
The Very Lazy �-Calculus

and the STEC Machine

Jan Rochel�

Universiteit Utrecht, The Netherlands
Department of Computer Science

rochel@cs.uu.nl

Abstract. Current implementations of non-strict functional languages
rely on call-by-name reduction to implement the �-calculus. An interest-
ing alternative is head occurrence reduction, a reduction strategy specif-
ically designed for the implementation of non-strict, purely functional
languages. This work introduces the very lazy �-calculus, which allows
a systematic description of this approach. It is not based on regular
�-reduction but a generalised rewriting rule called γ-reduction that re-
quires fewer reductions to obtain useful results from a term. It therefore
promises more efficient program execution than conventional execution
models. To demonstrate the applicability of the approach, an adaptation
of the Pointer Abstract Machine (PAM) is specified that implements
the very lazy �-calculus and constitutes a foundation for a new class of
efficient functional language implementations.

1 Introduction

The �-calculus is the foundation for the semantics of functional programming
languages. Decades of research on the compilation and execution of non-strict
functional languages has resulted in a number of different abstract machines
such as in [Fairbairn 1987] [Peyton Jones 1987] [Burn 1988] [Peyton Jones 1992]
[Holyer 1998] [Leijen 2005] [Krivine 2007]. They implement the �-calculus by
applying non-strict (or lazy) reduction strategies, such as call-by-name reduction.

A promising alternative is the Pointer Abstract Machine [Danos 2004], which
is based on a reduction strategy that is lazier than call-by-name reduction in
a certain sense. The Pointer Abstract Machine (PAM) is derived from a gener-
alised version of the �-calculus and then extended to support the range of fea-
tures required for the implementation of a full-fledged functional programming
language. The result is the STEC machine, a concrete, implementation-oriented
manifestation of the PAM.

After giving a brief recapitulation of the �-calculus and lazy evaluation we
introduce the very lazy �-calculus, which forms the basis of the approach. It

� Many thanks to Carsten Sinz, Patrik Jansson, and Daniel P. Friedman whose kind
support was indispensable for the publication of this work, and also to Vincent van
Oostrom and Laurent Regnier for their helpful comments.

M.T. Morazán and S.-B. Scholz (Eds.): IFL 2009, LNCS 6041, pp. 198–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Very Lazy �-Calculus and the STEC Machine 199

relies on a generalisation of �-reduction that leads to a new reduction strategy,
called head occurrence reduction. We systematically develop the STEC machine,
an abstract machine for the very lazy �-calculus. It has unique characteristics
that promises high-performance program execution. In the last section we dis-
cuss opportunities for further research in order to create a new kind of efficient
functional language implementation.

2 Basics

2.1 The �-Calculus

The pure, untyped �-calculus [Barendregt 1984] is a term rewriting system that
operates on terms called �-expressions. For a given set of variables V they are
defined by:

E ::= λV.E (abstraction)
| (E E) (application)
| V (variable)

(�-expression)

We henceforth assume that x, y, z ∈ V and e, e1, e2 ∈ E and also that for each
v ∈ V , abstractions of the form λv.E occur at most once in a term. This sim-
plification conforms to the handling of the name-capture problem in the context
of programming language implementation where at compile-time variables are
resolved to an unambiguous representation.

Three rewrite rules are defined for the evaluation of such expressions: α-, �-,
and η-conversion. For the implementation of functional programming languages,
α- and η-conversion are of minor importance and are not discussed here, leaving
�-conversion as the central evaluation mechanism of the �-calculus.

As long as the substitution variable x occurs at most once beneath the reduced
�-abstraction, �-conversion reduces the size of the expression, therefore it is more
often than not called �-reduction and is defined by:

(λx.e1) e2 −→βx e1[x := e2] (�-reduction)

A term is called a reducible expression (redex) if it has the form (λx.e1) e2. A
term in which no redexes occur is in normal form (NF).

2.2 Lazy Evaluation

In the implementation of programming languages the evaluation of an expression
yields the result of a computation. The analogy of a result in the �-calculus is
however not fully obvious. While a term in NF can be considered a result (as it
can no longer be reduced) in functional languages it turns out to be overkill to
reduce any given term to NF. Instead, other forms that may still contain redexes
are targeted, like weak normal form (WNF), head normal form (HNF), or weak
head normal form (WHNF), specified as follows, where AB∗ ::= A | (AB)B∗.

200 J. Rochel

ENF ::= λV.ENF | V E∗
NF (normal form)

EWNF ::= λV.E | V E∗
WNF (weak normal form)

EHNF ::= λV.EHNF | V E∗ (head normal form)
EWHNF ::= λV.EWHNF | V E∗ (weak head normal form)

If such a form semantically relates to a meaningful concept of a result, by evalu-
ating to this form instead of NF, redundant reductions can be avoided. To ensure
no effort is squandered due to such redundant reductions, a practical implemen-
tation of the �-calculus requires a well-defined scheme (reduction strategy) to
select for each �-reduction step a non-redundant abstraction. Well-established
examples are: normal order reduction to NF, hybrid normal order reduction to
NF, applicative order reduction to NF, hybrid applicative order reduction to NF,
call-by-value reduction to WNF, head spine reduction to HNF, call-by-name re-
duction to WHNF [Sestoft 2002].

Generally, non-strict languages imply the use of one of the last two strategies,
which never reduces redexes that occur within an argument. Moreover call-by-
name never reduces redexes beneath a �-abstraction.

