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ABSTRACT

Observations of sea ice extent and atmospheric temperature in the Arctic, although sparse, indicate vari-

ability on multidecadal time scales. A recent analysis of one of the global climate models [the Geophysical

Fluid Dynamics Laboratory Climate Model, version 2.1 (CM2.1)] in the Fourth Assessment Report (AR4) of

the Intergovernmental Panel on Climate Change has indicated that Arctic Ocean variability on these time

scales is associated with changes in basin-wide salinity patterns. In this paper the internal modes of variability

in an idealized Arctic Basin are determined by considering the stability of salinity-driven flows. An internal

ocean mode with a multidecadal time scale is found, with a spatial pattern similar to that obtained in the

analysis of the CM2.1 results. The modes propagate as a ‘‘saline Rossby wave’’ induced by the background

salinity gradient.

1. Introduction

Natural variability of the climate of the Arctic Ocean

on decadal to multidecadal time scales is a topic that has

recently begun to receive a large amount of attention.

Anthropogenic climate change appears to be having its

greatest effects in the Arctic, yet we have so far been

unable to accurately predict the rates of the changes us-

ing state-of-the-art climate models (Stroeve et al. 2007).

The 2007 minimum in sea ice extent, for example, was

not adequately projected by any of the models in the

Intergovernmental Panel on Climate Change’s Fourth

Assessment Report (AR4). This prompts the question

as to whether natural variability may be enhancing an-

thropogenically induced changes and, if so, what mech-

anisms may be responsible.

The study of multidecadal variability in the North

Atlantic Ocean also leads to questions about variability

in the Arctic. Temperature and salinity anomalies

from the North Atlantic may propagate into the Arctic

and vice versa, connecting variability in the two basins.

Long-term observations in the Arctic region are limited;

however, there are indications of decadal-to-multidecadal

variability in air pressure and temperature (Polyakov

et al. 2003a), sea ice (Polyakov et al. 2003b), and tem-

perature of Atlantic core water entering the Arctic

(Polyakov et al. 2004). Multidecadal variability in century-

long records of sea ice is found to be strongest in the Kara

Sea, decaying toward the Canada Basin (Venegas and

Mysak 2000; Polyakov et al. 2003b). This multidecadal

variability has been referred to as the low-frequency

oscillation (Polyakov and Johnson 2000). There are also

multidecadal variations in sea ice transport through

Fram Strait associated with the variability of sea ice

extent (Vinje et al. 2002). In addition, there are the

Great Salinity Anomalies (GSAs) in the North Atlantic,

of which several are thought to be connected to large sea

ice exports out of the Arctic (Belkin et al. 1998).

Another connection between the North Atlantic and

Arctic climate occurs through the atmosphere. The dom-

inant atmospheric winter variability is associated with

the pattern of the North Atlantic Oscillation (NAO),

with its Arctic extension, the Northern Annular Mode

(Thompson and Wallace 2001). Although it cannot be

demonstrated that the NAO has any significant pref-

erential frequency, the Atlantic westerlies were rela-

tively weak during the period between 1940 and 1970

and relatively strong from 1980 until recently (Eden and

Jung 2001). NAO variations impose a well-known tri-

polar sea surface temperature anomaly on the North

Atlantic Ocean on seasonal to interannual time scales

(Alvarez-Garcia et al. 2008), while a hemisphere-wide
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response is associated with low-frequency time scales

(Visbeck et al. 2003).

Frankcombe et al. (2010) found multidecadal vari-

ability in the North Atlantic on two time scales and pro-

posed that the shorter 20–30-yr time scale arises due

to an ocean mode intrinsic to the North Atlantic basin

(te Raa and Dijkstra 2002), while the longer 50–70-yr

time scale is associated with Arctic variability. Based on

observations and an analysis of a 500-yr-long control run

of the Geophysical Fluid Dynamics Laboratory’s (GFDL)

Climate Model, version 2.1 (CM2.1), they find that the

source of the 50–70-yr period variability is an oscilla-

tion seen in salinity at 400-m depth in the Arctic. Note

that 400 m is the approximate depth of the layer of

Atlantic water in the Arctic. They suggested that the

inflow from the Atlantic may be exciting an internal

ocean mode in the Arctic Basin, which, in turn, feeds

buoyancy anomalies back into the North Atlantic on

the longer time scale. The salinity signatures of these

anomalies may be related to GSAs, which would con-

sequently be due to the internal multidecadal variability

of the Arctic.

