
BDI-based Generation of
Robust Task-Oriented

Dialogues

This work has been supported by SenterNovem,
Dutch Companion project grant nr: IS053013.

SIKS Dissertation Series No. 2011-08
The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

c© 2011 Nieske Vergunst
Printed by Wöhrmann Print Service, Zutphen
LATEX template by Susan van den Braak
Cover photos by Hanny Breunese

ISBN 978-90-393-5514-5

BDI-based Generation of
Robust Task-Oriented

Dialogues

BDI-gebaseerde Generatie van
Robuuste Taakgeoriënteerde Dialogen

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op
gezag van de rector magnificus, prof. dr. J.C. Stoof, ingevolge het

besluit van het college voor promoties in het openbaar te verdedigen op
woensdag 9 maart 2011 des middags te 4.15 uur

door

Nieske Louise Vergunst

geboren op 12 september 1983 te Groningen

Promotor: Prof. dr. J.-J.Ch. Meyer

Co-promotoren: Dr. ir. R.J. Beun
Dr. R.M. van Eijk

1 Contents

1 Introduction 1

1.1 Context of this research . 2
1.1.1 Dialogue systems . 3
1.1.2 Agent systems . 6
1.1.3 The Dutch Companion project 6
1.1.4 A simpler example dialogue . 8

1.2 Problem statement . 9
1.2.1 Research aim and research questions 9

1.3 Methodology . 10
1.3.1 Scope of this work . 11

1.4 Contributions of this research . 12

1.5 Practicalities . 12
1.5.1 Organization of this thesis . 12
1.5.2 Some conventions . 13

2 Cooperative Dialogues 15

2.1 Activities . 16
2.1.1 Goals . 16
2.1.2 Actions . 16

2.2 Joint activities . 17
2.2.1 Mutual belief and common ground 18
2.2.2 Joint goals . 19
2.2.3 Coordination . 21
2.2.4 Joint plans and joint projects 22
2.2.5 Joint actions and participatory actions 23
2.2.6 In our system . 25

2.3 Dialogues . 27
2.3.1 Language use . 27
2.3.2 Utterances and dialogue turns 28
2.3.3 Meaning and construal . 29
2.3.4 Grounding . 30

i

CONTENTS

2.3.5 In our system . 31

2.4 Cooperative dialogues . 32
2.4.1 Cooperation . 33
2.4.2 Grice’s maxims, sincerity and helpfulness 33
2.4.3 Private and public goals . 36
2.4.4 In our system . 36

2.5 Successful dialogues . 37
2.5.1 Related work . 37
2.5.2 Success at utterance level . 38
2.5.3 Success at dialogue level . 40
2.5.4 In our system . 42

2.6 Conclusions . 42

3 Conceptual Model 45

3.1 Participants . 46
3.1.1 Companion robots . 47
3.1.2 Requirements for reasoning . 48

3.2 Domain . 50
3.2.1 Recipes . 50
3.2.2 Requirements for the domain 52

3.3 Interaction . 53
3.3.1 Information-seeking dialogues 55
3.3.2 Tutoring dialogues . 59
3.3.3 Task-oriented dialogues . 62
3.3.4 Mixtures between different types of dialogues 65
3.3.5 Requirements for interaction 67

3.4 Multimodal interaction . 68
3.4.1 Requirements for multimodal interaction 69

3.5 Error handling . 70
3.5.1 Our definition of errors . 70
3.5.2 Error handling in our system 72
3.5.3 Requirements for error handling 73

3.6 Conclusions and future work . 74

4 Architecture 77

4.1 Participants . 78
4.1.1 User and system . 78
4.1.2 Reasoning . 78
4.1.3 Capabilities . 79
4.1.4 User model . 79
4.1.5 Architecture . 80

4.2 Domain . 85
4.2.1 Formalizing the environment 85
4.2.2 Recipes . 85

ii

CONTENTS

4.2.3 Actions . 87
4.2.4 Opportunities . 88

4.3 Interaction . 89
4.3.1 Dialogue goals . 89
4.3.2 Dialogue planning . 90
4.3.3 Communicated content . 90
4.3.4 Natural language . 91

4.4 Representation of multimodal interaction 91

4.5 Conclusions and future work . 94

5 Implementation of a Recipe Assistant 97

5.1 The 2APL programming language . 98
5.1.1 The beliefbase, the goalbase, and the planbase 98
5.1.2 Types of basic actions . 99
5.1.3 Reasoning rules . 100
5.1.4 The deliberation cycle . 100
5.1.5 FIPA-ACL communicative acts 100

5.2 The program . 101
5.2.1 Joint goal selection . 101
5.2.2 Rules for the planning phase 103
5.2.3 Rules for the instruction phase 106
5.2.4 Rules for answering questions and following requests 109

5.3 Generation of a simpler example dialogue 110
5.3.1 The user agent . 111
5.3.2 An alternative version of the example dialogue 112

5.4 Implementation and issues with 2APL 115
5.4.1 Implementation . 115
5.4.2 Issues with 2APL . 118

5.5 Conclusions and future work . 118

6 Parsing and Generating Natural Language 123

6.1 A brief introduction to Functional Discourse Grammar 124
6.1.1 The conceptual component . 128
6.1.2 The contextual component . 128
6.1.3 The interpersonal level . 129
6.1.4 The representational level . 130
6.1.5 The morphosyntactic level . 131
6.1.6 The phonological level and the output component 131

6.2 Expectations in FDG . 132
6.2.1 Translating the dialogue model to FDG expectations 133

6.3 Natural language parsing with FDG 135
6.3.1 Parsing to the representational level 136
6.3.2 Parsing to the interpersonal level 137

6.4 Parsing indirect speech acts . 137

iii

CONTENTS

6.4.1 Special verbs and the verb-construction 139
6.4.2 Speech act assignment for utterances with ‘can’ 140

6.5 Conclusions and future work . 141

7 Error Handling 145

7.1 Definition of errors . 147
7.1.1 Scope of this chapter . 148
7.1.2 Errors that fall outside the scope of this thesis 149

7.2 Examples of the two types of errors . 152
7.2.1 Inconsistencies between the dialogue partners’ mutual beliefs . 153
7.2.2 Inconsistencies between the dialogue partners’ intentions 155

7.3 Detecting errors . 156
7.3.1 Detecting errors in inform . 157
7.3.2 Detecting errors in query-if 158
7.3.3 Detecting errors in query-ref 159
7.3.4 Detecting errors in request . 160
7.3.5 Detecting errors in performed actions 161

7.4 Repairing errors . 162
7.4.1 Repairing belief discrepancies 162
7.4.2 Repairing intention discrepancies 167

7.5 Multimodal error handling . 168

7.6 Implementation and issues with 2APL 171
7.6.1 The example dialogue . 171
7.6.2 Implementation . 173
7.6.3 Issues with 2APL . 174

7.7 Conclusions and future work . 174

8 Conclusions 181

8.1 Results . 181
8.1.1 Cooperative dialogue . 181
8.1.2 Requirements . 182
8.1.3 Basic framework . 183
8.1.4 Language generation and interpretation 184
8.1.5 Error handling . 185

8.2 Discussion . 186
8.2.1 Validation . 188
8.2.2 Future work . 189
8.2.3 Vision . 190

A Appendix 193

Bibliography 197

Summary 207

Samenvatting 209

iv

CONTENTS

Dankwoord 211

SIKS Dissertation Series 213

v

1 Introduction

If you’re not failing every now and
again, it’s a sign you’re not doing
anything very innovative.

Woody Allen

It’s ten o’clock in the morning on a Sunday. Lucy walks into the kitchen. She’s
in a cheerful mood and wants to make something special for breakfast. She turns on
her new recipe robot, iCat.
Lucy: Good morning iCat, can you tell me... [iCat interrupts]
iCat: Good morning Lucy!
Lucy: Can you tell me how to make Eggs Benedict?
iCat: Yes, I can. [pause]
Lucy: [confused] Oh, I didn’t mean that as a question, I meant that as a request.
iCat: I’m sorry, I don’t know what you mean.
Lucy: Okay, sorry – please tell me how to make Eggs Benedict.
iCat: Of course. First, put half of an English muffin in the toaster.
Lucy: Okay. [starts taking a bag of muffins out of the cupboard]
iCat: Now, fry some bacon in a pan.
Lucy: Wait a second, I wasn’t done with the muffin.
iCat: I’m sorry, I don’t know what you mean.
Lucy: Just wait a second. [cuts muffin in half, puts it in the toaster, takes bacon out
of the fridge, puts it in a pan and places the pan on the stove] Okay, now I’m done.
iCat: Please poach an egg.
Lucy: I don’t know how to poach an egg.
iCat: I’m sorry, I don’t know what you mean.
Lucy: [sighs] Please tell me how to poach an egg.
iCat: Would you like to abandon your current recipe and start another one?
Lucy: Oh. [frowns] It’s a bit of a hassle, but alright.
iCat: First you have to boil some water.
Lucy: [fills a pan of water, puts it on the stove and waits until it boils] Okay.

1

INTRODUCTION 1.1

iCat: Now, add some vinegar to the water.
Lucy: [adds some vinegar] Done.
iCat: Crack an egg into a soup ladle.
Lucy: Oh, but I don’t have a soup ladle.
iCat: I’m sorry, I don’t know what you mean.
Lucy: [rolls eyes] Can I use something else instead of a soup ladle?
iCat: I’m sorry, I don’t know what you mean.
[smoke alarm starts beeping loudly]
Lucy: Oh no, the bacon!
iCat: I’m sorry, I don’t know what you mean.
[Lucy removes the pan with charred bacon from the stove, chucks it into the sink and
runs some cold water over the pan. The smoke alarm continues beeping]
iCat: I’m sorry, I don’t know what you mean.
Lucy: Never mind, iCat. I suppose I’ll just have a toasted muffin instead. Oh no!
[turns off toaster and removes charred muffin] Can you at least order breakfast for
me?
iCat: No. [smiles]
Lucy: Well, the good news about going out for breakfast is that I can at least put
you in the garbage on the way.

This dialogue is a good example of how things can go terribly wrong if a robot has
no flexibility, no way to detect and handle errors, no regard for whether the necessary
ingredients and tools are available, etcetera. While it is a difficult task to solve all of
these problems at once, this thesis presents work in some of these areas that can help
researchers develop more robust task assistants. We propose a basic task-oriented
system that is as simple as possible, and augment this system with an error handling
module.

In this chapter, we first briefly introduce the context of this research. Then we
will present a shorter and simpler example dialogue that we will use throughout the
remainder of this thesis. Then, we present the problem statement, research aim,
research questions, our methodology, the scope of this thesis, then we briefly discuss
the contributions of this research, and finally we will finish this chapter with some
practicalities about this thesis.

1.1 Context of this research

In this thesis, we present an agent-based dialogue system. In order to do this, this
thesis must naturally cover aspects of agent research and dialogue research. Since
most readers of this thesis will be familiar with, at most, one of these topics, we
will briefly discuss both topics in this section. Then, we will present the context in
which this research project originated: the Boon Companion project, later renamed
to Dutch Companion. Finally, we will present a simpler example dialogue that we
will use throughout this thesis to illustrate the framework that we present.

2

1.1 CONTEXT OF THIS RESEARCH

1
1.1.1 Dialogue systems

To build a task assistant that communicates with a human user, it is essential to have
a dialogue component. The system must be able to give instructions to the user, and
conversely, be able to understand what the user is trying to tell it.

Dialogue systems typically work in a three-step manner: processing of input, di-
alogue management, and generation of output. Naturally, these three processes are
strongly intertwined: e.g., the kind of processing that is done on the input depends
on the dialogue management rules, and vice versa. Generally, the choice for the kind
of processing and dialogue management is made at design time and depends on the
task that is to be performed by the dialogue system.

For some purposes, a minimal amount of processing and very simple rules are
enough (e.g., ELIZA [131]), while other systems have very intricate and elaborate
processing methods, taking into account all kinds of context and extracting all kinds
of extra information such as user models, then using goals and intentions in the
dialogue management process, in order to produce a more goal-directed response.

Between these two extremes, there is a whole spectrum of different types of dia-
logue systems. Here, we will briefly treat three types: keyword-based systems, state-
based systems, and agent-based systems, and discuss some advantages and drawbacks
of these three types. The three types are not mutually exclusive, and aspects of the
three types can therefore be combined. However, they represent increasing levels of
complexity.

Subsequently, we will motivate why we have chosen to develop an agent-based
dialogue system.

Keyword-based dialogue systems

Keyword-based dialogue systems, or chatbots, are notoriously unflexible and lack
robustness when the user is attempting to do something that falls outside of the
previously defined purpose of the chatbot. The system only reacts to the current
utterance from the user, meaning that no context is taken into account. Usually,
chatbots are programmed to react to certain words, (parts of) sentences or sentence
forms.

Chatterbots like ELIZA [131] and Verbots1 work like this. Some are designed to
help you (e.g., IKEA’s Anna2 helps visitors find their way around the website), some
are designed just to make conversation (Jabberwacky3), some are designed to mimic
particular behavior (PARRY [45] mimics a paranoid schizophrenic, ELIZA mimics a
psychotherapist). A chatterbot cannot switch between these roles/tasks, because it
uses only one set of rules to form reactions.

Besides a set of rules, chatterbots often also use a vocabulary/ontology (a classifi-
cation of words into nouns, verbs etc, plus some synonyms) to minimize the number
of rules; this allows the same rule to be activated on a whole class of words. For
example, PARRY reacts the same to sentences containing any word that is classified

1http://www.verbots.com
2http://www.ikea.nl
3http://www.jabberwacky.com

3

INTRODUCTION 1.1

as ‘family member’4. Input can be annotated with information from the vocabulary
to form structures such as:

My[POS-ADJ/I] brother[NOUN/family-member] is[VERB/be:simple-present]...

