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ABSTRACT

In this paper we introduce the so-called Beliefs-Obligations-
Intentions-Desires or BOID architecture. It contains feed-
back loops to consider all effects of actions before commit-
ting to them, and mechanisms to resolve conflicts between
the outputs of its four components. Agent types such as re-
alistic or social agents correspond to specific types of conflict
resolution embedded in the BOID architecture.

1. INTRODUCTION

Various competing decision models for autonomous agents
have been proposed, and it is still unclear which type of
model should be used in which type of application. For ex-
ample, some decision models are based on goal-based plan-
ning or on variants of decision theory like qualitative decision
theory [15, 3], other models are based on cognitive models
like belief-desire-intention models [7, 16], and yet other mod-
els are based on social concepts like obligations and norms
[10, 23, 22], as in deontic action programs [12]. Typically,
the decision model is based on an attempt to reach goals,
satisfy desires, fulfill obligations etc. Here we consider de-
cision models for an agent that is overloaded with input,
and typically lives in a complex and noisy environment. His
main problem is not to find a way to reach his goals, satisfy
his desires or fulfill his obligations, but which of the desires
and obligations he will follow given his beliefs and inten-
tions. That is, his main problem is to resolve the conflicts
among his attitudes.

In this paper we propose the Beliefs-Obligations-Intentions-
Desires or BOID architecture, an agent architecture that
contains at least four components. As these components
output beliefs, obligations, intentions and desires only for
certain inputs, they represent conditional informational and
motivational attitudes. Conflicts between these outputs are
either resolved by the architecture’s control loop or by a
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separate selection component that outputs new intentions.

e Agent types are represented by control loops. In a re-
alistic agent beliefs override obligations, intentions or
desires; in a single-minded or stable agent intentions
override desires and obligations; in an open-minded or
unstable agent desires and obligations override inten-
tions; in selfish agents desires override obligations and
in social agents obligations override desires.

e For other conflicts so-called extensions are constructed,
and one extension is selected. This idea is adopted
from Thomason’s BDP logic [21], which is again based
on Reiter’s default logic [19]. To represent all effects
of actions before committing to them the architecture
is based on feedback loops, as is explained in detail
later in this paper using the Al-Bob-Chris example of
Dignum et.al. [11].

In the implementation of the BOID architecture discussed
in this paper the content of the informational and motiva-
tional attitudes is represented by propositional formulas. In
the simplest BOID the four components have as input a set
of formulas — called an extension — and as output another
extension, and in the full BOID the input and output are
sets of extensions. To resolve the second type of conflict we
add another component to select an extension. The output
of this component, the new intentions, is the input for a
planning component.

In this paper we focus on the implementation of the BOID
architecture. The BOID logic is discussed in more detail
elsewhere [5]. We focus on a single autonomous agent for
whom other agents are only important in as far as they
are represented implicitly in norms and social commitments.
Further multi-agent extensions, such as for example con-
ventions to coordinate joint plans and trust to cooperate
between competitive agents, are outside the scope of this
paper. However, we are aware that use of the name ‘boid’
compels us to deal with large flocks of agents in future re-
search.

The layout of the paper is as follows. In Section 2 different
types of conflicts are discussed and a classification of agent
types is introduced. In Section 3 the BOID architecture,
logic, and a control loop are introduced. In Section 4 exam-
ples from Section 2 are formalized in the BOID architecture
and implementation details are discussed.



2. BELIEFS,OBLIGATIONS,INTENTIONS
AND DESIRES

Reasoning about beliefs, obligations, intentions and desires
has been discussed in practical reasoning in philosophy [24,
4], and its formalization to build intelligent autonomous
agents has more recently been discussed in qualitative de-
cision making in artificial intelligence [11, 12, 18, 21]. On
closer inspection each of these four concepts consists of re-
lated (though often quite distinct) concepts, for example re-
spectively knowledge and defaults, prohibitions and permis-
sions, commitments and plans, wishes and wants. All these
concepts are grouped into these four classes due to their role
in the decision making process: beliefs are informational at-
titudes — how the world is expected to be — obligations and
desires are the external and internal motivational attitudes,
and intentions are the results of decision making.

