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Abstract

The estimation of a model for compositional data is studied where the data are approximated by
a mixture of latent compositions. This model is variously known as “endmember analysis” or “latent
budget analysis”. Two estimation procedures are available. The �rst uses a procedure which is incorrect
in the sense that, although it claims to be a least squares procedure, it does not always minimize a
least squares criterion. The second uses a maximum likelihood procedure starting from assumptions
that are often violated for compositional data. In this paper we propose a constrained (weighted) least
squares procedure for the estimation of the model. c© 1999 Elsevier Science B.V. All rights reserved.

Keywords: Latent budget model; End member model; Mixture model; Compositional data; EM algo-
rithm; Weighted least squares algorithm

1. Introduction

There are two main approaches to the analysis of compositional data. One ap-
proach is worked out in considerable detail by Aitchison (1986), who transforms
compositional data into a log-ratio covariance matrix. He then proposes models in
terms of this covariance matrix, and shows how all sorts of questions about composi-
tional data can be answered in this way. In a second approach, which we will study
in this paper, the compositional data are approximated by a mixture of K latent, i.e.
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unknown, compositions, that have to be estimated from the data. In geology this
model is called “endmember analysis”, where the unknown compositions are called
“endmembers” (see, e.g. Renner, 1993a,b; Weltje, 1997). In the social sciences this
model is known as “latent budget analysis”, where the unknown compositions are
called “latent budgets” (see, e.g. Leeuw and van der Heijden, 1988).
A typical example of data from the social sciences that lead to compositional data

is given in Table 1. Table 1 shows the time allocation in the Netherlands for a week,
in minutes, cross-classi�ed by gender (2 levels), age (5 levels) and year (3 levels).
Thus there are 2× 5× 3= 30 rows. There are 18 main activities, such as paid work
(1), sleeping (7), tv-radio (15) and the like. The data in Table 1 are obtained from
three surveys (taken in 1975, 1980 and 1985) where respondents were asked to keep
diaries (for more details, see Knulst and van Beek, 1990).
A row in Table 1 becomes a composition if the elements in this row are divided by

the row total (in this case 10 080 min). Thus the row elements become proportions
adding up to one. This leads to a matrix having 30 observed compositions.
The model to be discussed in this paper estimates K latent compositions, where

K is to be determined either from theory or from the data. Each of the 30 observed
compositions is approximated by a mixture of these K latent compositions. Since
each of the observed compositions is approximated by a mixture (i.e. the approxi-
mation is a linear combination of the latent compositions with non-negative mixing
proportions as weights adding up to 1), the latent compositions have to be “ex-
treme” compositions. Thus for Table 1 each latent composition could be interpreted
as an “extreme” way of allocating the time. The model approximates each of the
30 observed compositions by a mixing of these extreme ways of allocating time.
In fact, in their original paper de Leeuw and van der Heijden (1988) proposed this
model for the analysis of time budgets, and they called it “the latent time budget
model”.
A typical problem for endmember analysis is to unravel the mixed provenance

of coastal sands (see Weltje, 1997). The idea is that the coastal sands are mixtures
of sediments derived from di�erent sources, where the exact nature of the mixing
process is unknown. Thus the model assumes that the observed compositions derived
from sediments are approximated by mixtures of sediments of K sources.
The two traditions that employ this mixture model, endmember analysis and latent

budget analysis, have di�erent ways of approximating the observed compositions by
expected compositions. For endmember analysis, Renner (1993a,b) proposed a least
squares procedure to approximate the observed compositions by expected composi-
tions. In the �rst step of this procedure a singular value decomposition of the matrix
of observed compositions is carried out, yielding a lower rank approximation of this
matrix, where this approximation is optimal in a least squares sense. However, since
this lower rank matrix can have negative elements, and the rows of the approxima-
tion do not add up to one, Renner subsequently made adjustments to this matrix
to ensure that the elements of this matrix are non-negative and each row sums to
one. The resulting matrix is considered to be the matrix with estimates of expected
compositions. Thus, as has been pointed out by van der Heijden (1994), this �nal
matrix no longer approximates the observed matrix in a least squares sense.
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For latent budget analysis, it has been assumed thus far that the observed ma-
trix with compositions is derived from a matrix with frequencies sampled from a
product-multinomial distribution (see van der Heijden et al., 1992). The model is
then estimated by maximum likelihood using an EM-algorithm. de Leeuw and van
der Heijden (1988) discussed an example where this assumption is realistic: the pro-
portions in time budgets were derived using the so-called random spot check method.
This method is quite popular in anthropology. The basic idea is that independent ob-
servations are made of a person’s behaviour by checking what he is doing at random
points in time; when it turns out that he is eating during 5 out of the 25 observations,
he is assumed to eat 20% of his time. If the observations are indeed independent,
then the assumption of a product-multinomial distribution is realistic. However, for
many other applications the assumption of a product-multinomial distribution is not
at all realistic. To continue with the same topic of time budgets (though many other
examples could be given), the minutes in Table 1 are derived from diaries, and
it is immediately clear that the minutes cannot be considered realisations from a
product-multinomial distribution.
In conclusion, there are compositional data for which no acceptable estimation pro-

cedure for the model under study is available. For example, when the time budgets
are derived from diaries, the least squares procedure proposed by Renner (1993a,b)
does not lead to a proper least squares approximation of the matrix observed com-
positions, and it is evident that the minutes do not follow a product-multinomial
distribution, so that assumptions for the maximum-likelihood procedure of van der
Heijden et al. (1992) are not ful�lled.
This shows that there are at least two ways for the further development of estima-