@

r@

sλx

@

xλy

λz

@

yz

−→βx

@

r@

sλy

λz

@

yz

−→βy

@

rλz

@

sz

−→βz

@

sr

Fig. 1. Call-by-name reduction to WHNF

3 The Very Lazy �-Calculus

To motivate the derivation of a new calculus it is helpful to relate to the proper-
ties specific to the targeted class of programming languages. Therefore we refer
to language elements like constructors and case discrimination without explicitly
introducing them (as a part of the calculus). Constructors can be thought of as
free variables.

For the implemention of a non-strict language, it is in general desirable to
increase the degree of laziness by using a normal form that requires fewer re-
ductions. But then such a form is useless if it does not reflect the result of a

The Very Lazy �-Calculus and the STEC Machine 201

computation in a sensible manner. Both WHNF and HNF fail to accomplish
this with adequate precision in regard to the specifics of non-strict functional
languages.

Operationally both forms of lazy evaluation (head spine reduction and call-
by-name reduction) proceed by walking down the spine, reducing any occurring
abstraction/application pairs on the way until the tip of the spine is reached.
Further action then depends on the quality of this value.

Let us assume that an expression e = ((λx.y) e1) e2 is the scrutinee in a case
discrimination. The selection of the case alternative then solely depends on the
constructor at the head position of its normal form eNF = y e2. However if y
is a constructor, e already is in a form that at the tip of its spine without the
need for any reductions reveals the value required to select the appropriate case
alternative. Then why should all satisfied abstractions above y be reduced before
effecting the case discrimination? After all such reductions may never affect a
free variable at the tip of the spine.

Thus, we attempt to specify a calculus with a normal form that accurately
captures this formulation of non-strict semantics, and a reduction strategy that
efficiently reduces to this normal form. Both concepts relate to the variable at
the tip of the spine, which we refer to as the head occurrence (hoc) [Danos 2004]
of an expression:

hoc(λx.e) = hoc(e)
hoc(e1 e2) = hoc(e1)
hoc(x) = x

(head occurrence)

3.1 The Quasi Head Normal Form

The normal form of the very lazy �-calculus is called quasi head normal form
(QHNF) [Danos 2004]. We give a definition that is more straightforward than
the original one by relating to the hoc of the NF:

EQHNF := {e ∈ E | hoc(e) = hoc(eNF)} (quasi head normal form)

An optimal reduction strategy that evaluates to QHNF in a minimum number of
steps must not perform unneeded reductions. The most direct approach for such
a strategy is to repeatedly substitute the variable t at the tip of the spine (hoc) by
reducing the corresponding abstraction λt until QHNF is obtained. This is gen-
erally not possible with �-reduction, however. The term e = ((λx.(λy.y)) e1) e2

for instance is not in QHNF, yet the �-calculus does not allow substituting for
y, as λy occurs directly beneath another abstraction λx and therefore cannot be
�-reduced before λx.

Considering this restriction of the �-reduction as an unnecessary shortcoming
of the �-calculus, we now attempt to generalise �-reduction in order to make it
more powerful.

3.2 The γ-Reduction

The very lazy �-calculus evaluates �-expressions by applying the γ-reduction
rule, which allows reductions of abstraction/application pairs along the spine

202 J. Rochel

that are not adjacent to each other. We write e1 −→γx e2 to denote a γ-reduction
e1 −→γ e2 that uses x as a substitution variable:

p0(e1) = x

e1 e2 −→γx e1[λx.e := e[x := e2]]
(γ-reduction)

Thereby p0 is a function that implements a simple parentheses-matching algo-
rithm treating applications as left and abstractions as right parentheses. The
idea is to identify abstraction/application pairs along the spine that would be
�-reduced in the course of head spine reduction to HNF. Subsequently, any of
these pairs can be reduced individually even if the abstraction node is not di-
rectly adjacent to the application node.

p0(λx.e) = x
pi(λx.e) = pi−1(e) (i > 0)
pi(e1 e2) = pi+1(e1)

(abstraction/application matching)

In the definition of γ-reduction above, p0(e1) walks down the spine to locate
the abstraction that matches the argument e2. This permits γ-reduction to skip
over abstraction and application nodes that occur in-between λx and e2 that
would have been reduced by conventional non-strict reduction strategies. For an
example see Fig. 4.

A proof of the consistency of γ-reduction with the semantics of the �-calculus
is not given here, but much as in [Kamareddine 2001] �-equivalence is easily de-
duced by decomposing γ-reduction into a �-reduction embedded in a sequence
of �-equivalent rearrangements of the spine. Moreover γ-reduction is a generali-
sation of �-reduction:

e1 = λx.e =⇒ p0(e1) = p0(λx.e) = x
=⇒ e1 e2 −→γx e1[λx.e := e[x := e2]] = e[x := e2]

We notice that indeed the �-irreducible expression e from above is γ-reducible:

((λx.(λy.y)) e1) e2 −→γy (λx.e2) e1

3.3 Quasi Head Normal Form, Revisited

Based on γ-reduction, QHNF can alternatively be redefined as

EQHNF ::= λV.EQHNF | EQHNF E∗ | i (quasi head normal form)

where i is a variable not substitutable by a γ-reduction. This is the case if either
the hoc i is free (e.g. a constructor), or if the corresponding abstraction λi is
unsatisfied (i.e. there is no matching application).

To see that both definitions of QHNF match, we show that for some term e
the hoc(e) is γ-irreducible if and only if hoc(e) = hoc(eNF). This follows from
the robustness of the parentheses-matching algorithm in respect to γ-reductions,

The Very Lazy �-Calculus and the STEC Machine 203

(1)

@

eλx

@

xi

(2)

λi

@

eλx

@

xi

(3)

@

eλx

λi

i

(4)

@

e2@

eλx

λi

i

Fig. 2. Terms (1-3) are in QHNF, (4) is not as i is γ-reducible

which only ever reduce matching abstraction/application pairs from the spine.
Because the γ-irreducible hoc(e) cannot be substituted, it follows by induction
that hoc(e) remains at the tip of the spine during the entire γ-reduction to
normal form and therefore hoc(e) = hoc(eNF).