In this paper we take the first step toward determining

the salinity-related internal multidecadal variability in

the Arctic. The temperature-related internal modes of

variability in the North Atlantic were studied in Dijkstra

(2006) by considering the linear stability of thermally

driven three-dimensional ocean flows in an idealized

single-hemispheric basin. Under zero forcing, it was

shown that the normal modes of the motionless state are

stationary. With an increasing equator-to-pole temper-

ature gradient, the growth rates of these modes are af-

fected by the strength of the meridional overturning

circulation, and some of the stationary modes merge to

become oscillatory modes that, under realistic forcing,

have multidecadal periods. Following the approach in

Dijkstra (2006), we can immediately anticipate that if

we consider salinity-driven flow in an idealized Arctic

Basin, mergers of stationary modes may also occur. The

issue, however, is whether they will have a multidecadal

period and whether the patterns of these modes will

correspond to those found in the GFDL CM2.1 results

(Frankcombe et al. 2010).

In section 2, the model and methodology used to de-

termine the internal modes for a hierarchy of idealized

Arctic Ocean models are presented. In section 3, results

are presented for a circular basin with a polar island and it

is shown that both westward- and eastward-propagating

multidecadal modes exist. In section 4, we analyze the

effects of geometry and idealized bottom topography on

the modes. We summarize the results in section 5 and

discuss them within the context of the results of general

circulation models and observations.

2. Stability of Arctic Ocean flows

In section 2a we present the model used to address the

internal variability in the Arctic, and in section 2b we

present the methodology by which internal modes of

variability are computed.

a. Ocean model

We consider ocean flows in a model domain on the

sphere bounded by the latitudes us and un (to be speci-

fied later) and by the longitudes fw 5 08 and fe 5 3608;

the ocean basin has a mean depth D. The flows in this

domain are forced by restoring surface boundary con-

ditions (with a restoring time scale tS) to a salinity field

SR given by

S
R

5 S
0

1 DSf (f, u),

where DS is the amplitude of the salinity anomaly over

the basin and f(f, u) is a prescribed spatial pattern. The

temperature and wind forcing are absent.

Salinity differences in the ocean cause density differ-

ences according to

r 5 r
0
[1 1 a
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0
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where aS is the volumetric expansion coefficient; S0 and

r0 are a reference salinity and density, respectively; and

S
*

is the total salinity. We neglect inertia in the momen-

tum equations because of the small Rossby number and

use the Boussinesq and hydrostatic approximations. With

r0 and V being the radius and angular velocity of the

earth, the governing equations for the zonal, meridional,

and vertical velocities u, y, and w, respectively; the dy-

namic pressure p (the hydrostatic part has been sub-
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where H is a continuous approximation of the Heavi-

side function and Hm is the depth of the first layer. In

these equations, AH and AV are the horizontal and

vertical momentum (eddy) viscosities and KH and KV

are the horizontal and vertical (eddy) diffusivities of

salt, respectively. In addition,

D

dt
5

›
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To remove any static instabilities, enhanced vertical mix-

ing was applied when the vertical density gradient was

positive. The implementation details of the convective

adjustment scheme used in the model are provided in

De Niet et al. (2007).

Slip conditions and zero salt flux are assumed at the

bottom boundary and, as the forcing is represented as

a body force over the first layer, slip and zero salt flux

conditions also apply at the ocean surface. Hence, the

boundary conditions at the top and bottom boundaries are

z 5�D, 0:
›u

›z
5

›y

›z
5 w 5

›S

›z
5 0. (2)

The lateral boundary conditions will be specified in each

of the different cases below. The parameters for the

standard case are the same as in typical large-scale low-

resolution ocean general circulation models and their

values are listed in Table 1.

b. Steady states and their stability versus DS

Using the model in the previous subsection, we will

compute steady three-dimensional salinity-driven flow

solutions for different amplitudes of the surface salinity

gradient DS and determine their linear stability.

First, the steady governing equations (1) and bound-

ary conditions (2) are discretized on an Arakawa B grid

using central spatial differences. On an N 3 M 3 L grid

with five unknowns per point (u, y, w, p, and S), this leads

to a system of d 5 5 3 N 3 M 3 L nonlinear algebraic

equations. These are solved with DS as a control param-

eter using a pseudoarclength continuation method; de-

tails on this methodology are provided in Dijkstra (2005).