In this section we focus on the interaction between these
classes. In particular, we discuss fifteen types of conflicts
which can occur between these four concepts, we discuss how
different types of agent resolve these conflicts in different
ways, and we discuss some of the problems related to conflict
resolution. This section provides the necessary background
to understand the choices made in the BOID architecture,
which is presented in the Section 3.

2.1 Four concepts

Beliefs and desires are informational and motivational at-
titudes which can be related to two structures in all other
models of decision making. For example, they can be re-
lated to respectively probabilities and utilities in classical
decision theory. Our interpretation of beliefs and desires is
inspired by the BD logic of Thomason [21], though other
interpretations can be given as well.

Intentions are introduced to relate previous decisions to
new decisions. In the philosophical literature it has been ar-
gued, among others by Bratman [4], that intentions deserve
a special status besides beliefs and desires: they cannot be
reduced to them. This special status is the central focus of
the computational BDI approaches of Cohen and Levesque
[7], and of Rao and Georgeff [16, 17, 18]. Prior intentions
are the actions the agent has committed to in his previous
decisions. The incorporation of intentions makes the agent’s
behavior more stable [16, 17] and makes it possible to take
bounded reasoning into account [4].

Obligations are the most controversial component in our
architecture. One reason to introduce this component is
to incorporate obligations, norms and commitments of so-
cial agents and social rationality. However, there is another
argument taken from research in deontic logic and com-
puter science [14]. The question has been raised why norms
are usually not implemented explicitly in computer systems.
An easy answer is that computer programs already model
‘ideal’ behavior. They must never violate the rules, just as
they must never fail. This objection can be countered by
Dignum’s argument [10] that obligations can be violated,
because agents are autonomous. In a typical example, an
agent has a desire to do otherwise and the desire is stronger
than the obligation. Even social agents can violate their
obligations if they intended earlier to do otherwise and are
not open-minded enough to reconsider this intention. Ex-
amples of such cases are given below. Finally, in order to
deal with conflicts among norms, and agent must be able to
drop some obligations in favor of others.

2.2 Possible Conflicts

One of the main tasks of deliberative agents is to solve pos-
sible conflicts among informational and motivational atti-
tudes. In this subsection we list fifteen different types of
conflicts that may arise either within each class or between
classes. Dependent on the exact interpretation of these
classes, some of the conflict types may be more interest-
ing or important than others. We distinguish two general
types of conflicts: internal and external conflicts. Internal
conflicts are caused within each component while ezternal
conflicts are caused between them. Internal conflicts can be
distinguished into four unary subtypes (B ; O ; I; D).

B conflict: [21] I have a reason to believe the porch light is
off, because I asked my daughter to turn it off. I have
a reason to believe the porch light is on, because the
last time I saw it, it was on.

O conflict: [t is obligatory to be honest. It is obligatory to
be polite. If I am honest about it, it will be impolite.

I conflict: [2] I intend to finish the paper on Sunday. I in-
tend to go to the beach on Saturday. If I go to the beach
on Saturday, I cannot finish the paper on Sunday.

D conflict: [8] I desire to smoke. I desire to be healthy.
However, smoking endangers my health.

External conflicts can be distinguished into six binary con-
flict subtypes (BO ; BI ; BD ; OI; OD ; ID), and four ternary
conflict types (BOI; BOD; BID; OID) and one quadruplicate
conflict type (BOID).

BO conflict: It is obligatory to see my mother-in-law this
weekend. But I think I have no time to go.

BI conflict: [ have a plan to see my mother-in-law this
weekend. However, I find it is impossible for me now,
for my car is broken.

BD conflict: [21] I'd like to take a long vacation. I’d need
to get time off from work to take a long vacation. But
1 can’t get time off from work.

OI conflict: It is obligatory to see my mother-in-law this
weekend. But, I already have a plan to go to a confer-
ence. If I go to the conference, I cannot go to see my
mother-in-law.

OD conflict: It is obligatory not to smoke in a non-smoking
area. I desire to smoke in my office. However, my of-
fice is a non-smoking area.

ID conflict: [21] I’d like to take a nap. But I intend to
catch a plane.

BOI conflict: If I smoke, I should smoke in a smoking
area. I intend to smoke. However, I know that it is a
non-smoking area here.