tion procedures for mixture model under study. One way is to extend the maximum-
likelihood procedure to di�erent sampling models; the other way is to deal with the
problems in the current least squares procedure. In this paper we concentrate on
the development of a sound least squares estimation procedure of the latent budget
model. We have chosen this last option because we can analyze any compositional
data set with a sound least squares algorithm, whereas extension of the maximum
likelihood procedure to a larger set of sampling models leaves open the possibility
that for a particular data set the assumptions of all sampling models may be violated.
Choice for a least squares procedure can be motivated by the fact that in such a
procedure the matrix of observed data is approximated by a lower rank matrix in a
weighted least squares sense.
In Section 2 we begin with a formal presentation of the model, and we de�ne

a general least squares function for the model. In Section 3 we outline the way
constrained least squares problems can be solved in general, and this procedure is
then applied to our problem in Section 2. Section 4 discusses the estimation of
the model parameters by minimizing a weighted least squares function. Section 5
discusses the example mentioned in the Introduction. In Section 6 several algorithmic
issues, such as convergence properties, choice of starting values and computational
e�ciency are discussed and illustrated by analyzing several data sets. An important
issue in this section is the discussion of the existence of local optima. It is well
known from optimizing the likelihood function in the latent budget model that local
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optima may exist. These local optima have di�erent function values, so they are
really local optima do not arise from the fact that the model may be not identi�ed.
We end with some concluding remarks in Section 7.

2. Presentation of the model and the estimation problem

Let P be an I × J matrix with observed compositional data. This matrix consists
of I compositions, each composed from the same J elements, but in di�erent pro-
portions. The elements of composition i (i=1; : : : ; I), denoted as pij (i=1; : : : ; I; j=
1; : : : ; J ), are non-negative and add up to one:

∑
j pij = 1. The model examined in

this paper approximates the rows of the matrix P by a mixture of K unknown com-
positions, collected in a J × K matrix B, with elements bjk nonnegative and adding
up to one for each unknown composition k:

∑
j bjk = 1. The mixing parameters for

composition i are collected in a matrix A, with elements aik nonnegative and adding
up to one for each composition i:

∑
k aik = 1. Thus the model is

� = AB′; (1)

where the matrix � approximates the matrix P. de Leeuw and van der Heijden
(1991) have shown that if K = min(I; J ), P = �. If K ¡min(I; J ), � provides a
rank K approximation of P.
Model (1) is unidenti�ed, since �=AB′=(AT)(T−1B′)=A∗B∗′

. Once estimates
for A and B are found, a proper choice of T has to be made, in order to solve the
identi�cation problem. This has been worked out by van der Ark et al. (in press) in
considerable detail. They have two proposals for T to choose from. In what they call
the outer extreme solution T is chosen such that the latent budgets in B∗ become
as di�erent as possible; this makes the elements in each row of A∗ more similar.
In what they call the inner extreme solution T is chosen such that the elements
in each row of A∗ are as di�erent as possible; this makes the latent budgets in B∗

more similar. Thus T is used in a similar way as in factor analysis, where matrices
of factor loadings are rotated to simple structure. We refer to van der Ark et al. (in
press) for more details.
Relations of this model with latent class analysis and correspondence analysis are

summarized in van der Heijden et al. (1992) and van der Ark and van der Heijden
(1998). In fact, Goodman (1974) introduced the latent budget model in sociology as
a reparametrization of latent class analysis of a two-way contingency table. For the
properties of the model, extensions, and possible applications, we refer to de Leeuw
et al. (1991), van der Heijden et al. (1992), Renner (1993a,b), Siciliano and van
der Heijden (1994), Weltje (1997), van der Ark and van der Heijden (1998) and
van der Ark et al. (in press), and the papers cited there. Ideas similar to those in
the latent budget model are also found in archetypal analysis (Cutler and Breiman,
1994).
To �t the model, we propose to minimize the least squares loss function developed

below. To summarize, the model is �=AB′, where the matrices A and B have orders
(I ×K) and (J ×K), respectively, where each row of A and each column of B sum
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to 1. All elements of A and B must be non-negative. An observed matrix P is to
be approximated by a matrix �. Therefore a loss function will be de�ned which
must be minimized with respect to the unknown parameters, i.e. the elements of the
matrices A and B. For this we choose a weighted least squares function.
In this weighted least squares function we allow for weights for the rows and for

weights for the columns. For the rows we introduce a diagonal weight matrix V
having elements vi, and for the columns we introduce a diagonal matrix W having
elements wj. The function to be minimized is then

fAB = SSQ[V(P − AB′)W ]; (2)

where SSQ[X ] is de�ned as the sum of squares of the elements of matrix X . The
side conditions which hold are

A1K = 1I ; (3a)

1J ′B = 1K′ ; (3b)

aik ; bjk ≥ 0 (i = 1; : : : ; I ; j = 1; : : : ; J ; k = 1; : : : ; K); (3c)

where 1N is de�ned as a (N × 1) column vector with unit elements only.
In the context of compositional data an appropriate choice for elements vi could

depend on the extent of data ni from which composition i is derived. Consider the
example in Table 1. If one row were based on twice as much respondents as another
row, then we might be willing to give the former row two times as much weight in
the determination of the �nal solution. In this case one should choose vi=p

1=2
i . Thus,

a di�erence between P and AB′ in the former row would count twice as much in
fAB as a comparable di�erence in the latter row.
An appropriate choice for elements wj could depend on the relative sizes pj of

the column margins. For instance, assume that we want to compare the elements of
two columns of the data matrix, one with an average proportion of 0.20 and one
with an average proportion of 0.02. Then, in principle, the observed elements for the
column with an average proportion of 0.20 can di�er much more than the one with
an average proportion of 0.02, and an unweighted solution would be based mainly
on the columns with larger pj. Assume that we would like to weight a di�erence
between P and AB′ in the column with proportion 0.02 ten times as much as a
comparable di�erence in the column with proportion 0.20. In this case one could
choose, e.g., wj = 1=p

1=2
j or the inverse variance wj = 1=(pj(1− pj)).

