−
[

DcX̄
J
(

DcTab
ij F− I ab + 4T ij cb (DaF− I

ab + ΓI
KLD

aXKF−
ab

L)
)

εij

+ [h.c.; I ↔ J ]
]

−
[

εik Yij
I F+ab J R(V)ab

j
k + [h.c.; I ↔ J ]

]

]

. (4.8)

The covariantizations in the various combinations can be understood systematically by

rewriting the chiral multiplet components of the vector multiplets such that they are co-

variant with respect to the complex reparametrizations of the Kähler space (in the limit

where the fermions are suppressed). An easy way to appreciate these covariantizations is by

reorganizing the expansion of a composite chiral multiplet into vector multiplets according

to (C.2) by replacing the ordinary derivatives of the function G by covariant derivatives.

The Lagrangians (4.5) and/or (4.8) can also be used in the context of rigidly supersym-

metric theories upon suppressing all the superconformal fields. The resulting Lagrangian

is then superconformally invariant in flat Minkowski space. This invariance can be further

reduced to ordinary Poincaré supersymmetry by replacing one of the vector multiplets by

a constant.

As an extension of the previous results we return to (4.2), and consider composite

chiral multiplets that depend on both vector multiplets and on the Weyl multiplet. Hence

we replace (4.3) by

Φ → f(ΦI ,W 2) , Φ̄′ → ḡ(Φ̄I , W̄ 2) , (4.9)

where W 2 refers to the square of the Weyl multiplet. The components of this reduced

chiral multiplet are given in (D.6). Upon expanding these functions and substituting the

results into (4.2), one obtains a Lagrangian that contains R4-, R2F 2- and F 4-terms. All

terms are proportional to mixed holomorphic/anti-holomorphic derivatives of a function

H(X,T 2, X̄, T̄ 2), where T 2 = (Tab
ijεij)

2 and T̄ 2 = (Tabijε
ij)2, and where H is constructed

from pairs of products of functions f(X,T 2) and ḡ(X̄, T̄ 2). The fact that the composite

multiplets have w = 0 implies a modified homogeneity property,

XIHI(X,T
2, X̄, T̄ 2) + 2T 2HT 2(X,T 2, X̄, T̄ 2) = 0 , (4.10)

and likewise for the anti-holomorphic derivatives.

The Lagrangian consists of the Lagrangian (4.5) plus a large number of terms that

involve multiple derivatives of H with respect to T 2, T̄ 2, XI and X̄I . Below we concentrate

on terms proportional to multiple derivatives of H with respect to only T 2 and T̄ 2. Among

others those contain contributions of fourth order in R(M), whose leading contribution is

equal to the Weyl tensor,

(64)−2 e−1L =

4HT 2T 2T̄ 2T̄ 2 T abijεij T
cdklεkl T

ef
mnε

mn T gh
pqε

pq

×

[

R(M)aba′b′R(M)cd
a′b′ +

1

2
R(V)ab

i
j R(V)cd

j
i

]

×

[

R(M)efe′f ′R(M)gh
e′f ′

+
1

2
R(V)ef

i
j R(V)gh

j
i

]
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+ 2

{

HT 2T 2T̄ 2 T abijεij T
cdklεkl

×

[

R(M)aba′b′R(M)cd
a′b′ +

1

2
R(V)ab

i
j R(V)cd

j
i

]

×

[

R(M)+efghR(M)+efgh +
1

2
R(V)+ef

i
j R(V)+efj

i −
1

2
T ef

mnDeD
hThf

mn

]

+ [h.c.]

}

+ HT 2T̄ 2

{

∣

∣R(M)+abcdR(M)+abcd+
1

2
R(V)+ab

i
j R(V)+abj

i−
1

2
T ab

mnDaD
eTeb

mn
∣

∣

2
+ · · ·

}

.

(4.11)

Besides the terms quartic in R(M) we have retained some of the terms that come with

them as part of the basic building blocks that emerge in the calculation (similar blocks

appear in (4.5)). Besides giving a little more information in this way, this has the advantage

that the origin of the various term will be easier to track down.

In addition to the above terms there are mixed terms which lead to explicit contri-

butions from the vector multiplets (i.e. beyond the X and X̄ dependence in the function

H). Those include, for instance, terms proportional to [R(M)]2 times the product of two

vector multiplet field strengths, Fµν
I . We will not exhibit those terms here (they can in

principle be deduced from (4.2) along the same lines as for the previous contributions).

Some of these terms will be shown in the equation below.