An example of how such a system works can be explained if we take as an example
the input sentence “Are you listening to me?”

A system may typically contain a rule that looks like this:

[verb] you [content]? →
Would you prefer it if I [verb*] not [content*]?

This rule is activated when the user inputs a sentence that starts with a verb,
followed by the word ‘you’ and ending in a question mark. In the activation of this
rule, some simple processing has to be done: [verb*] is [verb] in first person singular
tense and [content*] is the content with all instances of ‘I’ and ‘me’ substituted
by ‘you’, and the other way around5. If this rule is activated in response to the
aforementioned input sentence (“Are you listening to me?”), the system’s answer is:
“Would you prefer it if I were not listening to you?”

Sometimes more than one rule is applicable. In this case, the most specific rule
is generally chosen first. An example of multiple rules that may be applicable, from
more specific to less specific:

my X[NOUN/family-member] Y[VERB] [Z] → Who else in your family

Y [Z*]?6

[*] [family-member] [*] → Please tell me more about your family.

[*] [NOUN] [*] → Can you tell me more about this [NOUN]?

[*]? → Why do you ask?

[*] → Can you elaborate on that?

If no rule is applicable, the system usually gives a generic response along the lines
of “Please go on”, or “I’m sorry, I don’t know what you mean.”

Advantages of this type of system is that it is relatively easy to make and that
it works quite well as long as the user does not step outside of the expected domain
(casual chatting, answering simple questions, etc.). Disadvantages are that the system
is not goal-directed or pro-active, and that errors are easily made but never detected
or solved, which may lead to very frustrating, tedious and unproductive conversations.

4PARRY source code, http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/

classics/parry/ (retrieved May 3rd, 2010)
5This may cause typical problems along the lines of:

Nieske: You do not really believe you are a robot, do you?
ELIZA: Does it please you to believe I am a robot do i?

6Apparently, ELIZA has an even simpler version of this rule, without the [VERB] check:

Nieske: I know more about my brother than you do.
ELIZA: Who else in your family than i do?

4

1.1 CONTEXT OF THIS RESEARCH

1
State-based dialogue systems

State-based dialogue systems have a set structure according to which the dialogue
is conducted. This type of system remembers the current state that the dialogue
is in, and moves from one state to another based on certain keywords in the input
utterances. A general dialogue course is planned during the design time, together
with (sets of) keywords that trigger dialogue state transitions. For example, when
the system has asked the user a yes/no-question, a word from the set [yes, okay,
affirmative] will move the dialogue to state S1, while a word from the set [no, sorry,
negative] will move the dialogue to state S2. So, the utterance from the user is
interpreted w.r.t. the current state of the dialogue. Examples of tools that can be
used to construct this type of dialogue system are TRINDIkit [81] and the CSLU
Toolkit [91].

Just as in keyword-based systems, words can be annotated with additional in-
formation. For example, consider a dialogue system that is currently in the state
start dialogue and the two options for next states are recipe dialogue, which is
activated by the word ‘recipe’, and agenda dialogue, which is activated by the word
‘agenda’. If the user says “I don’t know what to cook tonight”, the word ‘cook’ can be
annotated with the category recipe, so with this utterance the state recipe dialogue

is also activated. If the user gives input that matches with none of the rules for this
dialogue state, a general answer is given that prompts the user to give one of the
expected instructions.

Advantages of this type of system are that the general course of the dialogue is
coherent, but the dialogue system is still relatively easy to program. It is suitable
for programming dialogues that always go according to the same pattern. Disad-
vantages are that the system is still not very flexible, and that scalability issues will
quickly appear, since the flexibility of the system is proportional to the time taken in
programming possible dialogue courses.

Agent-based dialogue systems

If the system has goals and intentions, it can conduct goal-directed dialogues. This
means that not all initiative needs to come from the user, but the dialogue system
itself also may have issues to address. This means that the system is not only reactive,
but also proactive, and can also say something without input from the user. When
the system forms a goal, it will take initiative to achieve this goal. Goals can be
formed in cooperation with the user or autonomously.

Besides goals and intentions, an interaction history, context, domain knowledge
and a user model can be used to reason about the user’s intentions, to elicit these
intentions from the user’s utterances, and for attempts to infer the user’s goals, beliefs,
and plans. The system can then decide whether to adopt the user’s goal and/or
modify its own goals according to the user’s goal. Whether the user’s goal is adopted
or not may depend on the roles in the dialogue, norms that the participants adhere
to, whether the interaction is cooperative or competitive dialogue, etc. Besides joint
activities, this type of system can also involve joint intentions [42], joint goals, and
shared plans [70], as we will see in the next chapter.

For example:

5

INTRODUCTION 1.1

Lucy: “I have some mushrooms and chicken, but I don’t know what to
cook.”
(iCat’s reasoning: Lucy is uttering this for a reason; she probably wants
help with this. We are in a cooperative setting, so I want to help her.)
iCat: “Shall I find you a recipe with mushrooms and chicken?”

Advantages of this type of system are that the interaction can be pro-active and
goal-directed, instead of just passive and reactive as in the systems described above.
A disadvantage is that this type of system is difficult to model and program.

1.1.2 Agent systems

We have chosen to develop an agent-based dialogue system that can function as a
task assistant, because it allows us to build a flexible, goal-directed system that can
quite easily be extended to work with different types of tasks, by programming it with
general task-oriented plans that can be used in multiple domains.

BDI-agents and multi-agent systems

An agent is an autonomous, social, reactive and goal-directed entity [135]. In our
work we follow Wooldridge’s [136] [135] definition of an agent: “a computer system
that is situated in some environment, and that is capable of autonomous action in
this environment in order to meet its design objectives.”

To be able to work more easily with the concepts mentioned above, we model our
agents according to the Belief-Desire-Intention (BDI) paradigm [41]. BDI is a theory
pertaining to the internals of rational agents. It is mostly geared towards artificial
agents, but approximates a theory of human action. A BDI agent has goals (desires)
that it will try to fulfill. For each goal, the agent has one or more plans that will
possibly lead to achieving the goal in question. To work with these concepts, the
system also has beliefs, statements that it holds to be true; depending on whether
certain beliefs hold, the agent can choose between different possible plans for its
current goal. As soon as it commits to performing such a plan, we call it an intention,
and from that point on the agent should be committed to completing it. The agent
may only abandon its intentions if major problems arise.

A multi-agent system is a collection of agents in an environment [135]. These
agents may communicate or perform activities together. In Chapter 2, we will elabo-
rate on the concepts of coordination, communication, and cooperation.

1.1.3 The Dutch Companion project

The Dutch Companion project was originally initiated as a European project called
‘Boon Companion’ (an English expression meaning something along the lines of ‘good
friend’). In the Boon Companion project, the initial plan was that a number of re-
searchers from different universities, companies and research institutions would de-
velop a companion robot for children. As the project progressed, the goal shifted to a
companion robot for the elderly, and then finally a recipe assistant. The project was
eventually renamed to ‘Dutch Companion’.

6

1.1 CONTEXT OF THIS RESEARCH

1

Figure 1.1: The iCat, designed by Philips, showing some of its many possible facial expres-
sions.

The project included the iCat [23] (see Figure 1.1) as a research platform. The
iCat is a stationary robot in the shape of a cartoon-like cat, developed by Philips.
It is not mobile, but it has an abundance of input and output modalities, the most
striking of which is its large expressive face that contains eyebrows, eyelids, eyes and
lips, that are moved with 11 servo motors. The iCat also has DC motors to control
head and neck movement, and multi-colored LEDs in its ears and paws, which can
all be controlled through an animation editor. It has speakers in its paws that are
controlled with a stereo soundcard. As input modalities, the iCat has a webcam in its
nose, touch sensors in its ears and paws, proximity sensors in its paws, and a built-in
microphone.

This thesis focuses on the dialogue part of the project, which was originally sup-
posed to be only a small part of a more extensive system. The system was not fully
implemented on the iCat robot collaboratively with the other project partners, and
therefore we have not been able to test the system on the iCat. However, we have
attempted to make the contribution of this work to the Dutch Companion project as
clear as possible, by focusing on the architecture of the complete system in Chapter
3. Partial implementations were developed based on our framework [72] [80], which
we will treat in Chapters 5, 6, and 7.

The main application of our system is in a kitchen setting, where the iCat will
stand on a countertop and is able to observe the user and the domain, and instruct
the user to perform various physical actions in the kitchen. In this thesis, we also use
a secondary setting to illustrate the domain independence of the system: the iCat can
instruct the user to set up a weblog. In this case, the iCat can be positioned next to
the computer or, alternatively, be a virtual agent on the computer screen. During the

7

INTRODUCTION 1.1

weblog setup task the iCat will be connected to the computer in a way that enables
it to observe actions that the user performs on the computer.

1.1.4 A simpler example dialogue
In the example that we presented in the beginning of this chapter, a lot of things went
wrong. Unfortunately, we cannot cover all of those problems in this thesis. In this
subsection, we present a simpler example dialogue in which some errors occur, but
which are repaired with the methods that we present in this thesis. In the remainder
of this thesis, we will regularly refer to this example dialogue and in Chapter 7 we
will present a more detailed look into the errors that occur in this dialogue and how
they can be solved with the methods we have presented.

The example dialogue that we use in this thesis is as follows:

User: I would like to prepare French toast.
System: That’s not possible, we don’t have bread available.
User: Can you give me another recipe for breakfast?
System: Would you like to make a poached egg?
User: Alright, I would like to make a poached egg.
System: Okay, I’ll teach you how to poach an egg. First, you have to boil
some water.
User: Can you turn on the stove for me?
System: I’m not able to turn on the stove.
User: Okay, I will turn on the stove. (pause) I’ve boiled water.
System: Add some vinegar to the water.
(User opens a red vinegar bottle)
System: That’s the wrong bottle. Please add white vinegar.
User: We don’t have any white vinegar.
System: We do have white vinegar. I know this because I bought it.
User: Okay, you’re right. I’ve added vinegar to the water.
System: Crack an egg into a soup ladle.
User: I’ve cracked the egg into a soup ladle.
System: Stir the boiling water.
User: How long should I stir the water?
System: I don’t know.
User: Okay, I’ve stirred the water.
System: Drop the egg into the center of the water.
User: I’ve dropped the egg into the water.
System: Now wait 3-4 minutes.
(3 minutes later)
User: I’ve waited 3-4 minutes.
System: Remove the egg from the water.
User: I’ve removed the egg.
System: You have now poached an egg! Will you be able to do it by
yourself next time?
User: Yes.
System: Okay, we’re done!

8

1.2 PROBLEM STATEMENT

1
Here, we use ‘user’ and ‘system’ instead of ‘Lucy’ and ‘iCat’ to denote that it is a

dialogue that can be generated by the framework that we present in this thesis: the
set of rules for the system that we present in Chapters 5 and 7, and, as we explain
below, a simple set of rules to simulate a user.

1.2 Problem statement
The main problem that we address in this thesis is the fact that it is very difficult
to plan a dialogue with a human dialogue partner. Many things can go wrong: the
participants may disagree, misunderstandings may occur, actions may fail, previously
believed information may be forgotten, the environment may change, etcetera. Ro-
bustness is recognized to be an important issue in dialogue systems research. Clark
[40] states that if errors in dialogue are handled more adequately, this will benefit the
development of natural language systems, and also, hopefully, the extent to which
they are actually used.

Airenti et al. [3] acknowledge failures as an integral part of communication and
state that they have to be resolved in “the standard model, without resorting to ad
hoc strategies.” We believe that two models are optimal: one for the standard (error-
less) dialogue and one for error handling. This allows for the error handling module to
be reused in different dialogue systems, which have a different model for the standard
dialogue.

The research questions that we aim to answer in this thesis represent different
tactics to work towards the developent of a robust dialogue system that is able to
function in an unpredictable environment.

1.2.1 Research aim and research questions
In this thesis, we will address ways to make a task-oriented system as robust as
possible. In order to do this, we will explore properties of cooperative dialogues,
requirements and implementation of a basic system, a modular approach to language
interpretation and generation, and an additional error handling component.

Research aim: To present a BDI-based framework for a dialogue system that can
instruct a user to perform tasks consisting of predefined sequences of actions,
based on a joint goal that the user and the system have together, focusing on
various tactics to make the system more robust.

This research aim can be split up into more specific questions:

Question 1: How does a cooperative dialogue (or interaction) result from a joint
goal? (Chapter 2)

Question 2: What are the requirements for a robust cooperative task assistant? (Chap-
ter 3)

Question 3: How can we implement a basic cooperative task assistant? (Chapters 4
and 5)

9

INTRODUCTION 1.3

Question 4: What robust approach to language generation and interpretation can we
use? (Chapter 6)

Question 5: How can we augment a basic cooperative task assistant with an error
handling module? (Chapter 7)

1.3 Methodology
As we have explained above, in this thesis we will present a model for a dialogue
system that can conduct robust task-oriented dialogues. The model will be presented
in BDI-rules in the style of the programming language 2APL. In the research that
has lead to this thesis, we have looked mainly at human-human dialogues. However,
the resulting model will not necessarily produce dialogues that are as humanlike as
possible; instead, we aim to develop a system that behaves as cooperatively as possible
and is robust in the sense that it will do its best to avoid communication breakdown.

In order to work towards this goal, we have taken the following steps. First, we
have conducted a literature study about dialogues and dialogue systems. In this pro-
cess, we have taken care to study both human-human dialogues and human-computer
dialogues and the differences between them. Since this thesis focuses on dialogues
that are cooperative and center around the performance of tasks, we have also inves-
tigated joint goals, especially in the context of BDI logic, and placed dialogue in the
broader context of (linguistic and non-linguistic) interaction.