We note that similar weights are used in the estimation phase of correspondence
analysis when a singular value decomposition is made of the matrix of row pro�les.

3. Minimizing the general least squares function

Instead of minimizing Eq. (2) under the conditions (3) directly, we propose an
algorithm where A and B are estimated alternately. There are two reasons for doing
this proposal: in the �rst place there are no conditional closed-form solutions, i.e. A
given B and B given A. Secondly, the advantage of our algorithm is that, instead
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of minimizing the complicated nonlinear function in Eq. (2) under the conditions
(3), we minimize simple least squares functions, only. Therefore, in this section
we discuss how a linear set of equations can be solved by a general least squares
function. Then, in Section 4, we show how our minimization problem for solving the
parameters of the latent budget model can be transformed into this general function.
The general least squares function for a linear set of equations can be written as

fx = SSQ[Qx− r]; (4a)

with side conditions

C1x= d1; (4b)

xi ≥ 0; (4c)

where all matrices and vectors are of appropriate orders. This is a well-known prob-
lem and a detailed discussion how to �nd solutions can be found in Lawson and
Hanson (1995) and Bj�orck (1996). If the side conditions were only xi ≥ 0, then the
algorithm NNLS (Non-Negative Least Squares) of Lawson and Hanson or the active
set algorithm for problem BLS (Least Squares with simple Bounds) of Bj�orck could
be used. However, in the latent budget model some sub-sets of parameters should
add to one, so there are side conditions of the form C1x = d1. Therefore we shall
discuss how to expand the NNLS or BLS algorithm such that Eq. (4b) holds. Three
methods will be discussed. In the �rst method a penalty function will be added to
the least squares function. In the second method “an active constraint method” will
be given. In the third method, a branch and bound algorithm will be discussed.

Method 1 (Least squares function with a penalty function). Here the least squares
function we minimize is

fx = SSQ





Q
: : :
mC1


 x−




r
: : :
md1




 (5a)

with side condition

xi ≥ 0: (5b)

In Eq. (5a) m is an arbitrary known scalar. To have more insight in this equation
we can write fx also as

fx = SSQ[Qx− r] + m2SSQ[C1x− d1]: (5c)

If m is chosen “large”, then the solution of x by minimizing fx under the conditions
xi ≥ 0, will satisfy approximately also the restrictions C1x = d1. Furthermore, the
larger m will be chosen, the “better” this approximation is. The second term on the
right-hand side of Eq. (5c) is called a penalty function. Because SSQ[C1x− d1] has
a minimum of zero it follows that if m is taken “large”, e.g. m=10000, then there is
a heavy penalty if C1x 6= d1. So solving x from Eqs. (5a) and (5b) will be “close”
to the solution of x from Eq. (4). There are two remarks to be made here. First,
the solution of x from minimizing Eq. (5a) will only be an approximation of the
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solution of x by minimizing Eq. (4). How close the two solutions are depend on the
problem we are investigating. Second, there is an disadvantage of this method. In
general it holds that if Q is of full column rank, then there is a unique solution of x
from minimizing the least squares function as de�ned in Eq. (4). However, if m is
large, then in general the matrix (Q′; mC ′

1)
′ will be poorly conditioned because the

magnitude of the elements of this matrix may become very di�erent. In such a case
a solution of x may become very unstable. See for a discussion of this topic Lawson
and Hanson (1995), paragraph 22. Furthermore, for solving the parameters, collected
in the matrices A and B, in the models we are discussing in this paper we have an
iterative process in which alternatingly matrix A and B will be solved. So the least
squares solution of x has to be solved many times. This means, in particular near
the optimum, convergence of the parameters may become problematic because the
parameters in A and B are estimated only approximately. Therefore we do not, in
opposite to Cutler and Breiman (1994), recommend this method.

Method 2 (Active constraint method). For a more detailed discussion of this method,
we refer to Gill and Murray (1974) and Zangwill (1969). The idea of this method is
as follows: each inequality constraint in Eq. (4c) de�nes a boundary. For the optimal
solution of x, either all elements are positive, or one or more elements are equal to
zero. If x lies on several boundaries at the same time, i.e. there is a set of active
constraints for which xi = 0, then we can write

C2x= 0: (6)

Combining Eqs. (4b) and (4c) gives

Cx= d ; (6a)

where

C =



C1
· · ·
C2


 ; (6b)

d =



d1
· · ·
0


 : (6c)

Using the Lagrange function, we have to minimize

fx;� = SSQ[Qx− r]− 2�′(Cx− d); (7)

where � is a vector of Lagrange multipliers. De�ning the unrestricted solution of x
as

xO = (Q′Q)−1Q′r: (8)

Taking the derivatives of fx;� with respect to x and � and solving for � gives

�= (C (Q′Q)−1C ′)−1(d − CxO); (9a)

which gives as a solution for x

x= xO + (Q′Q)−1C ′�: (9b)
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If this solution is not feasible, then new constraints are activated, i.e. new rows are
added to matrix C2. A new row consists of all zeros except for one ‘1’, indicating the
element that has to be constrained to zero. This process is repeated until a feasible
solution is achieved.
The reason we give the general formulation of the problem is that in the case with

inequality restrictions the Lagrange multipliers have to be computed to check whether
a temporary solution is a �nal optimal solution or not. An important property of the
Lagrange multipliers is that if a constraint corresponds to an inequality constraint,
then the corresponding Lagrange multiplier should be non-negative (see, e.g. pp. 159
–160 of Lawson and Hanson (1995)). This Lagrange multiplier can be computed by
taking the derivatives of fx;� with respect to x and equating these derivatives to zero,
this gives

Q′(Qx− r) = C ′�: (10)

So � can be computed from Eq. (10). Therefore, if we �nd a feasible solution and
the smallest �, corresponding to an inequality constraint, is negative, then the cor-
responding active constraint is made passive. This means that one row of C2 is
dropped, and a new x will be solved from Eqs. (9a) and (9b). The algorithm thus
consists of solving x from Eqs. (9a) and (9b) with di�erent matrices C2, until x
is feasible and all �’s, except the ones corresponding to the equality constraints as
de�ned by C1, are non-negative. Note that the �’s corresponding to the equality
restrictions as de�ned by C1 may be negative. This algorithm converges monotoni-
cally to a minimum, i.e. the function value decrease or remain equal and will never
increase. See for a proof pp. 163–164 of Lawson and Hanson (1995). Although,
this algorithm will converge, it may be to a local minimum (for more details, see
Section 6).
Although Lawson and Hanson (1995) and Bj�orck (1996) do give an algorithm

for non-negative elements, they do not give explicitly an algorithm for the case with
side condition C1x= d1. Therefore we will give this algorithm in Appendix A.