For each of the steady states, we now consider the

evolution of infinitesimally small disturbances within

the model. Linearizing (1) and (2) in the amplitude of

the perturbations and separating the equations for these

disturbances in time, an elliptic eigenvalue problem is ob-

tained for the complex growth rate s of each perturba-

tion. When this elliptic eigenvalue problem is discretized,

a generalized eigenvalue problem is obtained of the form

Ax 5 sBx, (3)

where A and B are d 3 d matrices. The matrix A is the

Jacobian matrix of the system of nonlinear algebraic

equations that results after the discretization of (1). The

matrix B is singular since a time derivative only occurs

in the salinity equation and is absent from the momen-

tum equations and the continuity equation.

We solve for the 12 ‘‘most dangerous’’ modes, that is,

those with their real part closest to the imaginary axis,

TABLE 1. Standard values of parameters used in the numerical

calculations.

2V 5 1.4 3 1024 (s21) r0 5 6.4 3 106 (m)

D 5 4.0 3 103 (m) tS 5 7.5 3 101 (days)

aS 5 7.6 3 1024 (psu21) Hm 5 250 (m)

AH 5 1.6 3 105 (m2 s21) S0 5 35.0 (psu)

r0 5 1.0 3 103 (kg m23) AV 5 1.0 3 1023 (m2 s21)

KH 5 1.0 3 103 (m2 s21) KV 5 2.3 3 1024 (m2 s21)

TABLE 2. Growth rates (yr21) of the least damped modes for different values of un and KV.

n m l

KV 5 2.3 3 1024 m2 s21

KV 5 1.0 3 1024 m2 s21

908N (analytic) 87.58N (analytic) 87.58N (model) 87.58N (analytic)

0 0 1 24.4742 3 1023 24.4742 3 1023 24.5043 3 1023 21.9453 3 1023

0 0 2 21.7897 3 1022 21.7897 3 1022 21.7843 3 1022 27.7812 3 1023

1 0 0 22.1708 3 1022 22.0161 3 1022 22.0814 3 1022 22.0161 3 1022

1 0 1 22.6182 3 1022 22.4635 3 1022 22.5319 3 1022 22.2106 3 1022

1 0 2 23.9605 3 1022 23.8058 3 1022 23.8658 3 1022 22.7942 3 1022

0 0 3 24.0268 3 1022 24.0268 3 1022 23.9506 3 1022 21.7508 3 1022

2 0 0 26.0332 3 1022 26.0111 3 1022 26.1145 3 1022 26.0111 3 1022

1 0 3 26.1976 3 1022 26.0429 3 1022 26.0321 3 1022 23.7669 3 1022
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using the Jacobi–Davidson QZ method (Sleijpen and

van der Vorst 1996), and order the eigenvalues s 5

sr 1 isi according to the magnitude of their real part

(the growth rate). For each eigenvalue s, there is a cor-

responding eigenvector x 5 xr 1 ixi according to (3).

Oscillatory modes appear as complex conjugate pairs of

eigenvalues and the time dependence of these oscilla-

tory modes can be represented by the function

F(t) 5 es
r
t(x

r
coss

i
t � x

i
sins

i
t).

Propagation of the pattern can therefore be determined

by plotting xr (which represents the spatial pattern of the

mode at t 5 0) and xi (which represents the spatial

pattern of the mode at t 5 2p/2).

3. Circular basin with a polar island

To illustrate the methodology as described above, we

will start with the idealized case of a circular basin with

a polar island with us 5 708N and un 5 87.58N. No-slip

and zero salt flux conditions are applied along the

northern and southern boundaries; periodic conditions

apply along the eastern and western boundaries. We use

a 90 3 16 grid over the ocean region and there are 16

evenly spaced levels in the vertical.

a. Stationary salinity modes

For the zero forcing case (DS 5 0), the flow is mo-

tionless [(u, y, w) 5 0] and the salinity field is determined

by the equation

FIG. 1. Spatial salinity pattern at the surface (circles) and in a vertical section (rectangles) of the eight least damped modes. Land is shaded

gray, negative contours are plotted in gray, and the zero contour is thick. The amplitude of the modes is arbitrary.
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with boundary conditions

z 5�D, 0 :
›S

›z
5 0

u 5 u
s
, u

n
:

›S

›u
5 0 ,

and we apply periodic boundary conditions in the f

direction; that is,

S(0, u, z) 5 S(2p, u, z);
›S

›f
(0, u, z) 5

›S

›f
(2p, u, z).

