Journal of Classification 16:117-137 (1999)

On the Identifiability in the Latent Budget Model

L. Andries van der Ark
Utrecht University
Peter G. M. van der Heijden

Utrecht University

Dirk Sikkel

Tilburg University

Van der Ark’s research was supported by the Netherlands Research Council, Grant 510-
78-406. The authors would like to thank the three anonymous reviewers for their helpful and
constructive reviews and Phipps Arabie for his editorial comments.

Authors’ adresses: L. Andries van der Ark, Department of Methodology and Statistics,
Faculty of Social sciences, Utrecht University, PO box 80140, 3508 TC, Utrecht, the Nether-
lands, email: A.vanderArk@fss.uu.nl; Peter G.M. van der Heijden, Department of Methodol-
ogy and Statistics, Faculty of Social sciences, Utrecht Univessity, PO box 80140, 3508 TC,
Utrecht, the Netherlands, email: P.vanderHeijden@f{ss.uu.nl; Dirk Sikkel, Center for
Economic Research, Tilburg University, PO box 90153, 5000 LE, the Netherlands, e-mail:
Dirk @pi.net.



118 L.A. van der Ark, P.G.M. van der Heijden, and D. Sikkel

Abstract: The latent budget model (LBM) is a reduced rank model for the analysis
of compositional data. In the social sciences the LBM was originally proposed for
the analysis of two-way contingency tables. The rows of the table are modelled as
a mixture of typical or latent distributions (budgets). The mixing parameters can be
used to classify the rows into typical groups. In geology the model is used for the
analysis of physical mixing processes, and in this context it is known as the end-
member model.

A major drawback of the latent budget model is that, in general, the model is
not identifiable, which complicates the interpretation of the model considerably.
This paper studies the geometry and identifiability of the latent budget model.
Knowledge of the geometric structure of the model is used to specify an appropri-
ate criterion to identify the model. The results are illustrated by an empirical data
set.

Keywords: Latent budget analysis; Correspondence analysis; Identification; Mix-
ture models; Compositional data; Chi-squared distance.

1. Introduction

Compositional data are data collected in an I X J two-way table such
that the elements of each row are proportions, summing up to 1. Such a row
vector is called a budget, and its elements are conditional proportions and
called components. Compositional data play an important role in many dis-
ciplines (see Aitchison 1986).

The property that the elements of the budgets add up to 1 yields
specific problems for data analysis, such as the absence of an interpretable
covariance structure, and the difficulty of parametric modelling (Aitchison
1986). Aitchison proposed to base analysis on the covariances of the log-
ratios of the first J — 1 components and the J-th component. These log-ratios
are assumed to be realizations from a J — 1-variate normal distribution. In
this way we can circumvent the dependence due to the sum constraint, but the
parameters are relatively difficult to interpret in terms of the original com-
ponents and the focus on differences among the observed budgets disappears,
as a result of the transformation of the data.

An alternative approach to solve the specific compositional data prob-
lems that does not have these disadvantages, is the latent budget model
(LBM), a mixture model for compositional data. The LBM approximates the
I observed budgets, p; ¢ = 1, .. .,]), by a mixture of X (K <min(/,J)) typical
or latent budgets, B (k=1, ... ,K), yielding expected budgets denoted by =;.
Let p;); G =1,...,J) be the components of p;, let m;; (j =1,...,J) be the
components of ;, let o ; i =1,...,k=1,...,K) be the mixing parame-
ters, and let B;;; G =1,...,J) be the components of Bx. The latent budget
model with K latent budgets, denoted by LBM(K), is
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The parameters in (1) are conditional probabilities, indicated by the subscript,
and are subject to equality constraints

J K J
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and inequality constraints
OSﬂjHSl,OSQkHSl,OSBﬂkS]. (3)

LBM(1) is the independence model, with ¢;;; = 1 and Bj,l = m;, where T; is
the marginal probability for column j. Let pi; be the unconditional observed
proportions and let 7;; be the expected unconditional probabilities. For the
marginal proportions of model (1) the following properties hold:
Z]J'=1 =mn = Z]lzl Pij EPi and 2,1'=1 Ty =7 = E,I=1 Pij =Pj hold, where T
are the expected unconditional probabilities and pi; are unconditional
observed proportions. The relative importance of a latent budget fB; is
expressed by mp=X; ®; O ;;.

The model was suggested by Goodman (1974a), and worked out in
detail by Clogg (1981). The model is used to classify I budgets, which may
represent persons, groups or objects, into a small number of latent budgets,
consisting of prototypical characteristics of the sample. LBM(2) and LBM(3)
can be visualized so that the differences among the budgets can be expressed
in distances (see van der Ark and van der Heijden 1997). For an elaborate
interpretation of the LBM we refer to van der Heijden, Mooijaart and de
Leeuw (1992), and for the estimation of the parameters we refer to de Leeuw,
van der Heijden and Verboon (1990) and Mooijaart and van der Heijden
(1995). For an empirical comparison between the results from LBM and the
approach proposed by Aitchison see de Leeuw et al. (1990) and for an over-
view on mixture models, see Everitt and Hand (1981), Titterington, Smith and
Makov (1985), and Lindsay (1995). In geology the LBM is known as the
endmember model (see Renner 1993).