Method 3 (Branch and bound algorithm). Cutler (1993) discusses a branch and
bound algorithm. In this algorithm a non-negative least squares algorithm is extended
to the case of equality constraints. In the branch and bound algorithm a binary tree is
constructed, with nodes corresponding to least squares sub-problems. The idea behind
the branch and bound algorithm is that an optimal solution of the non-negative least
squares problem can always be found by computing all possible sub-problems in
which one or more elements are equal to zero. For instance, if the unconstrained
solution is not feasible, then we can compute the solutions in which only one element
is equal to zero. If all these solutions are not feasible, then we can compute all
solutions in which all pairs or triples of elements are zero. Continuing this process
will always lead to an optimal solution. A disadvantage of this method is that if
the number of elements of x is large, then a huge number of problems have to
be solved. For instance, if the number of elements in x is equal to m, then in the
worst case we have to solve 2m−1 sub-problems. This is not very attractive. The
branch and bound algorithm is some special searching strategy in order not to solve



A. Mooijaart et al. / Computational Statistics & Data Analysis 30 (1999) 359–379 369

all the sub-problems. The key idea here is, again, that if a solution is feasible, and
the Lagrange multipliers are non-negative, then further search in the direction of
more restricted models is not needed anymore, because the Kuhn–Tucker conditions
are ful�lled. Cutler (1993) discusses this method and compares this algorithm with
the NNLS problem of Lawson and Hanson (1995). She �nds that the branch and
bound algorithm almost always outperforms the NNLS method. However, we think
this conclusion is not fair, because she always starts the NNLS algorithm with the
vector with zero elements only. This is indeed the starting vector of Lawson and
Hanson, however, another starting vector may be much more optimal. For instance,
Bj�orck (1996) in his BLS algorithm, which is similar to the NNLS algorithm, starts
with a starting vector which is feasible and the closest to the unconstrained solution.
It is clear that this algorithm will converge in a smaller number of steps if the
solution vector do not have to much zero elements.

Conclusion. We discussed three methods in this section. In the method with a penalty
function the solution is only an approximation of the “true” solution and the solution
may be unstable because of poorly condition of one of the matrices. Therefore we
do not recommend this solution. The branch and bound method seems to work well
in cases in which the number of elements of x is small. In cases in which this
number is large, say 100 as may be the case in our latent budget model, it is better
to start with a feasible vector which is closest to the unconstrained solution instead
of starting with the zero vector. This in opposite the NNLS algorithm of Lawson
and Hanson (1995) and Cutler (1993). However, in the case of a large number of
elements in x, it seems that the active constraint method needs less iteration steps
than the branch and bound algorithm. Therefore, in this paper we will use the active
constraint algorithm.

4. Estimation of the model parameters

In Section 3 we discussed how the general least squares function can be minimized.
We now show how the least squares function (2) with side conditions (3) can be
dealt with.
The function to be minimized can now be written as

fAB = SSQ[V(P − AB′)W ]; (11)

where V and W are diagonal matrices. With matrix V the rows of the residual
matrix, i.e. P − AB′, are weighted di�erently, whereas with W the columns are
weighted di�erently. These matrices are known matrices and have to be speci�ed
by the researcher. Obviously, when V and W are speci�ed as identity matrices, the
function is equal to the unweighted least squares function. In other cases we speak
of a weighted least squares function.
In the algorithm we propose, we estimate A and B alternately. This means that

we �rst �x all the elements of B and minimize the least function by solving for the
elements of A, then we �x all elements of A and minimize the least function by
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solving for the elements of B. This de�nes one cycle of the algorithm. By solving
for A and B in each cycle, in this way, the function value will decrease or remain
equal. Obviously, the function value will never increase. We repeat the number of
cycles until a suitable convergence criterion is met (see Section 6). Note that in this
way we apply an ordinary least squares (OLS) method at each step to solve for
either A or B and by doing this alternately, we have de�ned a so-called alternating
least squares (ALS) method. So, in the �rst step of each cycle we minimize, with
respect to A,

fA=SSQ [V(P − AB′)W ] = SSQ[W (P′ − BA′)V ]

= SSQ[P∗′ −WBA′V ] =
I∑
i=1

SSQ [p∗i: − viWBai:]; (12)

where P∗′
is equal to WP′V ; p∗i: is a column with elements the elements of row

i of matrix P∗, and ai: is a column with elements the elements of row i of matrix
A. This function is in the appropriate form given in Eqs. (4a)–(4c) if we de�ne
x ≡ ai:; Q ≡ viWB and r ≡ p∗i: . For the side conditions we have C1 ≡ 1K′ and
d1 ≡ 1, where vector 1K is a (k × 1) vector consisting of unit elements, only. Here
C1 and d1 are used to specify that the elements of row i of matrix A add up to one.
In the second step of each cycle we minimize, with respect to B,

fB =SSQ [V(P − AB′)W ] = SSQ [W (P′ − BA′)V ]

= SSQ [vec(P∗′
)− (VA⊗W)vec(B)]; (13)

where the “vec” operator in vec(B) is de�ned as an operator which stacks the ele-
ments of B columnwise in a column vector. This function is in the appropriate form
given in (4a)–(4c) if we de�ne x ≡ vec(B); Q ≡ VA⊗W , and r ≡ vec(P∗′

). For
the side conditions we have C1 ≡ (IK ⊗ 1J ′) and d1 ≡ 1K . Here C1 and d1 de�ne
that the elements of the K columns of matrix B add up to 1.
Appendix B discusses the solution of the model parameters without the use of

Kronecker products, i.e. by using products of matrices of smaller order only.