The general solution can be found by separation of

variables,

S(f, u, z, t) 5 F(f)Q(u)Z(z)est,

and as the problem is homogeneous, it has only non-

trivial solutions for specific values of s. The eigenvalue

problem can be reduced to that of a one-point boundary

eigenvalue problem, as is shown in the appendix. Al-

though this problem can be solved analytically in terms

of Legendre functions, we have chosen to solve it nu-

merically (details are provided in the appendix). For this

case, it turns out that all the eigenvalues s are real and

negative; hence, the internal modes are stationary. We

can label the internal modes according to the indices

(n, m, l), where each index indicates the number of zeros

of the eigenfunction in the domain, with n representing

the number of zeros in the zonal direction, m the num-

ber in the meridional direction, and l the number of zeros

with depth.

In Table 2, results for the growth rates of the (n, m, l)

modes are provided for two values of KV. For KV 5 2.3 3

1024 m2 s21, the middle column in Table 2 provides the

growth rates as computed numerically from the two-

point boundary eigenvalue problem, as in the appendix.

The third column in Table 2 shows the values as directly

computed by solving the eigenvalue problem (3) from

the discretized model in section 2a. The agreement of

both values provides a check on the eigenvalue compu-

tation through (3). We find that the growth rate of the

modes depends slightly on the size of the polar island (cf.

the un 5 87.58N and un 5 90.08N results). In addition, the

growth rates are also dependent on the value of KV, for

example when KV is decreased from 2.3 3 1024 to 1.0 3

1024 m2 s21, the (0, 0, 3) mode switches from being the

sixth to the third-least damped mode.

Spatial patterns for the eight least damped modes are

shown in Fig. 1 for the case where un 5 87.58N and KV 5

2.3 3 1024 m2 s21. Note that the amplitudes of the pat-

terns are arbitrary. The patterns do not change as un and

FIG. 2. Growth rates and periods of four of the modes as the forcing

DS increases.

FIG. 3. Real and imaginary parts of (top) the oscillatory (1, 0, 2)

mode and (bottom) the (1, 0, 1) mode for DS 5 1.62. Format is as

in Fig. 1.
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KV vary. The two least damped modes, (0, 0, 1) and (0, 0,

2), have exactly the same growth rates as in the North

Atlantic basin used in the normal mode calculations of

Dijkstra (2006), and these are also independent of the

size of the polar island. This is because the growth rates

for the n 5 0, m 5 0 modes only depend on the vertical

diffusion time scales. Modes with m 5 1, 2, . . . have very

negative growth rates (i.e., they are highly damped).

b. Mode merging due to nonzero forcing

To study the emergence of oscillatory modes, an ide-

alized salinity pattern is applied as the surface boundary

condition. Salinity is restored to a sinusoidal profile with

amplitude DS; that is,

f (f, u) 5�cosp
u� u

s

u
n
� u

s

,

with saline water near the polar island and fresher wa-

ters along the outer edge of the basin. This causes an

anticlockwise circulation pattern to develop. Starting

from DS 5 0, we increase the forcing of the flow and

determine steady circulation states versus DS. We then

diagnose the freshwater flux, which is needed to main-

tain this steady state and determine the linear stability

of the steady state under prescribed flux conditions.

This procedure is similar to that in Dijkstra (2006).

Figure 2a shows how the growth rates of four of the

modes that appear in the circular basin change with in-

creasing strength of the forcing. All the modes have

a negative growth rate, indicating that the steady equi-

librium solution is stable. The various (0, 0, l) modes

have growth rates that are almost constant as forcing in-

creases (after an initial adjustment) while the other modes

show a strong dependence of growth rate on forcing

strength. Due to the circular symmetry of the basin,

there are two copies of each stationary (1, 0, l) mode,

each having the same spatial pattern under a rotation;

that is, the corresponding real eigenvalue has an alge-

braic multiplicity of 2. The two copies of each mode

merge for very small values of DS, giving rise to an os-

cillatory mode. The periods of two of these oscillatory

modes are plotted in Fig. 2b.

The mode with the shortest period as DS increases is

the (1, 0, 2) mode. The propagation of the mode can be

visualized using the real and imaginary parts, shown in

the top panel of Fig. 3. The imaginary part is the pattern

at time t 5 2p/2 and the real part is the pattern at time

t 5 0. The anomalies move anticlockwise (eastward), in

the same direction as the background flow. The mode

with the second shortest period is the (1, 0, 1) mode. It

propagates clockwise (westward) against the background

flow; the real and imaginary parts are shown in the bot-

tom panel of Fig. 3. In the case of the (1, 0, 2) mode [the

(1, 0, 1) mode], the phase velocity of the mode is smaller

(larger) than the background velocity, leading to an

eastward (westward) propagating salinity anomaly pat-

tern. The difference in the phase speed of both modes

FIG. 4. Map showing (a) the real bathymetry of the Arctic Basin and (b) an idealized bathymetry with a ridge. The

white lines indicate the sections used in Fig. 13.