As an example to illustrate the results we analyze data from a budget
survey of meat and meat products, conducted by Stichting Telepanel, and
presented in Table 2. Over a period of a year, respondents were asked weekly
about their expenses with respect to meat and meat products, ‘‘pork,’’
“beef,”” ‘“‘horsemeat, veal and mutton" (H.V.M.), ‘‘mince,”’ “processed
meat’” (Proc.) and ‘‘snacks and assorted barbecue/grill and fondue meat’’
(Other). These budgets are broken down by the respondents’ attitudes to
meat related topics. The categories are classifications of factor scores: low
(-), medium (=) and high (+). The factor scores were obtained by three factor
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Table 1: Factors obtained by three factor analyses on general atiitudes towards food, aftitudes
towards meat, and attitudes towards meat products.

factor abbreviation description
General attitudes towards food
health H respondent values individual health and environmental durability
cooking C respondent likes cooking
ready made R respondent likes ready made and frozen food
quality Q respondent is prepared to pay extra for good quality.
Attitudes towards meat
traditional meat T respondent is a traditional Dutch meat eater,
wants daily meat with fat.
naturalness N respondent wants natural meat, and is opposed to bio-industry.
selectivity Se respondent does not buy much meat but buys high quality.
Attitudes towards meat products
skepticism Sk respondent has a skeptical attitude towards the
prepreparation of meat products.
luxury L respondent considers meat products a luxury.
versatility \% respondent uses meat products for many purposes.

Table 2: Red meat consumption in the Netherlands

red meat
Topic /attitude pork  beef h,v,m mince proc. other | total
health + (H-+) | 3054 3197 .0287 .1819 .1161 .0481 | 1.000
health = (H=) | 3117 2672 .0275 .2102 .1393 .0441 | 1.000
health — (H-) | 2632 3451 .0216 2164 .1258 .0280 | 1.000
cooking + (C+) | .2868 .3026 .0172 .2084 .1438 .0411 | 1.000
cooking = (C=) | 2985 2850 0243 2115 .1369 .0429 | 1.000
cooking — (C—) | .3196 2980 .0403 .1914 .1100 .0409 | 1.000
ready-made —  (R—) | 2999 3330 .0334 .1970 .0956 .0412 | 1.000
ready-made =  (R=) | 3102 2934 .0230 .2096 .1315 .0322 | 1.000
ready-made + (R+) | 2834 2471 .0255 .2065 .1755 .0620 | 1.000
quality + (Q+) | 2845 3223 .0317 .2015 .1200 .0400 ; 1.000
quality = (Q=) | .2901 2797 .0241 .2276 .1400 .0384 | 1.000
quality — (Q-) | .3328 2653 .0214 1922 .1411 .0472 | 1.000
trad. meat + (T+) | .2645 2900 .0339 .2356 .1419 .0341 | 1.000
trad. meat = (T=) |.3041 .2897 .0261 .2069 .1361 .0371 | 1.000
trad. meat —~ (T-} | .3172 3033 .0232 .1842 .1176 .0545 | 1.000
naturalness + (N+) | .2801 2520 .0313 .2242 .1521 .0514 | 1.000
naturalness = (N=) | .3114 2897 .0277 2030 .1287 .0397 | 1.000
naturalness — (N-) |.2997 3320 .0217 .1923 .1180 .0364 | 1.000
selectivity + (Se+) | -3126 2718 .0285 .1951 .1352 .0568 | 1.000
selectivity = (Se=) | .3032 3124 .0261 .2042 .1210 .0331 | 1.000
selectivity — (Se—) | .2869 .2906 .0255 .2162 .1418 .0389 | 1.000
scepticism + (Sk+) | .3007 2894 .0289 .1971 .1287 .0553 | 1.000
scepticism = (Sk=) | .3039 .2800 .0275 .2080 .1384 .0423 | 1.000
scepticism — (Sk-) | .2933 3337 .0221 2055 .1167 .0286 | 1.000
luxury + (L+) | .3305 3020 .0233 .1899 .1062 .0480 | 1.000
luxury = (L=) 2875 3027 0299 2141 1336 .0323 | 1.000
luxury — (L—) | 2910 .2740 .0252 2078 .1531 .0489 | 1.000
versatility + (V+) | 3112 3174 .0258 .2026 .1064 .0366 | 1.000
versatility = (V=) | .3030 .2676 .0248 2175 .1436 .0435 [ 1.000
versatility — (V—) | 2785 3156 .0321 .1810 .1461 .0467 | 1.000

analyses on general attitudes towards food, attitudes towards meat, and atti-
tudes towards meat products. The factors are given in Table 1.

Each subject is classified into one of the three categories of the above
factors. Each individual budget is, therefore, used 10 times to calculate a
group budget. The general idea behind this classification is to find latent
budgets that not only show differences in purchase behavior, but also
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Table 3: Unidentified LBM(1), LBM(2) and LEM(3).