Taking this knowledge about cooperative dialogues and interaction into account,
we have specified a requirements analysis for this specific type of system, which should
behave cooperatively and be able to instruct a user to perform tasks. Based on these
requirements, we have come to the conclusion that this specific system does not exist
in the literature, and have therefore constructed a general conceptual model and
architecture for such a system.

In order to design the system, we have constructed a set of rules according to the
BDI paradigm that can work with (joint) goals and beliefs. We have also studied
recipes and constructed a formalization that is based on nested lists. For parts of the
design, 2APL implementations have been constructed that enable a user to perform
cooking actions in a virtual environment, while being instructed by a Microsoft Agent
on the screen.

Finally, we have evaluated and reflected on the results. We have constructed a set
of beliefs and goals in addition to the rules that we have presented as our framework,
and additionally a (simple) set of beliefs, goals and rules to emulate a user. Based on
this complete 2APL-like set of beliefs, goals and rules, we have emulated a dialogue
between the system and the user in which several errors occur and are handled by the
system in a satisfactory way. This leads us to believe that our framework is suitable
for conducting such dialogues. With different beliefs, recipes and joint goals, different
but similar dialogues would result.

This evaluation has additionally produced a number of actions for future work,
which we will present at the end of each chapter, and in a summary in Chapter 8.
Most notably, a more extensive evaluation process with human users would produce
a more thorough assessment of the quality of the system.

10

1.3 METHODOLOGY

1
1.3.1 Scope of this work

This thesis aims to be a multidisciplinary work, centering mainly on agent research
and dialogue research. Contrary to much agent research, we do not only deal with
computational agents, but also with a human user. This introduces some interest-
ing new problems, such as the unpredictability of human behavior, but also some
advantages, such as the flexibility and improvisational skills of humans.

On the other hand, contrary to much dialogue research, we do not focus on lan-
guage itself, but instead on dialogue acts, meaning that we will not delve deeply
into aspects of dialogue such as speech recognition and parsing spontaneously spoken
speech, and the problems that may arise in both of these processes. We do consider
an approach to parsing and generating utterances based on speech acts in Chapter 6,
but we will not discuss quantitative methods of computational linguistics, nor learn-
ing systems. This also means that in the handling of errors, we do not treat speech
recognition errors and such, but we will only discuss the detection and handling of
errors on the level of speech acts.

The dialogues that we treat in this thesis are cooperative and task-oriented. (We
will explain these terms in more detail in Chapters 2 and 3.) This means that we
will not deal with competitive situations, deceit, negotiation, and persuasion. On the
other hand, the system that we present is also not solely a companion robot in the
strictest sense of the word: being a social, friendly conversation partner is not its
main goal. The main focus of the dialogues in this thesis is performing a certain task,
cooperatively with the user.

The system that we present in this thesis is a mixed-initiative system: it is both
proactive and reactive. If the system were purely reactive, the user would have to
take into account the availability of kitchen appliances, tools, and ingredients himself.
When the user asks for a certain recipe, the system would only be able to give the
instructions as specified in the recipe, regardless of the user’s level of proficiency.
The system would not volunteer to assist the user, but would only be able to follow
commands from the user. In short, omitting the proactive features of the system
would result in a less effective interaction that is not tailored to the skills of the user
and requires a lot more initiative and attention from the user. Also, a mixed-initiative
interaction feels more natural for human users. [109]

The iCat is very much a multimodal robot, with its rich arsenal of sensors and ac-
tuators, but multimodal interaction is only one aspect of this research, not the central
one. The system would benefit greatly from the addition of vision and sound pro-
cessing to have more accurate beliefs about the current status of the domain and the
actions that are being performed. We do treat various aspects of multimodal interac-
tion in various chapters in this thesis, but have not implemented a real multimodal
system at this time.

As we have mentioned earlier in this chapter, we will not give a detailed imple-
mentation of the system, but merely a framework in the form of pseudocode rules in
the style of 2APL. We will, however, mention some work towards the implementation
of functioning systems that are based on our framework.

Although we have not been able to implement a complete and working system, this
thesis aims to give a complete, generic and principled framework for the development

11

INTRODUCTION 1.5

of a robust multimodal interaction system. Parts of this are the generic task-oriented
dialogue model that we present in Chapter 3, the generic companion robot architecture
and the visualization of multimodal dialogues that we present in Chapter 4, and the
generalized error detection and repair tactics that we present in Chapter 7. We hope
that this thesis will be of assistance to dialogue and agent researchers in the process
of developing a multimodal, task-oriented dialogue system.

1.4 Contributions of this research

As we have mentioned above, the main contributions of this research are in the pre-
sentation of generic models for a robust task-oriented dialogue system. In this thesis,
we present a generalized architecture for a companion robot, which matches the com-
panion robot architectures that we have encountered in the literature and makes it
easier to compare such architectures to each other. We also discuss requirements for
a cooperative task assistant that we believe any such system should adhere to, and
present a visualization for multimodal dialogues that can be used in the develop-
ment process of integrated multimodal dialogue systems. Furthermore, we present a
BDI-based framework for a basic task assistant that can teach a user how to perform
certain tasks, and a separate (also BDI-based) error handling module that avoids a
communication breakdown by immediately addressing inconsistencies in the mutual
beliefs of the participants and by addressing unexpected input. Although natural lan-
guage is not the main focus of this work, we also present some first steps towards the
development of a complete parsing algorithm using Functional Discourse Grammar.

There are several possible reasons why the implementation of an error handling
strategy in a human-computer dialogue system is an interesting research topic. It
can be used to study the way human agents handle errors in their dialogues. It
can also be used to make a dialogue system more reliable and/or more natural. We
have decided to build a very simple dialogue system (as presented in Chapter 5) and
supplement it with an error handling module. We have attempted to make the error
handling module as general as possible, so it can be used to augment any task-oriented
instruction system with as few adjustments as possible.

1.5 Practicalities

1.5.1 Organization of this thesis

In Chapter 2, we will present theory about (joint) activities and cooperative dialogues
and answer the first of our research questions. In Chapter 3, we will discuss the
set of requirements that we believe any cooperative task assistant should have, and
answer the second research question. The third research question will be addressed
in Chapter 4, which deals with the architecture of our system, and Chapter 5, which
presents the implementation of our basic system. In Chapter 6, we will present the
theory of Functional Discourse Grammar, discuss a practical way to interpret indirect
speech acts, and answer the fourth of our research questions. In Chapter 7, we will
answer our fifth research question by presenting an error handling module that can

12

1.5 PRACTICALITIES

1
be used on top of the system that we present in Chapter 5. Finally, in Chapter 8
we will present conclusions, a summary of the answers to our research question, and
some open questions that we believe would be interesting for future research. In the
appendix, we present a glossary of linguistic concepts, which researchers in the field
of computer science and/or agent technology may not be familiar with.

1.5.2 Some conventions
In this thesis, we use U to denote the user and S to denote the system. When we
generalize over the participants in a joint activity, we use A and B to denote the
dialogue partners. We use the term agent to generalize over human and computational
participants, and will use computational agent and human agent when this needs to
be specified.

Goals can be split up into subgoals, which must all be reached in order to reach the
goal itself. Atomic actions are actions that cannot be split up into simpler actions.
We use the term task to generalize over atomic actions, goals and subgoals. In this
thesis, we use a to denote actions, p for propositions, G for goals, S for subgoals, T for
tasks, and P for plans (lists of tasks). The abbreviation I(taskname) means that the
speaker has the task with identifier taskname is the first action in its planbase.

Unless stated otherwise, the dialogue fragments in this chapter are taken from
dialogues that were collected in the context of the Dutch Companion project or from
previous experiments from the DenK project [1]. Some of the dialogue fragments are
translated from Dutch.

We use male pronouns (‘he’, ‘him’, and ‘his’) when referring to a person of un-
specified gender.

13

2 Cooperative Dialogues

The real art of conversation is not
only to say the right thing at the
right place but to leave unsaid the
wrong thing at the tempting
moment.

Dorothy Nevill

In this chapter, we explain the concept of dialogue in the broader context of joint
activities, in order to enable us to treat linguistic and non-linguistic interaction in
a unified way. We approach dialogue in a top-down fashion; like McTear [92], we
believe that “dialogue structure emerges dynamically as a consequence of principles
of rational cooperative interaction” (quoted from Morante [94]). In this chapter, we
will present the definition and properties of cooperative dialogues, starting with a
general definition of activities and refining this definition by exploring the concepts
of coordination, language, and cooperation.

First, in Section 2.1, we will define activities, which are performed in order to
achieve goals (2.1.1), and consist of actions (2.1.2).

In Section 2.2, we will see how activities can become joint activities. Joint activities
rely partially on mutual belief and common ground (2.2.1) between the participants
and are initiated in order to achieve joint goals (2.2.2). Joint activities are coordinated
(2.2.3) by the agents that are involved. When coordinated by multiple agents, plans
and projects become joint plans and joint projects (2.2.4). Actions in a joint activity
are participatory actions, which might be individual or joint actions (2.2.5). In 2.2.6,
we discuss which parts of this theory are used in our system.

A dialogue (Section 2.3) is a joint activity that involves the use of language (2.3.1).
Language can be used as a coordination tool for a joint activity, but a dialogue is also a
joint activity in itself. Participatory actions in a dialogue are called utterances, which
correspond loosely to dialogue turns (2.3.2), but do not have a one-to-one correspon-
dence: an utterance can span over more than one dialogue turn. When attending
to an utterance of the dialogue partner, one constructs a construal (interpretation)
of that utterance (2.3.3). These construals may be implicitly or explicitly grounded
(checked) by the participants (2.3.4). Again, we discuss which parts of this theory

15

COOPERATIVE DIALOGUES 2.1

are used in our system in 2.3.5.
Section 2.4 pertains to cooperative dialogues. These are dialogues in which all

participants adhere to norms of cooperation (2.4.1), meaning that they do not keep
hidden agendas from each other, that they adhere to Grice’s maxims of conversation,
and that they are sincere and helpful (2.4.2) towards each other. To better define
these concepts, we make the distinction between private and public goals (2.4.3). We
finish this section with a discussion of which parts of this theory we use in our system
in 2.4.4.

With all this information, we can define successful dialogues in Section 2.5. Since
there are, as we have seen, different types of goals in a dialogue, dialogues can be
more or less successful in different ways. Beside related work (2.5.1), we will look at
success at utterance level (2.5.2) and success at dialogue level (2.5.3), and very briefly
discuss the use of dialogue success in our system (2.5.4).

Finally, in Section 2.6, we will present a conclusion and future work.

2.1 Activities
An activity is a sequence of actions that are performed by an agent. An example of
an activity is cooking a meal, which consists of cooking actions. An activity may be
individual or joint; this can be either inherent to the activity (such as playing a duet,
which is inherently a joint activity) or not (e.g., preparing a recipe, which can be done
individually or jointly). Activities are usually executed with a particular purpose.

2.1.1 Goals
A goal is a state that an agent wants to achieve. An agent will typically initiate
an activity to achieve a certain goal. The agent might have multiple possible plans
(sequences of actions) that can be followed to achieve the goal. The agent can choose
between these plans on the basis of some conditions that these plans have. For
example, if Lucy has the goal ‘eat dinner’, she is able to choose between cooking a
meal and going to a restaurant. Both plans have conditions: for cooking a meal,
one has to have a kitchen, while a condition for eating at a restaurant is having
enough money to pay for the meal. If Lucy does not have a kitchen (as is nowadays
not uncommon in lofts in Manhattan), but if she has sufficient funds to eat at a
restaurant, this is the plan that she will choose in order to achieve her goal of eating
dinner.

2.1.2 Actions
Actions are one-shot (single) acts. We only treat intentional actions, which are ex-
ecuted purposefully by an agent, as opposed to unintentional (accidental) actions.
Actions are part of plans that are used by the agent to work towards a goal. Just
like activities, actions may be individual (single-agent) or joint (coordinated and per-
formed by multiple agents). For example, when Lucy plans to eat at a restaurant,
walking to the restaurant is an individual action that belongs to the plan that she
chose. When Lucy arrives at the restaurant, the waiter hands her a menu. This is an

16

2.2 JOINT ACTIVITIES

2

example of a joint action, since it is executed by Lucy and the waiter together, and
cannot succeed if one of them withdraws from the joint action.

We distinguish between three different types of actions: domain actions, verbal
communicative actions and nonverbal communicative actions. Domain actions are
actions by an agent that influence the domain (e.g., picking up an object). Commu-
nicative actions are intended to make some information public; they can be verbal or
nonverbal. An example of a nonverbal communicative action is Lucy raising her hand
in order to signal to the waiter that she is ready to order. Uttering the order is, of
course, a verbal communicative action.

Single-agent communicative activities such as giving a speech are, according to
Clark [40], joint actions, even though they are asynchronous, because in the produc-
tion of those activities, the actor does take into account possible listeners. However, at
this point, we do not take coordination between speakers and hearers (or, more appro-
priately, broadcasters and receivers) into account and therefore postpone the notions
of joint activities and coordination to the next section of this chapter; communicative
actions may simply be broadcast (i.e. ‘put out there’, to nobody in particular) and
heard only by overhearers (bystanders or eavesdroppers).

Some examples of communicative actions are inform (used when stating informa-
tion that one considers to be true) and request (used when wanting information or
action from another agent).

As we have mentioned in Chapter 1, we introduce the notion of tasks to generalize
over goals and atomic actions: a task is either a goal (which can be split up into
subtasks), or an atomic action.

