${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments of the three dicyclopenta-fused pyrene congeners

María José Otero-Lobato, ${ }^{\text {a }}$ Cornelis A. van Walree, ${ }^{\text {a }}$ Remco W. A. Havenith, ${ }^{\text {b }}$ Leonardus W. Jenneskens, ${ }^{\text {a,* }}$ Patrick W. Fowler ${ }^{\text {c }}$ and Erich Steiner ${ }^{\text {d }}$
${ }^{\text {a }}$ Debye Institute, Organic Chemistry and Catalysis, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
${ }^{\mathrm{b}}$ Debye Institute, Theoretical Chemistry Group, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ${ }^{\dagger}$
${ }^{\text {c }}$ Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
${ }^{\mathrm{d}}$ School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK

Received 25 January 2006; accepted 9 March 2006
Available online 12 April 2006

Abstract

Complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments of the (di-)cyclopenta-fused pyrene congeners, cyclopenta[cd]- (2), dicyclopenta $[c d, f g]$ (3), dicyclopenta $[c d, j k]$ - (4) and dicyclopenta [$c d, m n]$ pyrene (5), respectively, are achieved using two-dimensional (2D) NMR spectroscopy. The experimental ${ }^{13} \mathrm{C}$ chemical shift assignments are compared with computed ab initio CTOCD-PZ2/6-31G** ${ }^{13} \mathrm{C}$ chemical shifts; a satisfactory agreement is found. Substituent-induced chemical shifts in the pyrene core induced by annelation of cyclopenta moieties are discussed. Effects of dicyclopenta topology on electronic structure are illustrated for 3-5. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The (di-)cyclopenta-fused congeners of pyrene (1), viz. cyclopenta $[c d]$ - (2), ${ }^{1}$ dicyclopenta $[c d, f g]-$ (3), dicyclopenta[$c d, j k]$ - (4) and dicyclopenta [$c d, m n]$ pyrene (5), ${ }^{2,3}$ belong to an important sub-class of the polycyclic aromatic hydrocarbons (PAHs) known as cyclopenta-fused PAHs (CP-PAHs) (Fig. 1).

The independent synthesis of CP-PAHs 2-5 has been instrumental for their identification as significant constituents of the nonpolar fraction of combustion exhausts derived from organic matter, viz. fossil fuels. ${ }^{4-6}$ Compounds $3-5$ have also been put forward as undesired side-products that are formed during thermal treatment of pyrene-contaminated
soil. ${ }^{7}$ Since CP-PAHs like 2-5 may exhibit mutagenic and carcinogenic properties, ${ }^{8}$ they represent a potential human health concern. ${ }^{9-15}$ Only recently the bacterial mutagenicity response of $\mathbf{3}-\mathbf{5}$ was assayed employing the standard Amesassay (Salmonella typhimurium strain TA98 with and without exogenous metabolic activation (\pm S9-mix)). CP-PAHs $3-5$ were found to be highly active metabolic-dependent mutagens. Interestingly, congeners 3 and 5 were found to act as direct mutagens, that is, they are potent mutagens even in the absence of exogenous metabolic activation. ${ }^{16}$

From a fundamental perspective the nonalternant CP-PAHs 3-5 also possess unusual physico-chemical properties, such as high electron affinities (low one-electron reduction potentials,, ${ }^{17-20}$ characteristic upfield-shifted ${ }^{1} \mathrm{H}$ NMR

1

2

3

4

5

Figure 1. Pyrene (1), cyclopenta $[c d]$ - (2), dicyclopenta $[c d, f g]$ - (3), dicyclopenta $[c d, j k]$ - (4) and dicyclopenta $[c d, m n]$ pyrene (5). A generalized carbon atom numbering scheme is used to facilitate the comparison of related positions in compounds $\mathbf{1} \mathbf{- 5}$.

[^0]chemical shifts, ${ }^{2,3,21}$ and photophysical properties, viz. UVvis spectra that are strongly modulated by the number and topology of the annelated cyclopenta moieties ${ }^{2,20}$ and anomalous fluorescence. ${ }^{22}$ As a consequence, CP-PAHs 3-5 represent interesting probe molecules in the study of the energy and magnetic criteria of aromaticity in π-conjugated polycyclic systems. For $\mathbf{1}-\mathbf{5}$ it has been shown both experimentally and theoretically that the number and topology of the annelated cyclopenta moieties markedly affects the global and local (distinct rings) aromatic character of 1-5. ${ }^{23-25}$ In another connection, 3-5 have been proposed as potential intermediates in the formation of fullerenes under flame conditions. ${ }^{5,26-28}$

The complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments of $3-5$, so far unreported, are the subject of this paper. Although the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments of cyclopenta $[c d]$ pyrene (2, $\mathrm{C}_{18} \mathrm{H}_{10}$) have been reported previously, ${ }^{29,30}$ the assignment of some of its quaternary carbon atoms (C14 and C17, see Fig. 1) remains ambiguous. Hence, $\mathbf{2}$ is also reinvestigated. Furthermore, a comparison of the experimental ${ }^{13} \mathrm{C}$ assignments with computed ab initio CTOCD-PZ2/6-31G** ${ }^{13} \mathrm{C}$ chemical shifts are carried out. Hence, conclusions can be drawn as to the effect of cyclopenta annelation to a pyrene perimeter on the ${ }^{1} \mathrm{H}^{23,25}$ and ${ }^{13} \mathrm{C}$ chemical shifts (substitu-ent-induced chemical shifts, $\mathrm{SCS} ; \Delta \delta$ with $\mathbf{2}$ as the reference compound for $3-5$, respectively) can be drawn.

2. Results and discussion

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments of $\mathbf{2 - 5}$ were achieved using two-dimensional (2D) NMR techniques. Nuclear Overhauser Effect Spectroscopy (NOESY) was used for the assignment of proton signals by evaluation of through-space dipolar interactions. Heteronuclear Chemical Shift Correlation (HETCOR) was applied to identify those carbon atoms bearing hydrogen. Long-Range (LR)-HETCOR reflecting one to three bond $\mathrm{C}-\mathrm{H}$ couplings (${ }^{1} J_{\mathrm{C}-\mathrm{H}^{-}}{ }^{3} J_{\mathrm{C}-\mathrm{H}}$) was used to make a definitive assignment of the quaternary carbon atoms. Since not all expected ${ }^{2} J_{\mathrm{C}-\mathrm{H}}$ and/or ${ }^{3} J_{\mathrm{C}-\mathrm{H}}$ couplings could be observed in a single LR-HETCOR experiment, different experiments employing different long-range $\mathrm{C}-\mathrm{H}$ coupling constants (range $4-10 \mathrm{~Hz}$), were executed in order to visualize all the different correlations. In some cases, long-range $\mathrm{C}-\mathrm{H}$ interactions were still not discernible, presumably because their ${ }^{n} J_{\mathrm{C}-\mathrm{H}}$ values deviate from the common long-range coupling constants used in LR-HETCOR experiments $(4,6,8$ or 10 Hz$)$. Note that ${ }^{3} J_{\mathrm{C}-\mathrm{H}}$ values normally fall in the range of $4-10 \mathrm{~Hz}$ while ${ }^{2} J_{\mathrm{C}-\mathrm{H}}$ and ${ }^{4} J_{\mathrm{C}-\mathrm{H}}$ values are typically less than 4 and 2 Hz , respectively. ${ }^{31}$

2.1. Experimental NMR spectra

2.1.1. Cyclopenta[cd]pyrene (2). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments of $2\left(C_{s}\right.$ symmetry) were first reported by Jans et al. ${ }^{29}$ However in a more recent study, ${ }^{30}$ in which partially ${ }^{13} \mathrm{C}$ labelled 2 was used, the original assignment of the quaternary carbon atoms $\mathrm{C} 2, \mathrm{C} 7, \mathrm{C} 14, \mathrm{C} 16$ and C 17 was questioned (Figs. 1 and 2). This prompted us to also take 2 into consideration. Since all ${ }^{1} \mathrm{H}$ NMR resonances of $\mathbf{2}$ have been assigned unambiguously (Table 1), ${ }^{29,30,32}$ the carbon atoms of this molecule that bear hydrogen were readily iden-

Figure 2. 1D ${ }^{13} \mathrm{C}$ NMR spectrum (solvent CDCl_{3}) of cyclopenta $[c d]$ pyrene (2, see also Table 1).
tified using HETCOR. The ${ }^{13} \mathrm{C}$ resonances at $\delta 133.48$ and 130.52 show a cross peak with $\delta 7.47(\mathrm{H} 3)$ and $8.38(\mathrm{H} 8)$, respectively, and thus originate from C 3 and C 8 , respectively. Following similar reasoning the ${ }^{13} \mathrm{C}$ resonances at $\delta 128.54,127.81,126.94,126.93,126.57,126.48,124.34$ and 122.68 correspond to $\mathrm{C} 10, \mathrm{C} 4, \mathrm{C} 9, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 6, \mathrm{C} 1$ and C15, respectively, (see Fig. 2). These results are all in line with those previously reported.