A special case, which is worth mentioning in view of the work of [11], corresponds to

functions H(X,T 2, X̄) that do not depend on T̄ 2. Hence the function H is not real. Again

we do not present all the terms, but we give all the terms that contain R(M) (with some

completions), with the exception of terms proportional to derivatives of XI and Tab
ij or

their complex conjugates,

(64)−1e−1L =

HT 2T 2K̄L̄

{

T abijεij T
cdklεkl

[

R(M)aba′b′R(M)cd
a′b′ +

1

2
R(V)ab

i
j R(V)cd

j
i

]

×

[

F+
ef

KF+efL −
1

2
Y mnKYmn

L

]

+ · · ·

}

− 4HT 2T 2K̄

{

T abijεij T
cdklεkl

[

R(M)aba′b′R(M)cd
a′b′ +

1

2
R(V)ab

i
j R(V)cd

j
i

]

×

[

2cX
K +

1

8
Fef

KT efijεij

]

+ · · ·

}

+
1

2
HT 2IK̄

{

T cdlmεlm

[

F−
ab

IR(M)cd
ab −

1

2
Y ijIεkiR(V)cd

k
j

]

×

[

2cX
K +

1

8
Fef

KT efijεij

]

+ · · ·

}

−
1

8
HT 2IK̄L̄

{

T cdlmεlm

[

Fab
IR(M)cd

ab −
1

2
Y ijIεkiR(V)cd

k
j

]

×

[

F+
ab

IF+abJ −
1

2
Y ijKYij

L

]

+ · · ·

}
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+
1

2
HT 2K̄L̄

{[

R(M)−cdefR(M)−cdef +
1

2
R(V)−cd

i
j R(V)−cdj

i −
1

2
T cdmnDcD

eTedmn

]

×

[

F+
ab

IF+abJ −
1

2
Y ijKYij

L

]

+ · · ·

}

− 2HT 2K̄

{[

R(M)−abcdR(M)−abcd +
1

2
R(V)−ab

i
j R(V)−abj

i −
1

2
T abmnDaD

cTcbmn

]

×

[

2cX
K +

1

8
Fef

KT efijεij

]

+ Tcd
ijεij R(M)cdab×

×

[

1

32
Tab

klTefkl F
efK +

1

2
F+

eb
K R(ω, e)a

e −
1

8
εkm Y klKR(V)abl

m

]

+ Tcd
ijεij DaR(M)cdab DeF+

eb
K + · · ·

}

. (4.12)

5 A non-renormalization theorem for BPS black hole entropy

The results of this paper can be used in the study of black holes. Based on any linear

combination of the various N = 2 locally supersymmetric Lagrangians, one can evaluate

the corresponding expressions for the Wald entropy and the electric charges in terms of

the values of the fields taken at the black hole horizon. In the case of BPS black holes, the

horizon values of the fields are highly restricted due to full supersymmetry enhancement

at the horizon, and therefore the resulting expressions for the entropy and the charges will

simplify. To explore this one must determine the possible supersymmetric field configu-

rations, preferably in an off-shell formulation so that the results do not depend on the

specific Lagrangian. This has already been done in [16], which provided a generalization

of the attractor equations found in [17–19]. So far, generic chiral supermultiplets were

not considered, but it is convenient to do so as well. As it will turn out, it suffices to

restrict oneself to chiral multiplets of Weyl weight w = 0, for which results are rather

straightforward to obtain.

The first relevant observation is that a constant chiral superfield (i.e. a supermultiplet

with constant A and all other components vanishing) is only supersymmetric provided it

has w = 0. In fact there exist no other supersymmetric values of the chiral superfield. All

this can be derived directly from the transformation rules (2.1). The second observation

is that the kinetic multiplet constructed from a w = 0 anti-chiral multiplet, vanishes when

the latter multiplet is equal to a constant. This follows by inspection of (3.3). These

two observations prove immediately that any invariant proportional to a kinetic multiplet,

must vanish for supersymmetric field configurations. This fact can immediately be verified

from (4.2), because when the fields A and Ā′ are constant and all other chiral multiplet

component fields are vanishing, the expression (4.2) indeed vanishes.

The above result is interesting in its own right, but we are also interested in the first-

order variation of the action induced by a change of some of the fields, evaluated for a

supersymmetric background. Given the fact that all the invariants discussed in this paper
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will contain at least one kinetic multiplet, we thus consider

δL ∝

∫

d4θ
[

δΦ T(Φ̄′) + Φ δT(Φ̄′)
]

, (5.1)

where Φ and Φ′ are composite chiral fields, which are themselves expressed in various chiral

fields, including possible kinetic multiplets. They are not necessarily uniquely defined, and

it is also possible to consider linear combinations of such terms. Since we will be evaluating

the variation at supersymmetric values of the fields, the first term in (5.1) vanishes, because

the kinetic multiplet vanishes, whereas the second term can be evaluated for constant Φ.

However, rather than continuing in this way, we may simply return to (4.2) and consider

its variation. Observe that each term is proportional to a product of one component of

Φ and another one of Φ̄′ (we remind the reader that in (4.2) we suppressed the prime

for notational clarity). All these components will be equal to zero in a supersymmetric

background, with the exception of A and Ā′, which will take constant values. However,

only space-time derivatives of A and Ā′ appear, and those will vanish as well. In other

words, (4.2) is always quadratic in quantities that are vanishing in the supersymmetry limit.