2.2 Joint activities

Joint activities are projects that are executed by a number of participants together,
as opposed to individual activities. For example, having a dialogue or cooking a meal
together are joint activities. Cohen and Levesque [42] define a participant of a joint
activity as an agent that is committed to the joint activity and to the other agents
that participate in the joint activity.

Clark [40] makes some general claims about joint activities. Joint activities always
have two or more participants. The participants have public roles and may have both
public and private goals. Joint actions are built up hierarchically, meaning that a
joint activity consists of a number of joint actions, which may consist of other joint
actions themselves. The boundaries of joint activities are coordinated, which goes
for both entry and exit. Joint activities may be simultaneous (like a game of tennis)
or intermittent (like a game of correspondence chess) and the participants of a joint
activity may change during the course of the activity. We will elaborate on these
concepts later in this section.

All participants in the joint activity have an idea or expectation of the nature
of the joint activity. Ideally, all participants should have the same beliefs about the
nature of the joint activity, but this is not necessarily so: e.g., if Lucy engages in a
dialogue with Jack, Lucy may want to find out some information, while Jack wants
to make a nice chat in order to get to know Lucy better and might think that Lucy

17

COOPERATIVE DIALOGUES 2.2

has the same intention.
Some joint activities have to be accepted (‘taken up’) explicitly before they are

valid joint activities; e.g., when a bet is proposed, the dialogue parter must first ac-
cept the bet before it is a joint activity. According to Clark [40], a proposal for a joint
purpose may result in either full compliance (the most preferred result), alteration of
the project, declination of the project, or withdrawal from project (the least preferred
result). We will elaborate on the concept of uptake later in this chapter. The defi-
nition of commitment to a joint purpose is recursive, consisting of the following four
conditions that must hold in order for two agents A and B to commit themselves to
joint purpose G:

Identification: A and B must identify G;

Ability: it must be possible for A and B to do their parts in fulfilling G;

Willingness: A and B must be willing to do their parts in fulfilling G; and

Mutual belief: A and B must each believe that these four conditions are part of
their common ground.

Joint activities vary on many dimensions; e.g., they may range from scripted to
unscripted (a theater play vs. improvisation theater), formal to informal (a wedding
ceremony vs. a party), verbal to nonverbal (a dialogue vs. a game of tennis), coop-
erative to competitive (solving a puzzle together vs. playing a game of chess), and
egalitarian to autocratic (playing a duet vs. an oral exam). As we will explain later,
we will not treat all types of joint activities.

2.2.1 Mutual belief and common ground
Airenti et al. [3] take mutual (or shared) belief as a primitive, rather than defining it
solely in terms of individual (or private) belief. They justify this by mentioning “the
human ability to deal easily with shared information”. Shared belief (SH) does have
individual belief as part of its definition, which is as follows:

SHAB p ≡ BELA (p ∧ SHBA p)

That is: agents A and B hold proposition p to be mutually believed when A
believes that p is true and that B and A hold p to be mutually believed.

In the definitions by Cohen and Levesque in [42], mutual belief is also not specified
further, but is instead taken as a primitive. This is to avoid problems with mutual
belief being infinitely recursive when defined w.r.t. individual beliefs; the formal
definition of mutual belief is that A and B believe that p, A believes that B believes
that p, B believes that A believes that p, A believes that B believes that A believes that
p, B believes that A believes that B believes that p, ... (etc). In an unreliable setting,
making certain information mutually believed would require an infinite dialogue of
utterances like “p is true”; “Okay, now I believe that p is true”; “Okay, now I believe
that you believe that...” etcetera.

Common ground is essential in coordinating joint actions and activities [40]. Un-
fortunately, common ground is not necessarily the same for both dialogue partners.

18

2.2 JOINT ACTIVITIES

2

One can only believe that something is common ground, with a certain ‘quality of
evidence’: a measure of how likely is it that something really is common ground.
This can of course be misestimated. There are several things that can go wrong if one
over- or underestimates common ground in an interaction. We will treat these types
of errors later in this thesis.

Common ground accumulates during an interaction and consists of three different
types. First of all, there is initial common ground, which is fixed at the beginning
of the interaction, containing information about previous interactions and such. Sec-
ondly, there is the current state of the interaction, which changes with every dialogue
action. The third type of common ground is the public events so far, including the
registration of the dialogue history (textual and situational) and other salient events
that occur during the interaction.

Communal common ground [40] is given by the social context in which we are
situated (e.g., residence, occupation, religion, gender, ethnicity). In addition to com-
munal common ground, agents also establish common ground with each other during
an interaction. This is called personal common ground. This is based on what agents
know about each other and joint history and activities. The more two agents interact
with each other, the more common ground they have. Therefore, one has less common
ground with strangers, more with acquaintances, friends, and the most with intimates.
Communal common ground is more constant than personal common ground.

Jointly salient events are part of personal common ground. Agents rely strongly
on saliency for anaphora resolution. The saliency of such referents (objects, events or
concepts that are referred to) can depend on various conditions. Referents may be, for
example, recent words in a sentence, objects or agents that are in the physical vicinity
of the dialogue partners, or current events. Current events can be local (e.g., a ringing
phone) or current on a grander scale (e.g., events that have been prominently featured
in the media). Jointly salient events can get established by gestural indications (e.g.,
pointing to something in the vicinity), the dialogue partners’ activities, or salient
perceptual events.

2.2.2 Joint goals

To adequately model purposeful joint activities, we need a notion of joint goals.
Castelfranchi [38] calls social goals the ‘glue of joint action’. Without a notion of
social goals, there could not be social commitment (i.e. ‘the commitment of one agent
to another’). He distinguishes the notion of social goals from joint goals: social goals
may be joint or individual, but are adopted while taking into account other agents,
while joint goals are adopted collaboratively by a number of agents.

Cohen and Levesque [42] define Joint Persistent Goals as in Figure 2.1. In this
definition, box (�) stands for ‘always’, while diamond (♦) stands for ‘eventually’. BEL
stands for (individual) belief: BEL x p means that agent x believes that p; GOAL
stands for (individual) goals: GOAL x p means that agent x has p as a goal. MB
stands for mutual belief, and MK stands for mutual knowledge. The other symbols
and concepts will be explained below.

In order to explain the concept of joint persistent goals, we will first explain the
underlying concepts of mutual goals (MG), weak goals (WG), and weak mutual goals

19

COOPERATIVE DIALOGUES 2.2

Mutual goal:
(MG x y p)

def
=

(MB x y (GOAL x p) ∧ (GOAL y p))

Weak goal:
(WG x y p)

def
=

[¬(BEL x p) ∧ (GOAL x ♦p)] ∨
[(BEL x p) ∧ (GOAL x ♦(MB x y p))] ∨
[(BEL x �¬p) ∧ (GOAL x ♦(MB x y �¬p))] ∨
[(BEL x ¬q) ∧ (GOAL x ♦(MB x y ¬q)))]

Weak mutual goal:
(WMG x y p q)

def
=

(MB x y (WG x y p q) ∧(WG y x p q))

Joint persistent goal:
(JPG x y p q)

def
=

(MB x y ¬p) ∧
(MG x y ♦p) ∧
(MK x y (UNTIL [(MB x y p) ∨ (MB x y ¬�p)) ∨ (MB x y ¬q)] (WMG
x y p))))

Figure 2.1: Definitions from Cohen and Levesque [42]

(WMG). The concept of mutual goals is straightforward: agents x and y have mutual
goal p if x and y mutually believe that both x has goal p and y has goal p.

Agent x has weak goal p, relative to agent y if either of these four conditions hold:

• x does not believe that p is true and x has the goal that p will eventually become
true; or

• x believes that p is (already) true and x has the goal that p will eventually
become mutually believed by x and y; or

• x believes that p will never be true and x has the goal that this will eventually
become mutually believed by x and y that p will definitely never be true; or

• x believes that q is not true and x has the goal that it will eventually become
mutually believed by x and y that q is not true.

Note the sudden appearance of a fourth argument q in the fourth condition of
this definition. The definitions in Figure 2.1 are quoted literally from Cohen and
Levesque [42]. We assume that the fourth argument q has a function similar to that
of the fourth argument of joint persistent goals: the condition q is introduced as a
reason for the agents to keep goal p. Whenever q is no longer true, the goal can be
dropped. This extra condition can be used in different ways, for example to express
a supergoal of p (which, when it is canceled, will render p useless), or as a timeout
condition after which p is no longer valid.

20

2.2 JOINT ACTIVITIES

2

So, to summarize the definition of weak goals: when x does not (yet) believe that
p is true, it has the goal that p will eventually become true, or when x believes that
p is either true, will never be true, or that condition q is false, it has the goal that
this will eventually become mutually believed by x and y.

The definition of weak mutual goals is also quite straightforward, extending the
definition of weak goals in a similar way as mutual goals extend regular goals. Agents
x and y have a weak mutual goal that p, relative to condition q, if they mutually
believe that x has weak goal p relative to agent y and condition q, and that y has
weak goal p relative to agent x and condition q.

Agents x and y have a joint persistent goal p if the following three conditions hold.
First of all, x and y must mutually believe that p is not (yet) true. Secondly, x and
y have a mutual goal that p will eventually become true. Thirdly, p will stay a weak
mutual goal of x and y until both agents mutually believe that either p is true, p will
never be true, or condition q is false.

When (JPG x y p q) is the active goal, it follows from the definition of joint
persistent goals that until it is mutually believed that the goal is achieved, impossible,
or there is no more reason to pursue it (e.g., time constraint q is violated), the
participants should keep working towards it together as a weak mutual goal. This
means that it is mutually believed between both participants that they both have
the weak goal to achieve p (again, unless q holds). Here, the communication about
the status of p emerges: when either of the participants finds out that p is either
achieved, impossible, or not valid anymore (when q is no longer true), it becomes a
goal of this participant to make this information mutually believed. They also both
know that they have this commitment to making their beliefs about the achievability
of p mutual.

According to this definition, an essential part of communication during a joint
activity is informing each other of the status of plans, and therefore the communicative
intentions that follow from this definition are all inform. Of course other types of
speech acts also occur in the dialogue (asking for explanation, giving explanation,
asking for clarification, ...) whenever the need arises.

2.2.3 Coordination

Clark [40] makes some claims about coordination in joint activities. In order to
successfully execute joint actions and activities, the participants must coordinate the
content and processes of the joint activity. In our earlier example, when the waiter
tries to hand Lucy a menu, but Lucy fails to grab the menu when the waiter releases
it, the joint action fails.

Partners in a joint activity can coordinate their actions in different ways: according
to explicit agreement or according to precedent. Continuous coordination is periodic
(i.e. synchronized by cadence/rhythm) or aperiodic. An example of a joint activity
that is periodically coordinated is a musical duet, while dialogue is typically aperi-
odic. Coordination can be either balanced (no-one in the lead) or unbalanced. For
example, dialogues are typically balanced, but not always: tutoring and instructing
dialogues are unbalanced, since one of the participants (the tutor or instructor) takes
the lead. Joint acts (one-shot) and joint actions (continuous) can both be relatively

21

COOPERATIVE DIALOGUES 2.2

easily coordinated because they divide into smaller-scale phases that can be used as
coordination devices. A phase is a joint action that can be divided into an entry, a
body and an exit. For example, saying a phrase, throwing a ball, and shaking hands
are all phases.

According to Clark [40], there are three possible coordination strategies to syn-
chronize joint actions. One possibility is cadence strategy (i.e. actions are coordinated
by rhythm). This strategy is only applicable for periodic activities, such as dancing.
Secondly, joint actions may be coordinated by entry strategy (i.e. only the entry point
of the joint action is coordinated). In ongoing joint activities, the exit time of a phase
is usually the same as the entry time of the next phase, such as in dialogue turn-
taking; when one of the participants begins a dialogue turn, it is obvious that the
previous turn has ended. Thirdly, coordination may be done by boundary strategy:
coordination on entry and also coordination on exit. In this case, such as in shaking
hands, the participants also try to coordinate the exit time; it would be impolite to
withdraw one’s hand too early from a handshake, but equally impolite to continue the
handshake beyond the point where the activity partner starts to feel uncomfortable.

Castelfranchi [38] discusses coordination in the context of avoiding obstacles and
exploiting opportunities. In order to coordinate with another agent’s actions, one
has to have beliefs about the other agent’s mind. Because of this, coordination is
always a social action. Castelfranchi also emphasises a number of possible variations
in coordination. First of all, he distinguishes positive and negative coordination:
the former is employed to profit from a favourable circumstance, while the latter is
employed to avoid a negative circumstance. Besides that, he also separates reactive
and proactive coordination, depending on when the coordinative action is planned
(before or after the obstacle or opportunity is perceived). Finally, Castelfranchi also
contrasts selfish and collaborative coordination: the first occurs when the agent merely
‘uses’ another agent and aims for the highest possible individual utility for itself, while
the latter is about maximizing the total utility of all the agents involved. We will
elaborate on this notion when we get to the topic of cooperation.

Besides coordinating on processes, the participants also coordinate their contri-
butions on a syntactic [18] and semantic [59] level. This means that the participants
adopt each other’s vocabulary and terminology during the course of a dialogue or
series of dialogues. This can be viewed as a form of personal common ground that is
built up between the participants.