5. An example

In this section we discuss the analysis of the data in Table 1. Since it would make
no sense to assume a multinominal distribution and to apply a maximum likelihood
estimation procedure, our weighted least squares approach seems reasonable. The
weights used are 1=p1=2j for the columns (see Section 2.)
We carried out an analysis for K = 1; K = 2; K = 3; K = 4 and K = 5 latent

budgets. For K =1 fAB=0:2306. This is the baseline model, where all the estimates
of expected compositions are equal. For K =2 fAB=0:1194, and therefore (0.2306–
0.1194)=0:2306=0:482 of the lack of �t for the baseline model is now modelled by
taking two latent compositions instead of only one. For K=3 fAB=0:0399, and now
0.827 of the lack of �t for the baseline model is modelled. For K = 4 fAB = 0:0136
(proportion modelled is 0.941). When making a decision over the number of latent
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compositions we use a few guidelines. First, the proportion of lack of �t with respect
to the baseline model should be as large as possible, so that the model gives an ade-
quate description of the data. Second, the increase in �t due to inclusion of an extra
latent composition should be large enough to justify the increased e�ort of interpret-
ing the extra set of parameters estimated. Since the loss for K=1 equals 0.2306 and
the loss for K =18 is zero, we could argue that by including an extra dimension we
would like to reduce the loss by at least 0:2306=18=0:0128 (this criterion is similar
to the eigenvalue greater than one criterion in principal component analysis). And
third, the estimates of the latent compositions and the estimated mixing parameters
should be interpretable. Using these guidelines, we hesitated between three and four
latent compositions. Mainly for reasons of space we will discuss only the solutions
with two and three latent compositions (see Table 2).
The solutions are identi�ed by the outer extreme solution, i.e. the latent budgets

are made as dissimilar as possible (compare Section 2).
We begin with an interpretation of the parameter estimates of the model with two

latent compositions. This should be seen only as an interpretation exercise, because
the �t of the model with two latent composition is not very good. This model assumes
that, in terms of time allocation, there are two extreme weeks, and all 30 observed
(average) weeks in Table 1 are approximated by a mixture of these extremes. The
estimates B for the extremes are most easily interpreted by comparing them with the
average proportions, which are also the estimates for the model with K = 1. This
shows that the �rst latent composition (the �rst extreme) is characterized in particular
by much more domestic work (0.1260 of the time versus 0.0779 on average) at
the expense of paid work (0.0351 versus on average 0.0803). Smaller di�erences
between the �rst latent composition and the average composition can be found for
caring for household members, shopping, social contacts, which all happen more than
average, and education, which happens less than average. The second composition
is necessarily characterized in the opposite way, because the budget sizes times the
latent budget elements should lead to the observed marginal proportions e.g. for paid
work 0:6228× 0:0351+ 0:3772× 0:1540= 0:0803 (see de Leeuw et al. (1990) for a
proof).
The 30 compositions derived from Table 1 are all approximated by mixture of

both extremes. For example, in 1985 the average male time budget for a week is
approximated for 0.35 from the �rst latent composition and for 0.65 from the second
latent composition. For all ages, the �rst composition (characterized particularly by
a high contribution of domestic work) is used more by females (especially from
the age of 25) than by males. For males the use of this composition increases as
they get older, particularly when they get 65 or older (the obligatory retiring age
in the Netherlands). Interestingly, over the years the contribution of the �rst latent
composition increases for males starting at the age of 25–64 (e.g. for males aged
50–64 from 45% to 59%), indicating that over the years there is an increasing par-
ticipation in domestic work and a decreasing participation in paid work; for women
aged 12–24 and 25–34 this contribution goes down.
The model with three latent compositions gives a much better account of the ob-

served data, and we turn to its interpretation now. The �rst latent composition is now
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characterized by domestic work (0.1456) and an absence of paid work and educa-
tion (both 0.0000). To a lesser extent there is also a higher contribution of caring,
shopping and social contacts. The second latent composition is characterized by paid
work (0.2363) and the absence of domestic work and education (both 0.0000). The
third latent composition is characterized by education (0.2094) at the expense of paid
and domestic work; there is also less time spent on caring, shopping, eating, social
contacts, gardening and reading, and more time on sleeping, going out and sports.
On average, the �rst latent component (characterized by domestic work) is used pre-
dominantly by women older than 24 and retired men, the second latent component
(characterized by paid work) is used predominantly by men aged between 25 and 64,

Table 2
Weighted least squares estimates for the model parameters for the data in Table 1. Solutions are given
for K = 1; K = 2 and K = 3 latent compositions

Model K = 1 K = 2 K = 3

mix.parameters k = 1 k = 1 k = 2 k = 1 k = 2 k = 3
M 12–24 75 1.0000 0.0000 1.0000 0.0000 0.3115 0.6885

80 1.0000 0.0052 0.9948 0.0547 0.2531 0.6922
85 1.0000 0.0000 1.0000 0.0395 0.2254 0.7351

25–34 75 1.0000 0.3110 0.6890 0.0826 0.8662 0.0512
80 1.0000 0.3135 0.6865 0.1114 0.7853 0.1033
85 1.0000 0.3500 0.6500 0.1493 0.7582 0.0925