Hence any first-order variation of any Lagrangian of this type must necessarily vanish in a

supersymmetric background!

The above result suffices to derive a non-renormalization theorem for electric charges

and the Wald entropy [20–22] for BPS black holes. The reason is that these quantities

are always expressed in terms of first-order derivatives of the Lagrangian with respect

to certain fields, such as the abelian field strengths or the Riemann tensor, or possible

derivatives thereof. This concludes the proof of the non-renormalization theorem.

As we already mentioned in section 1, the existence of this non-renormalization theorem

is a welcome result. So far good agreement has been established for BPS black hole entropy

evaluated on the basis of supergravity and of microstate counting, suggesting that other

invariants in supergravity should contribute only marginally, or perhaps not at all, at the

subleading level. The result of this section lends support to this idea. Nevertheless the

possible existence of alternative supersymmetric invariants that do not belong to the class

of invariants discussed in this paper, cannot be excluded at this stage.

6 Concluding remarks

In this paper we studied a large class of N = 2 superconformal invariants involving higher-

derivative couplings, based on full superspace integrals. For a special subclass we have

presented explicit results for some of the bosonic terms. This is the subclass that contains

only a single kinetic multiplet.

As indicated already, there are further options. The most obvious one is to include

more kinetic multiplets, based on various composite chiral and anti-chiral multiplets with

suitable Weyl weights,
∫

d4θ Φ0 T(Φ̄1) · · ·T(Φ̄n) , (6.1)

where Φ̄1, . . . Φ̄n are anti-chiral superfields of zero weight and Φ0 is a chiral superfield

of weight w = −2(n − 1). This leads to actions that contain four space-time derivatives.
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However, when treating the chiral multiplets as composites of reduced chiral multiplets, one

obtains invariants with terms of 2(1+n) powers of field strengths and/or explicit derivatives,

i.e., R2mF 2pD2(n+1−m−p). The case of n = 1 has been dealt with in considerable detail in

section 4. The expression of the composite chiral multiplets in terms of the reduced ones

allows again for the presence of functions H(n) which are subject to a generalized version

of the Kähler transformations noted in section 4.

As alluded to before, one can also consider nested situations where the kinetic multiplet

is constructed from a combination of (anti)chiral fields that include again other kinetic

multiplets. In this way one constructs multiplets with multiple derivatives of arbitrary

power. We are then led to introduce quantities of the type,

T
(2) = T(Φ̄2 T(Φ1)) , T

(3) = T(Φ̄3 T(Φ2 T(Φ̄1))) , . . . , T
(n) = T(Φ̄n T

(n−1)) , (6.2)

which can be part of any superspace integrand, on the same footing as the kinetic multiplets

in (6.1). Here Φ1 has w = 0 and Φ2,Φ3, · · · have w = −2. This extends the number of

invariants to all possible combinations of the form

∫

d4θΦ0 T
(n1) T

(n2) · · · T
(nk) , (6.3)

where Φ0 has w = −2(k − 1) and where we assume nk ≥ 1 with T(Φ̄1) ≡ T
(1). When

expressing all the chiral multiplets in terms of reduced ones, then one can show that the

maximal number of derivatives of the invariants (6.3) is equal to 2(1 +
∑

k nk).

These types of invariants are not necessarily independent in the sense that there can be

linear combinations that are equal to a total derivative. For example, at the six-derivative

level, one has
∫

d4θΦ0 T(Φ̄2 T(Φ1)) ≈

∫

d4θ̄ Φ̄2T(Φ0) T(Φ1) , (6.4)

up to total derivatives. Nevertheless it is clear that we are dealing with an infinite hierarchy

of higher-derivative invariants.

Of course, a relevant question is whether the invariant couplings presented in this

paper exhaust the possible higher-derivative invariants. Most likely, this will not be the

case. From the perspective of BPS black holes the question would then remain whether

these conjectured couplings could still contribute to the entropy and electric charges.
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Weyl multiplet parameters

field eµ
a ψµ

i bµ Aµ Vµ
i
j Tab

ij χi D ωab
µ fµ

a φµ
i ǫi ηi

w −1 −1
2 0 0 0 1 3

2 2 0 1 1
2 −1

2
1
2

c 0 −1
2 0 0 0 −1 −1

2 0 0 0 −1
2 −1

2 −1
2

γ5 + + − + −

Table 3. Weyl and chiral weights (w and c) and fermion chirality (γ5) of the Weyl multiplet

component fields and the supersymmetry transformation parameters.