2.2.4 Joint plans and joint projects

A joint plan is a sequence of actions that make up a joint activity. The participants
of the joint activity can plan their actions collaboratively in order to complete a
joint goal together. Grosz and Kraus [71] explain collaborative plans in terms of full
individual plans, partial individual plans, full shared plans, and partial shared plans.
The possibility of partial plans means that agents are not required to have a complete
idea of how they are going to fulfill their goals. The group of agents can together
decide on their strategy to work towards a common goal. This involves identifying a
plan and deciding which agent performs which actions in this plan. A disadvantage
of partial plans is that the ‘traditional’ notion of commitment is compromised in two

22

2.2 JOINT ACTIVITIES

2

ways: firstly, because agents can be committed to a goal without knowing exactly
how to reach it, and secondly, agents can also form commitments towards others’
activities.

A group of agents have a collaborative plan for a certain action if they have
mutual belief of a (partial) plan, individual intentions that the action be done and
that the collaborators succeed in doing the (identified) constituent subaction, and
if they have individual or collaborative plans for the subactions. Grosz and Kraus’
notion of collaborative plans is more complex than in previous work, because of the
interaction of partiality and complex actions.

According to Clark [40], a joint project is a joint action projected by one of its
participants and taken up by the others. We will elaborate on joint actions in the next
subsection. Joint projects may be initiated with a proposal (in the form of, for exam-
ple, a question or a request) and taken up with an utterance that displays construal
of the proposal. Joint projects serve joint purposes, which are comparable to joint
goals. Joint projects can be ordered in various ways, on which we will also elaborate
in the next section. By minimal joint projects, people negotiate broader purposes.
A joint project is a project that requires multiple participants that coordinate their
actions.

2.2.5 Joint actions and participatory actions

Joint activities can be split up into smaller parts, called joint actions. Joint actions
are the coordinations of individual actions by two or more people; e.g., attending
to your dialogue partner’s utterance, or answering your dialogue partner’s question.
For example, deceptive actions are not joint actions. An action that is part of a
joint activity is called a participatory action; in contrast, autonomous actions are
performed as part of an individual plan (and without coordination with any other
actors). When performing a participatory action, all participants intend to perform
their part and believe that they all have this intention, and additionally, believe that
all other participants also have these intentions and beliefs.

Participatory actions are parts of joint activities, but may in themselves be either
joint or individual actions. Participatory actions are comparable to ‘social actions’
from Castelfranchi [38], which, he stresses, are an important intermediate level be-
tween individual and collective actions. As we have seen before, the question whether
an action is social depends on the intention of the agent that executes it; if this in-
tention is social, the action is social, but it does not necessarily include actions of
other agents. For example, an action that is performed by request of another agent
is a social action. We will call participatory actions moves in the remainder of this
chapter.

For example, a dialogue, which is a joint activity, consists of participatory actions
that are performed by the participants. A dialogue is not built up of single utterances,
but rather comprised of sequences of paired actions; utterances tend to come in pairs,
rather than alone. Such action pairs in a dialogue are instantiations of event-reaction
pairs, which, in its broadest sense, is the pairing of an event (verbal or non-verbal)
and its instigating reaction (which is, too, verbal or non-verbal). By giving a reaction
to a certain event, an agent can make his construal (interpretation) of the event

23

COOPERATIVE DIALOGUES 2.2

public; e.g., when accidentally stepping on someone’s foot, apologizing will make it
clear that you did not do it on purpose. We will elaborate on the topics of dialogues
and construals later in this chapter.

Event-reaction pairs [40] consist of two ordered events: an instigating event and
a reaction. The two events have different origins. The instigating event is any event
mutually recognized by the participants A and B. The reaction is an action by B
that is or includes a signal to A, and B’s reaction is partially intended to display B’s
construal of the event.

We will explain event-reaction pairs by taking a slightly simplified sample of our
example dialogue:

System: “First you have to boil some water.”
User: “Can you turn on the stove for me?”
System: “I’m not able to turn on the stove.”
User: “Okay.” [turns on stove]

In this part of the example dialogue, there are a number of adjacent event-reaction
pairs:

1. System says: “First you have to boil some water.” – user says: “Can
you turn on the stove for me?”
2. User says: “Can you turn on the stove for me?” – system says: “I’m
not able to turn on the stove.”
3. System says: “I’m not able to turn on the stove.” – user says: “Okay.”

However, there are additional event-reaction pairs, which are not adjacent to each
other, and therefore less obvious:

4. System says: “First you have to boil some water.” (turn 1) – user says:
“Okay.” (turn 4)
5. System says: “First you have to boil some water.” (turn 1) – user turns
on stove (turn 4)

Of the five event-reaction pairs, three are system’s utterance – user’s utterance,
one is user’s utterance – system’s utterance, and one is system’s utterance – user’s
action. In this short example, it is already clear that event-reaction pairs can be
ordered in different ways. Some of the pairs overlap, while others are separate from
each other. According to Clark [40], joint actions can be ordered in three different
ways: embedding (e.g., for satisfying preparatory conditions), chaining (e.g., question
– answer – evaluation), or pre-sequences (e.g., “There’s something I wanted to ask
you...”). In the above sample dialogue, one event-reaction pair is embedded in another
one (request – [question – answer] – agreement), and there is also chaining of joint
actions (request – agreement – compliance).

Some more examples of chained event-reaction pairs are:

• real question – answer – evaluation (e.g., “How long should I cook the spaghetti?”
– “Ten minutes.” – “Thanks.”)

24

2.2 JOINT ACTIVITIES

2

• test question – answer – verdict (e.g., “What’s the capital of France?” – “Paris.”
– “Correct.”)

• request – compliance – thanks (e.g., “Could you turn on the stove for me?” –
[turns on stove] – “Thanks.”)

• favor – thanks – acknowledgement (e.g., [turns on stove] – “Thanks” – “You’re
welcome”)

An adjacency pair [108] is an event-reaction pair with the added property that
the first part (the ‘event’) presents the uptake of a joint task, and the second part
(the ‘reaction’) effects that uptake. Some typical instantiations of adjacency pairs are
question–answer, greeting–greeting, offer–acceptance, and apology–minimization. To
be more precise, adjacency pairs consist of two ordered utterances or actions. These
two parts are uttered by different speakers and come in types that specify which part
comes first and which comes second. Form and content of the second part depend
on the type of the first part and are partially intended to display B’s construal of
the first part for A. (We will discuss construals of utterances in more detail in the
next section.) Given a first pair part, the second pair part is conditionally relevant
(i.e. relevant and expectable) as the next utterance.

2.2.6 In our system

Joint goals

As we have seen above, the following four conditions for joint activities must be ful-
filled for the participants to have a joint goal together: identification (the participants
both identify the joint goal in question), ability (the participants are capable of doing
their part), willingness (the participants are both willing to work towards the joint
goal) and mutual belief (the participants believe that these conditions are all fulfilled).

In our system, we do not explicitly implement the definition of Joint Persistent
Goals according to Cohen and Levesque [42]; only the consequences that are expressed
in the definition are implemented. This results in a number of principles. According
to the definitions of joint persistent goals and weak goals, if the participants have
a joint goal together, they should always inform each other of the (believed) status
of the joint goal: when it is achieved, impossible, or when the (optional) condition
q is false, the agent adopts the goal to make this information mutually believed.
Additionally, the agent expects the other participants to behave in the same manner.
The participants have their own private goals, and also beliefs about each other’s
goals.

In (JPG x y p q), we take p to be the current (sub)goal and q to be the ‘reason’
why p has to be achieved and a condition on which any attempts to achieve p may
be canceled. In our system, the recipe steps (subgoals) will be p and the completion
of the whole recipe will be q, meaning that when the recipe preparation is canceled,
the current recipe step does not have to be completed anymore either.

25

COOPERATIVE DIALOGUES 2.3

Joint plans

As we have seen above, Grosz and Kraus [71] explain collaborative plans in terms of
full individual plans, partial individual plans, full shared plans, and partial shared
plans. In order to implement collaborative plans in an agent-based system, we break
down the definition of collaborative plans in terms of individual actions, and include
rules that enable the execution of individual actions by any of the participants in the
joint plan.

A difference between our work and that of Grosz and Kraus is that we only
specify one of the agents in the joint activity, leaving the human user out of the
formal definition. While this introduces some uncertainty, we do expect it to work in
a practical setting, although of course the possibility of any formal proofs is greatly
compromised by the lack of formal and computational definitions of the inner workings
of a human user. The system’s beliefs about the user’s mental state are uncertain and
probably inaccurate and the system can thus at most perform uncertain and tentative
reasoning with this information. However, we do base the implementation rules of
the system on Grosz and Kraus’ work.

In our work, we do work with complex actions, but we assume that the system
always has complete plans, since it is supposed to function as a recipe instructor.
This makes reasoning about plans less complex than in Grosz and Kraus’ work. This
does not mean that the user cannot perform a complex action in a different way than
the system’s recipe for this complex action, as long as the user is supposed to do the
complex action individually. Also, our system accounts for the possibility of different
recipes for a certain goal, which Grosz and Kraus do not.

Mutual belief and common ground

In our basic system without error handling, as we present in Chapter 5, we assume
a reliable communication channel. This means that there are two ways in which
proposition p can become mutually believed: firstly, when one of the participants
says that p and it is not denied by another participant; or secondly, when p occurs
visibly and is observable by all participants. In both cases, information p is ‘out
there’, and therefore public information for all of the participants. Of course it is still
possible that one of the participants did miss this new information p because of some
unexpected reason or other (e.g., noisy communication channels). If this happens, it
should be detected and handled by our error handling mechanism. We will treat this
in Chapter 7.

The system will have communal common ground with the user as a starting point,
and everything that is built up from there is personal common ground (e.g., dialogue
history, user preferences). This can become clear when the system makes mistakes in
what it presumes to be common ground. If the error is in communal common ground,
the system can react along the lines of: “I thought everyone knew that.” However,
when the error is in personal common ground, the reaction is rather: “I thought I told
you this before!” In our system, we will represent common ground in the contextual
component in Functional Discourse Grammar (see Chapter 6).

26

2.3 DIALOGUES

2

2.3 Dialogues

In this section, we will investigate what constitutes a dialogue. Dictionaries and ency-
clopedias1 agree on some points, and combining their definitions yields the following
definition in broad terms: a dialogue is a mostly linguistic interchange of information
between two (or more) persons, usually initiated in order to reach one or more goals.

Clark [40] defines discourse as a type of joint activity in which conventional lan-
guage plays a prominent role. Furthermore, he states that discourse may be spoken
or written, and that conversation is a spoken form of discourse. Clark does not define
conversation with respect to the concept of dialogue. We take the two to mean roughly
the same, and for clarity we will mainly use the term dialogue in the remainder of
this work.

Goffman [62] distinguishes three main types of listeners in a dialogue: overhearers
(unratified or unapproved participants), ratified participants that are addressed by the
speaker, and ratified participants that are not specifically addressed by the speaker
(this type of listener only exists in dialogues with three or more participants).

Allwood [5] discusses some properties of normal rational senders and receivers.
Communication between normal rational senders and receivers is intentional and pur-
poseful, voluntary and free, and motivated (e.g., initiated in order to fulfill some
goal). Also, communication is generally not avoided if it is pleasant, and is avoided
if it is unpleasant. Communication is also adequate (efficient, succinct and relevant),
and competent (only initiated when the sender “believes it possible to achieve his
communicative purposes” [5]).

2.3.1 Language use

In the broadest sense, language can be viewed as the creation and usage of symbols,
without specifying what those symbols are (they can be any form of signal, not nec-
essarily verbal, as in sign language). However, for our current purposes we define
language as a verbal form of interaction, adhering to the New Oxford American Dic-
tonary definition: “the method of human communication, either spoken or written,
consisting of the use of words in a structured and conventional way”. Language is very
useful for coordinating joint activities (though they can also be coordinated implicitly,
as we have seen above).

Clark [40] proposes six working assumptions for language use. Firstly, language
fundamentally is used for social purposes, by which he means that it is used primarily
in joint activities. Secondly, besides a tool for coordinating joint action, language
use is also in itself a species of joint action. Thirdly, language use always involves
speaker’s meaning and addressee’s understanding (we will elaborate on this later in
this section when we treat meaning and construal). Fourthly, the basic setting for
language use is face-to-face conversation. Fifthly, language use often has more than
one layer of activity (additional layers can be introduced by, e.g., story-telling or
citing another person). Finally, the study of language use is both a cognitive and a

1Merriam-Webster online, Dictionary.com, American Heritage Dictionary, WordNet, Encyclopae-
dia Britannica, and Wikipedia

27

COOPERATIVE DIALOGUES 2.3

social science: we need to study both the individual minds of the participants, but
also their social context in order to fully understand interaction.

Note that even though dialogue is a mostly linguistic form of communication, not
all actions in a dialogue are linguistic actions. Consider again the short example
dialogue that we have treated before. We view the action of the user turning on the
stove as part of the dialogue, even though it is a nonverbal action:

System: “First you have to boil some water.”
User: “Can you turn on the stove for me?”
System: “I’m not able to turn on the stove.”
User: “Okay.” [turns on stove]

Language use that is not a dialogue

Not all language use is a dialogue. In order to further specify the definition of dia-
logue, we must also explore what is not a dialogue. A monologue is an exchange of
information, while a dialogue is an interchange of information. According to Clark
[40], dialogues or conversations are different from monologues (such as essays and
speeches) in a number of ways. When it comes to planning of either type of language
use, the main differences are that essays and speeches are highly planned, under uni-
lateral control, and have a clear topic, while dialogues are opportunistic, under joint
control, and tend to have a much unclearer topic. The difference is also clear on a
different level: essays and speeches are comprised mostly of assertions (with some ex-
ceptions, most notably rhetoric questions), while dialogues typically consist of many
other speech acts besides assertions.