TABLE 3. Growth rates (yr21) of the least damped modes for the

flat-bottomed Arctic Basin.

n m l Growth rate

0 0 1 24.5042 3 1023

0 0 2 21.7844 3 1022

1 0 0 23.7244 3 1022

0 0 3 23.9506 3 1022

1 0 1 24.1749 3 1022

1 0 2 25.5089 3 1022

0 0 4 26.8659 3 1022

1 0 3 27.6751 3 1022
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FIG. 5. Spatial salinity patterns (left) at the surface and (right) in a vertical section of the first,

third, fifth, and sixth least damped modes in the flat-bottomed Arctic Basin under zero forcing.

Format is as in Fig. 1.
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is related to their different vertical structures; this is

analogous to free baroclinic Rossby waves where the

phase speed also decreases with increasing vertical

wavenumber.

4. Arctic Basin

We now apply the ideas from the previous section to

more realistic Arctic Ocean Basin configurations. The

topography of the Arctic Basin is shown in Fig. 4. There

are shallow seas around much of the Arctic and these are

closed in the model topography. To avoid the problems

associated with the convergence of the grid at the poles,

the earth’s rotation vector is rotated so that it is at the

equator. The Arctic Basin is then also positioned at the

equator. This is equivalent to rotating the grid so that

the poles of the grid are at the equator; however, the im-

plementation is simpler since only the Coriolis parame-

ter has to be changed, from 2V sinu to 2V cosu cosf. We

use a 51 3 51 grid over the Arctic Basin, which gives

a resolution of approximately 60 km in the horizontal.

Again, there are 16 evenly spaced vertical layers, each

250 m thick.

a. Basin geometry

First, we consider only the effects of the basin geom-

etry on the stability of the salinity-driven flows and study

the case of a flat bottom. For DS 5 0, the growth rates

of the salinity modes are listed in Table 3. For simplicity,

n is the number of zeros along the long axis of the basin

(i.e., along the 1358W–458E line in Fig. 4a), m is the

number of zeros in the short axis, and l is the number of

zeros with depth, as before. These modes, for which the

salinity patterns are shown in Fig. 5, can be compared to

the kinds of modes seen in the circular basin. Once again,

the least damped modes are the (0, 0, 1) and (0, 0, 2)

modes, followed by the (1, 0, 0) mode. The (0, m, 0)

modes are also strongly damped in this case, as in the

circular basin. Note that, because there is no longer any

circular symmetry, the algebraic multiplicity of each of

the modes is now equal to 1 (i.e., unlike in the case with

a circular basin, there is only one copy of each mode).

We again apply a simplified surface salinity forcing, of

which the pattern of f(f, u) is shown in Fig. 6a. Here, the

regions nearest to the Atlantic inflow area are saltier.

Once again, DS represents the amplitude of the forcing,

that is, the difference between the saltiest water at the

Atlantic inflow region and the freshest water on the

opposite side of the basin. This salinity-forcing pattern

results in a surface circulation pattern shown in Fig. 6b.

While this circulation does not represent the Arctic

Circumboundary Current, it does mimic the anticyclonic

circulation in the interior of the Arctic Basin (Nøst and

Isachsen 2003), making it adequate for a first estimate of

the internal modes.

As the forcing strength DS is increased, oscillatory

modes once again appear, of which one has a period in

the multidecadal range. This oscillatory mode is created

through the merging of two different stationary modes:

the (1, 0, 1) mode and the (1, 0, 2) mode. The real and

imaginary parts of the eigenvalues of these two modes

are shown in Fig. 7. Both modes are stationary for small

DS; thus, the imaginary parts of their eigenvalues are

zero (Fig. 7b). For very small values of DS, the eigen-

values of the modes are difficult to follow; in fact, for

some steps the model could not find the modes at all,

leading to gaps in the curves in Fig. 7. However, once the

modes were reacquired by the model, they are recog-

nizable by their spatial patterns as the (1, 0, 1) and (1, 0,

2) modes.