Conversely if hoc(e) = hoc(eNF), γ-reduction may never substitute hoc(e)
since otherwise it would not be �-equivalent.

WNF

NF

HNF

WHNF QHNF

ENF ⊂ EHNF ∩ EWNF

EWHNF = EHNF ∪ EWNF

EQHNF ⊃ EHNF

EQHNF �⊃ EWHNF

Fig. 3. Set relations between various normal forms

3.4 Head Occurrence Reduction

Based on this definition we can define an optimal reduction strategy to QHNF.
γ-reductions that substitute the hoc are clearly sufficient and are always needed.
We call the reduction strategy that in each step substitutes the hoc of the term
using a γ-reduction head occurrence reduction:

e −→γt e′ t = hoc(e)
e −→ e′

v −→ v
e −→ e′

λx.e −→ λx.e′
e1 −→ e′1

e1 e2 −→ e′1 e2

The evaluation of a term according to head occurrence reduction in each step
needs to identify three nodes affected by the reduction of the graph: t = hoc(e)

204 J. Rochel

at the tip of the spine, the corresponding abstraction node λt, which is located
further up the spine, and the matching application node with the right-hand
side e2 even further up the spine.

Head occurrence reduction is lazier than conventional lazy reduction strategies
in the sense that it reduces to a normal form that expresses the semantics of
non-strict functional languages more accurately than WHNF. Thus reductions
are avoided that deal with arguments of the result prematurely.

3.5 Examples

To compare our reduction strategy to conventional lazy evaluation, consider
the term ((λx.(λy.λz.z y)x) s) r. Three �-reductions are required for call-by-
need reduction to WHNF (Fig. 1). For the same term, head occurrence reduc-
tion requires only one γ-reduction to reduce to QHNF (Fig. 4). Furthermore
�-reduction can not produce the depicted transition. Pathological cases can be
constructed, such as (λx1 . . . λxn.λy.y) e1 . . . en or (λy(λx1 . . . λxn.y) e1 . . . en) e
that require n additional reductions to obtain WHNF.

@

r@

sλx

@

xλy

λz

@

yz

−→γz

@

sλx

@

xλy

@

yr

Fig. 4. Head occurrence reduction to QHNF

4 The STEC-Machine

We now derive an abstract machine that implements the very lazy �-calculus
exploiting its particular properties for improved efficiency. It is an adaptation of
the PAM enriched by language elements like case discrimination and primitive
functions to support practical functional languages.

A dominant issue in the design of such an abstract machine is that terms
representing nontrivial programs are graphs with directed cycles rather than
trees. This is due to functions that are used at different sites in the program
definition, and may involve (mutual) recursion. So we cannot statically unfold the

The Very Lazy �-Calculus and the STEC Machine 205

graph, since the resulting tree would be of infinite size. Therefore the graph needs
to be expanded incrementally during evaluation. There are various solutions to
this, from simple approaches like copying parts of the graph as needed, to more
sophisticated techniques like super-combinator compilation [Hughes 1982].

Here however, we explore a new direction where the abstract machine’s main
run-time data structures remain unmodified once instantiated. While this seems
contrary to the notion of graph rewriting, the approach combines well with
the very lazy �-calculus. Let us first take a glance at the untyped language
interpreted by the abstract machine.

4.1 Abstract Machine Language, Pure Version

The term to be evaluated is given as a program definition comprising a set of
function definitions of the form:

f = λx1 . . . xm.a0 . . . an m, n ≥ 0

The arity of a function f denotes the number of parameters, here arity(f) =
m. On its right-hand side it specifies a non-empty list of arguments args(f) =
a0 . . . an that can be individually addressed by index: argsi(f) = ai. Note that
only a1 . . . an represent application nodes. Consequently a0 is not included in
the argument count |args(f)| = n.

The language interpreted by the STEC-machine is a simple, untyped, func-
tional language with a flat structure, i.e. all arguments of a function f are atomic,
such that each of f ’s arguments args(f) is a variable, either addressing a function
or a parameter. Non-atomic expressions in the source language occur through the
placement of parentheses or other language constructs that lead to the nesting of
expressions. The atomicity property is easily enforced at compile-time by factor-
ing each non-atomic argument into a separate function definition. This atomicity
of the function arguments induces a certain kind of linearity that characterises
the evaluation procedure to a large extent.

It is understood that in a compiled setting, numeric rather than symbolic
values are used to reference functions and parameters. Functions are referenced
by the address of the memory location of their definition. It is straightforward
to reference parameters by their index as they occur in the function’s parameter
list. However, the scope of a function f extends beyond its own parameter list.
On the right-hand side of f not only f ’s own parameters may be referenced
but also parameter variables that occur free in f . Therefore to unambiguously
address a specific parameter not only its index but also the associated function
must be specified.1 We use Pf

i to denote f ’s ith parameter. This may be thought
of as a form of reversed de-Bruijn index [De Bruijn 1972] with a pivot.

Another technique employed by today’s functional language implementations
to cope with free variables is �-lifting, however this transformation is just the
opposite of what we want to accomplish. Rather its reverse transformation called
�-dropping [Danvy 2000] might integrate well with our execution model.
1 Instead of naming f explicitly, also the nesting distance between f and the referenc-

ing argument could be used, which is however less descriptive.