Next, various LR-HETCOR experiments, in which different long-range ${ }^{n} J_{\mathrm{C}-\mathrm{H}}$ coupling constants were used, were performed (Table 1 and see Section 4.1) in order to assign the eight quaternary carbon atoms of 2. Since with LRHETCOR two- $\left({ }^{2} J_{\mathrm{C}-\mathrm{H}}\right)$ and three-bond (${ }^{3} J_{\mathrm{C}-\mathrm{H}}$) long-range couplings between quaternary carbon atoms and distant hydrogens are most likely to be observed ${ }^{33}$ only these types of contributions are considered. The hydrogens H6, H3 and H4 (Fig. 1) show a cross peak with the ${ }^{13} \mathrm{C}$ resonance at $\delta 139.07$, which can only correspond to either C5 or C18. The ${ }^{13} \mathrm{C}$ resonance at $\delta 135.58$ shows cross-peaks with H1 and H 4 , implying that this resonance originates either from C 2 or C18. H3 and H4 also show a cross peak with the ${ }^{13} \mathrm{C}$ resonance at $\delta 127.34$, which may then correspond to $\mathrm{C} 2, \mathrm{C} 5$ or C 18 . To distinguish between these three carbon atoms, the proton-decoupled $1 \mathrm{D}{ }^{13} \mathrm{C}$ NMR spectrum of 2 (Fig. 2) is carefully examined. The ${ }^{13} \mathrm{C}$ resonance at $\delta 127.34$ possesses the lowest intensity. This suggests that it belongs to a carbon atom located within the pyrene core, viz. C18. Owing to its increased distance from the hydrogens of the pyrene perimeter, its relaxation will be slower, leading to a reduced intensity. ${ }^{34}$ If the assignment of $\mathrm{C} 18(\delta 127.34)$ is correct, it implies that the ${ }^{13} \mathrm{C}$ resonances at $\delta 139.07$ and 135.58 correspond to C 5 and C 2 , respectively. The crosspeaks found between the ${ }^{13} \mathrm{C}$ signal at $\delta 130.87$ and H12 and H 13 , indicate that this ${ }^{13} \mathrm{C}$ resonance must originate either from C11 or C14. The $\delta 131.90$ signal can correspond only to C7, since it exhibits only cross-peaks with H6 and H9. In analogy, the ${ }^{13} \mathrm{C}$ resonance at $\delta 122.23$ shows interactions with H6, H8, H10 and H13. This means that it can arise only from C 16 . With the identification of C 16 , the ${ }^{13} \mathrm{C}$ resonance at $\delta 130.18$ can be assigned to C11 due to its crosspeaks with H10 and H12. The available assignments now permit the identification of C14 at $\delta 130.87$. By elimination, the ${ }^{13} \mathrm{C}$ resonance at $\delta 120.69$ belongs to C 17 . The complete ${ }^{1} \mathrm{H}$ and the ${ }^{13} \mathrm{C}$ assignments of $\mathbf{2}$ are summarized in Table 1.
2.1.2. Dicyclopenta[cd,fg]pyrene (3). Since dicyclopenta $[c d, f g]$ pyrene $\left(\mathbf{3}, \mathrm{C}_{20} \mathrm{H}_{10}\right)$ possesses $C_{2 v}$ symmetry, its

Table 1. Cross-peaks observed in the HETCOR and LR-HETCOR spectra of cyclopenta[cd]pyrene (2) ${ }^{\text {a,b }}$

Nucleus	$\delta\left({ }^{13} \mathrm{C}\right) \mathrm{ppm}$	H8	H6	H10	H1	H15	H12	H9	H13	H3	H4
		$\begin{aligned} & { }^{8}{ }^{3} J_{\mathrm{H}-\mathrm{H}} 7.78(\mathrm{~d}, \\ & 7.70 \mathrm{~Hz}) \end{aligned}$	8.36 (s)	$\begin{aligned} & 8.28(\mathrm{~d}, \\ & \left.{ }^{3} J_{\mathrm{H}-\mathrm{H}} 7.60 \mathrm{~Hz}\right) \end{aligned}$	8.12 (m)	8.08 (m)	8.03 (m)	8.00 (m)	7.98 (m)	$\begin{aligned} & 7.47(\mathrm{~d}, \\ & \left.{ }^{3} J_{\mathrm{H}-\mathrm{H}} 5.10 \mathrm{~Hz}\right) \end{aligned}$	$\begin{aligned} & 7.27(\mathrm{~d}, \\ & \left.{ }^{3} J_{\mathrm{H}-\mathrm{H}} 5.10 \mathrm{~Hz}\right) \end{aligned}$
C17	120.69					b,c,d					
C16	122.23	a	d	c					c, d		
C15	122.68					HT					
C1	124.34				HT	b					
C6	126.48		HT					c, d			
C13	126.57						c		HT		
C12	126.93		a				HT				
C9	126.94							HT			
C18	127.34									d	d
C4	127.81		a,d								HT
C10	128.54		b	HT				d			
C11	130.18			b			d				
C8	130.52	HT	a,d	c							
C14	130.87						d		b		
C7	131.90		a,c					b,d			
C3	133.48									HT	a
C2	135.58				d						c, d
C5	139.07		a							d	a

${ }^{\text {a }}$ See Figure 1 for the structure and atom numbering of 2. In Figure 2 the experimental $1 \mathrm{D}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ is shown. Quaternary carbon atoms are typeset in boldface and the multiplicity of the ${ }^{1} \mathrm{H}$ chemical shifts is indicated between parentheses.
${ }^{\text {b }}$ HETCOR cross-peaks (${ }^{1} J_{\mathrm{C}-\mathrm{H}}$ coupling constant 160 Hz , H relaxation delay 1 s) are indicated as HT. Independent LR-HETCOR experiments gave the crosspeaks indicated as observed with long-range coupling constants of $4 \mathrm{~Hz}(\mathrm{a}), 6 \mathrm{~Hz}(\mathrm{~b}), 8 \mathrm{~Hz}(\mathrm{c})$ and 10 Hz (d) (relaxation delay 4 s).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum contains five and ten distinct resonances, respectively, (1D ${ }^{13} \mathrm{C}$ NMR, Fig. 3). In its ${ }^{1} \mathrm{H}$ NMR spectrum, the singlet at $\delta 7.45(2 \mathrm{H})$ is readily assigned to hydrogen H13. In addition, the vicinal hydrogen pairs H1 and H15, and, H3 and H4, can be distinguished on the basis of their different ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ coupling constants, as the hydrogens of the externally fused cyclopenta-rings (H 3 and H 4) possess a characteristic ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ coupling constant of ca. 5 Hz . The ${ }^{1} \mathrm{H}$ assignments of $\mathbf{3}$ are completed by an NOESY experiment. The presence of cross-peaks between the doublet at $\delta 7.63$ $\left(2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}} 7.60 \mathrm{~Hz}\right)$ and $7.03\left(2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}} 5.30 \mathrm{~Hz}\right)$ reveals that the former corresponds to H 1 and the latter to H 3 , respectively. Consequently, the doublets at $\delta 6.49\left(2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}\right.$ $5.30 \mathrm{~Hz})$ and $7.72\left(2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}} 7.60 \mathrm{~Hz}\right)$ belong to H 4 and H15, respectively.