A Superconformal calculus

Throughout this paper we use Pauli-Källén conventions and follow the notation used e.g.

in [16]. Space-time and Lorentz indices are denoted by µ, ν, . . ., and a, b, . . ., respectively;

SU(2)-indices are denoted by i, j, . . .. As mentioned already in footnote 1, (anti-)sym-

metrizations are always defined with unit strength.

In this appendix we present the transformation rules of the superconformal fields and

their relation to the superconformal algebra, as well as their covariant quantities contained

in the so-called Weyl supermultiplet. The superconformal algebra comprises the generators

of the general-coordinate, local Lorentz, dilatation, special conformal, chiral SU(2) and

U(1), supersymmetry (Q) and special supersymmetry (S) transformations. The gauge fields

associated with general-coordinate transformations (eµ
a), dilatations (bµ), chiral symmetry

(Vµ
i
j and Aµ) and Q-supersymmetry (ψµ

i) are independent fields. The remaining gauge

fields associated with the Lorentz (ωµ
ab), special conformal (fµ

a) and S-supersymmetry

transformations (φµ
i) are dependent fields. They are composite objects, which depend

on the independent fields of the multiplet [13, 23, 24]. The corresponding supercovariant

curvatures and covariant fields are contained in a tensor chiral multiplet, which comprises

24 + 24 off-shell degrees of freedom. In addition to the independent superconformal gauge

fields, it contains three other fields: a Majorana spinor doublet χi, a scalar D, and a

selfdual Lorentz tensor Tabij , which is anti-symmetric in [ab] and [ij]. The Weyl and chiral

weights have been collected in table 3.

Under Q-supersymmetry, S-supersymmetry and special conformal transformations the

independent fields of the Weyl multiplet transform as follows,

δeµ
a = ǭi γaψµi + ǭi γ

aψµ
i ,

δψµ
i = 2Dµǫ

i −
1

8
Tab

ijγabγµǫj − γµη
i

δbµ =
1

2
ǭiφµi −

3

4
ǭiγµχi −

1

2
η̄iψµi + h.c. + Λa

Keµa ,

δAµ =
1

2
iǭiφµi +

3

4
iǭiγµ χi +

1

2
iη̄iψµi + h.c. ,

δVµ
i
j = 2 ǭjφµ

i − 3ǭjγµ χ
i + 2η̄j ψµ

i − (h.c. ; traceless) ,

δTab
ij = 8 ǭ[iR(Q)ab

j] ,

– 16 –



J
H
E
P
0
1
(
2
0
1
1
)
0
0
7

δχi = −
1

12
γab /DTab

ij ǫj +
1

6
R(V)µν

i
jγ

µνǫj −
1

3
iRµν(A)γµνǫi +Dǫi +

1

12
γabT

abijηj ,

δD = ǭi /Dχi + ǭi /Dχ
i . (A.1)

Here ǫi and ǫi denote the spinorial parameters of Q-supersymmetry, ηi and ηi those of S-

supersymmetry, and ΛK
a is the transformation parameter for special conformal boosts. The

full superconformally covariant derivative is denoted by Dµ, while Dµ denotes a covariant

derivative with respect to Lorentz, dilatation, chiral U(1), and SU(2) transformations,

Dµǫ
i =

(

∂µ −
1

4
ωµ

cd γcd +
1

2
bµ +

1

2
iAµ

)

ǫi +
1

2
Vµ

i
j ǫ

j . (A.2)

The covariant curvatures of the various gauge symmetries take the following form,

R(P )µν
a = 2 ∂[µ eν]

a + 2 b[µ eν]
a − 2ω[µ

ab eν]b −
1

2
(ψ̄[µ

iγaψν]i + h.c.) ,

R(Q)µν
i = 2D[µψν]

i − γ[µφν]
i −

1

8
T abij γab γ[µψν]j ,

R(A)µν = 2 ∂[µAν] − i

(

1

2
ψ̄[µ

iφν]i +
3

4
ψ̄[µ

iγν]χi − h.c.

)

,

R(V)µν
i
j = 2 ∂[µVν]

i
j + V[µ

i
k Vν]

k
j + 2(ψ̄[µ

i φν]j − ψ̄[µj φν]
i) − 3(ψ̄[µ

iγν]χj − ψ̄[µjγν]χ
i)

− δj
i(ψ̄[µ

k φν]k − ψ̄[µk φν]
k) +

3

2
δj

i(ψ̄[µ
kγν]χk − ψ̄[µkγν]χ

k) ,

R(M)µν
ab = 2 ∂[µων]

ab − 2ω[µ
acων]c

b − 4f[µ
[aeν]

b] +
1

2
(ψ̄[µ

i γab φν]i + h.c.)

+

(

1

4
ψ̄µ

i ψν
j T ab

ij −
3

4
ψ̄[µ

i γν] γ
abχi − ψ̄[µ

i γν]R(Q)ab
i + h.c.