35–49 75 1.0000 0.3888 0.6112 0.1649 0.8030 0.0321
80 1.0000 0.3724 0.6276 0.1473 0.8164 0.0363
85 1.0000 0.3567 0.6433 0.1272 0.8405 0.0323

50–64 75 1.0000 0.4535 0.5465 0.2335 0.7478 0.0187
80 1.0000 0.5325 0.4675 0.3386 0.6176 0.0438
85 1.0000 0.5877 0.4123 0.3995 0.5645 0.0360

¿ 65 75 1.0000 0.8810 0.1190 0.7419 0.2173 0.0408
80 1.0000 0.8634 0.1366 0.7388 0.1905 0.0707
85 1.0000 0.8639 0.1361 0.7409 0.1857 0.0734

F 12–24 75 1.0000 0.2342 0.7658 0.2423 0.2189 0.5388
80 1.0000 0.1618 0.8382 0.1992 0.1829 0.6179
85 1.0000 0.1187 0.8813 0.1772 0.1489 0.6739

25–34 75 1.0000 1.0000 0.0000 0.8657 0.1297 0.0047
80 1.0000 0.9939 0.0061 0.8539 0.1302 0.0159
85 1.0000 0.8965 0.1035 0.7439 0.2334 0.0228

35–49 75 1.0000 1.0000 0.0000 0.9148 0.0632 0.0220
80 1.0000 1.0000 0.0000 0.9058 0.0733 0.0209
85 1.0000 1.0000 0.0000 0.8878 0.1037 0.0085

50–64 75 1.0000 1.0000 0.0000 0.9613 0.0341 0.0047
80 1.0000 1.0000 0.0000 0.9563 0.0271 0.0165
85 1.0000 1.0000 0.0000 0.9116 0.0666 0.0218

¿ 65 75 1.0000 1.0000 0.0000 0.9494 0.0303 0.0203
80 1.0000 1.0000 0.0000 0.9681 0.0091 0.0228
85 1.0000 1.0000 0.0000 0.9349 0.0273 0.0378
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Table 2 (Continued).

Budget sizes k = 1 k = 1 k = 2 k = 1 k = 2 k = 3
1.0000 0.6228 0.3772 0.5181 0.3221 0.1599

Latent budgets k = 1 k = 1 k = 2 k = 1 k = 2 k = 3

1. paidwork 0.0803 0.0351 0.1540 0.0000 0.2363 0.0265
2. dom.work 0.0779 0.1260 0.0000 0.1456 0.0000 0.0151
3. caring 0.0167 0.0238 0.0048 0.0244 0.0128 0.0000
4. shopping 0.0253 0.0331 0.0122 0.0358 0.0142 0.0138
5. per.need 0.0347 0.0360 0.0320 0.0370 0.0315 0.0332
6. eating 0.0623 0.0651 0.0568 0.0640 0.0687 0.0437
7. sleeping 0.3581 0.3554 0.3580 0.3637 0.3339 0.3891
8. educat. 0.0335 0.0000 0.0986 0.0000 0.0000 0.2094
9. particip 0.0146 0.0159 0.0122 0.0155 0.0168 0.0070
10. soc.cont 0.0656 0.0748 0.0497 0.0773 0.0568 0.0455
11. goingout 0.0297 0.0228 0.0406 0.0222 0.0327 0.0475
12. sports 0.0363 0.0388 0.0318 0.0426 0.0211 0.0467
13. gardening 0.0194 0.0216 0.0156 0.0198 0.0273 0.0021
14. outside 0.0061 0.0062 0.0058 0.0057 0.0083 0.0031
15. tv-radio 0.0779 0.0779 0.0768 0.0773 0.0830 0.0696
16. reading 0.0359 0.0413 0.0265 0.0417 0.0354 0.0181
17. relaxing 0.0070 0.0073 0.0063 0.0076 0.0059 0.0072
18. other 0.0188 0.0189 0.0184 0.0198 0.0154 0.0225

and the third latent component (characterized by education) is used predominantly
by respondents younger than 25. Notice that the increase over time of the �rst latent
component (domestic work) is again evident for males 25–64, but that this is at the
expense of the second latent component (paid work) for 25–34 and 50–64, but not
for 35–49. The principles of interpretation should be clear by now, and we leave
the further interpretation of the solution to the reader.

6. Other algorithmic issues

Each step of the algorithm discussed in Sections 3 and 4 decreases the general
least squares function fx and therefore convergence to a minimum is ensured. We
decide on convergence by comparing changes in subsequent changes in subsequent
parameter estimates. When the di�erence between subsequent parameter estimates
values is smaller than, e.g. 10−8, we stop the algorithm.
The minimum found can be a local or a global minimum. Various sets of random

starting values have to be chosen to be sure that a minimum found is indeed a global
minimum. In order to investigate the seriousness of this local minimum problem, we
have conducted studies on the data set in Table 1, and on some other data sets that
have been analyzed previously with latent budget analysis. The data sets are the
Manhattan Attitude data (�rst published by Srole et al. (1962) and analyzed with
latent budget analysis by van der Heijden et al. (1989), the Amazon Indian data
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(Gross et al. (1985); analyzed with latent budget analysis by de Leeuw et al. (1990),
Aitchison’s Data 10 (see Table 1), and the Dutch Shoplifting data (Israels, 1987)
analyzed with latent budget analysis by van der Heijden et al. (1989). Since this
local optimum problem is also known to exist for the maximum likelihood estimation
procedure of the latent budget model, we have also performed simulations for this
estimation technique. The simulation study was designed to evaluate the following
properties:

• convergence properties, namely can we expect local optima and what stopping
criterion is appropriate for the two algorithms;

• computation time of both algorithms;
In the simulation study analyzed the 5 data sets and we varied:
1. The starting values. 200 di�erent sets of starting values were used for each data

set;
2. The estimation procedure. In each analysis we obtained weighted least squares

estimates and maximum likelihood estimates;
3. The number of latent budgets. The simulation study was carried out for the

latent budget model with 2, 3 and 4 latent budgets, for each data set;
4. The convergence criterion. The simulation study was carried out with

• convergence on the parameter estimates, the procedure stops when the maximum
di�erence between two parameter estimates in subsequent iterations is less than
10−5;

• convergence on the parameter estimates, the procedure stops when the maximum
di�erence between two parameter estimates in subsequent iterations is less than
10−10;

• convergence on the function value, the procedure stops when the di�erence be-
tween the function values in two subsequent iterations is less than 10−14.