BOD conflict: If I smoke, I should smoke in a smoking
area. I desire to smoke. However, I know that it is a
non-smoking area here.

BID conflict: [ intend to go to a conference. I desire that
the travel cost is not too expensive. I know that if T
go to the conference, then the travel cost would be very
expensive.



OID conflict: [ intend to go to a conference. I desire to
stay in a luzury hotel. However, it is obligatory for
me that if I go to the conference, I should not stay in
a luzury hotel.

BOID conflict: [ intend to go to a conference. It is oblig-
atory for me not to spend too much money for the con-
ference. Namely, either I should pay for a cheap flight
ticket and stay in a better hotel, or I should pay for
an expensive flight ticket and stay in a budget hotel. 1
desire to stay in a better hotel. But, I know that the
secretary has booked an erpensive flight ticket for me.

In the following subsection we structure the resolution of
conflicts for these types. A classification of conflict resolu-
tion types is introduced and discussed. It is argued that
these types of conflict resolutions correspond with what in
agent theories is called agent types. Some well-known agent
types are for example realistic, selfish, social, simple-minded,
and open-minded agents.

2.3 Conflict resolution and agent types

A conflict resolution type is an order of overruling. Given
four components, there are 24 possible orders of overruling.
In this paper, we only consider those orders according to
which the belief component overrules any motivational atti-
tude component. This reduces the number of possible over-
ruling orders to six. Some examples of conflict resolution
with beliefs are given below.

e A conflict between a belief and a prior intention means
that an intended action can no longer be executed due
to the changing environment. Beliefs therefore over-
rule the prior intention, which is retracted. Any de-
rived consequences of this prior intention are retracted
too. Of course, one may allow prior intentions to over-
rule beliefs, but this results in unrealistic behavior.

e Analogously, a conflict between a belief and obligation
or desire means that a violation has occurred. As ob-
served by Thomason [21], the beliefs must override the
desires or otherwise there is wishful thinking; the same
argument applies to obligations.

Moreover, a conflict between a prior intention and an obli-
gation or desire means that you now should or want to do
something else than you intended before. Here prior inten-
tions override the latter because it is exactly this property
for which intentions have been introduced: to bring stabil-
ity. Only in a call for intention reconsideration such conflicts
may be resolved otherwise. For example, if I intend to go to
the cinema but I am obliged to visit my mother, then I go
to the cinema unless I reconsider my intentions.

Using the order of string letters as the overruling order,
these six ways of resolving conflicts can be represented as
BOID, BODI, BDIO, BDOI, BIOD, and BIDO. Note that
we overloaded the name BOID in this way, because it be-
comes a certain type of agent as well as the general name
for the agent architecture.

Realistic. The six conflict resolution types (agent types) in
which beliefs override all other components are called
realistic.

Simple-minded. BIDO and BIOD are called simple-minded
or stable, because prior intentions overrule desires and
obligations.

Selfish. BDIO and BDOI are called selfish, because desires
overrule obligations.

Social. BIOD, BOID and BODI are called social, because
obligations overrule desires.

Other classifications are also possible. For example, we may
call agents super-selfish or super-social if they are respec-
tively selfish and social but not simple-minded. This means
that super-selfish and super-social agents start with respec-
tively BD and BO. Moreover, we can have partial prioritiza-
tion constraints. Examples of those are discussed in Section
3.3. Summarizing, conflicts can be resolved according to a
priority ordering.

2.4 Minimality + conditionals=complications

There are several complications to further specify and im-
plement the conflict types and their associated agent types.
It may seem that we can use one of the many approaches
to conflict resolution developed in other areas of artificial
intelligence like for example diagnosis [20], default reason-
ing or fusion of knowledge and databases. However, there is
a problem. Regardless of the exact definition of a conflict,
in these approaches a conflict is always defined as a min-
imal set, in the sense that if two sets are conflicting then
one of the sets cannot be a strict subset of the other one.
Whereas minimal sets may be the obvious choice in diag-
nosis and other applications, it is problematic in decision
making with conditionals.