)

,

R(D)µν = 2 ∂[µbν] − 2f[µ
aeν]a −

1

2
ψ̄[µ

iφν]i +
3

4
ψ̄[µ

iγν]χi −
1

2
ψ̄[µiφν]

i +
3

4
ψ̄[µiγν]χ

i ,

R(S)µν
i = 2D[µφν]

i − 2f[µ
aγaψν]

i −
1

8
/DTab

ijγabγ[µψν] j −
3

2
γaψ[µ

i ψ̄ν]
jγaχj

+
1

4
R(V)ab

i
jγ

abγ[µψν]
j +

1

2
iR(A)abγ

abγ[µψν]
i ,

R(K)µν
a = 2D[µfν]

a −
1

4

(

φ̄[µ
iγaφν]i + φ̄[µiγ

aφν]
i
)

+
1

4

(

ψ̄µ
iDbT

ba
ijψν

j − 3 e[µ
aψν]

i /Dχi

+
3

2
D ψ̄[µ

iγaψν]j − 4 ψ̄[µ
iγν]DbR(Q)bai + h.c.

)

. (A.3)

There are three conventional constraints (which have already been incorporated in (A.3),

R(P )µν
a = 0 ,

γµR(Q)µν
i +

3

2
γνχ

i = 0 ,

eνbR(M)µνa
b − iR̃(A)µa +

1

8
TabijTµ

bij −
3

2
Deµa = 0 , (A.4)
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which are S-supersymmetry invariant. They determine the fields ωµ
ab, φµ

i and fµ
a as

follows,

ωab
µ = − 2eν[a∂[µeν]

b] − eν[aeb]σeµc∂σeν
c − 2eµ

[aeb]νbν

−
1

4
(2ψ̄i

µγ
[aψ

b]
i + ψ̄aiγµψ

b
i + h.c.) ,

φµ
i =

1

2

(

γρσγµ −
1

3
γµγ

ρσ

)(

Dρψσ
i −

1

16
T abijγabγρψσj +

1

4
γρσχ

i

)

,

fµ
µ =

1

6
R(ω, e) −D −

(

1

12
e−1εµνρσψ̄µ

i γνDρψσi −
1

12
ψ̄µ

iψν
jT µν

ij −
1

4
ψ̄µ

iγµχi + h.c.

)

.

(A.5)

We will also need the bosonic part of the expression for the uncontracted connection fµ
a,

fµ
a =

1

2
R(ω, e)µ

a −
1

4

(

D +
1

3
R(ω, e)

)

eµ
a −

1

2
iR̃(A)µ

a +
1

16
Tµb

ijT ab
ij , (A.6)

where R(ω, e)µ
a = R(ω)µν

abeb
ν is the non-symmetric Ricci tensor, and R(ω, e) the corre-

sponding Ricci scalar. The curvature R(ω)µν
ab is associated with the spin connection field

ωµ
ab, given in (A.5).

The transformations of ωµ
ab, φµ

i and fµ
a are induced by the constraints (A.4). We

present their Q- and S-supersymmetry variations, as well as the transformations under

conformal boosts, below,

δωµ
ab = −

1

2
ǭiγabφµi −

1

2
ǭiψµ

j T ab
ij +

3

4
ǭiγµγ

abχi

+ ǭiγµR
ab

i(Q) −
1

2
η̄iγabψµi + h.c.+ 2ΛK

[aeµ
b] ,

δφµ
i = − 2 fµ

aγaǫ
i +

1

4
R(V)ab

i
jγ

abγµǫ
j +

1

2
iR(A)abγ

abγµǫ
i −

1

8
/DT ab ijγabγµǫj

+
3

2
[(χ̄jγ

aǫj)γaψµ
i − (χ̄jγ

aψµ
j)γaǫ

i] + 2Dµη
i + ΛK

aγaψµ
i ,

δfµ
a = −

1

2
ǭiψµ

iDbT
ba

ij −
3

4
eµ

aǭi /Dχi −
3

4
ǭiγaψµiD

+ ǭiγµDbR
ba

i(Q) +
1

2
η̄iγaφµi + h.c.+ DµΛK

a . (A.7)

The transformations under S-supersymmetry and conformal boosts reflect the structure of

the underlying SU(2, 2|2) gauge algebra. The presence of curvature constraints and of the

non-gauge fields Tabij , χ
i and D induce deformations of the Q-supersymmetry algebra, as

is manifest in the above results, in particular in (A.3) and (A.7).

Combining the conventional constraints (A.4) with the various Bianchi identities one

derives that not all the curvatures are independent. For instance,

εabcdDbR(M)cd
ef = 2 εabc[eR(K)bc

f ] +
9

2
ηa[eχ̄iγf ]χi

+
1

2

[

3χ̄iγaR(Q)efi +
1

8
Db(T ab

ijT
efij) − h.c.