LBM() | LBM(2) TBM(3)
mixing parameters k=1 (k=1 k=2|k=1 k=2 k=3
health -+ (H+) 1.000 | .3418 6582 | 3979 1472 4549
health = (H=) 1.000 | .5059 4941 | 4152 .3526 .2321
health — (H-) 1.000 | .3100 .6900 | .0960 .1383 .7657
cooking + (C+) 1.000 | 4305 .5695 | .2588 .2737 4675
cooking = (C=) 1.000 | 4609 .5391 | .3346 .3042 3612
cooking — {C-) 1.000 | .3846 .6154 | .4687 .1939 .3374
ready-made — (R-) 1.000 | 2899 .7101 | .3457 .0870 5674
ready-made = (R=) 1.000 | 4312 5688 | .3673 .2632 .3695
ready-made + (R+) 1.000 | .6059 3941 { .3182 4889 .1928
quality + (Q+) | 1.000 | .3495 6505 | 2626 .1710 .5664
quality = Q=) 1.000 | 4865 5135 | .2721 .3429 .3849
quality — (Q-) 1.000 | .5033 .4967 | .5363 .3369 .1279
trad. meat + (T+) 1.000 | .4692 5308 | .1357 .3352 5291
trad. meat = (T= 1.000 4464 5536 | .3547 2838 .3616
trad. meat — (T-) 1.000 | .3844 6156 | 4686 .1937 .3378
naturalness + (N+) 1.000 5687 4313 | 3166 4421 .2413
naturalness = (N=) 1.000 4350 5650 | .4021 2644 .3335
naturalness — (N-) 1.000 | 3182 .6818 | .3219 .1252 .5529
selectivity + (Se+) 1.000 | 4866 5134 | 4596 3236 .2169
selectivity = (Se=) 1.000 | 3716 6284 | .3360 .1912 4729
selectivity — (Se—) 1.000 | 4583 5417 | .2635 3082 .4283
scepticism + (Sk+) | 1.000 | 4388 5612 | 3890 .2706 .3404
scepticism = (Sk=) | 1.000 | 4739 5261 | .3693 .3169 3138
scepticism — (Sk—) | 1.000 | 3168 6832 | .2625 .1297 .6078
luxury + L+) 1.000 | .3723 6277 | 5184 1732 3084
luxury = (L=) 1.000 1| 4161 .5839 | 2550 .2558 .4893
luxury — (L-) 1.000 { 5101 4899 | 3175 .3681 .3144
versatility + (V4) 1.000 | 3410 6590 | 3838 .1476 4687
versatility = (v=) 1.000 | 5149 4851 § .3613 3695 .2692
versatility — (vV-) 1.000 § 3914 6086 ] 2642 2237 5121
latent budgets
Pork .2999 L2979 3014 | 4103 2288 2498
Beef 2960 | 1204 4260 | 3056 1481 3841
Horsemeat, Veal, Muiton .0268 | 0258 .0275 | .0282 .0251 .0266
Mince 2042 2473 1723 | 1336 2835 2143
Processed meat 1307 | 2356 .0530 | 0609 .2594 1077
Other 0424 | 0729 0198 { 0614 .0551 .0175

correspond to differences in attitudes that are relevant to marketing. We
estimated the parameters of LBM(1), LBM(2) and LBM(3), by weighted
least-squares (see Mooijaart and van der Heijden 1995). The results are
presented in Table 3.

A major problem is that, in general, LBM(K) is not identifiable, which
complicates the interpretation. of the model considerably, and therefore also
the classification of the budgets. LBM(2) and LBM(3) of Table 3 are not
identifiable, and we cannot interpret them since parameter estimates with
values completely different from those in Table 3 may vield exactly the same
goodness of fit statistic. The unidentifiability can be demonstrated by writing
the model in matrix notation. If we collect w;); in an I X J matrix II, o ; in
an I X K matrix A, and B;; in a J x K matrix B, then (1) can be written as
I1 = AB” from which it is clear that

M=ABI = AT !TB? = A"B'7 4)
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where A* = AT! and B*T = TBT (see de Leeuw ez al. 1990). T is a matrix of
order K x K with elements T.;. To ensure that A* and B* satisfy the equality
constraints in (2), de Leeuw et al. (1990) prove that T is subject to the con-
straint

K
Sta=1 (c=1,...,K). 5)
d

Nevertheless, (5) still leaves an infinite number of possible values for 1.,
with the restriction that (3) should hold.

In special cases, however, the model is identifiable. LBM(1) is
identifiable since T is a 1 x 1 matrix that can only have the value 1 to meet
the constraints in (2) and (3). Bandeen-Roche (1994) describes a model,
equivalent to the LBM, on which she places distributional assumptions to
ensure identifiability. Identifiability can also be achieved by constraining the
parameters (see de Leeuw et al. 1990; van der Heijden ef al. 1992; Goodman
1974b, for multiple latent class analysis). This is what is usually done. It is
well known that for LBM(2) an identified solution is obtained by setting two
parameters equal to zero (see Clogg 1981). Such fixed value constraints may
decrease the model fit.

In this paper we propose a different method to identify the parameters
of the model, emphasizing the explorative nature of the model. Instead of
fixing parameters, we choose T such that the solution is optimal in a specific
sense. This method is somewhat similar to the rotation problem in factor
analysis, where unidentifiable solutions are usually varimax-rotated or
oblimin-rotated to simplify the interpretation. We will call the common fac-
tor model identifiable because the varimax-rotated solution is always unique
in practical situations. Likewise in this paper, unique solutions obtained by
optimization of some criterion will also be called identified solutions. In Sec-
tion 2, we discuss the geometry of the LBM and we make explicit how a
feasible latent budget solution should be chosen. Within this framework we
discuss several ways to identify the parameters in Section 3. De Lecuw et al.
(1990) proposed identifiable solutions for LBM(2). We will discuss these
solutions in our framework and extend their ideas to models of higher rank,
for which there is so far no proposal for identifiability. In Section 4 the results
are related to to correspondence analysis (CA),

2. Geometry in the Latent Budget Model

We will first discuss the geometry of LBM(2), then of LBM(3), and
finally we will extend the discussion to LBM(K).
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O

Figure 1a. The space spanned by two latent budgets and the space spanned by three latent
budgets.