The unequivocal ${ }^{1} \mathrm{H}$ assignments of $\mathbf{3}$ now allow the identification of all the carbon atoms bearing hydrogen (HETCOR; see Fig. 4 for an illustrative example). The ${ }^{13} \mathrm{C}$ resonances positioned at $\delta 137.31,127.88,127.07,127.03$

Figure 3. Experimental 1D ${ }^{13} \mathrm{C}$ NMR spectrum of dicyclopenta $[c d, f g]$ pyrene (3, see also Table 2).
and 123.45 belong to $\mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 15, \mathrm{C} 13$ and C 1 , respectively, (Table 2).

Independent LR-HETCOR experiments optimized for different long-range ${ }^{n} J_{\mathrm{C}-\mathrm{H}}$ coupling constants (Table 2 and see Section 4.1) enabled the assignment of all the quaternary carbon atoms of $\mathbf{3}$ (see Fig. 4 for an illustrative example). Only ${ }^{n} J_{\mathrm{C}-\mathrm{H}}$ long-range interactions with $n=2$ or 3 between hydrogens and the quaternary carbon atoms are taken into consideration (vide supra). Hydrogen H 1 shows two crosspeaks with the ${ }^{13} \mathrm{C}$ resonances at $\delta 130.62$ and 131.23 , which may then correspond to either $\mathrm{C} 14\left({ }^{3} J_{\mathrm{C}-\mathrm{H}}\right), \mathrm{C} 2$ or C 18 $\left({ }^{2} J_{\mathrm{C}-\mathrm{H}}\right)$. Hydrogen H13 shows two cross-peaks with the ${ }^{13} \mathrm{C}$ resonances at $\delta 130.62$ and 120.91 , which may thus arise from C14 (${ }^{2} J_{\mathrm{C}-\mathrm{H}}$) or C17 $\left({ }^{3} J_{\mathrm{C}-\mathrm{H}}\right)$. Since the ${ }^{13} \mathrm{C}(\delta 130.62)$ resonance was also found to interact with hydrogen H 1 , it can only correspond to C14. Consequently, the $\delta 120.91$ ${ }^{13} \mathrm{C}$ signal belongs to C 17 . Hydrogen H 15 shows cross-peaks at $\delta 120.91$ (C17) and 140.24, which may originate from C2 $\left({ }^{3} J_{\mathrm{C}-\mathrm{H}}\right)$ and C14 $\left({ }^{2} J_{\mathrm{C}-\mathrm{H}}\right)$. Since C14 ($\delta 130.62$) has already been assigned, the ${ }^{13} \mathrm{C}$ resonance at $\delta 140.24$ has to correspond to C 2 . Thus, the ${ }^{13} \mathrm{C}$ signal at $\delta 131.23$ belongs to C 18 . By elimination, the ${ }^{13} \mathrm{C}$ resonance at $\delta 137.94$ then corresponds to C 5 . This is confirmed by the observation of cross-peaks at $\delta 137.94$ with $H 3\left({ }^{3} J_{\mathrm{C}-\mathrm{H}}\right)$ and $\mathrm{H} 4\left({ }^{2} J_{\mathrm{C}-\mathrm{H}}\right)$. The complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments of $\mathbf{3}$ are summarized in Table 2.
2.1.3. Dicyclopenta[$\boldsymbol{c d}, j k]$ pyrene (4). In the case of dicyclopenta $[c d, j k]$ pyrene $\left(4, \mathrm{C}_{20} \mathrm{H}_{10}\right)$, which possesses $C_{2 h}$ symmetry, five and ten distinct resonances, respectively, are found in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Fig. 5). The total ${ }^{1} \mathrm{H}$ assignment was accomplished by an NOESY experiment. The cross peak between the singlet at $\delta 7.50(2 \mathrm{H})$, which corresponds to H 13 , and the doublet at $\delta 6.62\left(2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}\right.$ 5.21 Hz) indicates that the latter arises from H 4 (cf. the characteristic ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ coupling constant of ca .5 Hz for the vicinal olefinic hydrogens in the annelated five-membered rings).

Figure 4. HETCOR (${ }^{1} J_{\mathrm{C}-\mathrm{C}} 160 \mathrm{~Hz}$, top) and LR-HETCOR (${ }^{1} J_{\mathrm{C}-\mathrm{C}} 160 \mathrm{~Hz}$ and ${ }^{n} J_{\mathrm{C}-\mathrm{H}} 8 \mathrm{~Hz}$, bottom) spectra of dicyclopenta[$\left.c d, f g\right]$ pyrene (3).

Another interaction is found between the doublet at $\delta 7.47$ $\left(2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}} 7.69 \mathrm{~Hz}\right)$ and the doublet at $\delta 6.71\left(2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}\right.$ 5.21 Hz). Thus, H 1 corresponds to $\delta 7.47$ and H 3 to 6.71 . Since all ${ }^{1} \mathrm{H}$ NMR signals of $\mathbf{4}$ have been now identified, those of its carbons atoms bearing a hydrogen can be assigned using HETCOR: $\delta 133.49$ corresponds to C3, $\delta 131.63$ to $\mathrm{C} 4,129.63$ to $\mathrm{C} 15,125.72$ to C 13 and 122.40 to C 1 (Fig. 4 and Table 3).

The LR-HETCOR experiments with different long-range CH coupling constants were used (Table 3 and see Section 4.1) in order to assign the quaternary carbon atoms of 4 . Hydrogen H l shows two cross-peaks with the ${ }^{13} \mathrm{C}$ resonances at $\delta 130.66$ and 132.07, which can arise from C14, C18 $\left({ }^{3} J_{\mathrm{C}-\mathrm{H}}\right)$ and $\mathrm{C} 2\left({ }^{2} J_{\mathrm{C}-\mathrm{H}}\right) . \mathrm{H} 15$ exhibits interactions with the ${ }^{13} \mathrm{C}$ resonances at $\delta 141.00$ and 121.44 , which may then cor-
respond to C 2 and $\mathrm{C} 17\left({ }^{3} J_{\mathrm{C}-\mathrm{H}}\right)$ or $\mathrm{C} 14\left({ }^{2} J_{\mathrm{C}-\mathrm{H}}\right)$. The ${ }^{13} \mathrm{C}$ resonance at $\delta 141.00$ gives another cross peak with H 4 . Thus, we assign $\delta 141.00$ to $\mathrm{C} 2\left({ }^{3} J_{\mathrm{C}-\mathrm{H}}\right)$, as C 14 and C 17 would present a four- $\left({ }^{4} J_{\mathrm{C}-\mathrm{H}}\right)$ and a five-bond $\left({ }^{5} J_{\mathrm{C}-\mathrm{H}}\right)$ coupling with H 4 , respectively, which is unlikely to be observed under the applied experimental conditions. ${ }^{33}$ Since the cross-peaks for H1 with $\delta 130.66$ and 132.07 can now only arise from C 14 and C 18 , this leaves $\delta 121.44$ for C 17 . By elimination, it is now possible to relate ${ }^{13} \mathrm{C}$ signal at $\delta 140.42$ to C 5 . These assignments are supported by the behaviour of H 13 , which exhibits two cross-peaks at $\delta 121.44$ (C17), and 130.66, which can arise from the interaction with C18 ($\left.{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{H}}\right)$ or C14 ($\left.{ }^{2} J_{\mathrm{C}-\mathrm{H}}\right)$. The final assignment for C 14 and C18 is achieved by comparing their intensities in the $1 \mathrm{D}{ }^{13} \mathrm{C}$ NMR spectrum of 4 (Fig. 5). The intensity of the ${ }^{13} \mathrm{C}$ signal at $\delta 132.07$ is stronger than that at $\delta 130.66$. This strongly