FIG. 6. (left) Surface salinity forcing with negative contours in gray and (right) the resulting

surface circulation with streamlines (black with arrows) and speed contours (gray). Surface

speeds reach a maximum of just under 20 cm s21 for DS 5 1.
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As the two modes merge, the imaginary parts of their

eigenvalues become nonzero and the real parts of their

eigenvalues become identical. That is, their eigenvalues

are of the form sr 6 isi. This is the same type of merger

that occurs in modes as studied in Dijkstra (2006). The

pattern of propagation is shown in Fig. 8, where we can

see that anomalies develop in the Canada basin and

propagate across the pole toward the Atlantic inflow

region. The period of this mode is in the multidecadal

range and its dependence on the forcing strength DS

is plotted and shown later (Fig. 12).

An estimate of DS can be obtained by considering

the range of salinity values observed in the real Arctic

according to the World Ocean Atlas 2005 (Antonov et al.

2006). Averaging the salinity over the upper 250 m (the

thickness of the model layers), and excluding the shelf

seas (which are not included in the model), gives a DS

value of approximately 2.

b. Bottom topography

Circulation in the Arctic is greatly influenced by the

large ridges that stretch across the basin, and the pattern

and propagation of internal modes depend on the back-

ground circulation. Intricate topography is not possible

in the model, but we make an approximation of the

Lomonosov Ridge, as shown in Fig. 4b.

Figure 9 shows that the stationary modes that appear

under zero forcing (DS 5 0) in this case differ from the

modes seen in the previous two cases. The two least

damped modes, for example, are a kind of (0, 0, 1) mode

where the negative anomaly at depth is found on one

side of the ridge or the other. Similarly, the patterns for

many of the more damped modes are not as easily clas-

sified as in the flat-bottomed Arctic case as some of

them appear to have different (n, m, l) patterns in each

of the two subbasins.

The same surface salinity forcing pattern (Fig. 6) is

used as in the flat-bottomed Arctic case, with salty water

near the Atlantic inflow region. The resulting steady sur-

face circulation for DS 5 1 is shown in Fig. 10. Com-

paring this pattern to the circulation pattern in the case

with no bottom topography (Fig. 6b), we can see that the

ridge causes circulation in the basin to be separated into

two parts, one on either side of the ridge, as is the case

FIG. 7. Growth rate and period of the (1, 0, 1) and (1, 0, 2) modes

as the amplitude of the forcing DS increases for the flat-bottomed

Arctic Basin. The merger of the two modes creates an oscillatory

mode.

FIG. 8. Real and imaginary parts of the oscillatory mode with the shortest period for the flat-

bottomed Arctic Basin for DS 5 1.14. Format is as in Fig. 1. The propagation of the mode can be

visualized as follows: the imaginary part shows the mode at t 5 2p/2, and the real part shows

the mode at t 5 0. Another quarter of a period later, at t 5 p/2, the mode is given by the negative

of the imaginary part, and at t 5 p by the negative of the real part.
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for the real Arctic Ocean. However, making the model

circulation resemble the circulation in the real Arctic

more closely would require intricate bottom topography

(and also a representation of Atlantic inflow), in which

case finding solutions with the pseudoarclength contin-

uation method becomes difficult. We are therefore re-

stricted to simplified versions of the topography (and no

Atlantic inflow).

As in the flat-bottomed case, there is one oscillatory

mode with a multidecadal period. The spatial pattern

and period of this mode are similar to the flat-bottomed

case. The real and imaginary parts of the mode are

plotted in Fig. 11 and the dependence of the period on DS

is plotted in Fig. 12. The main difference in the spatial

pattern is that the salinity anomalies do not penetrate so

strongly toward the Atlantic side of the ridge, showing

that the idealized ridge is blocking the propagation of

the mode. The presence of the ridge also decreases the

growth rates of the modes compared to the flat-bottomed

case, indicating that topography has a stabilizing influ-

ence on the flow, similar to the results of Winton (1997).

The spatial pattern of the oscillatory modes depends on

the background circulation. Circulation in the real Arctic

is largely controlled by bathymetry, whereas in the model

Arctic it depends more on the surface forcing (which is

unrealistic). An attempt to make the model circulation

appear more like the real one (by making three peaks in

salinity forcing to mimic the circulation in the three main

FIG. 9. Spatial salinity patterns (left),(right center) at the surface and (left center),(right) in a vertical section of the eight least damped

modes under zero forcing in the Arctic Basin with a ridge. Format is as in Fig. 1.