B
B

Figure 1b. The expected budgets as a combination of the latent budgets.
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Figure 1d. Graphic display of the outer extreme budgets and the inner extreme budgets of
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In Figure 1 graphic displays of LBM(2) are given. In LBM(2), the
unidentified latent budgets B, and 3, can be viewed as two vectors in J-
dimensional space. The heads of any two vectors can be connected by a line
segment, denoted by V;, which is a subset of the line S, (see Figure 1a). The
subscript ‘1’ denotes the dimensionality of the space.

The expected budgets ntq, . . . ,7; are J-dimensional vectors and convex
combinations of B; and B,. Therefore the heads of 7y, ... ,n; lie on V4, and
the relative distance from my, . . .,n; to B; and B3, is expressed by the mixing

parameters. A graphic representation of the parameter estimates of LBM(2)
in Table 3 is presented in Figure 1b.

The unidentified latent budgets B; and B,, collected in B, can be
transformed into B” such that the identified latent budgets B’f and B’{ lie on
S1, by BT = TBT (see 4), with T.; subject to the constraints in (5). Let b be a
vector such that bT =’ccBT, where T, is the c-th row of T. Hence be §;. Ifb
has no negative elements then it is a budget.

If we choose T, such that one element of b, say b;, equals zero, then
this point on S is denoted by §{. On one side of §{ there are vectors with
b; > 0, and on the other side vectors with b; < 0. We can mark J such points
on S, one for each element. In this way we can determine the region of S,
which has vectors consisting solely of nonnegative elements, and thus are
budgets. The region of budgets is denoted by U;. A graphic representation is
given in Figure 1c. The vectors that bound U, are called outer extreme budg-
ets, and have one component equal to zero. LBM(2) always has two outer
extreme budgets.

Notevery b € U, is a feasible latent budget. A latent budget cannot lie
between two expected budgets, because this would result in negative mixing
parameters. Hence a latent budget cannot lie within the space spanned by the
expected budgets that take the most extreme position on §;. This space is
denoted as W4, and the most extreme expected budgets are called inner
extreme budgets. For Table 3 the inner extreme budgets are the expected
budgets of R+ and R—. LBM(2) always has two inner extreme budgets. A
graphic representation of the inner extreme budgets, the outer extreme budg-
ets, and the space where possible latent budgets may be positioned, U, \ Wy
(shaded area) is given in Figure 1d.

We turn now to the geometry in LBM(3). In LBM(3) the heads of the
three unidentified latent budgets 3, 8, and P; span a triangular two dimen-
sional plane, denoted by V,, V, € §,. A graphical representation is given in
Figure 2.

The expected budgets are convex combinations of the latent budgets
and, therefore, they lie in the triangle V,. We represent S, in Figure 3 in two
dimensions. In Figure 3 the upper vertex represents [3;, the right hand vertex
represents B, and the left hand vertex represents Ps.
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Figure 2. V,. the space spanned by three unidentified latent budgets.
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Figure 3. The expected budgets as a convex combination of B;, B, and B;. W,, the space
spanned by the inner extreme budgets.
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Figure 4. U,, the space spanned by the outer extreme budgets, and the regions where b has
one element equal to zero.

The positions of the expected budgets depicted in Figure 3 are deter-
mined by their mixing parameters (see Table 3 right panel), so the position of
7; is oy ); times the distance from the bottom side to the upper vertex, oy;
times the distance from the left hand side to the right hand vertex, and o ;
times the distance from the right hand side to the left hand vertex. The
expected budgets that have the most extreme position on S, are those of H—,
R+, L+, Q—, R—and N+. These are the inner extreme budgets. LBM(3) may
have more inner extreme budgets than latent budgets. The space spanned by
the heads of the inner extreme budgets will be denoted as W 5.

Analoguous to LBM(2) there exist vectors b e S,, where b =1.B7,
that have one eclement equal to zero. In LBM(3) these vectors can be
represented as lines on S5, see Figure 4. The solid triangle represents V,, and
a dashed line represents the collection of vectors b with one element, say b;,
equal to zero. For b; this line in S, is denoted by S{ and represented in Fig-
ure 4 by the label of the category that equals zero. $4 (j=1,...,J) have
vectors with b; > 0 on one side and b; < 0 on the other side. In this way we
can determine the region of budgets, denoted by U,. In Figure 4 S} (Pork =
0), $3 (Beef = 0), $3 (Mince = 0) and S35 (Processed meat = 0) and S5 (Other =
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0) define the convex region U,. The intersection of S4 and S§ represents a
vector with both the j-th and the j-th elements zero. The corner points of U,
are the outer extreme budgets for LBM(3). Hence in the LBM(3) the outer
extreme budgets have two clements equal to zero. It is relatively simple to
determine the region of budgets by elementary row operations on B.

Analoguous of the LBM(2), latent budgets should lie in Uy \ W; to
avoid negative mixing parameters, and latent budgets should be chosen such
that

W,cV,cU, (6)

where V5 is the subspace spanned by the chosen latent budgets. LBM(3) has
a minimum of 3 and a maximum of / inner extreme budgets, and a minimum
of 3 and a maximum of J outer extreme budgets.