]

. (A.8)
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Furthermore it is convenient to modify two of the curvatures by including suitable

covariant terms,

R(M)ab
cd =R(M)ab

cd +
1

16

(

Tabij T
cdij + Tab

ij T cd
ij

)

,

R(S)ab
i =R(S)ab

i +
3

4
Tab

ijχj . (A.9)

where we observe that γab
(

R(S)−R(S)
)

ab
i = 0. The modified curvature R(M)ab

cd satisfies

the following relations,

R(M)µν
ab eνb = iR̃(A)µνe

νa +
3

2
D eµ

a ,

1

4
εab

ef εcdgh R(M)ef
gh =R(M)ab

cd ,

εcdea R(M)cd e
b = εbecd R(M)a

e cd = 2R̃(D)ab = 2iR(A)ab . (A.10)

The first of these relations corresponds to the third constraint given in (A.4), while the

remaining equations follow from combining the curvature constraints with the Bianchi

identities. Note that the modified curvature does not satisfy the pair exchange property;

instead we have,

R(M)ab
cd = R(M)cdab + 4 i δ

[c
[a R̃(A)b]

d] . (A.11)

We now turn to the fermionic constraint given in (A.4) and its consequences for the

modified curvature defined in (A.9). First we note that the constraint on R(Q)µν
i implies

that this curvature is anti-selfdual, as follows from contracting the constraint with γν γab,

R̃(Q)µν
i = −R(Q)µν

i . (A.12)

Furthermore, combination of the Bianchi identity and the constraint on R(Q)µνi yields the

following condition on the modified curvature R(S)ab
i,

γaR̃(S)ab
i = 2DaR̃(Q)ab

i = −2DaR(Q)ab
i . (A.13)

This identity (upon contraction with γbγcd) leads to the following identity on the anti-

selfdual part of R(S)ab
i,

R(S)ab
i − R̃(S)ab

i = 2 /D

(

R(Q)ab
i +

3

4
γabχ

i

)

. (A.14)

Finally we note the following useful identities for products of (anti)selfdual tensors,

G±
[a[cH

±
d]b] = ±

1

8
G±

ef H
±ef εabcd −

1

4
(G±

ab H
±
cd +G±

cdH
±
ab) ,

G±
abH

∓cd +G±cdH∓
ab =4δ

[c
[aG

±
b]eH

∓d]e ,

1

2
εabcdG±

[c
eH±

d]e = ±G±[a
eH

±b]e ,

G±ac H±
c

b +G±bc H±
c

a = −
1

2
ηabG±cdH±

cd ,

G±ac H∓
c

b =G±bc H∓
c

a , G±abH∓
ab = 0 . (A.15)
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B Covariantization under special superconformal boosts

In principle covariant (multiple) derivatives are defined by the standard procedure by

adding gauge fields to absorb all symmetry variations proportional to derivatives of the

transformation parameters. In this procedure the gauge field fµ
a associated with the con-

formal boosts (parametrized by ΛK
a) appears somewhat indirectly, because the only other

fields that transform under the conformal boosts are the gauge fields bµ, ωµ
ab and φµ

i.

Therefore supercovariant derivatives of fields that are themselves invariant, will transform

under these K-transformations, and usually these variations take a relatively simple form.

We give some examples for a scalar field φ, a spinor field ψ, and a tensor field tab, each of

Weyl weight w,

δKDaφ = − wΛKaφ ,

δKDatbc = − wΛKatbc + 2 ta[bΛKc] − 2 ηa[btc]d ΛK
d ,

δKDaψ =

[

− wΛKa +
1

2
ΛK

bγab

]

ψ . (B.1)

These transformation rules simplify for certain contractions, such as in Datab or /Dψ,

δKD
atab = (2 − w)ΛK

atab ,

δKD[atbc] = (2 − w)ΛK[atbc] ,

δK /Dψ =

(

3

2
− w

)

/ΛK ψ , (B.2)

showing, for instance, that the Dirac operator on a spinor field of weight w = 3
2 is invariant.

Applying an extra covariant derivative we explicitly indicate the presence of the K-

connection field fµ
a,

DµDaφ =DµDaφ+ wfµa φ ,

DµD
atab =DµD

atab + (w − 2)fµ
a tab ,

Dµ /Dψ =Dµ /Dψ +

(

w −
3

2

)

fµ
aγaψ , (B.3)

where Dµ denotes the covariant derivative without including the field fµ
a. Under K-

transformations these multiple derivatives transform as,

δKDµDaφ = − (w + 1)
[

ΛKµDa + ΛKaDµ

]

φ+ eµaΛK
bDbφ ,

δKDµD
atab = − (w + 1)ΛKµD

atab − ΛKbD
ataµ + eµbΛK

cDatac + (2 − w)ΛK
aDµtab ,

δKDµ /Dψ =

[

− (w + 1)ΛKµ +
1

2
ΛK

aγµa

]

/Dψ +

(

3

2
− w

)