Table 2. Cross-peaks observed in the HETCOR and LR-HETCOR spectra of dicyclopenta $[c d, f g]$ pyrene (3) ${ }^{\text {a,b }}$

Nucleus	$\delta\left({ }^{13} \mathrm{C}\right)$ ppm	H15	H1	H13	H3	H4
		$\begin{aligned} & 7.72(\mathrm{~d}, \\ & { }^{3} J_{\mathrm{H}-\mathrm{H}} \\ & 7.60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.63(\mathrm{~d}, \\ & { }^{3} J_{\mathrm{H}-\mathrm{H}} \\ & 7.60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.45 \\ & (\mathrm{~s}) \end{aligned}$	$\begin{aligned} & 7.03(\mathrm{~d}, \\ & { }^{3} J_{\mathrm{H}-\mathrm{H}} \\ & 5.30 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 6.49(\mathrm{~d}, \\ & { }^{3} J_{\mathrm{H}-\mathrm{H}} \\ & 5.30 \mathrm{~Hz}) \end{aligned}$
C17	120.91	a,b		a		
C1	123.45	c	HT		b	a
C13	127.03	b	b	HT		
C15	127.07	HT		b		
C4	127.88				b	HT
C14	130.62		a,b	a,b,c		
C18	131.23		a,b,c			
C3	137.31				HT	a
C5	137.94				c	c
C2	140.24	a				b, c

${ }^{\text {a }}$ See Figure 1 for the structure and atom numbering of 3. In Figure 3 the $1 \mathrm{D}{ }^{13} \mathrm{C}$ NMR spectrum and in Figure 4 a HETCOR (top) and an LRHETCOR (bottom) 2D spectra of $\mathbf{3}$ are shown. Quaternary carbon atoms are typeset in boldface and the multiplicity of the ${ }^{1} \mathrm{H}$ chemical shifts is indicated between parentheses.
${ }^{\text {b }}$ HETCOR cross-peaks are indicated as HT. LR-HETCOR experiments gave the cross-peaks shown as observed with long-range coupling constants of 6 Hz (a), 8 Hz (b) and 10 Hz (c).

Figure 5. 1D ${ }^{13} \mathrm{C}$ NMR spectrum (solvent CDCl_{3}) of dicyclopenta $[c d, j k]$ pyrene (4, see also Table 3).
indicates that the ${ }^{13} \mathrm{C}$ resonances at $\delta 132.07$ and 130.66 must originate from C14 and from C18, respectively, since the latter carbon atom is more distant from the hydrogen containing pyrene perimeter. ${ }^{34}$ The complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments of $\mathbf{4}$ are compiled in Table 3.
2.1.4. Dicyclopenta[cd,mn]pyrene (5). Dicyclopenta [cd,mn]pyrene ($5, \mathrm{C}_{20} \mathrm{H}_{10}$) possesses $C_{2 v}$ symmetry. This may give six and twelve distinct signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Fig. 6). Several of the ${ }^{1} \mathrm{H}$ resonances of 5 are readily assigned. The triplet at $\delta 8.08\left(1 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}\right.$ 7.70 Hz) has to correspond to hydrogen H 9 . The singlets at $\delta 8.15(1 \mathrm{H})$ and $8.37(2 \mathrm{H})$ have to originate from H 1 and H 6 , respectively, and the doublet at $\delta 8.53\left(2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}\right.$ $7.70 \mathrm{~Hz})$ belongs to H 8 . The doublets at $\delta 7.51\left(2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}\right.$ $5.10 \mathrm{~Hz})$ and $7.26\left(2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}} 5.10 \mathrm{~Hz}\right)$ corresponds to H 3 and H 4 or vice versa (cf. the characteristic ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ value of ca. 5 Hz for an olefinic hydrogens in a five-membered ring). An NOESY spectrum reveals cross-peaks between the singlet at $\delta 8.37$ (H6) and the doublet at $\delta 7.26$, on one hand, and the singlet at $\delta 8.15(\mathrm{H} 1)$ and the doublet at

Table 3. Cross-peaks observed in the HETCOR and LR-HETCOR spectra of dicyclopenta $[c d, j k]$ pyrene (4) ${ }^{\text {a,b }}$

Nucleus	$\begin{aligned} & \delta\left({ }^{13} \mathrm{C}\right) \\ & \mathrm{ppm} \end{aligned}$	H15	H13	H1	H3	H4
		$\begin{aligned} & 7.71(\mathrm{~d}, \\ & { }^{3} J_{\mathrm{H}-\mathrm{H}} \\ & 7.69 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.50 \\ & (\mathrm{~s}) \end{aligned}$	$\begin{aligned} & 7.47(\mathrm{~d}, \\ & { }^{3} J_{\mathrm{H}-\mathrm{H}} \\ & 7.69 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 6.71(\mathrm{~d}, \\ & { }^{3} J_{\mathrm{H}-\mathrm{H}} \\ & 5.21 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 6.62(\mathrm{~d}, \\ & { }^{3} J_{\mathrm{H}-\mathrm{H}} \\ & 5.21 \mathrm{~Hz}) \end{aligned}$
C17	121.44	b,c,d	b, c			
C1	122.40	b, c		HT		
C13	125.72	a,b	HT			
C15	129.63	HT	a,b,c	c, d		
C18	130.66		c, d	b		
C4	131.63					HT
C14	132.07			b, c		
C3	133.49		c		HT	a
C5	140.42					
C2	141.00	a,b				a

${ }^{\text {a }}$ See Figure 1 for the structure and atom numbering of 4. In Figure 5 the 1D
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}$ is shown. Quaternary carbon atoms are typeset in boldface and the multiplicity of the ${ }^{1} \mathrm{H}$ chemical shifts are indicated between parentheses.
${ }^{\text {b }}$ HETCOR cross-peaks are indicated as HT. LR-HETCOR experiments gave the cross-peaks shown as observed with long-range coupling constants of $4 \mathrm{~Hz}(\mathrm{a}), 6 \mathrm{~Hz}(\mathrm{~b}), 8 \mathrm{~Hz}$ (c) and 10 Hz (d).

Figure 6. 1D ${ }^{13} \mathrm{C}$ NMR spectrum (solvent CDCl_{3}) of dicyclopenta [cd,mn]pyrene ($\mathbf{5}$, see also Table 4).
$\delta 7.51$, on the other hand. Thus, the doublets at $\delta 7.51$ and 7.26 originate from H 3 and H 4 . As the complete ${ }^{1} \mathrm{H}$ NMR assignments of 5 have been achieved, its carbon atoms bearing hydrogen were identified using HETCOR (Table 2). The results show that the ${ }^{13} \mathrm{C}$ resonances located at $\delta 135.03$, $132.76,127.04,126.53,125.80$ and 118.78 correspond to $\mathrm{C} 3, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 4, \mathrm{C} 6$ and C 1 , respectively.

The LR-HETCOR experiments with different long-range ${ }^{n} J_{\mathrm{C}-\mathrm{H}}$ coupling constants allow the assignments of the quaternary C atoms of 5 (Table 4 and see Section 4.1). For H9 two cross-peaks are observed with the ${ }^{13} \mathrm{C}$ resonances at $\delta 120.10$ and 127.96, which may correspond to C 7 and C16. Note, however, that for C16 the interaction with H9 has to be a long-range ${ }^{4} J_{\mathrm{C}-\mathrm{H}}$ coupling. Hydrogen H6 correlates with the ${ }^{13} \mathrm{C}$ signals positioned at $\delta 127.96,131.52$ and 138.56; possible assignments for these cross-peaks are C 7 and C5 $\left({ }^{2} J_{\mathrm{C}-\mathrm{H}}\right)$ or C 18 and $\mathrm{C} 16\left({ }^{3} J_{\mathrm{C}-\mathrm{H}}\right)$. The ${ }^{13} \mathrm{C}$ resonances at $\delta 131.52$ and 138.56 can only correspond to C 5 and C 18 , since the ${ }^{13} \mathrm{C}$ signal at $\delta 127.96$ already has been assigned to either C7 or C16. H3 correlates with both the $\delta 131.52$ and