In LBM(K) the latent budgets Bi,....Bx can be viewed as K J-
dimensional vectors that span a K —1 dimensional subspace Vx_; in the
(K — 1)-dimensional space Sg_;. Conditions for a sound latent budget solu-
tion require that both the latent budgets, and the mixing parameters meet the
constraints in (2) and (3). The equality constraints in (2) are satisfied by
imposing equality constraints on T, see (5) and in addition, the inequality
constraints (3) are satisfied by extending (6) to the LBM(K),

Wg_1 € Vg < Uk 7

where Ug_; is the space spanned by all budgets b that have K — 1 clements
equal to zero, and all other elements nonnegatlve Wy _; is the space spanned
by the inner extreme budgets, and VK_1 is a proposed identified latent budget
solution.

3. Identifiability of the LBM by Optimization of a Criterion

In this section we will first discuss existing proposals for an identified
LBM(2) and then we will use the geometric results of the previous section to
work out ideas for an identified LBM of higher rank. For LBM(2), four typi-
cal identified solutions have already been indicated by de Leeuw er al
(1990). We label these

o the outer extreme solution, such that Bi and B are the two outer
extreme budgets,

e the inner extreme solution, such that B} and B are the two inner
extreme budgets;

o the emphaszzed first budget solution, such that B7 is an inner extreme
budget, and B is an outer extreme budget. Thus Bi is emphasized in
the sense that for k = 1, 7, is as large as possible,
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Table 4: Four tdentified LBM(2) solutions

outer extreme | inner extreme { emphasized 8, | emphasized 3,
solution solution solution solution

mixing parameters k=1 k=21k=1 k=2|k=1 k=2 |k=1 k=2
health + (H+) | 3751 6249 | 1645 .8355 | .7052 2548 | .0471 0529
health = (H=) | 4726 5274 | 6837 .3163 | .8884 .1116 | .1957 .8043
health — (H-)y | 3562 .6438 | .0636 9364 | .6696 3304 | 0182 9818
cooking + (C+) | 4278 5722 | 4451 5549 | .8042 1958 | .1274 8726
cooking = (C=) | 4459 5541 | 5413 4587 | .8382 .1618 | .1549 .8451
cooking — (C~) | 4005 5995 | 299 .7001 | .7530 .2470 | .0858 9142
ready-made — (R—) | .3443 6557 | .0000 1.000 | .6472 .3528 | .0000  1.000
ready-made = (R=) | 4282 5718 | .4472 5528 | .8050 .1950 | .1280  .8720
ready-made -+ (R+) | .5319 4681 | 1.000 .0000 | 1.000 .0000 | .2862 .7138
quality + (Q+) | 3797 6203 | .1888 8112 | .7138 2862 | .0540  .9460
quality = (Q=) | 4610 .5390 | .6222 .3778 | .8667 .1333 | .1781 .8219
quality — (Q-) | 4710 5290 | 6755 .3245 | .8855 .1145 | .1933  .8067
trad. meat + (T+) | 4507 5493 | 5673 4327 | 8473 .1527 | .1624 .8376
trad. meat = (T=) | 4372 5628 | 4954 .5046 | 8220 .1780 | .1418 .8582
trad. meat — (T~) | 4004 5996 | .2993 .7007 | .7528 .2472 | .0857 .9143
naturalness + (N-+) | 5098 4902 | .8823 1177 | .9585 .0415 | .2525 .7475
naturalness = (N=) | 4304 5696 | 4592 .5408 | .8092 .1908 | .1314 8686
naturalness — (N—) |t .3611 .6389 | .0896 9104 | 6788 .3212 | .0266 .9744
selectivity + (Set) | 4611 .5389 | 6225 3775 | .8668 .1332 | .1782 .8218
selectivity = (Se=) | .3928 6072 | 2585 7415 | .7384  .2616 | .0740  .9260
selectivity — (Se—) | 4443 .5557 | 5320 4671 | .8352 1648 | .1525 8475
scepticism + (Sk+) | 4327 5673 | 4713 5287 | 8135 1865 | .1349 8651
scepticism = (Sk=) | 4535 5465 | 5823 4177 | .8526 .1474 | .1667  .8333
scepticism — (Sk—) | .3603 .6397 | 0854 0146 | .6773 3227 | 0244 9756
luxury + (L+) | .3932 6068 | .2609 .7391 | .7392 .2608 | .0747 .9253
luxury = (L=) | 4192 5808 | .3993 .6007 | .7881 .2119 | .1143  .8857
luxury — (L—-) | 4751 5249 | 6970 .3030 | 8931 .1069 | .1995 .8005
versatility + (V4) | 3746 6254 | .1618 .8382 | .7042 .2958 | .0463  .9537
versatility = (V=) | 4779 5221 | .7120 .2880 | .8984 .1016 | .2038  .7962
versatility — (V-) | 4046 5954 | .3213 6787 | .7605 .2395 | .0920 .9080
latent budgets
Pork 2965 3024 { .2993 3004 | 2093 3024 | 2965 .3004
Beef .0000 .5146 | .2409 3374 | 2409 .5146 | .0000 .3374
Horsemeat, Veal, Mutton 0252 .028C | .0265 0270 | .0265 .0280 | .0252 .0270
Mince 2769 1506 | .2178 1941 | 2178 1506 | .2769  .1941
Processed meat 3076 .0000 | .1636 .1059 | .1636 .0000 | .3076 .1059
Other 0938 .0044 | .0520 .0352 | .0620 .0044 | 0938 .0352
budget proportions (7;) 4247 5753 | 4287 5713 | .7984 2016 | .1227 8773

e the emphasized second budget solution, which is the opposite of the
emphasized first budget solution. Now for k =2, m, is as large as
possible.