206 J. Rochel

program-definition ::= function-definition+

function-definition ::= function-idarity argument+

arity ::= N
0

argument ::= function-id | P
function-id

N+

Fig. 5. Abstract syntax of the STEC machine language

In the absence of named parameters, we do not need to maintain parameter
lists. Instead we merely need to specify the arity of each function. We thus obtain
a specification of the abstract machine language that represents as a function
definition a term of the pure �-calculus as a spine-sequence of abstraction nodes
followed by application nodes (Fig. 5). Each function definition can be addressed
by a unique function ID, which can be regarded as a function name. However,
in compiled form is conveniently the memory address of the function definition.

What follows is a description of the dynamic behaviour of the STEC-machine
and its data structures created at run-time. During the evaluation, the program
definition is accessed only through the arity- and the args-functions. It is purely
static data, i.e. it is generated at compile-time and no rewriting takes place on
the original function definitions.

(1)
f = λx . id id (id x)
id = λx . x

(2)

f1 = id id idx

id1 = Pid
1

idx0 = id P
f
1

(3)

λx

@

@

xλc

c

@

λb

b

λa

a

Fig. 6. Term given as (1) a �-expression, (2) STEC machine code, (3) a fully-expanded
graph

4.2 Graph Expansion

In each step of the evaluation, head occurrence reduction performs γ-reductions
that substitute the variable at the tip of the spine (hoc). Therefore not only the
appropriate abstraction/application pair must be located, also the hoc is usually
not immediately at hand due to the fragmentation of the graph into function
definitions. Thus walking down the spine to reach its tip often requires a series
of graph expansions.

The root of the term to be evaluated is specified by a designated function f ,
whose definition directly represents the topmost fragment of the term.2 If the hoc
is not immediately visible, that is if the leftmost argument args0(f) references
2 Generally this function is named main or similarly.

The Very Lazy �-Calculus and the STEC Machine 207

a function g rather than a parameter, then the graph has to be unfolded by
instantiating g in order to locate the hoc of the spine within g’s definition.

While this at first might seem like a description of regular non-strict function
calls, those in the course of the instantiation also immediately pass the arguments
supplied by its caller to the callee. There are two possibilities that perform such
function calls, the push/enter and the eval/apply method [Marlow 2006]. Ulti-
mately this is where �-reductions take place in conventional functional language
implementations.

The very lazy �-calculus however allows the �-reduction to be omitted, thus no
arguments are passed to g. Therefore, according to head occurrence reduction,
γ-reductions cannot take place before the tip of the spine is revealed. Until then
the abstract machine simply proceeds to build the graph while walking down
the spine.

As the graph is only expanded along its spine, it has a linear structure in
the form of a series of functions that have been stuck together, which is easily
represented using a stack. Instead of explicitly maintaining abstraction and ap-
plication nodes (replicated from the function definitions), for efficiency, we use
entire functions as the unit of the run-time data structure.

4.3 The Evaluation Stack

These functions are represented by function instances, which hold a pointer to
the corresponding function definition and act as a copy of the function. Thus the
primary run-time data structure of the STEC-machine is a stack of instances, the
evaluation stack. It grows from right to left and unlike a usual stack, read accesses
within the evaluation stack are permitted. Instances are addressed according to
their stack position. The notation for an evaluation stack containing n instances:

E ::= In In−1 . . . I1 (evaluation stack)

Besides the evaluation stack, the state of the abstract machine comprises a status
register S that specifies the action that is to be taken next, and a target register
T that points to the stack address targeted by the action:

STE ::= (S, T, E) (configuration)

Summarising, the evaluation stack encodes the current term as a sequence of
function instances, each of them representing a segment of the term’s spine. The
graph is expanded along its spine as long as the leftmost instance t references
another function in its 0th argument, namely if args0(f) = g, assuming t is an
instance of f . We say that an argument request A0 is issued in order to exam-
ine the 0th argument of f . A graph expansion takes place by pushing another
instance (in this case of g) on the stack.

4.4 Locating an Abstraction

At some point the tip of the spine (hoc) is reached, which is indicated by
the 0th argument of the leftmost instance being a parameter Pf

i rather than

208 J. Rochel

a function reference. In order to effect a γ-reduction, the corresponding abstrac-
tion/application pair must be located. The abstraction will occur somewhere
further up the spine within an instance of f . However, there might be multiple
f -instances on the evaluation stack, but we want only the one that corresponds
to the appropriate abstraction.

To determine the correct scope of an instance t it suffices to identify the
instance s that created t. We call s the parent of t. This corresponds to the
edge from an argument node of s to its right-hand side in the term graph. This
relationship is expressed by parent edges in the evaluation stack that connect each
function instance with another instance further right in the stack. So besides
the reference to the function definition it represents, a function instance also
maintains a pointer to its parent. How parent pointers are established is covered
later. An instance of a function f with a parent edge to the instance at stack
address a is denoted by fa.

I ::= FA (function instance)

If the argument Pf
i occurs in a function g, then for each instance of g, the

corresponding instance of f is connected by a chain of one or more parent edges.3

When an argument of this form is encountered, the status register is set to
S = Pf

i , indicating a parameter request. Thereby the search for the abstraction
is conducted by following parent edges, which we call backtracing. Backtracing
is completed once the dynamic pivot (an instance of f) is located.4 The sought-
after abstraction is the ith parameter of the located function instance:

Parameter-Request: (Pf
i , a, ...gp

a...)
→ (Pf

i , p, ...gp
a...) f �= g (Backtrace)

→ (Ai, a − 1, ...gp
a...) f = g (Request argument)

4.5 Locating the Application

The application node that matches this abstraction is further up the spine, and
in the majority of cases (i.e. when the function application is perfectly saturated)
within the function instance just to the right of f , called f ’s predecessor.5 This
is where the search for the application node begins (T = a − 1). Thereby i − 1
abstractions (parameters of f) have already been skipped, therefore the next
i − 1 abstraction nodes that occur further up the spine cannot belong to the
abstraction that is to be γ-reduced.