2.3.2 Utterances and dialogue turns

An utterance is “an uninterrupted chain of spoken or written language”, according
to the New Oxford American Dictionary. Clark [40] defines utterances as the actions
of producing words, sentences, and other things on particular occasions by particular
speakers for particular purposes. We take utterances to be deliberate linguistic acts
that convey meaning. Contrary to the New Oxford definition, we do allow utterances
to be interrupted; an utterance may take more than one dialogue turn when it is
interrupted by the dialogue partner, by some other event outside the dialogue (e.g.,
the passing of a fire truck that carries a loud siren), or by the speaker himself, as in
self-repair [112].

An utterance is a natural language instantiation of a communicative act, or move,
in a joint activity. Just like utterances, moves in a joint activity do not have a one-to-
one correspondence with dialogue turns; a turn may have multiple moves and a move
may be distributed over multiple turns.

In turn-taking, the participants are simply trying to succeed in advancing their
joint activities. According to Sacks et al. [105], turn-taking is done by means of
turn-allocation, which is the (usually implicit) way in which dialogue partners switch
turns. A turn consists of at least one turn-constructional unit (which may range

28

2.3 DIALOGUES

2

from a single word to long constructions of embedded clauses). Each of these units
ends at a transitional-relevance place, at which a next speaker may take turn, or the
same speaker may continue. Turn-taking is partially reactive; the end of a turn may
be misprojected, in which case overlap or unintentional interruption may occur. A
number of features may serve as evidence of end of turn: an elongated last syllable,
a drop in the voice pitch, relaxation of the body, or the completion of gestures.

We can distinguish three different levels in which saying something is also doing
something: the locutionary act, the illocutionary act and the perlocutionary act [88].
The locutionary act is “the utterance of a sentence with determinate sense and ref-
erence”. The illocutionary act is “the making of a statement, offer, promise etc. in
uttering a sentence, by virtue of the conventional force associated with it”. Finally,
the perlocutionary act is “the bringing about of effects on the audience by means of
uttering the sentence, such effects being special to the circumstances of utterance”.
A locutionary act only involves the speaker, but perlocutionary acts often require ac-
ceptance (i.e. uptake) by the addressee and are consequently (parts of) joint actions.

In Dynamic Interpretation Theory, a distinction is made between two types of
dialogue moves in an interaction: task-oriented acts and dialogue control acts [27].
Dialogue control acts (DCAs) are, for example, greeting, giving feedback, topic man-
agement, and turn management. DCAs may be linguistic or non-linguistic (e.g.,
nodding to signal understanding). Clark [40] uses the terms track 1 (communicative
acts) and track 2 (metacommunicative acts) for the same purpose.

2.3.3 Meaning and construal

A communicative act is performed by the speaker in order to convey meaning and
achieve a perlocutionary effect, as explained in the previous subsection. According to
Grice [67], there are two different kinds of meaning: natural meaning and non-natural
meaning. Symptoms have natural meaning (e.g., that smell means that dinner is
burning), while signs and signals have non-natural meaning (e.g., Lucy’s hand wave to
the waiter means that she wants to order). Non-natural meaning is a social construct
that has been agreed upon implicitly (social conventions) or explicitly (“When I call
your number, you can pick up your order.”).

Non-natural meaning can be divided into two types of meaning: signal meaning
and speaker’s meaning. Signal meaning is the way a signal should be interpreted,
while speaker’s meaning is what the speaker meant to communicate by performing
the signal. The distinction is clearer in other languages; e.g., in Dutch: betekenis
for signal meaning and bedoeling for speaker’s meaning. Signals can be linguistic or
non-linguistic; dialogues may contain both linguistic and non-linguistic signals.

These notions are important to us at this point, because the utterance of a word
or sentence to an addressee means that the addressee will have to construe the (non-
natural) meaning of this utterance. The formation of the construal (i.e. uptake,
understanding) of an utterance is a non-trivial matter. For each signal, the speaker
and addressee try to create a joint construal [40], meaning that they both agree on a
construal and mutually believe that they do so.

One cannot always be certain that the construal that is reached by the addressee
is the same as the speaker intended (the speaker’s meaning), and since many signals

29

COOPERATIVE DIALOGUES 2.3

are open to differing construals [40], it is often useful for the addressee to signal his
construal back to the speaker. This creates an opportunity for the speaker to check
and, if necessary, repair the addressee’s construal. The signaling of the addressee’s
construal can be done explicitly, but is more often done simply by reacting to the
utterance in a way that implicitly signals the addressee’s construal.

If the addressee signals a different construal than the speaker intended, the speaker
may choose to repair the addressee’s interpretation. However, this is not always nec-
essary or even desirable; sometimes, the cost of repairing a misconstrual or narrowed
construal is higher than just accepting the new construal. In Table 2.1, we show some
possibilities for detecting and possibly repairing construals. The first column of the
table shows the initial construal of the addressee. The second column shows some
different possible actions that the speaker may perform to correct the addressee’s
construal. The third column shows the final (possibly repaired) construal of the ad-
dressee.

A’s initial construal S’s intervening action A’s final construal
full construal accept verified construal
misconstrual detect + correct corrected misconstrual
misconstrual detect yet accept revised construal
misconstrual not detect yet accept undetected misconstrual
narrowed construal accept narrowed construal

Table 2.1: Some examples of the handling of construals (from Clark [40], p. 195)

For example, a narrowed construal occurs in the following example (from Clark
[40], p. 195). Helen and Jack are sitting at a table together, and Kate joins them while
holding two glasses of wine: one for herself and one for either Helen or Jack (since
she could not hold three glasses at the same time). Jack replies “Thanks!” as if Kate
brought the wine just for him. Even though Kate did not specifically intend the wine
for Jack, she accepts Jack’s construal, because it is consistent with her intentions to
give it to either Helen or Jack.

We will elaborate on the notion of repairing misconstruals in Chapter 7 when we
discuss error handling in dialogues.

2.3.4 Grounding
If something is spoken, it may be assumed to be common information. However, there
is of course always the possibility of something going wrong: the addressee might not
have heard the spoken information, or there might be a miscommunication or misun-
derstanding on a higher level. Therefore, one can never be completely certain that
something is common information unless there is a confirmation from the addressee.
In our basic system, we assume that something is common information if it is spoken;
if this assumption turns out to be wrong, any consequences should be handled by the
error handling module.

Grounding is assuring success on three different levels: attending to, hearing and
understanding each other. In other words, grounding is establishing something as
part of common ground well enough for current purposes. An utterance is only a

30

2.3 DIALOGUES

2

contribution to a dialogue if it is successfully understood, and to ensure that an
utterance is successfully understood, we need the concept of grounding.

Grounding consists of two phases [40]. First of all, there is the presentation phase,
in which participant A presents a signal and expects evidence of its construal. Sec-
ondly, there is the acceptance phase, in which B gives evidence of his construal. For
the acceptance phase, signals from respondents divide into the following four classes:
assertions of understanding (explicit confirmations), presuppositions of understanding
(embedding the interpretation in a new utterance), displays of understanding (non-
linguistic confirmations) and exemplifications of understanding (the speaker keeps
talking while the hearer offers intermittent grounding).

As with mutual belief, grounding can theoretically be employed to an infinite
degree, if the communication channel is not perfect. This can be solved by adopt-
ing more flexible models of mutual belief and grounding. For example, Traum [124]
proposes a model for grounding in which it is not the goal to achieve perfect ground-
ing every dialogue turn, but instead a sufficient level of grounding for the current
purposes where any grounding mistakes can be resolved in a later stage if they are
detected. Bunt et al. [31] introduce a level of mutual belief that is called weak mutual
belief, which can be strenghened if evidence exists that the information in question is
understood and accepted by the dialogue partner.

Grounding may be compared to Garrod’s [60] notion of alignment, meaning that
the participants align their situation models (context information). Garrod claims
that dialogue is a relatively easy form of language use, because as opposed to speeches
and essays, the mixed locus of control allows plenty of opportunity for alignment, and
repair if needed.

2.3.5 In our system

For now, we will focus on dialogues between two agents, which are both ratified
participants.

Dialogue properties

There are some properties of dialogues that can vary according to specific circum-
stances. According to Clark [40], the settings of language use can differ in a few ways.
First of all, language can be spoken or written. We would like to deal primarily with
spoken dialogues, although for ease of implementation, we will abstract these spoken
dialogues to written speech acts (more on this in Chapters 3 and 6). Within spoken
settings, the use of language can be personal (regular dialogue, “characterized by the
free exchange of turns among the two or more participants”) or nonpersonal (mono-
logues); in our system, we only use the former kind. Also, we do not focus on language
in institutional settings (limited by institutional rules), or fictional settings. Language
can also be used in mediated settings, where “there are intermediaries between the
person whose intentions are being expressed and the target of those intentions”, such
as telephone or email conversations. Since our system will speak directly with the
user, we also do not deal with mediated settings. Finally, in our system, the setting
of language use will only be public and not private (since the system will not talk to

31

COOPERATIVE DIALOGUES 2.4

itself).
To be more specific, in our system we are dealing with face-to-face conversa-

tion. Clark ([40] pp. 9-10) specifies ten features of face-to-face conversation. Some of
these features are partially compromised in our dialogue setting. The features that
fully apply to our system are copresence (the participants share the same physical
environment), audibility (the participants can hear each other), instantaneity (the
participants perceive each other’s actions at no perceptible delay), evanescence (the
medium is evanescent – it fades quickly), recordlessness (the participants’ dialogue
actions leave no record or artifact), simultaneity (the participants can produce and
receive at once and simultaneously), and extemporaneity (the participants formulate
and execute their dialogue actions in real time).

A feature that is compromised is visibility (the participants can see each other),
which is not implemented in the current version of our system, although we do take
it into account when we treat multimodal interaction in Chapters 3 and 4. Whether
our system also has the feature of self-determination (the participants determine for
themselves what actions to take when) is debatable and has more of a philosophical
background: does the system actually determine for itself what actions to take or is
it the programmer? The same goes for the feature of self-expression (the participants
take actions as themselves): is the system a ‘self’ enough to be able to take actions as
itself? We will not go deeper into these questions and leave this philosophical debate
for another occasion.

Language use

While we have stated above that dialogues are unplanned (as opposed to planned
language uses like speeches and essays), the dialogues conducted by our system are
by necessity planned to a certain extent. This does not mean that our system cannot
conduct natural dialogues, since the setting of the interaction (instruction dialogues)
dictates that the dialogues usually follow predictable patterns. We will discuss these
patterns to more detail in the next chapter when we discuss dialogue models. One of
the important aspects of error handling that we treat in this thesis is the detection
and repair of unexpected dialogue moves (see Chapter 7).

Grounding and construal

Grounding is a helpful concept in error handling. Proper grounding may help pre-
vent errors by detecting them in an early stage, by checking whether the receiving
agent has constructed the correct interpretation of the sending agent’s message. If an
error is detected in the receiving agent’s construal, it can be addressed immediately,
preventing any further errors that may result from the misinterpreted message.

2.4 Cooperative dialogues

Castelfranchi [38] stresses that social interaction, including communication, is not nec-
essarily a cooperative activity. In this thesis, we will focus on cooperative dialogues,
meaning that all participants in the dialogue will, in principle, attempt to achieve the

32

2.4 COOPERATIVE DIALOGUES

2

same goal(s), maximize the total utility of all participants, and do not have a hidden
agenda or hidden beliefs. A great advantage of the assumption of cooperation is that
one does not have to reason about dialogue partners’ plan recognition [119].

Dialogues can be cooperative or uncooperative on two different levels. On the one
hand, one (or both) of the participants might be uncooperative in a communicative
sense: not answering questions, being impolite, or not attending properly to the inter-
action. On the other hand, independently from that, one might interact cooperatively
but act uncooperatively. For example, answering all questions, but not giving any of
the desired information, such as in the dreaded “no comment” from a politician when
asked about a controversial issue, or promising one thing and doing another. We will
treat both types of cooperation in this section.

2.4.1 Cooperation

Being in a cooperative interaction involves having the same joint goals, but it is
not exactly the same. In non-cooperative dialogues, like buyer/seller-negotiations
[107], both participants can still have the same goal (reaching an agreement about a
transaction), but under the condition of maximizing their own utility rather than the
total utility. Additionally, they may have a hidden agenda or hidden beliefs.

For example, in a car sales interaction, the seller wants to get a price for his car
that is as high as possible, and he may have some beliefs about hidden rusty spots or
other faults that he does not want to disclose to the potential buyer. On the other
hand, the buyer typically wants to spend as little money as possible, and he might
not want to seem too enthousiastic about the car, because this would compromise his
position in the negotiations. For the same reason, the participants typically do not
want to disclose complete information about their price boundaries, and the seller
may be vague or uncommunicative about the price for which he acquired the car
himself.

Also, in deceit situations (“the attempt to communicate a mental state which is
not actually entertained” [3]), at least one of the dialogue partners is not cooperative,
possibly even unbeknownst to the other dialogue partner(s). Since we only treat
cooperative dialogues, we do not consider these situations for our current purposes.

2.4.2 Grice’s maxims, sincerity and helpfulness

In construing the meaning of an utterance, people tend to use implicatures. For exam-
ple, the utterance “I have two cats” can also be uttered in a logically sound manner
by someone who has three or more cats, yet this is almost never the interpretation
that the hearer will construe. This is more easy to see in a similar example that one
could imagine in a liquor store in the USA:

Lucy: “I would like a bottle of ruby port, please.”
Clerk: “Are you twenty-one?”
Lucy: “Yes.” (shows ID)
Clerk: “Thanks. Alright then, that’ll be eight ninety-nine.”

33

COOPERATIVE DIALOGUES 2.4

This interaction is perfectly plausible even when Lucy is in fact not twenty-one
years old, but older. Another example: when asking a friend how he likes his new job,
the answer “Well, at least the coffee is nice”, while not inconsistent with a positive
attitude about the new job, implicates that the job itself is unfortunately not that
great.