The identified parameters of LBM(2) of the data in Table 2 are presented in
Table 4. A graphic representation can be derived from Figure 1d in the fol-
lowing way. For the outer extreme solution we take the two outer extreme
budgets as latent budgets; for the inner extreme solution we take the two
inner extreme budgets as latent budgets; for the emphasized B, solution we
take the outer extreme budget on the left hand side and the inner extreme
budget on the right hand side as latent budgets; for the emphasized f, we
take the opposites.

For the purpose of interpretation, the following arguments apply when
choosing one of these options. In the outer extreme solution the latent budgets
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are as different as possible, and this will in most cases simplify their interpre-
tation. Specifically, in each latent budget there is one component equal to
zero, which will in many cases largely determine the interpretation. On the
other hand, since the latent budgets are so extreme, the mixture coefficients of
row i will be as close as possible to the mixture coefficients of row i”, and this
will make the interpretation of differences between rows more difficult.

The appropriate way to interpret the outer extreme solution in Table 4
is, therefore, as follows: B; emphasizes the consumption of mince, processed
meat and the category ‘‘Other,”” compared to the marginal budget, while B,
emphasizes the consumption of beef. There is no distinction between the
budgets in the consumption of pork and horsemeat, veal and mutton. §; can
be described as a budget on low fat, but more expensive and elaborate meat,
while 3, can be described as a budget on cheaper, faster, high fat meats.

In the inner extreme solution, the latent budgets are as similar as possi-
ble. At the same time, the mixture coefficients will be as different as possible.
In particular, expected budgets of the rows that are the identified latent bud-
gets have one mixture coefficient equal to zero and the other equal to 1. 3; of
the inner extreme solution in Table 4 is interpreted in terms of the mixing
parameters and corresponds to a greater emphasis on ‘‘ready-made’’ and
“‘naturalness,”” and a not so much on ‘‘quality’” and “‘skepticism.”” Since the
mixing parameters that correspond to B, are one minus the mixing parameters
that correspond to 3, the interpretation of {3 is the opposite of the interpreta-
tion of B;. The attitude towards ‘ready-made’’ food is the most discriminat-
ing aspect of meat consumption.

In choosing either the emphasized first or second latent budget, the
actual values of m, (k = 1,2) could play a role. If one wanted to emphasize
one of the latent budgets at the expense of the other, then latent budget k
should be chosen for which 7 is largest. Emphasizing the first latent budget
implies taking the first latent budget of the inner extreme solution and the
second latent budget from the outer extreme solution.

In LBM(K) (K > 2), the identifiability problem is more complex than in
LBM(2), due to the fact that there may be more than K inner extreme budgets
and more than K outer extreme budgets (see Section 2). Therefore, we cannot
extend the proposals for identifiability of LBM(2), to models of higher rank.
For the identifiability of the LBM(3) certain proposals were introduced. De
Leeuw et al. (1990) proposed to make as many parameters as possible equal
to zero, a procedure which leaves open many alternatives. Ripley (1990) pro-
posed to fit the model by placing two expected budgets on each boundary of
V,. Although he noticed that this does not always yield a feasible solution, he
did not pursue the problem any further. Renner (1995) proposed choosing the
latent budgets as close to the data as possible, but he did not use any explicit
criterion. No proposal for identifiability for K > 3 so far exists.
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We adopt the idea of inner extreme solutions and outer extreme solu-
tions for LBM’s of higher rank to facilitate model interpretation and do not
consider emphasized latent budget solutions since they would become too
numerous. In the LBM(2) the expressions*‘as similar as possible’” and ‘‘as
different as possible’” are concepts that leave no room for interpretation, since
all the budgets lie on a single line. For LBM’s of higher rank there are a
number of possibilities for defining these concepts explicitly.

L. sums of distances among the identified latent budgets. There arc [K]

2
distances among the K latent budgets, and one option is to maximize
the sum of these distances to obtain an outer extreme solution, and to
minimize this sum to obtain an inner extreme solution. This still
leaves open the choice of a specific distance measure. We propose
using the chi-squared distance, sz (see, for example, Greenacre
1984), a concept well-known in CA, rather than the Euclidean dis-
tances. In the chi-squared distance, distances between latent com-
ponents are weighted by the average component size 1/7;, thus
correcting for the fact that differences between B and B;- are
likely to be smaller for categories with a low marginal proportion ;.
The chi-squared distance between By and [B;- is defined as

§a o [é Bjix = Bjix)* #

x T

j=1 g

2. optimizing the volume of Vx_;. In order to be able to calculate the
hypervolume, distances between the identified latent budgets have to
be known, and for these we could also use the chi-squared distances.

3. measuring the dependence in B*. For measuring the dependence in
B" it seems most elegant to weight for the number of observations
falling in each of the latent budgets, that is, to work out the elements
n;k =T nf. x- The dependence can then be measured using a cri-
terion like the Pearson chi-square, the likelihood ratio chi-square, or
some information criterion, which can be optimized to obtain an outer
extreme and an inner extreme latent budget solution.