To locate the corresponding application node, the spine has to be walked
upwards applying the parentheses-matching algorithm. S = Ai indicates that
3 This corresponds to static links and static chains in the call stack of the run-time

system of imperative programming languages.
4 Due to the scoping rules of functional languages it is always the first occurrence of

an f -instance that binds the requested parameter.
5 Accordingly in conventional execution models parameters of a perfectly saturated

function call passed directly by the caller.

The Very Lazy �-Calculus and the STEC Machine 209

i − 1 unmatched abstraction nodes have been passed while walking upwards.
Thus the next i−1 application nodes must be skipped. Keeping in mind that each
function f represents a sequence of arity(f) abstractions followed by |args(f)|
applications, the algorithm is implemented as follows by the abstract machine:

Argument-Request: (Ai, a, ...f−
a ...)

→ (Ai−|args(f)|+arity(f), a − 1, ...f−
a ...) |args(f)| < i (Skip)

→ (argsi(f), a, ...f−
a ...) |args(f)| ≥ i (Serve)

Once the matching application node is found its value argsi(f) is to substitute
the tip of the spine in the subsequent γ-reduction. We say it is served (put into
the S for examination).

4.6 Very Lazy Evaluation

Once the hoc is identified and the corresponding abstraction/application pair is
located, according to the definition of γ-reduction the term is to be rewritten in
multiple positions: First, each occurrence of the substitution variable is replaced
by the argument’s right-hand side, then the abstraction and application nodes
are discarded. However, not one of these operations are performed by the ab-
stract machine, which at first may be surprising. Then again it is natural that
modifications of individual nodes cannot easily be mapped to a representation
of the term where function instances capture only its macro-structure and do
not reproduce the internal structure of the function definitions.

Consequently the abstract machine retains the abstraction/application pair,
which is semantically correct in terms of �-equivalency. This simplifies γ-reduction
considerably, as the de-Bruijn indexes remain valid so no α-conversion is neces-
sary. Here we do not discuss sharing, so we do not address multiple occurrences of
substitution variables. Thus nothing but the hoc itself must be substituted, which
coincides with what is defined as head linear reduction [Danos 2004].

But also the substitution of the hoc can be omitted, if it does not interfere
with subsequent evaluation. Indeed the 0th argument of an instance of a func-
tion f is examined only once, directly after it is pushed on the stack. Also it
is not counted in |args(f)| so it has no impact on the parentheses-matching
algorithm. Therefore the abstract machine leaves the hoc in place leaving all
function instances unmodified.

There are two cases for the value of the application node to distinguish for
further action. An argument may reference either a function or a parameter. Let
us first assume the former, thus S = f . Then f is instantiated and pushed on
the evaluation stack. Thereby the function instance containing the scrutinised
application node (the current value of the T -register) is registered as the parent
of the new function instance. Then S is set to A0 and T to the address of the
newly created function instance, such that again the 0th argument of the leftmost
function instance is examined for the next γ-reduction step.

Instantiate: (f, a, ...)
→ (A0, n, fa

n...) (Push Instance)

210 J. Rochel

If the argument is a parameter (S = Pf
i) according to γ-reduction, it would

substitute the hoc by this value. But once again, no such substitution is per-
formed by the abstract machine, which saves an α-conversion. Instead, without
any intermediate rewriting the argument is treated directly as if it was the hoc,
according to the inference rules for parameter handling specified above.

4.7 Wrapping It Up

Based on the presented mechanisms a specification of the abstract machine can
be given that implements the very lazy �-calculus. The operational semantics
(Fig. 8) is specified in a rather unconventional but quite intuitive manner. Note
that variables with no relevance to a specific rule (don’t-cares) are denoted as
‘−’, similarly for sequences, denoted as ‘...’.

STE ::= (S, T, E) (configuration)
S ::= F | PF

N | AN (status register)
T ::= A (target register)
E ::= In In−1 ... I1 (evaluation stack)
A ::= N (stack address)
I ::= F A (function instance)
F ::= N (function address)

Fig. 7. Configuration grammar

Summarising, some interesting characteristics of the abstract machine can be
observed:

– Arguments are fetched at the latest moment possible in contrast to conven-
tional execution models where arguments are passed by the caller as soon
as they are available rather than as soon as they are required, which is a
form of strictness in the argument handling. Therefore it is in fact justified
to consider our model lazier.

– On the evaluation stack a function instance is always directly preceded by its
caller. This relation is modeled without the help of pointers. That structure
is exploited by the abstract machine when fetching arguments.

– There is no need to maintain a constantly updated environment. The evalua-
tion stack can be thought of as an incremental definition of the environment.

– Interestingly, the sequence of instances on the evaluation stack directly en-
codes the path from the root of the fully expanded, unreduced term to the
tip of its spine.

– The term is in QHNF either if the hoc is a free variable (such as a con-
structor), or if the term is functional such that for a selected abstraction
no matching application is found. The latter case manifests itself in an ar-
gument request attempting to cross the right boundary of the evaluation
stack.

The Very Lazy �-Calculus and the STEC Machine 211

– Very lazy evaluation is linear in many aspects such as the manner in which
functions are defined, the linearity of the reduction strategy, and the run-time
data structure (the evaluation stack). This is possibile due to the technique
of using parent pointers and because of refraining from any rewriting on the
spine.

Initial State: (main,⊥, ε)

Instantiate: (f, a, ...)
→ (A0, n, fa

n...) (Push Instance)

Argument-Request: (Ai, a, ...f−
a ...)