An example has been given by Dignum ef.al. [11], who
discuss an extension of the BDI architecture with obliga-
tions. In this example, there is a guy called Al who has an
obligation to perform a task for Bob and another incompat-
ible obligation to perform a task for Chris. Moreover, Al
has the norm that he should tell Bob if he does not intend
to meet this obligation. The problem discussed in the paper
is that the existence of the norm should affect Al’s decision
on whether to intend to fulfill his obligation:

“Consider Al’s obligation above, until he actually
commits to not meeting his obligation to Bob,
the need to tell Bob does not exist, yet the po-
tential for it may have a significant impact on
his decision on whether to do the task for Bob.
For example, imagine that the task is trivial (i.e.,
the direct consequences of not doing the task are
small), but the social consequences of not inform-
ing Bob are very high (i.e., Al is perceived as
unreliable).” [11, p.115]

The point is thus that to resolve the conflict we cannot re-
strict ourselves to the minimal set (the two obligations), but
we have to consider the whole set. In general, agents should
consider the effects of actions before they commit to it. This
is the reason why in the BOID architecture discussed next
complete extensions are constructed before one is selected,
instead of solving a conflict as one is encountered.



3. AGENT ARCHITECTURE

In this section we discuss the BOID architecture. We first
discuss the case in which all conflicts can be resolved by
the agent type, like the examples in Section 2.2. Thus it
needs to build only a single set of formulas as output: a
single extension (Section 3.2). After that, we discuss the
full BOID which also covers more complex cases like the
example in Section 2.4. This second architecture calculates
multiple extensions as output of the components (Section
3.3). We introduce an additional component that selects
one final extension, which represents the agent’s intentions.

3.1 Components

In general, an agent can be seen as a black box with obser-
vations as input and intended actions as output, which are
related to the environment by detectors and effectors. In the
BOID architecture these attitudes are mapped to four com-
ponents within the agent architecture, in the sense that each
component outputs one of the attitudes. The components
associated with an attitude can be implemented in a vari-
ety of different ways. For example, the Beliefs component
may maximize cross entropy or apply AGM belief revision
[1], and its output may be a probability distribution, a set
of them, plausibility measures, a belief set, etc. Moreover,
the Desires component may be based on a quantitative util-
itarian model and maximize expected utility to determine
goals. The Obligations and Intentions components reason
with personal as well as social obligations and commitments
to select goals and plans to reach selected goals.

In the BOID architecture discussed in this paper, the be-
havior of each component is specified by propositional logi-
cal formulas, often in the form of defeasible rules. The input
and output of the components is represented by sets of log-
ical formulas, closed under logical consequence. Following
Thomason [21] these are called eztensions. We distinguish
between the agent’s static architecture and its dynamic be-
havior. In our approach, the former only concerns the agent
whereas the latter concerns the agent with its environment.

3.2 Single Extension BOID

We start with a BOID architecture that builds only one ex-
tension. The logic that specifies the behavior of the architec-
ture is parameterized with an ordering function p to resolve
conflicts. It constraints the order in which derivation steps
for different components are undertaken and characterizes
the type of BOID. We first discuss the BOID logic, then
the agent types and finally the dynamic control loop that
determines how the BOID interacts with its environment.

3.2.1 Logic or calculation scheme

Each calculation starts with a set of observations W. Unlike
normal beliefs, which may have a default character, obser-
vations can not be overridden. We assume initial sets of
defeasible rules for the other components: B,O, I, D. We
write I~ to emphasize that the set I contains prior inten-
tions.

We first define an ordering function p on rules that repre-
sents the type of agent. In case of multiple applicable rules,
the one with the lowest p value is applied. In this version p
is complete: it assigns a unique value to each rule. Therefore
it not only resolves conflicts between components, but also
among rules within components. Given p, the calculation
for building extensions can now be defined as follows.

DEFINITION 1 (BOID CALCULATION SCHEME). Let L be

a propositional language, a tuple A = (W, B,0,I", D) a BOID
theory with W a subset of L and B, O, I~ and D sets of
ordered pairs of L wrilten as o — w, and p be a function
from BUOUI™ UD to the integers.
We say that a rule (o — w) is applicable to an eztension
E,iffca € E and ~w & F.
Define
Eo=W and for i >0
Eipyvn= Thi(EiU{w|(a—>w) € BUOUI~UD and

(¢ = w) is applicable to E; and

A(B—v) € BUOUI UD applicable to E;

such that p(8 — v) < pla = w) } ).
Then FE C L is an extension for A iff B = U2 E;.