For mainly practical reasons we choose to identify the LBM by optim-
izing the sum of chi-squared distances. Optimizing the volume of Vx_; turned
out to be too complicated to expand to higher rank models, and too time-
consuming to use in an iterative procedure. The last criterion is easily
expanded to LBM(X), but it is still not easy to optimize,

Hence, for an identified inner extreme solution and an identified outer
extreme solution, we propose the criteria



132 L.A. van der Ark, P.G.M. van der Heijden, and D. Sikkel

and min —Q—l— . &)
2 5x2q

g=1

respectively, where Q = [2 .

We use a Monte Carlo procedure to compute solutions proposed in (8).
We modified the well-known Metropolis Algorithm (Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller 1953; see also Press, Flannery, Teukolsky and
Vetterling 1989, for computational issues). The central idea is as follows: we
start with the unidentified latent budget solution, hence Ty = Ix. Then a
cycle of subprocesses starts, indexed by m (m =1, ... ,M). Each subprocess
consists of a number of iterations, indexed by n (n=1,...,N). In each
iteration a constant a,, is added to one of the elements of T, and a,, is sub-
tracted from another element chosen randomly from the same row, and the
function in (8) is evalvated. a,, is fixed throughout the m-th subprocess. The
probability of preferring the altered matrix at iteration n, T,, , over T,, ,; at
iterationn — 1 is

fm,n_fm,n-l

P (acceptT,,,) =¢e &V

in which f,, , is the function value (the sum of chi-squared distances at sub-
process m and iteration n), and CV,, is a control variable that starts off at a
high value in the first iteration and decreases after each iteration. Note that if
Jmn > fmn-1, then the probability is greater than 1 and the altered matrix T at
iteration n is always accepted. The m-th subprocess stops when CV, is
sufficiently small and there is no more improvement in further minimizing (8).
After the m-th subprocess, the constant a,, is diminished by a factor C, such
that a,,,1 = a,C, and the m + 1-th subprocess begins. The cycle of sub-
processes stops when a,, is sufficiently small. The Metropolis algorithm is
known for its ability to walk out of local optima, although a global optimum
is not guaranteed and different altering schemes and different sets of
unidentified parameters should be used as starting values to increase the pos-
sibility of finding a global optimum,

The outer extreme solution and the inner extreme solution of LBM(3)
for the data in Table 2 are presented in Table 5. Graphic representations arc
given in Figure 5. The identified latent budgets in the outer extreme solution
are three of the five outer extreme budgets. However, we stress that the
identified latent budgets of the outer extreme solution need not be outer
extreme budgets if (K > 2).
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Figure 5b, Inner extreme solution in LBM(3).
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Table 5: Parameler estimates of the identified inner extreme solution and the identified outer
extreme solution for LBM(3)

outer extreme inner extreme
solution solution

mixing parameters k=1 k=2 k=3|k= k=2 k=3
health + (H+) 1818 2141  .6041 ; 4907 .0862 4231
health = (H=) [ .2167 2738 5095 | 4322 4666 .1011
health — (H—) | 0978 2491 .6531 | .0197 .2310 .7493
cooking + (C+) | .1623 .2696 .5682 | .2193 .4006 .3801
cooking = (C=) | 1876 2693 .5432 | .3266 4179 2564
cooking — (C-) | 2081 2193 5726 | .58256 .1369 2805
ready-made — (R—) | -1587 .2024 .6389 | .4336 .0000 .5664
ready-made = (R=) | -1904 .2529 5567 | .3941 3228 .2831
ready-made + (R+) {2101 .3270 4629 | 2228 7772 .0000
quality + (Q+) | -1482 .2381 6136 | .2681 .2037 5282
quality = (Q=) | -.1761 .2888 .5352 | .2113 5248 .2638
quality — (Q-) | 2473 2541 4987 | 6276 3725 .0000
trad. meat + (T+) | 1375 3035 .5589 | .0000 .5833 4167
trad. meat = {(T=) § .1900 .2606 .5494 ; .3657 .3685 2658
trad. meat — {T-) | .2080 .2192 .5728 | .5823 .1366 .2811
naturalness + (N+) | .2028 3131 .4841 | .2398 6892 .0710
naturalness = (N=) | 2001 2489 .5510 | 4484 .3063 2453
naturalness — (N—) | 1578 2169 .6253 | .3804 .0852 .5344
selectivity + (Se+) | .2246 2595 5159 | .5140 .3878 .0082
selectivity = (Se=) { .1713 .2351 5937 | .3750 .2028 .4222
selectivity — (Se—) | .1686 2794 5520 | .2123 4636 .3242
scepticism + (Sk+) | 1975 2524 5502 | 4252 32561 2498
scepticism = (Sk=) | .1989 .2688 5323 | .3748 4236 .2016
scepticism ~ (Sk—) | .1421 2257 .6321 | .2851 .1256 .5884
luxury + (L+) | .2186 2068 .5745 | .6692 0710 .2597
luxury = (L=) | .1586 2647 5768 | .2206 3688 .4106
luxury — (L—) | .1922 2907 5171 | .2721 5483 .1796
versatility + (V4+) | 1780 2159 .6061 | 4683 0946 .4372
versatility = (V=) | 2044 2857 5100 | .3404 5276 .1320
versatility — (V=) | .1564 2538 5808 | .2485 .3020 .4486
latent budgets

Pork 7439 .0000 .2902 | .3637 .2697 .2573
Beef 0000 0000 5266 | 2799 .2333 3797
Horsemeat, Veal, Mutton 0307 0215 .0279 ; .0275 .0261 .0267
Mince .0000 4604 .1553 | .1686 .2379 2106
Processed meat .0478 .4798 .0000 | .1031 .1853 .1059
Other 1776 0383 .0000 | 0572 .0478 0107
budget proportions () 1838 2540 5622 | .3860 3127 .3013

Now that we have identified the LBM we can offer an interpretation.
The outer extreme solution can be found in the left panel of Table 5. The
appropriate way to label the budgets is by their reference to the categories of
the response variable.