Table 4. Cross-peaks observed in the HETCOR and LR-HETCOR spectra of dicyclopenta[$c d, m n$]pyrene $(5)^{\text {a,b }}$

Nucleus	$\begin{aligned} & { }^{13} \mathrm{C} \\ & (\mathrm{ppm}) \end{aligned}$	H8	H6	H1	H9	H3	H4
		$\begin{aligned} & 8.53(\mathrm{~d}, \\ & { }^{3} J_{\mathrm{H}-\mathrm{H}} \\ & 7.70 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 8.37 \\ & \text { (s) } \end{aligned}$	8.15 (s)	$\begin{aligned} & 8.08(\mathrm{t}, \\ & { }^{3} J_{\mathrm{H}-\mathrm{H}} \\ & 7.70 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.51(\mathrm{~d}, \\ & { }^{3} J_{\mathrm{H}-\mathrm{H}} \\ & 5.10 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 7.26(\mathrm{~d}, \\ & { }^{3} J_{\mathrm{H}-\mathrm{H}} \\ & 5.10 \mathrm{~Hz}) \end{aligned}$
C17	114.71						
C1	118.78			HT			
C16	120.10				b		
C6	125.80	b	HT				
C4	126.53						HT
C9	127.04		a		HT		
C7	127.96		c		b		
C18	131.52		a			a	a
C8	132.76	HT	b				
C3	135.03					HT	c
C2	135.63					b	c
C5	138.56		b				b

${ }^{\text {a }}$ See Figure 1 for the structure and atom numbering of 5. In Figure 6 the 1D ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5}$ is shown. Quaternary carbon atoms are typeset in boldface and the multiplicity of the ${ }^{1} \mathrm{H}$ chemical shifts are indicated between parentheses.
${ }^{\text {b }}$ HETCOR cross-peaks are indicated as HT. LR-HETCOR experiments gave the cross-peaks shown as observed with long-range coupling constants of 10 Hz (a) 4 Hz (b) and 10 Hz (c).
135.63 signals. Consequently, these signals can be assigned to C2, C5 and C18. Since $\delta 131.52$ and 138.56 belongs to either C 5 or C 18 , the ${ }^{13} \mathrm{C}$ resonance at $\delta 135.63$ has to originate from C2. Note that in the $1 \mathrm{D}{ }^{13} \mathrm{C}$ NMR spectrum of 5 , the
resonance at $\delta 138.56$ is slightly more intense than that at $\delta 131.52$ (Fig. 6). Hence, the resonance at $\delta 138.56$ most likely corresponds to C5, since the more distant a carbon atom is from a molecular perimeter, the lower the intensity of the signal will be. ${ }^{34}$ This leaves $\delta 131.52$ for C18. In addition, the ${ }^{13} \mathrm{C}$ signal at $\delta 127.96$ is more intense than that positioned at $\delta 120.10$; this allows their assignment to C 7 and C 16 , respectively. By elimination, the ${ }^{13} \mathrm{C}$ resonance at $\delta 114.71$ then belongs to C 17 . The complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ assignments of $\mathbf{5}$ are summarized in Table 4.

2.2. Computed ${ }^{13} \mathrm{C}$ chemical shifts

In a previous paper, ${ }^{25}$ we have tentatively assigned the ${ }^{1} \mathrm{H}$ NMR resonances of CP-PAHs $\mathbf{1 - 5}$ using computed ${ }^{1} \mathrm{H}$ chemical shifts obtained with the PZ2 (paramagnetic zero) variant ${ }^{35}$ of the all electron ab initio continuous transformation of origin of current density (CTOCD) method with the $6-31 \mathrm{G}^{* *}$ basis as implemented in the Exeter version of SYSMO 36 using $6-31 \mathrm{G}$ optimized geometries (see Section 4.2). Although the computed ${ }^{1} \mathrm{H}$ NMR chemical shifts of $\mathbf{1 - 5}$ deviate by ca. 0.5 ppm from their experimental values, they satisfactorily reflect the trends found in the experimental ${ }^{1} \mathrm{H}$ NMR spectra (see also Ref. 23). These observations prompted us to compute the ${ }^{13} \mathrm{C}$ NMR chemical shifts of 1-5 using the same CTOCD-PZ2/6-31G**//6-31G approach (Table 5 for 3-5 and Table 6 for 1-2). For ${ }^{13} \mathrm{C}$ NMR chemical shifts, which span a considerably wider range in parts per

Table 5. CTOCD-PZ2/6-31G**//6-31G computed ab initio absolute carbon nuclear shielding constants (σ_{av} in parts per million) of dicyclopenta[cd,fg]-(3), dicyclopenta $[c d, j k]-(4)$ and dicyclopenta $[c d, m n]$ pyrene (5) (see Fig. 1 for a generalized atom numbering scheme) ${ }^{\text {a }}$

Compound	Nucleus	$\sigma_{\text {out }}$	$\sigma_{\text {in }}$	$\sigma_{\text {av }}$	$\delta_{\text {calcd }}$	$\delta_{\text {exp }}$	$\Delta \delta^{\text {b }}$
3	C1	185.3	-1.0	61.1	124.5	123.45	1.05
	C2	160.5	-12.2	45.4	140.2	140.24	-0.04
	C3	145.1	-4.3	45.5	140.1	137.31	2.79
	C4	153.3	6.8	45.5	130.0	127.88	2.12
	C5	146.1	-3.0	46.7	138.9	137.95	0.95
	C13	168.6	2.1	57.6	128.0	127.03	0.97
	C14	192.4	-15.0	54.1	131.5	130.62	0.88
	C15	177.4	-1.2	58.3	127.3	127.07	0.23
	C17	197.9	-3.2	63.8	121.8	120.91	0.89
	C18	169.0	-3.0	54.3	131.3	131.23	0.07
4	C1	185.2	0.8	62.3	123.3	122.40	0.90
	C2	160.1	-12.7	44.9	140.7	141.00	-0.30
	C3	146.5	0.7	49.3	136.3	133.49	2.81
	C4	149.4	2.3	51.3	134.2	131.63	2.57
	C5	147.8	-4.5	46.3	139.3	140.42	-1.12
	C13	167.0	2.9	57.6	128.0	125.72	2.28
	C14	186.7	-13.7	53.1	132.5	132.07	0.43
	C15	176.3	-4.6	55.7	129.9	129.63	0.27
	C17	198.1	-3.6	63.6	122.0	121.45	0.55
	C18	173.4	-2.5	56.2	129.4	130.66	-1.26
5	C1				123.4	118.78	4.62
	C2	159.8	-3.5	50.9	134.7	135.63	-0.93
	C3	148.6	-5.1	46.1	139.5	135.03	4.47
	C4	152.1	9.0	56.7	128.9	126.53	2.37
	C5	158.6	-7.6	47.8	137.8	138.56	-0.76
	C6	165.2	2.4	56.6	129.0	125.80	3.20
	C7	191.0	-14.1	54.3	131.3	127.96	3.34
	C8	178.5	-11.8	51.6	134.0	132.76	1.24
	C9	187.7	-3.7	60.1	125.5	127.04	-1.54
	C16	204.0	-8.8	62.1	123.5	120.10	3.40
	C17	209.1	2.3	71.3	114.3	114.71	-0.41
	C18	178.2	-7.6	47.8	129.8	131.52	-1.72

[^1]Table 6. CTOCD-PZ2/6-31G**//6-31G computed ab initio absolute carbon nuclear shielding constants ($\sigma_{\text {av }}$ in parts per million) of pyrene (1) and cyclopenta $[c d]$ pyrene (2, See Fig. 1 for a generalized atom numbering scheme) ${ }^{\text {a }}$