In practice not the whole extension is calculated in the ar-
chitecture (since this may be infinite), but only the set of
outputs w or the set of rules & < w that can be calculated
before the agent runs out of resources.

3.2.2 Agent types

In the BOID architecture, we start with the observations
and calculate a belief extension by iteratively applying be-
lief rules. When no belief rule is applicable anymore, based
on the agent type (i.e. conflict resolution type), either the
O, the ™, or the D component is chosen from which one
applicable rule is selected and applied. When a rule from
a chosen component is applied successfully, the belief com-
ponent is attended again and belief rules are applied. If
there is no rule from the chosen component applicable, then
again based on the agent type the next component is chosen.
If there is no rule from any of the components applicable,
then the process terminates — a fixed point is reached — and
one extension is calculated. For the calculation scheme in
Definition 1 this approach means that p is constructed as
follows.

DEFINITION 2 (AGENT TYPES). Let B,O,I~, and D be
the mutually exclusive sets of rules for beliefs, obligalions,
prior intentions, and desires, respectively. Let also X and Y
be any of these sets. An agent type is defined as a function
p: BUOUI UD — N that assigns a unique integer to
each rule from BUO U I~ U D such that for X #Y:

Vre € X Vry €Y p(re) < p(ry) V
Vre € X Vry €Y p(ry) < p(rz).

Note that p assigns unique values to the rules of all compo-
nents such that the values of all rules from one component
are either smaller or greater than the values of all rules from
another component. The agent types of section 2 can now
be characterized as follows.

social simple-minded or stable agent
p(rs) < p(ri-) < p(ro) < p(ra)

selfish simple-minded agent
p(rs) < p(ri-) < p(ra) < p(ro)

social open-minded agent
p(rs) < p(ro) < p(ra) < p(ri-)

selfish open-minded agent
p(rs) < p(ra) < p(ro) < p(r;-)



3.2.3 pecialized architectures

An agent architecture specifies the components of an agent,
how they are related, and how the information flows around.
The combination of the calculation scheme with an agent
type induces a certain agent architecture. For example, con-
sider the social simple-minded agent type, with p defined as
above. This agent type induces the architecture illustrated
in Figure 1. It should be interpreted as follows. Each com-
ponent receives an input extension and generates an output
extension. If the input and output extensions are identi-
cal (i.e. no new rules can be applied), the output extension
flows to the next component, otherwise it flows back through
the feedback loop. The initial extension is based on a set
of observations, which can be empty. Then, belief rules are
applied iteratively, indicated by the feedback loop around
the B component. If no more belief rules are applicable,
then the calculated extension is sent to the I~ component.
If possible, one prior intention is applied and the extension
is sent back to the B component via the feedback loop from
I~ to B; otherwise the extension goes to the O component,
etc.

Figure 1: social simple minded

3.2.4 General architecture

As we have seen, all six realistic agent types share one char-
acteristic: there are indefeasible observations, and the belief
component overrules all other components. The order in
which the other components are applied depends on the p
parameter. That means that, when p is considered as a
parameter of the underlying logic of extension calculations,
a general agent architecture can be proposed for all agent
types.

In addition to decision making, also the planning pro-
cess plays an important role. Planning is needed to decide
which actions should be performed in order to achieve the
intentions represented by the calculated extension. For this
reason, an additional component P is added to determine
which actions should be performed. The input to the plan-
ning component is an extension; the output is set of actions
scheduled to be performed. The resulting general agent ar-
chitecture is illustrated in Figure 2. The architecture should
be interpreted as above: if the output extension of a compo-
nent differs from the input extension, it flows back through
the feedback loop; otherwise it flows to one of accessible
components determined by the p function.

3.2.5 Control loop

Consider a BOID agent, configured by a certain p, in a dy-
namic environment. It receives input from the environment,
calculate an extension, decides which actions should be per-
formed, updates all components, and starts observing the
environment again. The agent type p together with this
order of processes define the control loop for the BOID ar-
chitecture, which determines the behavior of the agent in

:

Obs

E

Figure 2: BOID Architecture

dynamic environment. This control loop can be written as
follows:

set p;
repeat
E := calculate_extension(Observations,p);
plan_extension(E);
update(B,0,I”, D)
until forever
Note that the extension calculation which is a part of the
control loop is itself a complex process which is explained in
Definition 1.