BI is dominated by pork and snacks/barbecue meat, while beef and
mince are absent. Since most snacks in Holland are made from pork as well,
the interpretation of this budget is rather straightforward and the budget can
be described as a pork budget. B, is characterized by mince and processed
meat while the traditional kinds of meat pork and beef are absent. The
characteristics of mince and most kinds of processed meat are the high fat
level and their easy and fast preparation. The budget can be described in
these terms. (5 is dominated by beef, pork and mince in approximately the
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quantities served in a traditional Dutch household. This budget can thus be
described as a traditional budget.

The inner extreme solution can be found in the right panel of Table 5.
The appropriate way to label the budgets is by their reference to participant
groups. 3, is labeled the conscious budget and dominated by respondents
who are conscious of both costs and their personal health, who do not like
cooking, do not consider meat to be very important, but rather regard meat as
a luxury product. The characteristics of 3, are the importance of ready-made
products and their naturalness, a positive attitude towards traditional meat
and cooking. Although the recognition of the importance of ready-made pro-
ducts contradicts the other characteristics the best way to summarize the atti-
tudes typical for this budget is to label it a traditional budget. B is described
as the quality budget. This is shown by its dominant characteristics, a posi-
tive attitude towards the importance and quality of meat, plus concerns about
naturalness. The attitude towards health, however, is rather ambiguous.

4. Relation to Correspondence Analysis
A related model for the analysis of compositional data is correspon-

dence analysis (CA; see for example Nishisato 1980, 1994; Greenacre 1984,
Gift 1990). We define CA(M + 1) as

ﬁij =PiPj

M
1+ Z Kmriijm
m=1

where the scores r;, and c;, are restricted by Z;p; r;, = Z;jp;cj, =0 and
X pi r,-zm =X p; CJZm = 1. The elements fc,-j provide rank (M + 1) approxima-
tions of observed proportions p; (0<M <min(/-1,J-1)). 1"1:I~j are col-
lected in an I X J two-way matrix, I[1. If 0SM < min(I-1,J —1), then I1
has a reduced rank. The parameters A,, are the singular values obtained from
a singular value decomposition of the matrix with elements
(ﬁij -pip))/pip j)m. Because of the mathematical properties of the singular
value decomposition, the matrix I1 is an optimal approximation of the
observed matrix in a (weighted) least-squares sense (see, for example, Gree-
nacre 1984).

De Leeuw and van der Heijden (1991) show that a compositional data
matrix of rank K can always be decomposed by CA(K), but not always by
LBM() if 2<k<min(I-1,J—-1). The geometric study in Section 2
demonstrated that a probability matrix of rank K can be decomposed if the
budgets are a convex combination of K latent budgets. For example, a compo-
sitional data matrix can be decomposed by LBM(3) if and only if the budgets
lie within a triangle in U, (cf. Figure 4). Therefore, for a compositional data
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matrix of rank K = 3, CA(K) and LBA(K) are equivalent if the budgets lie
within a triangle.

The inadequacy of the estimation procedure proposed for LBA by
Renner (1993) and criticized by van der Heijden (1994), can be illustrated in
this way. Renner begins his estimation procedure for LBM(K) by determin-
ing a lower rank matrix, performing a singular value decomposition of the
matrix of observed compositions. Assume that K = 3. His initial estimates
need not fall into U, and the rows in the lower rank matrix need not be budg-
ets since elements can be negative. Renner uses ad hoc procedures to adjust
this, but the resulting matrix is no longer optimal in the least-squares sense. A
singular value decomposition does not constrain the projections for the rows
to fall within a triangle. The least-squares estimation procedure of Mooijaart
and van der Heijden (1995) circumvents these problems by estimating the
parameters of the LBM directly.

5. Discussion

In this paper, we have studied the geometry of the LBM. We found that
in the model with K latent budgets, a valid solution is found if the K — 1
dimensional polyhedron V}}_l spanned by the identified latent budgets is a
subset of Ug_1, a K — 1 dimensional polygon, spanned by the outer extreme
budgets, and if Vg_; includes Wx_;, also a K -1 dimensional polygon
spanned by the inner extreme budgets. A special case is LBM(2) where Wy,
V’f and U, all have the same shape, namely a one-dimensional line segment.
In this case identification is straightforward. We proposed a general method
to identify LBM’s. by maximizing/minimizing the sum of chi-squared dis-
tances among the latent budgets. The identification method proposed earlier
by de Leeuw et al. (1990) is a special case of this method. We believe that
this criterion has desirable properties, such as easy interpretation of the latent
budgets in the outer extreme solution, and maximal differences among the
categories of the explanatory variable in the inner extreme solution. The pro-
posed solutions are mathematical and it is likely that a theory-driven solution
is easier to interpret. However, LBA is mainly used as an exploratorive tech-
nique and our identifiability may facilitate interpretation in the situation
where we have no prior knowledge about the structure of the data.
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