NOVEMBER 2010 F R A N K C O M B E A N D D I J K S T R A 2505



Arctic basins) resulted in an oscillatory mode with a time

scale very similar to those already shown here. The spatial

pattern was deformed by the surface forcing but the

mode still propagated in a manner similar to the two cases

shown above. This shows that the multidecadal oscillatory

mode is reasonably robust in the model Arctic.

c. Comparison with the CM2.1 MSSA mode

The exact time scale of the oscillatory modes found in

the idealized model depends on the amplitude of the

surface forcing (Fig. 12) and also on the values of the

mixing coefficients, in particular KV (te Raa and Dijkstra

2002; Huck et al. 2001); however, it remains in the mul-

tidecadal range. The spatial patterns of the modes do not

change much with small variations in these parameters.

Instead of precisely tuning the periods of the oscillatory

modes here to the time scale of the oscillatory Multi-

Channel Singular-Spectrum Analysis (MSSA) mode in

the GFDL CM2.1 as found in Frankcombe et al. (2010),

we compare the spatial pattern of the modes over one

oscillation period.

Figure 13 shows Hovmöller plots along the two lon-

gitudinal sections marked with the white lines in Fig. 4a:

the first is along 1808 through the pole and then along

08 (parallel to the model grid) and the second is along

1358W through the pole and then along 458E (approxi-

mately along the long axis of the basin). From these

Hovmöller plots, we can see some similarities between

the spatial patterns. First, comparing the patterns from

the simple model with and without a ridge, we can see

that the presence of the ridge affects the propagation

of the anomalies toward the Atlantic side of the basin.

Second, if we compare the pattern from the coupled

model with the patterns from the simple model along

the 1808–08 line, we see the same general pattern of

propagation.

However, there are also some discrepancies between

the spatial patterns of both modes, which become more

clear when looking along the 1358W–458E line. In the

GFDL CM2.1 the anomaly propagates southward away

from the pole (in both directions), but in the simple

model it propagates from the Canada Basin over the

pole toward the Atlantic inflow region. This difference

can be attributed to the absence of the Chukchi Plateau

FIG. 10. Surface circulation for the Arctic Basin with a ridge.

Streamlines are shown in black, and gray contours indicate velocity.

Surface velocities reach a maximum of about 10 cm s21 for DS 5 1.

FIG. 11. Real and imaginary parts of the least damped oscillatory mode in the Arctic Basin with

a ridge for DS 5 0.75. Format is as in Fig. 1, and the propagation is as described in Fig. 8.
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in the simple model. In the GFDL CM2.1 the pattern

appears to propagate from close to the Chukchi Plateau

toward the pole, with anomalies then spreading south-

ward through the Canada Basin. In the simple model

the anomalies propagate from the Canada Basin itself.

More sophisticated bathymetry would have to be imple-

mented in the model to investigate how the presence

of the Chukchi Plateau, as well as the shallow seas along

the Russian shelf, would affect the spatial pattern of

the mode.

5. Summary and discussion

In this paper, we have investigated the internal modes

of the variability of salinity-driven flows in idealized

Arctic basins. These modes can be determined by solving

the linear stability problem of a particular salinity-driven

steady state under prescribed flux conditions. As a control

parameter, we have used the parameter DS, the ampli-

tude of the salinity forcing.

For DS 5 0, the modes are stationary (real eigenvalue)

in all configurations investigated. The easiest modes to

understand are those on the circular basin with a polar

island. These are the solutions to the anisotropic Lap-

lace equation on a near-polar circular sector and their

meridional structure is given by Legendre functions (see

the appendix). The different modes for this case can still

be recognized for the flat-bottom Arctic Basin and also

in the case with bottom topography, where the spatial

structures of each mode are deformed by the presence of

topography.

When the forcing DS is increased, many of the modes

remain stationary and damped (i.e., negative, real ei-

genvalues). However, merging occurs for some modes,

which leads to oscillatory modes (nonzero imaginary

parts). The periods of these modes eventually reach mul-

tidecadal values under a reasonable salinity contrast over

the basin. The mechanism of propagation here is the

‘‘saline’’ Rossby wave, which is induced by the background

gradient in the salinity. This is analogous to the ‘‘ther-

mal’’ Rossby waves discussed in Dijkstra (2006), induced

by a background temperature gradient, and ordinary

Rossby waves that propagate due to the background

gradient of potential vorticity. The modes intrinsically

propagate westward (just like ordinary Rossby waves)

but they can be arrested by the eastward background

flow; eastward-propagating anomalies are therefore also

possible. This is illustrated by the eastward-propagating

(1, 0, 2) mode and the westward-propagating (1, 0, 1)

mode in the circular basin (Fig. 3). It seems that oscil-

latory modes with multidecadal periods are a robust

feature of our model Arctic. Under the most realistic

configuration considered here, and taking into account

the simplified bathymetry in our model, the pattern of

the least damped oscillatory mode tends to look like the

MSSA mode of the multidecadal variability that was found

in the GFDL CM2.1 (Frankcombe et al. 2010).