3.3 Multiple Extension BOID

To account for the general situation, in this subsection we
propose the multiple extension BOID architecture, which
calculates a set of extensions instead on one single extension.
There can be two reasons for multiple extensions. First,
there can be larger sets than the one discussed in Section
2.2, like for example the examples discussed in Section 2.4.
Second, the examples discussed in Section 2.2 can lead to
multiple extensions if the agent type is less specific than the
ones discussed thus far.

3.3.1 More agent types

Let ro € X where X is either B,0O,I ", or D. Then, based
on Definition 2 some agent types that are introduced in the
previous section can be defined as a p function with certain
properties.

simple-minded agent
p(rs) < p(ri-) < p(ro) and p(ry) < p(ri-) < p(ra)

super-social agent
p(rs) < p(ro) < p(ri-) and p(ry) < p(ro) < p(ra)

super-selfish agent
p(rs) < p(ra) < p(ri-) and p(rs) < p(ra) < p(ro)

The super-selfish agent type, for which the p function is de-
fined above, induces the agent architecture illustrated in Fig-
ure 3. In this architecture, the extension generated by the D
component goes back to the B component by the feedback
loop if one desire rule is successfully applied. Otherwise, it
goes either to the I~ component or to the O component.
This non-determinism indicates a choice of the super-selfish
agent. For example, consider the OI conflict in which it
is obligatory to see my mother-in-law this weekend, but I
already have an intention to go to a conference. A selfish
agent cannot resolve this conflict automatically by his type,
and has to decide in some other way.



Obs.

Figure 3: super-selfish

3.3.2 Calculation scheme

Of course, in order to calculate multiple extensions, the
BOID logic, the p function, and the control loop need to
be adapted as well. For example, the p function will not
assign unique numbers to the rules of one components such
that more than one rule can be applied at a certain stage of
extension calculation.

DEFINITION 3 (BOID CALCULATION SCHEME). Let
A =(W,B,0,I~,D) be a BOID theory and p be an agent
type function.

Define
So = {W}, and for i >0
Sitv1 = { ThL(EU {w}) | EeSs;,
(¢ >w)e BUOUI  UD and
(a = w) is applicable to E and
A(B—wv) € BUOUI~ UD applicable to E
such that p(B — v) < p(a = w),
if such (a = w) ewist, otherwise w=T } ) }.
Then E C L is an extension for A iff S = U;2yS;.

3.3.3 Extension selection

An additional component, called new intention component
(I") is added resulting in the BOID architecture illustrated
in Figure 4. This component selects one extension from the
calculated set of extensions and sends it to the planning com-
ponent. The OI conflict above can then be modeled by an
interaction between the I and the planning components.
In fact, the IT component is assumed to impose an order-
ing on the input extensions (based on an extension selection
strategy ) such that it can select and send the best extension
to the planning component. If for any reason the selected
extension cannot be translated to a feasible plan, the I
component sends the next best extension to the planning
component.

e
‘ o] L]

Figure 4: Multiple Extension BOID

The update of the component in the control loop needs to
be modified as well. A specific update is based on the fact
that the selected extension indicates new intentions, which
forms the prior intentions for the next round of deliberation.

Therefore, beside updating all components, the I~ compo-
nent is updated based on the selected extension.

As noted the It component imposes an ordering on input
extensions based on an extension selection strategy. Here are
some options, which all have their drawbacks. But remem-
ber, the agent has to act so even if the extension selection
is problematic, he has to chose something.

1. Select an extension randomly;
2. First select the beliefs, then select the desires;

3. Choose desires such that it minimizes the conflicts be-
tween beliefs;

4. Select maximal or minimal extensions;

5. Select extensions with more beliefs, or more desires,
etc;

6. Select extensions that have larger intersection with
most other extensions.

There are two more important issues which have to be ad-
dressed in a study of decision-making as choosing extensions.
First, apart from choosing an extension we can also decide
a conflict between beliefs by simply making an observation,
and check in the world which belief is true. This leads us
to the well-known problems of planning with partial obser-
vations. In general, we can use an oracle to test whether a
proposition is in or out of the extension. Second, in practice
we have to add some mathematical structure to the rules,
with for example priorities as in prioritized rule logic. We
now have much more complexity due to our components!
Another option is to go more decision-theoretic and asso-
ciate losses and gains with the rules. This is by itself a line
of research with many interesting problems [9]. These issues
of extension selection are left for further research.