So we conducted 5 (data sets) ×200 (starting values) ×2 (estimation procedures)
×3 (models) ×3 (convergence criteria)=18 000 analyses on a Pentium 200 mHz
personal computer, characterizing 18 di�erent analysis situations (cells) for each
data set. For each cell we evaluated the mean computation time, and the number of
local optima plus their deviance form the global optimum.
The results are displayed in Table 3(local optima) and Table 4(computation time).

For K = 2; K = 3; and K = 4 we compare the results between maximum likelihood
estimates and least squares estimates, with di�erent convergence criteria. Conver-
gence on the likelihood=loss function is included to compare the optima from the
other analyses to a criterion that has fully converged.
In the top half of Table 3 the number on the left in each cell (indicated by #)

denotes the number of optima obtained in the analysis, hence a 1 means that the
algorithm converged to the same maximum every time; and the number on the right
(indicated by “tot”) denotes how many times the best function value, assumed to be
the global optimum was obtained in 200 analyses. If only one optimum was obtained
the number on the right automatically becomes 200. In Table 3 a function value is
regarded as a separate optimum if the di�erence with other optima is greater than
10−8. However, in the cases with local optima, not all di�erences between separate
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Table 3
Results on convergence properties in the simulation study

wls estimates ml estimates

Parameters Func. Parameters Func.
10−5 10−10 10−14 10−5 10−10 10−14

Data set K # tot # tot # tot # tot # tot # tot

Manh. 2 1 200 1 200 1 200 1 200 1 200 1 200
Attitude 3 1 200 1 200 1 200 1 200 1 200 1 200
(6× 4) 4a

Israel. 2 1 200 1 200 1 200 1 200 1 200 1 200
Worries 3 1 200 1 200 1 200 1 200 1 200 1 200
(5× 9) 4 1 200 1 200 1 200 21 177 19 178 16 179

Aitchis. 2 1 200 1 200 1 200 1 200 1 200 1 200
Data 10 3 1 200 1 200 1 200 1 200 1 200 1 200
(20× 6) 4 1 200 1 200 1 200 1 200 1 200 1 200

Amzon 2 1 200 1 200 1 200 1 200 1 200 1 200
Indians 3 1 200 1 200 1 200 10 190 5 192 6 191
(12× 6) 4 2 121 2 121 2 121 139 1 10 43 69 26

Dutch 2 1 200 1 200 1 200 1 200 1 200 1 200
Shopl’g. 3 2 160 2 160 2 160 132 6 43 39 14 39
(18× 13) 4 2 163 2 163 2 163 151 1 92 1 73 18

Worries 4 1 200 1 200 1 200 1 200 1 200 1 200

Amazon 3 1 200 1 200 1 200 6 190 4 192 5 191
Indians 4 2 121 2 121 2 121 8 146 8 148 9 149

Dutch 3 2 160 2 160 2 160 4 136 5 144 5 147
Shopl’g 4 2 163 2 163 2 163 5 151 5 151 5 151
aNot applicable, saturated model.

optima are signi�cantly large. It was hoped for that in the cells where the convergence
criterion=10−14 the algorithm could truly converge, but the model did not converge
fully for the maximum likelihood estimates of the Israelian Worries data (K = 4),
the Amazon Indian data (K = 3; K = 4) and the Shoplifting (K = 3; K = 4) data.
Therefore the obtained optima need a closer look, to determine whether we have true
local optima or just local optima due to a criterion that is too strict. If we regard a
function value as a separate optimum if the di�erence with other function values is
greater than 1, we �nd the results in the bottom half of Table 3.
For both de�nitions of a separate optimum (10−8 as well as 1) we see that the WLS

algorithm (i.e. the active constraints method) is always superior to the EM algorithm.
The WLS algorithm encounters less local optima, and the WLS algorithm is always
fully converged at the convergence criterion 10−5, while the EM-algorithm is only
fully converged at the convergence criterion 10−5 for (K = 2). For the larger data
sets with K ¿ 2 convergence was sometimes not even obtained at the convergence
criterion 10−14 although the di�erences were small between most of the values.
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Table 4
Results on computation time in the simulation study

wls estimates ml estimates
Parameters Parameters

10−5 10−10 10−5 10−10

Data set K sec. iter sec. iter sec. iter sec. iter

Manh. 2 0.05 8 0.06 9 0.16 184 0.18 246
Attitude 3 0.10 13 0.11 16 1.59 1856 2.03 2672
(6× 4) 4a

Israel. 2 0.10 15 0.10 18 0.18 159 0.20 204
Worries 3b 1.47 92 2.22 136 0.71 585 0.92 840
(5× 9) 3b 0.15 12 0.16 15

4c 24.05 673 34.70 952 54.78 31 682 84.40 47 489

Aitchis. 2 0.19 17 0.20 21 1.76 615 1.63 851
Data 10 3 0.63 45 0.74 59 5.20 1867 6.52 2628
(20× 6) 4 2.10 76 1.82 99 9.13 2595 11.88 3647

Amazon 2 0.31 32 0.37 40 0.35 218 0.53 286
Indian 3 3.04 141 4.40 209 1.71 940 2.20 1260
(12× 6) 4 137.53 2594 179.20 3139 78.77 33 837 133.48 58 853

Dutch 2 1.18 45 1.46 57 0.45 109 0.64 140
Shopl’g 3 29.56 371 42.70 513 26.06 5503 40.13 9160
(19× 9) 4 257.48 2261 403.17 3336 138.29 22 515 259.26 53 064
aNot applicable, saturated model.
bThere are 3 outliers in the latent budget analysis of the Israelian Worries Data with K = 3 and WLS
parameter estimates. If these outliers are removed, the second line is applicable.
cThe range of computation time for WLS is from 0.21 s to 13 min per analysis, for ML from 1.1 s to
1.5 min per analysis.