/ΛKDµψ . (B.4)

Contracting the first equation with eaµ shows that the conformal D’Alembertian transforms

under K-transformations as δK2cφ = −2(w − 1)ΛK
aDaφ, which vanishes for w = 1.
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This pattern repeats itself when considering even higher derivatives. We present the

following results,

Dµ2cφ =Dµ2cφ+ 2(w − 1)fµ
aDaφ ,

2c2cφ =DµD
µ
2cφ+ (w + 2)fµ

µ
2cφ+ 2(w − 1)fµaD

µDaφ ,

2c /Dψ =DµD
µ /Dψ +

[

(w + 1)fµ
µ −

1

2
fµaγ

µa

]

/Dψ +

(

w −
3

2

)

fµaγ
aDµψ , (B.5)

and,

δK2c2cφ = − 2(w − 1)ΛK
a
2cDaφ− 2(w + 1)ΛK

aDa2cφ

= − 2wΛK
a
[

2cDaφ+Da2c

]

φ+ 2ΛK
a
[

2cDa −Da2c

]

φ ,

δK2c /Dψ = − (2w − 1)ΛK
aDa /Dψ −

1

2
/ΛK

[

(2w − 1)2c + [ /D, /D]
]

ψ . (B.6)

For future use we have evaluated the previous two variations for the fields A and Ψi, which

have weights w = 0, 1
2 , respectively. In this case all the terms cubic and quadratic in

derivatives in (B.6) appear with a certain degree of anti-symmetry, such that they become

proportional to curvatures. Upon substituting the results for the various curvatures, one

obtains (3.4).

C Multiplication of chiral multiplets

In this appendix we summarize the product rules for two chiral supermultiplets and the

Taylor expansion for functions of these multiplets. In the local supersymmetry setting, we

will usually be dealing with homogeneous functions of chiral multiplets with equal Weyl

weight so that a scaling weight under Weyl transformations can be assigned to the function.

The product of two chiral multiplets, specified by the component fields
(

A,Ψi, Bij , F
−
ab,Λi, C

)

and
(

a, ψi, bij , f
−
ab, λi, c

)

, respectively, leads to the

following decomposition,

(

A,Ψi, Bij , F
−
ab,Λi, C

)

⊗
(

a, ψi, bij , f
−
ab, λi, c

)

=
(

Aa , Aψi + aΨi, A bij + aBij − Ψ̄(iψj) ,

A f−ab + aF−
ab −

1

4
εijΨ̄iγabψj ,

Aλi + aΛi −
1

2
εkl(Bik ψl + bik Ψl) −

1

4
(F−

abγ
abψi + f−abγ

abΨi) ,

A c+ aC −
1

2
εikεjlBij bkl + F−

ab f
−ab + εij(Ψ̄iλj + ψ̄iΛj)

)

. (C.1)
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A function G(Φ) of chiral superfields ΦI defines a chiral superfield, whose component

fields take the following form,

A|G =G(A) ,

Ψi|G =G(A)I Ψi
I ,

Bij|G =G(A)I Bij
I −

1

2
G(A)IJ Ψ̄(i

IΨj)
J ,

F−
ab|G =G(A)I F

−
ab

I −
1

8
G(A)IJ ε

ijΨ̄i
IγabΨj

J ,

Λi|G =G(A)I Λi
I −

1

2
G(A)IJ

[

Bij
IεjkΨk

J +
1

2
F−

ab
IγabΨk

J

]

+
1

48
G(A)IJK γabΨi

I εjkΨ̄j
JγabΨk

K ,

C|G =G(A)I C
I −

1

4
G(A)IJ

[

Bij
IBkl

J εikεjl − 2F−
ab

IF−abJ + 4 εikΛ̄i
IΨj

J
]

,

+
1

4
G(A)IJK

[

εikεjlBij
IΨk

JΨl
K −

1

2
εklΨ̄k

IF−
ab

JγabΨl
K

]

+
1

192
G(A)IJKL ε

ijΨ̄i
IγabΨj

J εklΨ̄k
KγabΨl

L . (C.2)

This result follows straightforwardly from expanding the superfield expression in powers of

the fermionic coordinates.

D Reduced chiral multiplets

Chiral multiplets can be consistently reduced by imposing a reality constraint. This usually

requires specific values for the Weyl and chiral weights. The two cases that are relevant

are the vector multiplet, which arises upon reduction from a scalar chiral multiplet, and

the Weyl multiplet, which is a reduced anti-selfdual chiral tensor multiplet. Both reduced

multiplets require weight w = 1.

We will denote the components of the w = 1 multiplet that describes the vector mul-

tiplet by (A,Ψ, B, F−,Λ, C)|vector. The constraint for a scalar chiral supermultiplet reads,

εij D̄iγabDjΦ = [εij D̄iγabDjΦ]∗, which implies that C|vector and Λi|vector are expressed in

terms of the lower components of the multiplet, and imposes a reality constraint on B|vector
and a Bianchi identity on F−|vector [12–14]. The latter implies that F−|vector can be ex-

pressed in terms of a gauge field Wµ. This feature is not affected by the presence of the

superconformal background field.