4. IMPLEMENTATION AND EXAMPLES

The idea behind the BOID architecture is very general; com-
ponents can be implemented by any mechanism that can
produce a certain input-output behavior. In the description
above we assumed that components are described by simple
production rules. However, this assumption is not crucial.

4.1 Prolog Prototype

Nevertheless we found it useful to implement a prototype of
the BOID in Prolog, along with the examples of section 2.
In this way one can try out different agent types, and see if
their behavior on the examples comes out as expected. The
source code can be found at http://www.cs.vu.nl/"boid/. We
made the following implementation choices.

1. Components are implemented by production rules of
the form x_rule(Index, A —> W), where is x is either
B, D, I or O, and where Index is a variable that indi-
cates the particular example or situation that is mod-
eled. A and W are both formulas of propositional logic,
where the consequent W does not contain any disjunc-
tions. Rules with disjunctions in the consequent can
be replaced by two rules with the same antecedent; one
for each disjunct. Unconditional beliefs, desires, inten-
tions or obligations are represented by a rule with T
or true in the antecedent.



2. Extensions are represented by sets of literals: atomic
formulas or negated atomic formulas. In order to test
if a rule applies to a certain extension, the antecedent
of the rule is broken down into its literal parts using
De Morgan rules, and for these parts it is then checked
if they are satisfiable by the extension. When a rule
is applied, the consequent of the rule is also broken
down into its literal subparts, and these are added to
the extension.

Currently, there are two versions of the implementation.
The first implements a single-extension BOID. It is a simple
prioritized production system, which iterates through the
following loop. First, find all rules that are applicable to
the current extension: the conflict set. Second, select the
rule with a minimal p value from the conflict set. Third,
apply the selected rule to the extension, resulting in a new
extension. This loop is repeated until either no more appli-
cable rules are found, or until a fixed point has been reached.
Because p assigns a unique priority to each rule, a single ex-
tension results.

The second implementation approximates a multi-extension
BOID. This version does not make explicit use of the p pri-
ority value for each rule, but uses a four-letter ranking on
components as in section 2.3. For example, in a ‘BIDO’ type
agent, the beliefs component is applied, followed by one in-
tention rule, feeding back the result to the B component
again. Then D rules can be applied, each time feeding back
the results to the I and B components as well. Finally, the
O rules are applied, each time feeding back the results to
the B, I and D components as well. Conflicts among rules
within one component are solved by the top-to-bottom or-
der of application used in Prolog. It is possible to back-track
over these choices, producing different possible extensions.
In a similar way, also partial agent types can be dealt with,
producing even more alternative possible extensions.

There are alternative ways of implementing the prototype.
Since the single-extension BOID makes use of a rather stan-
dard prioritization mechanism to deal with conflict resolu-
tion, many production systems woud be suitable to imple-
ment a BOID. An example is the CLIPS expert system shell,
which uses the fast RETE algorithm for matching applicable
rules [13]. For such imlementations, the BOID becomes a de-
sign heuristic, which helps the knowledge engineer to cluster
rules into components and select a prioritization mechanism
based on the desired agent type.

4.2 Examples

In this section, we illustrate how conflicts between attitudes
can be solved within the BOID architecture and its corre-
sponding control loop. To this end, we work out two ex-
amples presented in Section 2. Consider the example of a
binary BD conflict introduced by Thomason [21]. This ex-
ample can be represented by the following rules:

b_rule(ex1, true —> ~time_off).
b_rule(ex1, ~time_off —> ~vacation).

d_rule(ex1, true —> vacation).

Let the observations of a realistic agent be empty. We first
derive all beliefs resulting in the following extension:

[ ~time_off, ~vacation ]

This extension is input to the desire component. Because
the only D-rule is not applicable, the final result remains
the same. A non-realistic agent on the other hand would
produce [ vacation, ~time_off ] as the final result. Such an
agent clearly suffers from ‘wishful thinking’.