→ (Ai−|args(f)|+arity(f), a − 1, ...f−
a ...) |args(f)| < i (Skip)

→ (argsi(f), a, ...f−
a ...) |args(f)| ≥ i (Serve)

Parameter-Request: (Pf
i , a, ...gp

a...)

→ (Pf
i , p, ...gp

a...) f �= g (Backtrace)
→ (Ai, a − 1, ...gp

a...) f = g (Request argument)

Fig. 8. Operational semantics

4.8 Example Evaluated

To depict the evaluation as performed by the STEC machine we regard the
execution of the example program from Fig. 6. It was chosen to exemplify the
operational semantics of the STEC machine rather than to reveal the advantages
of head occurrence reduction.

To understand the abstract machine evaluation given below, it is helpful to
identify each instance on the evaluation stack with the corresponding sequence
of spine nodes in Fig. 9. Therefore the function definitions from Fig. 6 need to
be consulted. First we expand the term along the spine beginning from the root
f to locate its hoc.

Initial State: (f,⊥, ε)
Push Instance: → (A0, 1, f⊥

1)
Serve: → (id, 1, f⊥

1)
Push Instance: → (A0, 2, id1

2 f⊥
1)

The hoc is a (in Fig. 9). The corresponding argument belongs to id’s caller f .

Serve: → (Pid
1 , 2, id1

2 f⊥
1)

Request argument: → (A1, 1, id1
2 f⊥

1)
Serve: → (id, 1, id1

2 f⊥
1)

Push Instance: → (A0, 3, id1
3 id1

2 f⊥
1)

⎫
⎪⎪⎬

⎪⎪⎭

a

For the next argument request in order to locate the appropriate application
node, a function instance must to be skipped. In Fig. 9 this corresponds to the

212 J. Rochel

λx

@

@

xλc

c

@

λb

b

λa

a

−→a

λx

@

@

xλc

c

@

λa

λb

b

−→b

λx

@

@

λa

λb

@

xλc

c

−→c

λx

@

@

λa

λb

@

λc

x

Fig. 9. Head linear reduction of the program graph of Fig. 6

abstraction node λa. The argument index is incremented by one such that the
matching application node (the one above λa) is also skipped:

Serve: → (Pid
1 , 3, id1

3 id1
2 f⊥

1)
Request argument: → (A1, 2, id1

3 id1
2 f⊥

1)
Skip: → (A2, 1, id1

3 id1
2 f⊥

1)
Serve: → (idx, 1, id1

3 id1
2 f⊥

1)
Push Instance: → (A0, 4, idx1

4 id1
3 id1

2 f⊥
1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

b

The call of a known function id by idx is realised a spine expansion:

Serve: → (id, 4, idx1
4 id1

3 id1
2 f⊥

1)
Push Instance: → (A0, 5, id4

5 idx1
4 id1

3 id1
2 f⊥

1)

Here it can be seen that some γ-reductions may not even require an update of
the evaluation stack.

Serve: → (Pid
1 , 5, id4

5 idx1
4 id1

3 id1
2 f⊥

1)
Request argument: → (A1, 4, id4

5 idx1
4 id1

3 id1
2 f⊥

1)

}

c

The request by idx for a parameter that was bound in a different function f
requires a backtracing step to locate the abstraction that binds the current hoc.

Serve: → (Pf
1 , 4, id4

5 idx1
4 id1

3 id1
2 f⊥

1)
Backtrace: → (Pf

1 , 1, id4
5 idx1

4 id1
3 id1

2 f⊥
1)

Request argument: → (A1,⊥, id4
5 idx1

4 id1
3 id1

2 f⊥
1)

⎫
⎬

⎭
x

The evaluation terminates because a request attempts to cross the stack bound-
ary. That means that no abstraction/application pair could be located within
the spine, thus the term is in QHNF.

The Very Lazy �-Calculus and the STEC Machine 213

4.9 Case-Discrimination and Primitives

To implement functional programming languages, two more issues need atten-
tion: case discrimination and primitives operators. They cannot be modeled by
means of the pure �-calculus, which has to be enriched for that purpose. Here,
this semantic extension is only realised on the abstract machine level, not as yet
another �-calculus variant.

program-definition ::= function-definition+

function-definition ::= function-idarity argument+ alternative∗

arity ::= N
0

argument ::= function-id | P
function-id

N+ | ON | constant
alternative ::= integer function-id | default function-id
constant ::= integer | float | ...

Fig. 10. Enriched abstract syntax of the STEC machine language

In the enriched abstract machine language, a case discrimination is specified
by attaching a non-empty, integer-indexed list of alternatives alts(f) to a func-
tion definition f , its right-hand side args(f) being the scrutinee. Constructors
are mapped to integers at compile-time unambigously within the constructor set
of one data type. Constructor parameters can be accessed as the function pa-
rameters of the alternatives’ right hand-side. No further measures are necessary
to model constructors, as they are adequately handled by the argument request
mechanism. A primitive operator (Oo) addresses a platform-specific functionality
that is identified by a unique numeric identifier o.

The operational semantics needs to account for the strictness that these
language constructs imply. The scrutinee of a case discrimination reveals its con-
structor only in QHNF. Thus, to select the correct case alternative, a continuation-
mechanism is required to return to the case discrimination once the scrutinee is
evaluated. Likewise, primitive operators are generally strict in all of their argu-
ments, so after the evaluation of each argument, the evaluation must return to its
call site, either to evaluate the next argument, or if it is saturated to apply the
operator.

Strict evaluation may nest, for instance, if the scrutinee of a case discrimi-
nation involves a further case discrimination. Therefore continuations are also
maintained in a stack, the continuation stack (C), thus we extend the abstract
machine configuration to:

STEC ::= (S, T, E, C) (configuration)

The continuation stack holds two types of tokens: case continuation tokens and
operator tokens, both of which specify the stack address that the continuation
returns to. Additionally an operator token needs to define the operator it repre-
sents as well as a list of previously evaluated operands.