The growth rate for all modes found is negative;

hence, for the modes to be observable they would have

to be excited. Growth rates depend strongly on the

background circulation since modes can only grow if

the salinity anomalies transported by the circulation

lead to circulation anomalies that reinforce the original

salinity anomalies. Since the background circulation in

our idealized Arctic is not realistic, we cannot expect to

have realistic growth rates.

Now, as we have no thermal and momentum forcing

in the model, as well as no parameterization for sea ice,

the patterns of the modes should be interpreted as oc-

curring below the Arctic halocline. This is consistent

with the appearance of the mode from the GFDL

CM2.1, which was found below the halocline in that

model. It has previously been shown (Frankcombe et al.

2009) that damped oscillatory modes can be excited by

the inclusion of noise in the system. The most plausible

mechanism for the excitation of the internal modes in

this kind of situation is variability in the inflow of the

Atlantic water. Once excited, the internal variability

would cause circulation changes in the Arctic, altering

heat and freshwater storage.

The model Arctic considered in this paper is highly

idealized. Improvements on this model would be nec-

essary in order to make a closer comparison with the re-

sults from the GFDL CM2.1. In addition, in order to

study the exchange between the Arctic and the North

Atlantic, the next step would be to make a model cou-

pling the two basins. This would allow us to study the

influences of the internal oscillations found in the North

Atlantic on the Arctic, and vice versa.
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FIG. 12. Periods of the oscillatory modes vs DS for the different

cases considered.

NOVEMBER 2010 F R A N K C O M B E A N D D I J K S T R A 2507



FIG. 13. Hovmöller plots of (top) the propagation of the salinity anomaly normalized by the period t across two

longitudinal sections from the GFDL CM2.1 coupled model (t ’ 100 yr), (middle) the oscillatory mode of the flat-

bottomed Arctic Basin (from Fig. 8, t ’ 43 yr), and (bottom) oscillatory mode of the Arctic Basin with a ridge (from

Fig. 11, t ’ 42 yr). The longitudinal sections (shown in Fig. 4) are along (left) 1808–08 and (right) 1358W–458E.
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APPENDIX

Analytical Solution

For the case of a circular basin with a polar island, the

general solution can be found by separating the variables,

S(f, u, z, t) 5 F(f)Q(u)Z(z)G(t),

which leads to four problems:

F0

F
5�m2, (A1a)

Q0 cosu 5 Q9 sinu�Q x cosu� m2

cosu

� �
, (A1b)

Z0

Z
5 (x 1 l)

K
H

K
V

r2
0

, and (A1c)

G9

G
5 l

K
H

r2
0

, (A1d)

where m, x, and l are separation constants. The bound-

ary conditions become

Z9(�D) 5 Z9(0) 5 0 and (A2a)

Q9(u
s
) 5 Q9(u

n
) 5 0. (A2b)

The solutions to (A1a) and (A1c) are sinusoids while

the solution to (A1d) is an exponential. Using the bound-

ary conditions, we can solve for the separation constants:

m 5 0, 1, 2, . . .

�(x 1 l) 5 (lp)2 K
V

r2
0

K
H

D2
, l 5 0, 1, 2, . . .

So our solutions to (A1a), (A1c), and (A1d) are

F 5 C
1

sin(mf) 1 C
2

cos(mf), m 5 0, 1, 2, . . .

Z 5 C
3

cos
pl

D
z

� �
, l 5 0, 1, 2, . . . , and

G 5 C
4
elK

H
/r2

0
t,

where C1–C4 are constants.

The solution to (A1b) may be found by substituting

x 5 sinu into the equation, which then becomes

Q0(1� x2)� 2xQ9 1 Q x � m2

1� x2

� �
5 0.

Introducing x 5 n(n 1 1), this equation reduces to the

standard form of the Legendre equation. Instead of

solving this equation analytically, we solve (A1b) by dis-

cretizing the equation with boundary conditions (A2b) on

a one-dimensional grid with M 5 16 points and solving

the resulting algebraic eigenvalue problem numerically

using a standard library [Numerical Algorithms Group

(NAG)] routine.
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