In order to work with these implicatures, Grice [68] introduces a main maxim:
“Make your conversational contribution such as is required, at the stage at which it
occurs, by the accepted purpose or direction of the talk exchange in which you are
engaged.” To be more precise about this general ‘good practices’-rule, Grice splits it
up into four separate rules, some with their own sub-rules.

Maxim of Quantity:
1. Make your contribution as informative as is required (for the current
purposes of the exchange).
2. Do not make your contribution more informative than is required.

Maxim of Quality: Try to make your contribution one that is true.
1. Do not say what you believe to be false.
2. Do not say that for which you lack evidence.

Maxim of Relation: Be relevant.

Maxim of Manner:
1. Avoid obscurity of expression.
2. Avoid ambiguity.
3. Be brief (avoid unnecessary prolixity).
4. Be orderly.

Especially the maxim of relation requires further elaboration; after all, relevance
can only be defined relative to a certain matter or circumstance. We define relevance
as having a purpose with respect to the current joint activity (domain acts) or to the
interaction itself (dialogue control acts [32]).

Grice’s maxims can be used to draw inferences from utterances. When an agent
hears his dialogue partner say p, he can reason in the following way:

• my dialogue partner said that p;

• he could not have done this unless he thought that q;

• he knows (and knows that I know that he knows) that I will realise that it is
necessary to suppose that q;

• he has done nothing to stop me thinking that q;

• so he intends me to think, or is at least willing for me to think, that q. (example
from Grice [69], p. 31)

For example, suppose that your dialogue partner utters the following sentence:
“John is in prison again” (p). He can only say this if he thinks that John has been in

34

2.4 COOPERATIVE DIALOGUES

2

prison before (q). Since your dialogue partner knows that you will make this inference
and does nothing to stop it, he is apparently willing to make you believe that John
has been in prison before.

Grice’s maxims are not restricted to linguistic contributions to a joint activity,
but also pertain to actions; e.g., one would flout the Maxim of Quality by knowingly
passing someone a can of tomatoes when he asked for the olive oil [88].

However, as Stone [117] points out, Grice’s maxims are difficult to formalize.
Frederking [58] states that Grice’s maxims are useless for computational purposes
and can generally be summarized as “do the right thing”. Gazdar [61] makes some
attempts in the direction, but does not attempt (or claim) to be comprehensive or
exhaustive. Beun and Van Eijk [12] formalize Grice’s maxim of quantity by using the
distinction between private and mutual beliefs. The maxim of quantity can be taken
as “do not say anything that is mutually believed”. The maxim of quality can be
generalized as “it should not be possible for A, from what B has said, say Q, to infer
something which B believes to be false. If there is such a possibility then after saying
Q, B should provide further information to prevent this.”

Cohen and Levesque [43] coin comparable concepts with their descriptions of co-
operative agents as sincere and helpful. When sincerity and helpfulness are embedded
in a theory of rational (and linguistic) interaction, they are expected to yield sim-
ilar behavior to the kinds of conversational behavior such as described by Grice’s
maxims. Sincerity pertains mostly to interacting cooperatively, while helpfulness is
about acting cooperatively. Cohen and Levesque [43] (pp. 230–231) define sincerity
as follows:

“An agent x is SINCERE with respect to some other agent y and p, if
whenever x has chosen to do something next in order to cause y to believe
p, x has chosen to bring it about that y knows p.”

Sincerity is not a property of an agent by itself, but is always defined with respect
to another agent and a specific proposition. An important key to understanding the
definition of sincerity is one of the conditions of knowing, which is that agents can
only know something if it is true (otherwise it can only be believed, at most). Sincerity
is most easily understood by its contradiction: “agent x would be insincere to y about
p if x wants y to believe p, and x wants p to be false.”

Cohen and Levesque define helpfulness as follows:

“An agent [is] HELPFUL to another agent if for any action, he adopts the
other agent’s goal that he eventually do that action, whenever such a goal
would not conflict with his own.”

In contrast to sincerity, helpfulness is only defined with respect to another agent,
but not for any specific action. Instead, it means that an agent will do all and any
necessary actions to achieve the other agent’s goal. Note that this definition does
not take into account the capabilities of the agent; an agent might as well adopt
goals that require actions that he cannot perform. Cohen and Levesque stress that
helpfulness does not always have an effect: “not taking on another’s goals does not
indicate unhelpfulness, since the agent may have reasons for not wanting the goal”
(i.e. having a conflicting goal of its own).

35

COOPERATIVE DIALOGUES 2.4

We define a cooperative dialogue as a dialogue where all participants are sincere
with respect to all other participants and the joint activities that they participate in
(which include the dialogue and, possibly, a domain task), and helpful to all partici-
pants.

2.4.3 Private and public goals

Clark [40] groups dialogue goals into four categories: domain goals (e.g., preparing
a recipe), procedural goals (doing this quickly and efficiently, making clear moves,
attending to what is being done), interpersonal goals (maintaining contact with other
participants, impressing them, being polite, maintaining self-respect), and private
agendas (deceiving the others, getting rid of them, working the situation for personal
advantage).

An important distinction can be made between public and private goals. Within
the concept of public goals, some of those are explicit while others can be left implicit.
Public goals make sure that the dialogue partners can coordinate their actions to reach
these goals. Private goals are sometimes in conflict with public goals; making private
goals public sometimes works directly against them; e.g., imagine that Jack is only
openly donating money to a good cause, in order to impress Lucy. The goal to impress
Lucy will probably fail when Lucy finds out that Jack does not actually care about
the good cause in question but has only made a donation to make a good impression
on her.

An important point that Grosz and Kraus [71] present is the agents’ beliefs about
their abilities; an agent cannot intend to perform an action without believing that it
is able to perform it. In our work, one of the agents is a human agent that the system
does not have control over, and we do not require the user to have any knowledge of
the recipe. In order to account for this requirement, the system has to reason about
the abilities of both itself and the user before committing to a certain recipe.

2.4.4 In our system

Cooperation

The system is always sincere and helpful w.r.t. the user and all of their joint goals. It
also does not hold any private goals.

In our system, we explicitly program communication actions; communication is not
emergent, as Grosz and Kraus specify as being desirable. However, from a practical
point of view we do not stray from their principles: during the programming phase,
communication is derived from a need to make certain information mutually believed
or the need for belief conflicts or uncertainties to be resolved, as we have seen before
when we treated the definition of Joint Persistant Goals.

Grice’s maxims

As we have stated above, many researchers claim that Grice’s maxims are too vague
to be implemented in a computational natural language system. Rules have to be
properly well-defined in order to use them for this purpose. Other paradigms such as

36

2.5 SUCCESSFUL DIALOGUES

2

Relevance theory [133] (which is essentially the collapsing of Grice’s maxims into one
‘super-maxim’ of relevance) may be more suitable for precise definition. We agree
with the viewpoint that Grice’s maxims should not be explicitly implemented in the
system, although we use them to form some inferences in the implementation of our
system; e.g., when agent A says something, agent B can assume that A holds this to
be true (cf. Maxim of Quality). This is a similar policy as our approach to Cohen
and Levesque’s Joint Persistent Goals [42].

2.5 Successful dialogues
We would like to formalize dialogue success in a principled, generic way. Apart from
the task success (completing a recipe), we can use principles from dialogue theory to
look at the success rate of a dialogue. Also, we would like to formalize the success
of a single dialogue step. For this, we can contrast the success of procedural or
interpersonal goals to that of domain goals.

A successful dialogue is a dialogue that results in all dialogue goals being achieved.
There are several gradations of success in dialogues, depending on how many goals
are achieved or how much progress is made towards achieving the goals. A completely
unsuccessful dialogue results in no progress in achieving any of the goals, for example
because the addressee is completely uncooperative or doesn’t understand the speaker.
A dialogue can be partially successful if only some goals are achieved or if goals are
partially achieved.

In this section, we will discuss what constitutes a successful dialogue. We will first
treat some related work on dialogue success, and then discuss success at two different
levels: the utterance level and the dialogue level.

2.5.1 Related work
In Steidl et al. [113], dialogues are defined as successful if a (seemingly arbitrary)
part of the task has been carried out successfully: in telephone conversations about
booking a flight, the task is successfully completed if at least the outbound flight
has been booked. Dialogue success is predicted from the success of separate dialogue
steps. Some indicators for a successful dialogue step are the word ‘yes’, the word
‘no’, and the absence of repetitions. Some indicators for unsuccessful dialogues are
recognition errors, user corrections, the user withdraws from the conversation before
the task is completed, a human operator has to take over, or a task fails completely.
Also, the success of a dialogue step correlates strongly with the success of the previous
dialogue steps. Cohen and Levesque [42] have also found confirmations and requests
for confirmation to be indicators of successful dialogues, but do not specifically define
a successful dialogue.

Carlson [35] formalizes dialogues as games, comparing successful dialogues with
finding the ‘solution’ (rational game strategy). Contrary to what is often done in
argumentation games, where maximizing one’s own profit would be an optimal strat-
egy, Carlson cites Grice’s maxims of conversation [68] as criteria for such a solution.
Dialogues are seen as exchanges of information that rule out possible worlds. In a
dialogue, each participant (‘player’, in Carlson’s terms) attempts to keep his set of

37

COOPERATIVE DIALOGUES 2.5

possible worlds consistent, as small as possible, and consistent with other partici-
pants’ sets of possible worlds. These rules entail communication; after all, when an
inconsistency is detected, it must be solved, which can be done by communicating
about it with the dialogue partner.

Airenti et al. [3] also use game theory terminology: speech acts are always inter-
preted relative to a behavior game. The rules of the behavior game in question are
known and (implicitly) agreed upon by both participants. There can be discussion
about the behavior game that is played; it can also change during the interaction.
According to Airenti et al., defining a standard communicative situation is difficult; it
is also possible to have a successful communicative interaction if a non-standard strat-
egy has been followed. This is reflected in the different types of dialogue goals: the
success of interpersonal goals (‘communicative goals’) is independent from the success
of domain goals (‘behavior goals’). (“One can be non-cooperative from a behavioral
point of view, while still willing to maintain a correct conversation.”)

In Airenti et al. [3], successful communication is initially defined as the recognition
of a particular set of mental states, among which are the intention to achieve an effect
on the dialogue partner and the intention that the dialogue partner recognizes the
intention to achieve this effect. Airenti et al. do not find this definition sufficient and
call for a stronger condition: A has the communicative intention that p with respect
to B, or A intends to communicate p to B, when A has the intention that the two
following facts be shared by B and A: that p, and that A intends to communicate p
to B.

Clark [40] gives some preconditions for successful dialogues. In a dialogue, all
participants have the goal of establishing and maintaining the mutual belief that
their utterances have been understood well enough for current purposes. This is done
mainly by grounding. Also, similarly to Grice’s maxims, Clark states that dialogue
partners “try to manage the production and interpretation of communicative acts with
the least collaborative effort, i.e., with the smallest cumulative effort of the speaker
and hearer combined.”

We distinguish success at utterance level and success at dialogue level. An ut-
terance is erroneous when it contains incorrect information or when it is unexpected
in the current context of the dialogue. We will further specify this in Chapter 3. A
dialogue is unsuccessful when the dialogue ends before the dialogue goals have been
achieved.

2.5.2 Success at utterance level

Success at utterance level depends on various factors. For example, Austin [9] explores
felicity conditions for ‘happy performatives’. Performatives are a special subset of
linguistic acts that, when uttered by someone, do not have a truth value in the
classic sense, but instead, constitute the performance of the action that they describe.
Examples of performatives are thanking, congratulating, promising and betting, which
can be done simply by uttering them. Performatives are not always successful; for
example, the act of promising can only be successfully done if the agent that utters
the promise is in the position to perform the promised action, or at least will be
sometime in the future. Similarly, when someone has his fingers crossed while making

38

2.5 SUCCESSFUL DIALOGUES

2

a promise, the promise is also void, even though not all attendees may be aware of
that fact. These felicity conditions can be compared to the necessary and sufficient
conditions from Searle [110]. If one or more of these conditions fail, the utterance is
not successful.

Event-reaction pairs should always be completed in order to have a successful
interaction. This does not always have to happen instantaneously, since there can be
interjections of other event-reaction pairs, such as:

Lucy: Do you know where the post office is?
Passer-by: Are you by foot or by car?
Lucy: By foot.
Passer-by: Okay, just walk through this alley and then take a left turn.

In this dialogue, step 1 and 4 are an event-reaction pair, just like step 2 and 3.
The second pair is embedded inbetween the first pair: the event-reaction pair that is
initiated by A in step 1 is ‘put aside’ while B gathers necessary information to give
a satisfactory answer. A still expects B to answer the question from step 1. In cases
where either pair 1–4 or pair 2–3 are not completed (i.e., step 4 or 3 are absent), the
dialogue would not be complete.

In a dialogue with steps s1 ... sn, dialogue step si is a valid dialogue action if it
fulfills at least one of the following requirements: (cf. Bunt [33])

1. si is the second half of an event-reaction pair that has not been closed yet;

2. si is the first half of an event-reaction pair that makes a (sub)goal of the speaker
explicit;

3. si is a dialogue control act

In the next example, the whole dialogue fails because of a non-understanding at
the utterance level that is irrepairable [98].

Lucy: Excuse me, do you know where the post office is?
Passer-by: Scusa, non parlo Inglese.
Lucy: Okay, never mind.

This is an error at the utterance level, since the task level could be uncompromised;
if Lucy would show an envelope to the passer-by and gesture in a questioning manner,
the passer-by might be able to point Lucy to the nearest post office.