In Table 4 the results on computation time are presented. In each cell the mean
number of seconds per analysis and the mean number of iterations per analysis are
presented.
From Table 4 we can see that for the “Manhattan Attitude” data, the “Israelian

Worry” data and “Aitchison’s Data 10” the least squares algorithm is faster than
the maximum likelihood algorithm. For the “Amazone Indian” data and the “Dutch
Shoplifting” data the maximum likelihood algorithm is faster, if we compare be-
tween equal convergence criteria. However, from Table 3 we concluded that for
weighted least squares estimates a convergence criterion 10−5 is appropriate, while
for maximum likelihood we need at least 10−10, and therefore we should compare
the computation time of weighted least squares estimates with a convergence crite-
rion 10−5 with maximum likelihood estimates with a convergence criterion 10−10. In
this case the weighted least squares algorithm and the maximum likelihood algorithm
have approximately the same speed for the “Amazone Indian” data and the “Dutch
Shoplifting” data.
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7. Concluding remarks

In this paper we propose a (weighted) least squares algorithm for the estimation
of a mixture model for compositional data. Previously, an algorithm inspired by
least squares existed (see Renner, 1993a,b) where the observed matrix was approxi-
mated by another matrix, but not always in a least squares sense (see Section 1). A
maximum likelihood algorithm exists that can be used when the data are realisations
from a product-multinomial distribution. If this assumption holds, then this maximum
likelihood algorithm is preferable to our (weighted) least squares algorithm because
of the general properties of maximum likelihood estimation, such as e�ciency of
estimates. However, in many situations this assumption is not realistic, and in this
situation the least squares algorithm can be applied.
A drawback of the least squares algorithm is that the asymptotic distribution of

the function value under some null-hypothesis is unknown. We are currently study-
ing whether the parametric bootstrap can be used to test for the number of latent
compositions (compare Aitkin et al. (1981), who use this approach to test for the
number of latent classes in latent class analysis). Secondly, we have not yet found a
way to derive an asymptotic covariance matrix for the parameters, but we currently
investigate whether it is possible to tackle this problem using either the parametric
or the non-parametric bootstrap.

8. For further reading

Clogg, 1981, Gi�, 1990, Guttman, 1971, Heuer, 1979, Isra�els, 1987, van der Ark
and van der Heijden, 1998a,

Appendix A.

In this Appendix we give an algorithm for the non-negative least squares problem
with equality restrictions. The solution of the (n×1) column vector x from the least
square problem SSQ(Qx− r) = min with side condition Cx = d , will be written as
x:=LSEQ(Q; r;C ; d) and can be solved from the Eqs. (8), (9a) and (9b). C1 and
d1 are de�ned in (4b). In the algorithm given below P and Z are sets consisting
of sub-sets of the �rst n integers. n(Z) is the number of elements of the set Z; 0n(Z)
is a column vector with n(Z) zero elements, and EZ is a (n(Z) × n) matrix with
rows equal to the row numbers given in Z of the identity matrix In. In step 2 y is
partitioned in y1 and y2, where y1 corresponds to the equality restrictions C1x= d1,
and y2 corresponds to the equality restrictions xi=0. This algorithm is an adaptation
of the NNLS algorithm of Lawson and Hanson (1995), p. 161.
Step 0: Set C = C1 and d = d1 and �nd x:=LSEQ(Q; r;C ; d).
Step 1: Set P = {j : xj ¿ 0}; Z = {j : xj ≤ 0}; go to Step 12 if Z = {?},

otherwise go to Step 6.
Step 2: y:=(CC ′)−1CQ′(r −Qx);w(P) = 0n(P) and w(Z):=y2.
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Step 3: If Z = {?} or if wj ≤ 0 for all j ∈ Z , go to Step 12.
Step 4: Find an index t ∈ Z such that wt =max{wj : j ∈ Z}.
Step 5: Move the index t from set Z to set P.
Step 6: De�ne C = (C1=EZ) and d = (d1=0n(Z)) and �nd z:=LSEQ(Q; r;C ; d).
Step 7: if zj ¿ 0 for all j ∈ P, set x:=z and go to Step 2.
Step 8: Find an index q∈P such that xq=(xq− zq)=min{xj=(xj− zj):zj≤0; j∈P}.
Step 9: Set �:=xq=(xq − zq).
Step 10: Set x:=x+ �(z − x).
Step 11: Move from set P to set Z all indices j ∈ P for which xj=0. Go to Step 6.
Step 12: Comment: The computation is completed.

Appendix B.

When we estimate the latent budget parameters by weighted least squares, then in
Eq. (8) r ≡ vec(WP′V) and Q ≡ VA⊗W , where V and W are diagonal matrices.
Hence Eq. (8) becomes

xO = ((VA⊗W)′(VA⊗W))−1(VA⊗W)′vec(WP′V)

= ((A′V 2A)−1 ⊗W−2)vec(W 2P′V 2A)

= vec(P′V 2A(A′V 2A)−1):

and the Kronecker-product has dissappeared from the equation, which reduces the
computation time enormously.
In general, it holds that (Q′Q)−1 = (A′V 2A)−1 ⊗ W−2, which means that the

inverse of Q′Q which is needed in Eqs. (9a) and (9b) can be computed easily by
taking the inverse of a (K × K) matrix instead of a (JK × JK) matrix.
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