Compound	Nucleus	$\sigma_{\text {out }}$	$\sigma_{\text {in }}$	$\sigma_{\text {av }}$	$\delta_{\text {calcd }}$	$\delta_{\text {exp }}$	$\Delta \delta^{\text {b }}$
1	C1	191.9	-7.5	58.9	126.7	125.78	0.92
	C2	177.9	0.8	59.8	125.8	124.87	0.93
	C5	167.4	2.7	57.6	128.0	127.32	0.68
	C17	200.5	-11.6	59.1	126.5	124.61	1.89
	C18	194.6	-16.8	53.7	131.9	131.08	0.82
2	C1	186.8	-2.5	60.6	125.0	124.34	0.66
	C2	163.7	-7.3	49.7	135.9	135.58	0.32
	C3	149.6	-1.7	48.7	136.9	133.48	3.42
	C4	152.9	6.5	55.3	130.3	127.81	2.49
	C5	154.9	-5.8	47.8	137.8	139.07	-1.27
	C6	164.3	3.0	56.7	128.9	126.48	2.42
	C7	190.9	-15.2	53.5	132.1	131.90	0.20
	C8	177.4	-6.9	54.5	131.1	130.52	0.58
	C9	189.9	-5.2	59.8	125.8	126.94	-1.14
	C10	178.9	-5.0	56.3	129.3	128.54	0.76
	C11	195.7	-15.0	55.2	130.4	130.18	0.22
	$\mathrm{C} 12$	167.9	2.1	57.4	128.2	126.93	1.27
	C13	170.6	2.1	58.3	127.3	126.57	0.73
	C14	193.4	-16.9	53.2	132.4	130.87	1.53
	C15	176.5	3.5	61.1	124.5	122.68	1.82
	C16	201.0	-9.3	60.8	124.8	122.23	2.57
	C17	203.5	-5.5	64.1	121.5	120.69	0.81
	C18	180.2	-4.0	57.4	128.2	127.34	0.86

${ }^{\text {a }} \sigma_{\text {out }}$ is the component of the absolute shielding out-of-plane of the ring, σ_{in} is the mean shielding in-plane and σ_{av} the overall mean value. The corresponding δ values (expressed in parts per million) were obtained by the rule $\sigma_{\mathrm{av}} \times 10^{6}+\delta=185.6$ (see Section 4.2). ${ }^{38}$ Quaternary carbon atoms are typeset in boldface.
${ }^{\text {b }} \Delta \delta=\delta_{\text {calcd }}-\delta_{\text {exp }}$.
million, the deviations between the computed and experimental values, which appear to be the most significant for the carbon atoms of the cyclopenta moieties (range 2.14.5 ppm), are still sufficiently small (for all carbon atoms: range $0.0-4.6 \mathrm{ppm}$, see $\Delta \delta$ values in Tables 5 and 6) to render the computations a material aid for ${ }^{13} \mathrm{C}$ assignments at least in π-conjugated polycyclics. This is to an extent a fortunate consequence of the combination of basis set (6-31G**) and the CTOCD-PZ2 method, as the results for ${ }^{13} \mathrm{C}$ shifts in the $6-31 \mathrm{G}^{* *}$ basis can be closer to experiment than 'accurate' Hartree-Fock limiting results. ${ }^{37}$

For 1-5 the computed ${ }^{13} \mathrm{C}$ chemical shifts can thus be used to validate the experimental LR-HETCOR ${ }^{13} \mathrm{C}$ assignments (Tables 5 and 6). As shown by the data, the assignments in which the intensity of the ${ }^{13} \mathrm{C}$ signals (cf. compounds 2,4 and 5 , vide supra) was used are confirmed by the computed CTOCD-PZ2/6-31G**//6-31G ${ }^{13} \mathrm{C}$ chemical shifts.

A comparison of the absolute carbon nuclear shield constants ($\sigma_{\text {av }}$) of 1-5 and their out-of-plane ($\sigma_{\text {out }}$) and mean in-plane ($\sigma_{\text {in }}$) components reveal that all carbon sites possess a large diamagnetic, $\sigma_{\text {out }}$ component. The in-plane principal components approximately cancel each other leaving a relatively small, usually paramagnetic, mean in-plane $\sigma_{\text {in }}$ value (Table 5). Similar behaviour has been found for other CPPAHs. ${ }^{38}$

2.3. Substituent-induced ${ }^{13} \mathrm{C}$ chemical shifts: $\Delta \delta$

To gain insight into the extent to which mono- and dicyclopenta annelation influences the ${ }^{13} \mathrm{C}$ NMR chemical shifts of related carbon positions Substituent-Induced Chemical Shifts (SCS; ${ }^{13} \mathrm{C} \Delta \delta$ in parts per million) were calculated using either the experimental or computed ab initio CTOCD$P Z 2 / 6-31 \mathrm{G}^{* *} / 6-31 \mathrm{G}{ }^{13} \mathrm{C}$ chemical shifts. For the calculation
of SCS $\Delta \delta_{\text {exp }}$ and $\Delta \delta_{\text {calcd }}$ values for CP-PAHs 3-5, the ${ }^{13} \mathrm{C}$ chemical shifts of cyclopenta[$c d]$ pyrene (2), were taken as a reference ($\Delta \delta_{\text {exp }}(\mathbf{2})$ vs $\Delta \delta_{\text {calcd }}(\mathbf{2})$, Table 7). The $\Delta \delta_{\text {exp }}$ (2) and $\Delta \delta_{\text {calcd }}$ (2) values consistently show that the fivemembered ring ipso carbon atoms of $\mathbf{3}$ and $\mathbf{4}$ behave differently from those of 5 (Table 7). The ipso carbon atom C2 (Fig. 1) of $\mathbf{3}$ and $\mathbf{4}$ are deshielded by ca. $4-5 \mathrm{ppm}$ ($\Delta \delta_{\text {exp }}$ (2) and $\Delta \delta_{\text {calcd }}$ (2)), whereas the other ipso carbon C 5 is

Table 7. Computed CTOCD-PZ2/6-31G**//6-31G ab initio ($\Delta \delta_{\text {calcd }}$) and experimental $\left(\Delta \delta_{\text {exp }}\right){ }^{13} \mathrm{C}$ substituent-induced chemical shifts ($\Delta \delta(\mathbf{2})$; relative to cyclopenta $[c d]$ pyrene (2)) for dicyclopenta $[c d, f g]$ - (3), dicyclopenta $[c d, j k]-(4)$ and dicyclopenta $[c d, m n]$ pyrene (5, see Fig. 1 and also Tables 5 and 6)

Nucleus	3		4		5	
	$\Delta \delta(2)$		$\Delta \delta(2)$		$\Delta \delta(2)$	
	Calcd	Exp	Calcd	Exp	Calcd	Exp
C1	-0.50	-0.89	-1.70	-1.94	-1.60	-5.57
C2	4.30	4.66	4.80	5.41	-1.20	0.05
C3	3.20	3.83	-0.60	0.01	2.60	1.55
C4	-0.30	0.06	3.90	3.82	-1.40	-1.28
C5	1.10	-1.13	1.50	1.35	0.00	-0.51
C6	C5 ${ }^{\text {a }}$	C5 ${ }^{\text {a }}$	C13 ${ }^{\text {a }}$	C13 ${ }^{\text {a }}$	0.10	-0.69
C7	C18 ${ }^{\text {a }}$	C18 ${ }^{\text {a }}$	C14 ${ }^{\text {a }}$	C14 ${ }^{\text {a }}$	-0.80	-4.34
C8	C2 ${ }^{\text {a }}$	C2 ${ }^{\text {a }}$	C15 ${ }^{\text {a }}$	C15 ${ }^{\text {a }}$	2.90	2.24
C9	$\mathrm{C} 1^{\text {a }}$	$\mathrm{C} 1^{\text {a }}$	$\mathrm{C} 1{ }^{\text {a }}$	$\mathrm{C} 1^{\text {a }}$	-0.30	0.10
C10	C15 ${ }^{\text {a }}$	C15 ${ }^{\text {a }}$	C2 ${ }^{\text {a }}$	C2 ${ }^{\text {a }}$	${ }^{\text {a }} \mathrm{C} 8$	${ }^{\text {a }} \mathrm{C} 8$
C11	C14 ${ }^{\text {a }}$	C14 ${ }^{\text {a }}$	C18 ${ }^{\text {a }}$	C18 ${ }^{\text {a }}$	$\mathbf{C 7}{ }^{\text {a }}$	$\mathbf{C 7}{ }^{\text {a }}$
C12	C13 ${ }^{\text {a }}$	C13 ${ }^{\text {a }}$	C5 ${ }^{\text {a }}$	C5 ${ }^{\text {a }}$	C $6^{\text {a }}$	C $6{ }^{\text {a }}$
C13	0.70	0.46	0.70	-0.85	C5 ${ }^{\text {a }}$	C5 ${ }^{\text {a }}$
C14	-0.90	-0.25	0.10	1.20	C18 ${ }^{\text {a }}$	C18 ${ }^{\text {a }}$
C15	2.80	4.39	5.40	6.95	C2 ${ }^{\text {a }}$	C2 ${ }^{\text {a }}$
C16	C17 ${ }^{\text {a }}$	-1.30	-2.14			
C17	0.50	0.22	0.30	0.75	-7.20	-5.98
C18	1.20	3.89	1.80	3.32	1.60	4.18