Now, consider the more complex example of a quadrupli-
cate conflict as given in Section 2. This example can be
represented as follows.

b_rule(ex2, true —> expensive_ticket).

b_rule(ex2, ~too_much_money —> cheap_hotel &
~expensive_ticket).

b_rule(ex2, ~too_much_money —> ~cheap_hotel &
expensive_ticket).

i_rule(ex2, true —> conference).

o_rule(ex2, conference —> ~too_much_money).

d_rule(ex2, true —> ~cheap_hotel).

Lets examine a social simple minded agent, of type ‘BIOD’.
Let the input of the agent be empty. Then, following the
control loop, we first derive all beliefs and intentions, result-
ing in the following extension:

[ conference, expensive_ticket ]

Because it is a social agent, the obligation rule is applied
first. This results in the following intermediate extension:

[ ~too_much_money, conference, expensive_ticket ]

This extension is fed back into the B component where it
triggers the third rule, because the second rules is not ap-
plicable as we already have expensive_ticket. This produces
the following final extension:

[ cheap_hotel, ~too_much_money, conference,
expensive_ticket |

However, in a selfish agent of type ‘BIDO’, the D-rule would
be applied first, resulting in the following final extension:

[ ~cheap_hotel, conference, expensive_ticket ]

Note that sending the results back to the belief component
does not make any difference here.

5. RELATED RESEARCH

Previous theoretical research has often neglected to show a
possible implementation. Like [11, 6] we not only provide
a theoretical framework, but we also provide an architec-
ture which includes a control procedure in the style of Rao
and Georgeff’s BDI interpreter [17]. We extend BDI with
obligations and conflict resolution.

Thomason [21] proposes a so-called BDP-logic for beliefs,
desires and planning which is capable of modeling a wide
range of common-sense practical arguments, and which can
serve as a more general and flexible model for agent archi-
tectures. In Thomason’s approach it is explicitly defined
when desires override beliefs, whereas in our approach this
is determined by the control loop. A detailed comparison
can be found in [5].

Dignum et.al. [11] propose an alternative extension of
BDI with obligations. It is based on on extension of the
BDI interpreter with potential actions to reason about these
effects.



6. CONCLUDING REMARKS

We have discussed possible conflict types that may arise
within or among informational and motivational attitudes
and we explained how these conflicts can be resolved within
the BOID architecture. The resolution of conflicts is based
on Thomason’s idea of prioritization, which is implemented
in the BOID architecture as the order of derivations from
different types of attitudes. We have shown that the order
of derivations determines the type of an agent. For exam-
ple, deriving desire before beliefs produces wishful think-
ing agents and deriving obligations before desires produces
super-social agents. In general, the order of derivation can
be used to identify different types of agents.

An important ingredient in the BOID architecture is the
presence of feedback loops. Through these feedback loops
already derived beliefs, obligations, desires and intentions
are sent back (at several stages) as new input to the BOID.
These feedbacked inputs may trigger new beliefs, obliga-
tions, desires and even intentions. For example, an obliga-
tion to go to the assistance of your neighbors may induce
the obligation to tell them you will come, and a desire to go
to the dentist may induce the belief that pain will result —
but of course not the desire that pain results.

Issues for further research are the methods for extension
selection and its relation with planning and scheduling. It
is possible that an intention is not immediately realized and
that the future deliberations of the BOID can be influenced
by these scheduled intentions. In the presented version of
the BOID, all prior intentions are sent back via the feedback
loop as well. These intentions can be overridden by other
motivational attitudes such that the early derived intentions
may need to be removed from the scheduled plans (inten-
tion reconsideration). Note also that adding a scheduling
and planning component in the BOID architecture may give
rise to the so-called delayed stimulus response behavior, in
the sense that the BOID may be responding to an earlier
observed stimulus. For example, agent A intends to go on
vacation. He receives the information that his mother in
law is hospitalized and therefore he has to visit her. After
visiting her, he can return to the old intention and go on
vacation.

In our opinion the gap between our proposed architectures
and their underlying logics is much smaller than the very
large gap between modal BDI logics and BDI architectures.
We believe that the presented architecture and benchmark
examples already provides some material to close the gap
between theory and practice of agent design.
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