214 J. Rochel

C ::= K∗ (continuation stack)
K ::= CA | OA

O[V ∗] (continuation)
O ::= N (operator)
V ::= integer | float | ... (constant value)

Continuations are pushed on the continuation stack when an operator or a func-
tion that defines a case discrimination is served. In the latter case the evaluation
(besides pushing the continuation) proceeds as before by evaluating its right-
hand side (the scrutinee). If an operator is served, its first operand is requested.

Instantiate: (f, a, ...)
→ (A0, n, fa

n..., ...) |alts(f)| = 0 (Push Instance)
→ (A0, n, fa

n..., Cn
...) |alts(f)| > 0 (Scrutinise)

Operator: (Oop,−, tn..., ...)
→ (A1, n, tn..., On

op[]...) (First Operand)

As soon as the subsequent computation yields a constant value c, indicated by
S = c, the continuation on the top of the stack is examined. For a case continu-
ation, the correct alternative is selected and served. For operator continuations,
before applying the operator it must first be checked whether more arguments
are required. Only when sufficient operands have been acquired, the operator is
applied and the result of the primitive operation is propagated. This semantics
is expressed in the last two groups of Fig. 12.

STEC ::= (S, T, E, C) (configuration)

S ::= F | PF
N | AN | OO | V (status register)

T ::= A (target register)
A ::= N (stack address)
E ::= In In−1 ... I1 (evaluation stack)
C ::= K∗ (continuation stack)
I ::= F A (function instance)
F ::= N (function address)

K ::= CA | OA
O [V ∗] (continuation)

O ::= N (operator)
V ::= integer | float | ... (constant value)

Fig. 11. Enriched configuration grammar

In this work we derived from the very lazy �-calculus the STEC-machine,
which is a concretisation of the PAM enriched by strict semantics to support
case discriminations and operators. In [Danos 2004] different concepts of head
linear reduction were mixed up in one definition. Here we clearly distinct be-
tween generalising �-reduction, defining a reduction strategy, and giving a con-
crete implementation that avoids rewriting. Furthermore we distinguish between
program compilation and execution.

The Very Lazy �-Calculus and the STEC Machine 215

Initial State: (main,⊥, ε, ε)

Instantiate: (f, a, ..., ...)
→ (A0, n, fa

n..., ...) |alts(f)| = 0 (Push Instance)
→ (A0, n, fa

n..., Cn
...) |alts(f)| > 0 (Scrutinise)

Argument-Request: (Ai, a, ...f−
a ..., ...)

→ (Ai−|args(f)|+arity(f), a − 1, ...f−
a ..., ...) |args(f)| < i (Skip)

→ (argsi(f), a, ...f−
a ..., ...) |args(f)| ≥ i (Serve)

Parameter-Request: (Pf
i , a, ...gp

a..., ...)

→ (Pf
i , p, ...gp

a..., ...) f �= g (Backtrace)
→ (Ai, a − 1, ...gp

a..., ...) f = g (Request argument)

Operator: (Oop, −, tn..., ...)
→ (A1, n, tn..., On

op[]...) (First Operand)

Operand: (v, −, ..., Oa
op[v1, ..., vc]...)

→ (applyop(v1, ..., vc, v), −, ..., ...) arity(op) = c + 1 (Apply Operator)
→ (Ac+2, a, ..., Oa

op[v1, ..., vc, v]...) arity(op) > c + 1 (Next Operand)

Scrutinee: (c, −, ...fp
a ..., Ca

...)
→ (altsc(f), a, ...fp

a ..., ...) (Serve alternative)

Fig. 12. Enriched operational semantics

5 Perspectives

Even though the PAM has already been discovered years ago, it has not yet
been investigated extensively. However, there is ample opportunity for further
research, in particular it still remains a challenge to find efficient mechanisms
for sharing as well as for garbage collection that take advantage of the abstract
machine’s prominent features.

While it is difficult to reason about the performance of the abstract machine
compared to existing functional language implementations without taking these
issues into account, there are aspects about our approach that hold much po-
tential in this regard. Aside from the reduced amount of rewriting steps that
are required by the very lazy �-calculus, it is primarily the lean memory profile
of the STEC-machine that is promising. The run-time data structures are com-
pact, since per function instance only two pointers need to be allocated.6 This
results in a smaller memory footprint compared to conventional graph reduction
models, which in each closure also maintain a set of parameters. Furthermore it
is noticeable that no pointer updates are necessary resulting in very few write
accesses. While partly compensated by additional read accesses (because of the
6 A potential optimisation would be to allow variably-sized function instances, i.e.

instances without a parent pointer for functions without free parameter variables.

216 J. Rochel

need to locate abstraction/application pairs) still the advantage seems to pre-
dominate. This presumption however is yet to be validated in a comparison with
a well-established execution model like the STG-machine [Peyton Jones 1992].

Implementations based on super-combinators usually compile the abstract-
machine code into machine code of the target architecture that integrates the
semantics of the abstract machine and therefore can be directly executed by
a concrete machine. Due to the simplicity of the STEC-machine, a different
compilation model, one that separates the abstract machine and the function
definitions, seems to be adequate. The operational semantics can be implemented
in a very small piece of executable machine code. Each function definition can
be stored in a compact array as read-only data. Access to individual arguments
of a function definition (as frequently performed by the STEC-machine) can be
accomplished efficiently using an array lookup if a uniformly-sized representation
for the arguments is chosen. This would hardly be the case when compiling the
function definitions combined with the operational semantics to machine code,
which would also lead to a considerable increase of the memory footprint.