[^2]slightly shielded in $\mathbf{3}\left(\Delta \delta_{\text {exp }}(\mathbf{2}),-1.13 \mathrm{ppm}\right)$ but deshielded in 4 ($\left.\Delta \delta_{\text {exp }}(\mathbf{2}), 1.35 \mathrm{ppm}\right)$. The corresponding $\Delta \delta_{\text {calcd }}$ (2) values are ca. 1 ppm for C 5 in both $\mathbf{3}$ and $\mathbf{4}$. In contrast, the related $\Delta \delta_{\exp }(\mathbf{2})$ values for 5 are $0.05(\mathrm{C} 2)$ and -0.51 (C5) (for comparison: $\Delta \delta_{\text {calcd }}(2),-1.20$ (C2) and 0.00 (C5)). This confirms that the topology of the two annelated cyclopenta moieties affects the electronic structure of 3-5 (see also Ref. 19). This is further substantiated by the $\Delta \delta_{\text {exp }}$ (2) and $\Delta \delta_{\text {calcd }}$ (2) values found for some of the more distant carbon atoms (e.g., C8, C10, C15, C17 and C18) in the series 3-5 (Table 7 and Fig. 1), in which all the carbon atoms show a different response.

3. Conclusions

Complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments for the nonalternant (di-) cyclopenta-fused pyrene congeners $3-5$ are reported. The experimental assignments are corroborated by chemical shift calculations using the all electron ab initio CTOCD$P Z 2 / 6-31 \mathrm{G}^{* *}$ method. A comparison of the SCS values, $\Delta \delta_{\text {exp }}(\mathbf{2})$ and $\Delta \delta_{\text {calcd }}$ (2), shows that for $\mathbf{3}-\mathbf{5}$ with $\mathbf{2}$ as a reference the number and topology of the annelated cyclopenta moieties markedly affects their electronic structure.

4. Experimental

CP-PAHs 2-5 were synthesized using Flash Vacuum Thermolysis (FVT). The corresponding (1-choroethenyl)substituted PAH precursors were prepared as described previously. ${ }^{1-3}$ Pure CP-PAHs 2-5 were isolated from the pyrolysates by re-crystallization from n-hexane. Caution: CP-PAHs 2-5 have to be handled according to the NIH guidelines for carcinogens (see also Ref. 16).

4.1. NMR spectroscopy

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25^{\circ} \mathrm{C}$ (Varian Unity Inova Spectrometer operating at 300.13 and 75.47 MHz , respectively). The two-dimensional (2D) NMR experiments were also performed on the Varian Unity Inova Spectrometer at $25^{\circ} \mathrm{C}$. In all the experiments, saturated CDCl_{3} solutions of the CP-PAH 1-5 were used. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in parts per million using residual $\mathrm{CHCl}_{3}(\delta 7.26 \mathrm{ppm})$ and $\mathrm{CDCl}_{3}(\delta$ 77.00 ppm), respectively, as an internal standard.

Prior to the Long-Range-Heteronuclear Chemical Shift Correlation LR-HETCOR experiments, the proton-coupled C$\mathrm{H}^{13} \mathrm{C}$ spectra of $2-5$ were collected to establish the magnitude of ${ }^{1} J_{\mathrm{C}-\mathrm{H}}$ coupling constants. The ${ }^{1} \mathrm{H}$ decay time $\left(T_{1}\right)$ was determined in order to optimise the relaxation delay in the 2D NMR experiments. Nuclear Overhauser Effect Spectroscopy (NOESY): the relaxation delay was set approximately at T_{1} for each compound, mixing time 0.75 s , acquisition time 1.3 s , 2D width 700 Hz and number of increments 64. The recording time of the NOESY spectra was in the range $12-20 \mathrm{~h}$. HETCOR and LR-HETCOR: in the HETCOR and LR-HETCOR experiments, a ${ }^{1} J_{\mathrm{C}-\mathrm{H}}=$ 160 Hz coupling constant was used. The relaxation delay was set as 1 s for HETCOR and as either 1 s or 4 s for LR-HETCOR in order to obtain the two- $\left({ }^{2} J_{\mathrm{C}-\mathrm{H}}\right)$ and three-bond ($\left.{ }^{3} J_{\mathrm{C}-\mathrm{H}}\right) \mathrm{C}-\mathrm{H}$ coupling constants. HETCOR and

LR-HETCOR experiments were recorded with a proton and carbon sweep width of $500-600$ and $2500-3000 \mathrm{~Hz}$, respectively. The number of increments was 32 . Recording times were ca. 24 h for the HETCOR spectra and $60-72 \mathrm{~h}$ for the LR-HETCOR spectra.

4.2. Computations

The absolute carbon nuclear shielding constants ($\sigma_{\text {av }}$ in parts per million), their out-of-plane ($\sigma_{\text {out }}$ in parts per million) and mean in-plane ($\sigma_{\text {in }}$ in parts per million) components of CPPAH 1-5 were computed using the PZ2 (paramagnetic zero) variant ${ }^{38}$ of the all electron ab initio continuous transformation of origin of current density (CTOCD) method as implemented in the Exeter version of SYSMO, ${ }^{36}$ all within the $6-31 \mathrm{G}^{* *}$ basis. The σ_{av} values $\left(\sigma_{\mathrm{av}}=1 / 3\left(\sigma_{\text {out }}+2 \sigma_{\text {in }}\right)\right)$ were converted into δ values by the rule $\sigma_{\mathrm{av}} \times 10^{6}+\delta=185.6 .{ }^{37}$

The molecular geometries of $\mathbf{1}-\mathbf{5}$ were optimized at the restricted Hartree-Fock level in the $6-31 \mathrm{G}$ basis using the GAMESS-UK program ${ }^{39}$ and were taken from a previous study. ${ }^{25}$ All optimised geometries $\left(\mathbf{1}\left(D_{2 h}\right), \mathbf{2}\left(C_{s}\right), \mathbf{3}\left(C_{2 v}\right)\right.$, $4\left(C_{2 h}\right)$ and $\left.5\left(C_{2 v}\right)\right)$ were characterized as genuine minima by Hessian calculations.

Acknowledgements

Financial support from the Basque Country Government (Eusko Jaurlaritza-Gobierno Vasco, Beca para Formación de Investigadores (M.J.O.-L.)), the Netherlands Organisation for Scientific Research NWO (R.W.A.H., grant 700.53.401) and the Royal Society of Chemistry's Journal Grants for International Authors Programme (0301433, L.W.J.) is gratefully acknowledged.