Denoting the independent components of the vector multiplet by (X,Ω, Y, F−), the

identification with the chiral multiplet components is as follows,

A|vector = X ,

Ψi|vector = Ωi ,

Bij|vector = Yij = εikεjlY
kl ,
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F−
ab|vector =

(

δab
cd −

1

2
εab

cd

)

ec
µed

ν ∂[µWν]

+
1

4

[

ψ̄ρ
iγabγ

ρΩj + X̄ ψ̄ρ
iγρσγabψσ

j − X̄ Tab
ij
]

εij ,

Λi|vector = − εij /DΩj

C|vector = − 22cX̄ −
1

4
F+

ab T
ab

ijε
ij − 3 χ̄iΩ

i . (D.1)

The Bianchi identity on Fab can be written as,

Db

(

F+
ab − F−

ab +
1

4
XTabijε

ij −
1

4
X̄Tab

ijεij

)

+
3

4

(

χ̄iγaΩjε
ij − χ̄iγaΩ

jεij
)

= 0 , (D.2)

and the reality constraint on Yij is included in (D.1).

The Q- and S-supersymmetry transformations for the vector multiplet take the form,

δX = ǭiΩi ,

δΩi = 2 /DXǫi +
1

2
εijFµνγ

µνǫj + Yijǫ
j + 2Xηi ,

δWµ = εij ǭi(γµΩj + 2ψµjX) + εij ǭ
i(γµΩj + 2ψµ

jX̄) ,

δYij = 2 ǭ(i /DΩj) + 2 εikεjl ǭ
(k /DΩl) , (D.3)

and, for w = 1, are in clear correspondence with the supersymmetry transformations of

generic scalar chiral multiplets given in (2.1).

Subsequently we turn to the Weyl multiplet, which is a chiral anti-selfdual tensor

multiplet subject to D̄iγ
abDj Φab

ij = [D̄iγ
abDj Φab

ij ]∗. Its chiral superfield components

take the following form,

Aab|W =Tab
ijεij ,

Ψabi|W = 8 εijR(Q)jab ,

Babij |W = − 8 εk(iR(V)−ab
k
j) ,

(

F−
ab

)

cd|W = − 8R(M)−ab
cd ,

Λabi|W = 8

(

R(S)−abi +
3

4
γab /Dχi

)

,

Cab|W = 4D[aD
cTb]c ijε

ij − dual . (D.4)

We give the Q- and S-supersymmetry variations for the first few components,

δTab
ij = 8 ǭ[iR(Q)ab

j] ,

δR(Q)ab
i = −

1

2
/DTab

ij ǫj +R(V)−ab
i
j ǫ

j −
1

2
R(M)ab

cd γcdǫ
i +

1

8
Tcd

ij γcdγab ηj ,

δR(V)−ab
i
j = 2ǭj /DR(Q)ab

i − 2ǭi
(

R(S)−abj +
3

4
γab /Dχj

)

+ η̄j(2R(Q)ab
i + 3γabχ

i) − (traceless) ,
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δR(M)−ab
cd =

1

2
ǭi /Dγ

cdR(Q)ab
i −

1

2
ǭiγcd

(

R(S)−abi +
3

4
γab /Dχi

)

− η̄iγabR(Q)cdi −
1

2
η̄iγ

cdR(Q)ab
i −

3

4
η̄iγabγ

cdχi . (D.5)

A scalar chiral multiplet with w = 2 is obtained by squaring the Weyl multiplet. The

various scalar chiral multiplet components are given by,

A|W 2 = (Tab
ijεij)

2 ,

Ψi|W 2 = 16 εijR(Q)jab T
klab εkl ,

Bij|W 2 = − 16 εk(iR(V)kj)ab T
lmab εlm − 64 εikεjl R̄(Q)ab

k R(Q)l ab ,

F−ab|W 2 = − 16R(M)cd
ab T klcd εkl − 16 εij R̄(Q)icdγ

abR(Q)cd j ,

Λi|W 2 = 32 εij γ
abR(Q)jcd R(M)cdab + 16 (R(S)ab i + 3γ[aDb]χi)T

klab εkl

− 64R(V)ab
k
i εklR(Q)ab l ,

C|W 2 = 64R(M)−cd
ab R(M)−cd

ab + 32R(V)−ab k
l R(V)−ab

l
k

− 32T ab ij DaD
cTcb ij + 128 R̄(S)ab

iR(Q)ab
i + 384 R̄(Q)ab iγaDbχi . (D.6)

These components can straightforwardly be substituted in the expression for the higher-

derivative couplings.
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