Since the evaluation stack only grows, a garbage-collection mechanism is re-
quired to release memory occupied by function instances that are no longer re-
quired. In that sense the evaluation stack in fact is a heap. However, it would be
short-sighted to neglect the fact that it is highly structured in comparison to a
usual heap in which data is organised as memory blocks at arbitrary positions that
refer to each other. Much is to be expected by a sophisticated garbage-collection
mechanism that systematically exploits this structure for increased efficiency. Since
the evaluation stack is an incremental definition of the environment, this would
effectively be realised as a (linear) compaction of the evaluation stack.

Obviously this linearity cannot be sustained once sharing is introduced to
the model, as sharing in a sense implies a non-linear structure. Still, the linear-
ity of evaluation might offer new possibilities for integrating sharing-techniques
that achieve a higher degree of sharing than full laziness by breaking the linear
structure only at few, well-defined points. In particular the subject of optimal
evaluation in the sense of [Lévy 1978] should be investigated in the light of very
lazy evaluation.

Summarising, there is still much opportunity for completion and optimisation
of the STEC-machine in order to obtain a new type of practical high-performance
functional language implementation. In particular it is an interesting question
which of the optimisations used by today’s compilers can be applied to the
STEC-machine and what new kind of possibilities for optimisations are opened
up by the model.

References

[Fairbairn 1987] Fairbairn, J., Wray, S.: Tim: A simple, lazy abstract machine to
execute supercombinators. In: Kahn, G. (ed.) FPCA 1987. LNCS,
vol. 274, pp. 34–45. Springer, Heidelberg (1987)

[Krivine 2007] Krivine, J.-L.: A call-By-name lambda-calculus machine. Higher
Order and Symbolic Computation 20(3), 199–207 (2007)

The Very Lazy �-Calculus and the STEC Machine 217

[Peyton Jones 1987] Peyton Jones, S.L., Wadler, P., Hancock, P.: The implementation
of functional programming languages. Prentice Hall International,
Englewood Cliffs (1987)

[Burn 1988] Burn, G.L., Peyton Jones, S.L., Robson, J.D.: The spineless G-
machine. In: Proceedings of the 1988 ACM conference on LISP and
functional programming, pp. 244–258. ACM, New York (1988)

[Peyton Jones 1992] Peyton Jones, S.L.: Implementing lazy functional languages on
stock hardware: the Spineless Tagless G-machine - Version 2.5,
Department of Computing Science, University of Glasgow, July 9
(1992)

[Leijen 2005] Leijen, D.: The lazy virtual machine specification, Institute of In-
formation and Computing Sciences, Utrecht University, August 22
(2005)

[Holyer 1998] Holyer, I., Spiliopoulou, E.: The Brisk Machine: a simplified STG
machine, University of Bristol, Department of Computer Science
(March 1998)

[Barendregt 1984] Barendregt, H.P.: The Lambda Calculus: Its syntax and semantics
(1984)

[Danos 2004] Danos, V., Regnier, L.: Head linear reduction (unpublished),
http://iml.univ-mrs.fr/~regnier/articles.html (June 7,
2004)

[Danos 1996] Danos, V., Herbelin, H., Regnier, L.: Game semantics and abstract
machines. In: Symposium on Logic in Computer Science, September
2, p. 394. IEEE Computer Society, Los Alamitos (1996)

[De Bruijn 1972] De Bruijn, N.G.: Lambda Calculus Notation with Nameless Dum-
mies – a Tool for Automatic Formula Manipulation, with Applica-
tion to the Church-Rosser Theorem. Indagationes Mathematicae,
381–392 (1972)

[Hughes 1982] Hughes, R.J.M.: Super-Combinators – a new implementation
method for applicative languages. In: Proceedings of the 1982
ACM symposium on LISP and functional programming, pp. 1–
10. ACM, New York (1982)

[Kamareddine 2001] Kamareddine, F., Bloo, R., Nederpelt, R.: De Bruijn’s syntax and
reductional equivalence of λ-terms. In: Proceedings of the 3rd ACM
SIGPLAN international conference on Principles and practice of
declarative programming, pp. 16–27. ACM, New York (2001)

[Danvy 2000] Danvy,O., Schultz, U.P.: Lambda-dropping: transforming recursive
equations intoprogramswithblock structure.Partial evaluationand
semantics-based program manipulation 248(1-2), 243–287 (2000)

[Marlow 2006] Marlow, S., Peyton Jones, S.: Making a fast curry: push/enter
vs. eval/apply for higher-order languages. Journal of Functional
Programming 16, 415–449 (2006)

[Sestoft 2002] Sestoft, P.: Demonstrating lambda calculus reduction. In: Jones,
D., Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The
Essence of Computation. LNCS, vol. 2566, pp. 420–435. Springer,
Heidelberg (2002)

[Lévy 1978] Lévy, J.-J.: Optimal reductions in the lambda-calculus. In: Seldin,
J.P., Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, Academic Press, London
(1978)

http://iml.univ-mrs.fr/~regnier/articles.html

	The Very Lazy λ-Calculusand the STEC Machine
	Introduction
	Basics
	The λ-Calculus
	Lazy Evaluation

	The Very Lazy λ-Calculus
	The Quasi Head Normal Form
	The γ-Reduction
	Quasi Head Normal Form, Revisited
	Head Occurrence Reduction
	Examples

	The STEC-Machine
	Abstract Machine Language, Pure Version
	Graph Expansion
	The Evaluation Stack
	Locating an Abstraction
	Locating the Application
	Very Lazy Evaluation
	Wrapping It Up
	Example Evaluated
	Case-Discrimination and Primitives

	Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