References and notes

1. Sarobe, M.; Zwikker, J. W.; Snoeijer, J. D.; Wiersum, U. E.; Jenneskens, L. W. J. Chem. Soc., Chem. Commun. 1994, 8990 and references cited.
2. Sarobe, M.; Flink, S.; Jenneskens, L. W.; van Poecke, B. L. A.; Zwikker, J. W. J. Chem. Soc., Chem. Commun. 1995, 24152416.
3. Scott, L. T.; Necula, A. J. Org. Chem. 1996, 61, 386-388.
4. Lafleur, A. L.; Howard, J. B.; Plummer, E. F.; Taghizadeh, K.; Necula, A.; Scott, L. T.; Swallow, K. C. Polycyclic Aromat. Compd. 1998, 12, 223-237.
5. Lafleur, A. L.; Howard, J. B.; Taghizadeh, K.; Plummer, E. F.; Scott, L. T.; Necula, A.; Swallow, K. C. J. Phys. Chem. 1996, 100, 17421-17428.
6. Ledesma, E. B.; Kalish, M. A.; Wornat, M. J.; Nelson, P. F.; Mackie, J. C. Energy Fuels 1999, 13, 1167-1172.
7. Richter, H.; Risoul, V.; Lafleur, A. L.; Plummer, E. F.; Howard, J. B.; Peters, W. A. Environ. Health Perspect. 2000, 108, 709-717.
8. Harvey, R. PAH: Chemistry and Carcinogenicity; Cambridge University Press: Cambridge, UK, 1991.
9. Fu, P. P.; Beland, F. A.; Yang, S. K. Carcinogenesis 1980, l, 725-727.
10. Nesnow, S.; Gold, A.; Mohapatra, N.; Sangaiah, R.; Bryant, B. J.; McNair, P.; Ellis, S. Genetic Toxicology of Environmental Chemicals, Part A: Basic Principles and Mechanisms of

Action; Ramel, C., Lambert, B., Magnusson, J., Eds.; Alan R. Liss: New York, NY, 1986; pp 512-515.
11. Sangaiah, R.; Gold, A.; Toney, G. E.; Toney, S. H.; Claxton, L.; Easterling, R.; Nesnow, S. Mutat. Res. 1983, 119, 259-266.
12. Ball, L. M.; Warren, S. H.; Sangaiah, R.; Gold, A. Mutat. Res. 1991, 260, 271-279.
13. Ball, L. M.; Warren, S. H.; Sangaiah, R.; Nesnow, S.; Gold, A. Mutat. Res. 1989, 224, 115-125.
14. Busby, W. F., Jr.; Smith, H.; Plummer, E. F.; Lafleur, A. L.; Mulder, P. P. Y.; Boere, B. B.; Cornelisse, J.; Lugtenburg, J. Mutat. Res. 1997, 391, 117-125.
15. Lafleur, A. L.; Longwell, J. P.; Marr, J. A.; Monchamp, P. A.; Plummer, E. F.; Thilly, W. G.; Mulder, P. P. Y.; Boere, B. B.; Cornelisse, J.; Lugtenburg, J. Environ. Health Perspect. 1993, 101, 146-153.
16. Otero-Lobato, M. J.; Jenneskens, L. W.; Seinen, W. Mutat. Res. 2004, 559, 105-119; Otero-Lobato, M. J.; Kaats-Richters, V. E. M.; Havenith, R. W. A.; Jenneskens, L. W.; Seinen, W. Mutat. Res. 2004, 564, 39-50; Otero-Lobato, M. J.; KaatsRichters, V. E. M.; Koper, C.; Vlietstra, E. J.; Havenith, R. W. A.; Jenneskens, L. W.; Seinen, W. Mutat. Res. 2005, 581, 115-132.
17. Streitwieser, A. Molecular Orbital Theory for Organic Chemists, Vol. XVI; Wiley: New York, NY, 1961.
18. Koper, C.; Jenneskens, L. W.; Sarobe, M. Tetrahedron Lett. 2002, 43, 3833-3836.
19. Koper, C.; Sarobe, M.; Jenneskens, L. W. Phys. Chem. Chem. Phys. 2004, 6, 319-327.
20. Sarobe, M. Polycyclic Aromatic Hydrocarbons under High Temperature Conditions. Ph. D. Thesis, Consequences for Carbon Build up During Combustion and Fullerene Formation Processes, Utrecht University, Utrecht, The Netherlands, 1998.
21. Sarobe, M.; Snoeijer, J. D.; Jenneskens, L. W.; Slagt, M. Q.; Zwikker, J. W. Tetrahedron Lett. 1995, 36, 8489-8492.
22. Gooijer, C.; Kozin, I.; Velthorst, N. H.; Sarobe, M.; Jenneskens, L. W.; Vlietstra, E. J. Spectrochim. Acta, Part A 1998, 54, 1443-1449.
23. Havenith, R. W. A.; Jiao, H.; Jenneskens, L. W.; van Lenthe, J. H.; Schleyer, P. v. R.; Kataoka, M.; Necula, A.; Scott, L. T. J. Am. Chem. Soc. 2002, 124, 2363-2370.
24. Havenith, R. W. A.; van Lenthe, J. H.; Dijkstra, F.; Jenneskens, L. W. J. Phys. Chem. A 2001, 105, 3838-3845.
25. Steiner, E.; Fowler, P. W.; Jenneskens, L. W.; Havenith, R. W. A. Eur. J. Org. Chem. 2002, 163-169.
26. Homann, K.-H. Angew. Chem., Int. Ed. 1998, 37, 24342451.
27. Taylor, R.; Langley, G. J.; Kroto, H. W.; Walton, D. R. M. Nature 1993, 366, 728-731.
28. Rabideau, P. W.; Sygula, A. Acc. Chem. Res. 1996, 29, 235242.
29. Jans, A. W. H.; Tintel, C.; Cornelisse, J.; Lugtenburg, J. Magn. Reson. Chem. 1986, 24, 101-104.
30. Dosa, P. I.; Schleifenbaum, A.; Vollhardt, K. P. C. Org. Lett. 2001, 3, 1017-1020.
31. Chang, C.-H.; Floss, H. G.; Steck, W. J. Org. Chem. 1977, 42, 1337-1340.
32. Sahali, Y.; Kwon, H.; Skipper, P. L.; Tannenbaum, S. R. Chem. Res. Toxicol. 1992, 5, 157-162.
33. Claridge, T. D. W. High-Resolution NMR Techniques in Organic Chemistry; Pergamon: New York, NY, 1999; pp 221-257.
34. Kalinowski, H. O.; Berger, S.; Braun, S. ${ }^{13}$ C NMR Spektroskopie; Thieme: Stuttgart, 1984; Chapter 5.
35. Zanasi, R.; Lazzeretti, P.; Malagoli, M.; Piccinini, F. J. Chem. Phys. 1995, 102, 7150-7157.
36. Lazzeretti, P.; Zanasi, R. SYSMO Package; University of Modena, 1980.
37. Zanasi, R. J. Chem. Phys. 1996, 105, 1460-1469.
38. Fowler, P. W.; Steiner, E.; Acocella, A.; Jenneskens, L. W.; Havenith, R. W. A. J. Chem. Soc., Perkin Trans. 2 2001, 1058-1065.
39. Guest, M. F.; Bush, I. J.; van Dam, H. J. J.; Sherwood, P.; Thomas, J. M. H.; van Lenthe, J. H.; Havenith, R. W. A.; Kendrick, J. Mol. Phys. 2005, 103, 719-747.

[^0]: * Corresponding author. Tel.: +31 30 2533128; fax: +31 30 2534533; e-mail: 1.w.jenneskens@chem.uu.nl
 ${ }^{\dagger}$ Affiliated to Organic Chemistry and Catalysis.

[^1]: ${ }^{\text {a }} \sigma_{\text {out }}$ is the component of the absolute shielding out-of-plane of the ring, σ_{in} is the mean shielding in-plane and $\sigma_{\text {av }}$ the overall mean value. The corresponding δ values (expressed in parts per million) were obtained by the rule $\sigma_{\mathrm{av}} \times 10^{6}+\delta=185.6$ (see Section 4.2). ${ }^{38}$ Quaternary carbon atoms are typeset in boldface.
 ${ }^{\text {b }} \Delta \delta=\delta_{\text {calcd }}-\delta_{\text {exp }}$.

[^2]: ${ }^{\text {a }}$ Positions equivalent by molecular symmetry; quaternary carbon atoms are typeset in boldface.