Lack of understanding can sometimes be repaired, in which case the success of the
dialogue can still be saved:

Lucy: Pardon, weet u waar het postkantoor is?
Passer-by: I’m sorry, I don’t speak Dutch.
Lucy: Oh, alright, do you know where the post office is?
Passer-by: Yes, it’s just here around the corner.
Lucy: Okay, thank you.

39

COOPERATIVE DIALOGUES 2.5

2.5.3 Success at dialogue level
We will now define success at the dialogue level. A dialogue is completely successful
if all goals are achieved, or less successful if one or more of the dialogue goals are not
achieved. To recapitulate, there are different kinds of goals: domain goals (e.g., finding
out what time it is, getting the other person to do something) and more general goals,
like procedural goals (e.g., doing this quickly and efficiently) and interpersonal goals
(e.g., maintaining mutual respect). As we have mentioned before, in our cooperative
dialogue setting, we do not take private goals (e.g., hidden agendas) into account.

Successful dialogue: reaching all dialogue goals

A successful dialogue is a dialogue that results in all goals being reached. This is one
of the smallest examples of successful dialogue:

Lucy: Excuse me, do you know where the post office is?
Passer-by: Yes, it’s just here around the corner.
Lucy: Okay, thank you.

Lucy presumably initiated the dialogue in order to reach her domain goal of finding
out where the post office is. It should be noted that she could have initiated the
dialogue in order to reach different goals, like getting her dialogue partner’s attention
as a starting point for further conversation, or distracting the passer-by while her
associate Jack steals his wallet. However, if we assume a cooperative situation in
which Lucy really wants to know where the post office is, she succeeded in reaching this
goal. And because Lucy reached this goal in an efficient, polite way without asking
too much of her dialogue partner’s time or effort, all procedural and interpersonal
goals were also reached or maintained.

Finding the post office could be a subgoal of Lucy’s main goal: perhaps she wants
to find the post office in order to post a letter or to buy some stamps. Her dialogue
partner can only infer this if Lucy gives a hint in that direction, either willingly or
accidentally. If the dialogue partner manages to identify and fulfill this greater goal
for Lucy, he could have either a positive or negative effect with this. A negative effect
could be because of different reasons: Lucy might get suspicious of the stranger’s
reasons for doing more than Lucy asked for, or Lucy’s goal of finding out where the
post office is might be an actual goal in and of itself.

Lucy (while holding an envelope): Excuse me, do you know where the
post office is?
Passer-by: Yes, I’m actually just going there, do you want me to take your
letter and post it?
Lucy: That would be very nice of you! Thank you.
(or: Lucy: Can I walk there with you? I want to know where the post
office is for future reference.)

Not reaching domain goals

If the goals of both dialogue partners are not reached or only partially reached, the suc-
cess of the dialogue is compromised. Because there are several goals in each dialogue,

40

2.5 SUCCESSFUL DIALOGUES

2

dialogues are often somewhere inbetween completely successful and insuccessful. In
a somewhat less successful manner, the dialogue could have also gone like this:

Lucy: Excuse me, do you know where the post office is?
Passer-by: I don’t know, but there’s a visitor’s center around the corner,
maybe they can help you.
(or: Passer-by: I don’t know where it is exactly, but I’m pretty sure it’s
around here. [points to general area on the map])
Lucy: Okay, thank you.

This dialogue is not completely successful, because Lucy’s goal is not reached, but
since the passer-by gives some advice to help Lucy in the right direction, it is not
completely unsuccessful either. The domain goal is not reached, but some progress
is made, and the interpersonal and procedural goals are reached/maintained. This
dialogue will probably give Lucy a new subgoal: going to the visitor’s center to ask
for the post office. In 2APL terms, this would be a plan revision. This does not make
the dialogue unsuccessful, just like a plan revision does not mean that an agent’s plan
fails.

A less successful dialogue would be:

Lucy: Excuse me, do you know where the post office is?
Passer-by: I’m sorry, I don’t live here.
Lucy: Okay, thank you.

Here, Lucy makes no progress at all in reaching her domain goal, but still the
other goals are not compromised.

Not reaching procedural or interpersonal goals

If the procedural and interpersonal goals are not maintained, a dialogue like this could
result:

Lucy: Excuse me, do you know where the post office is?
Passer-by: Yes, stupid, it’s just here around the corner. Now go away.

This dialogue was unsuccessful in maintaining interpersonal goals (being polite).
However, since the domain goal was successful, the success of this dialogue can be
disputed. Violation of procedural goals yields a dialogue that is neither quick nor
efficient:

Lucy: Excuse me, do you know where the post office is?
Passer-by: The post office?
Lucy: Yes.
Passer-by: Ah, let’s see. Which post office do you mean?
Lucy: The nearest one, I guess.
Passer-by: Well, there is a post office a few blocks from here, but they
opened a new post office last year, you know.
Lucy: Aha.

41

COOPERATIVE DIALOGUES 2.6

Passer-by: They’ve done such terrible things to the city centre. There
used to be a beautiful old building which they tore down to replace it
with the new post office...
(etcetera)

Here, the dialogue goal is not necessarily compromised, but in the time that this
dialogue is taking, Lucy could have easily asked someone else for directions.

2.5.4 In our system

We use the success of dialogues and dialogue turns mainly as a starting point for error
handling. In Chapter 7, we will explain how we use the concept of dialogue success
in our error handling module.

2.6 Conclusions

In this chapter, we have explored what constitutes a successful cooperative dialogue.
In order to define cooperative dialogues in a general and principled way, we have first
explored the concept of activities, then refined it to joint activities, which involve
concepts that have to do with coordination. Then, we refined joint activities to
dialogues, adding language-related concepts. Finally, we have refined dialogues to
cooperative dialogues, using the concept of cooperation.

We have stated that our system uses joint persistent goals according to the def-
inition of Cohen and Levesque [42], although we do not implement this definition
explicitly. Instead, we use the consequences of joint persistent goals that are ex-
pressed in the definition as a basis for communication, most notably the principle
that the participants always inform each other of the (believed) status of their joint
goal. In this way, communication emerges from the joint goals of the participants.
We define joint plans are defined in terms of individual actions.

Furthermore, we have stated that our system engages in face-to-face conversation
with the user. We have also expressed the assumption for our basic system that any
spoken information is mutually believed. This is based on the assumption of a reliable
communication channel. When belief errors occur (which we will treat in Chapter
7), they may be caused by errors in the communication channel. Other errors may
be caused by the fact that dialogues are unplanned, which is discordant with the
determinism of a computational agent. Any unplanned dialogue contributions by the
user will be seen as errors.

The system always acts in a cooperative manner in a number of ways. First of all,
it is sincere and helpful w.r.t. the user and any joint goals that they have together.
This means that the system only wants the user to believe things that the system
holds to be true, and that it always adopts the user’s goals as long as they do not
conflict with its own. Secondly, also its dialogue behavior should be cooperative and
should adhere to Grice’s maxims.

As future work, we can adopt a more advanced view of joint plans, which may
also contain joint actions instead of only individual actions.

42

2.6 CONCLUSIONS

2

In the following chapters, we will use joint goals as a central concept and starting
point for cooperative interaction.

43

3 Conceptual Model

Inside every small problem is a large
problem struggling to get out.

The Schalkner Converse to Hoare’s
Law of Large Problems

In this chapter, we explore the context and setting of the problem and establish
a set of requirements that we work with in the rest of this thesis. At the end of this
chapter, we will have obtained a set of requirements and conditions that any solution
to the problem at hand should satisfy. In order to come to this result, we will treat
some related work and we will elaborate on various details pertaining to different
aspects of the problem.

Together with the previous chapter, in which we explained the properties of joint
activities and dialogue that are relevant to this research, and the next chapter, in
which we present the choices that we have made for the architecture of the system,
this makes up the basis for the framework that we will present in Chapter 5.

In this chapter, we use the cooking domain as our main focus. We also introduce
a new task, setting up a weblog, to ensure that the requirements that we present in
this chapter are domain-independent. An example of part of such a dialogue is:

iCat: Next, unzip WordPress.
Lucy: I’ve already done that.
iCat: Okay, now make a database and user on your domain.
Lucy: Done.
iCat: Configure wp-config.php.
Lucy: I don’t know how to configure wp-config.php.
iCat: Alright, I will now teach you how to configure wp-config.php. Re-
name wp-config-sample.php to wp-config.php.
Lucy: Done.
iCat: Open wp-config.php in a text editor.
Lucy: Done.
iCat: Fill in your database name, user and password in the indicated
positions in wp config.php.

45

CONCEPTUAL MODEL 3.1

This chapter is split up in five main parts that focus on, respectively, the partici-
pants, the domain, the interaction, a separate section for multimodal interaction, and
error handling. In Section 3.1, we will treat the participants of the interaction, specif-
ically focusing on companion robots (3.1.1) and compile a list of requirements for rea-
soning (3.1.2). In Section 3.2, we discuss the domain, focusing on recipes (3.2.1) and
also compiling a list of requirements (3.2.2). In Section 3.3 we will treat interaction,
which we divide in three different types of dialogues: information-seeking dialogues
(3.3.1), tutoring dialogues (3.3.2), and task-oriented dialogues (3.3.3). Then, we will
discuss how these types of dialogues can be combined in one system (3.3.4) and also
finish with a list of requirements for the interaction (3.3.5). In Section 3.4, we will
discuss multimodal interaction, and present a list of requirements in 3.4.1. In Section
3.5, we treat error handling, first defining errors in 3.5.1, then elaborating on the han-
dling of errors in our system in 3.5.2, and also concluding with a list of requirements
(3.5.3). Finally, in Section 3.6 we will present conclusions and future work.

3.1 Participants

While the basic setting of a recipe instruction dialogue involves one instructor and
one pupil, in principle an arbitrary number of (human or computational) agents may
partake in the interaction. For example, an instructor may teach a number of pupils
to all make the same recipe (imagine a cooking school, for example), or to prepare a
complicated recipe collaboratively. Another possible scenario is one pupil and several
different instructors that coach the pupil through different parts of the task; for
example, one agent helps with the gathering of ingredients, after which another one
takes over to instruct the pupil to perform the recipe.

It might even be possible for multiple instructor agents to act in parallel, when
the pupil needs to prepare a four-course meal with interleaving tasks for each of the
courses. In this case, the instructors need to be carefully attuned to each other and
a sense of priority would be useful for cases where multiple tasks need to be done at
the same time; e.g., if after a carefully timed period of cooking, the pasta needs to be
drained and rinsed, this is in most cases more urgent than cutting some vegetables
for the salad. This requires careful planning on the part of the instructors.

The participants have (partial) knowledge of the domain, including the availability
of ingredients, kitchenware and such. They also have beliefs about their capabilities,
which means that they have beliefs about which tasks they know how to perform,
ranging from complete recipes to simpler and smaller subtasks such as boiling water.
They may have beliefs about their own capabilities, but also about the capabilities of
the other participants. While we assume that the beliefs about one’s own capabilities
are correct, there may be errors in the beliefs about the capabilities of other agents.

There are a number of reasons why the participants may not always be able to
perform all tasks in the recipes: not all necessary materials (ingredients, appliances,
cookware) may be available, or the agent may not know how to perform a task. Not
all participants have to have complete knowledge of the recipe that is to be prepared;
the pupil will of course get instructions from the instructor and thus does not need to
know the main recipe, but additionally, if the instructor does not have a recipe for a

46

3.1 PARTICIPANTS

3

subgoal but the pupil does, the pupil can still prepare this recipe (cf. distributed plan
[39] [71]: none of the participating agents know the complete plan).

3.1.1 Companion robots

Recently, research in companion robots and affective virtual characters has been in-
creasing steadily. Companion robots are supposed to exhibit sociable behavior and
perform several different kinds of tasks in cooperation with a human user. Typi-
cally, they should proactively assist users in everyday tasks and engage in intuitive,
expressive, and affective interaction. Moreover, they usually have multiple sensors
and actuators that allow for rich communication with the user. All of these factors
contribute to the complexity of the task of designing and building a companion robot.
We will further discuss issues in multimodal interaction later in this chapter.

A good example of this is the European COMPANIONS project [132], in which
both an English companion and a Czech companion are researched. Particular topics
of research are automatic speech recognition, natural language understanding, natural
language generation, text-to-speech synthesis, and emotion analysis. The English
companion is designed to exhibit social behavior that is not part of a task-oriented
dialogue. The only task that the companion carries out is being social with the
user, including “chatting to, advising, informing, entertaining, comforting, assisting
with tasks and otherwise supporting her or him” [132], although in the future more
information-based tasks may be carried out as the companion is the user’s interface
to the internet. The companions get to know the user as more conversations are held.

There are some general requirements for companion robots, but also some that
depend on the specific situation in which it is used.

First of all, a companion robot should be able to perceive the world around it,
including auditory, visual, and tactile information. The multimodality of the input
creates the need for synchronization (e.g., visual input and simultaneously occurring
auditory input are very likely to be related), and any inconsistencies between different
modalities should be resolved.

Conversely, a companion robot should of course produce coherent and sensible
output over all available modalities. Because different processes may produce output
concurrently and because a companion robot typically has multiple output modalities,
the system should be able to to synchronize, prioritize, and/or merge these output
signals; e.g., speech should coincide with appropriate lip movements, which should
overrule the current facial animation, but only the part that concerns the mouth of
the robot. We will discuss these aspects in more detail later in this chapter when we
talk about multimodal communication.

A companion robot should be able to communicate with the user in a reasonably
social manner. This means not only producing sensible utterances, but also taking
into account basic rules of communication (such as topic consistency and Grice’s
maxims). This will not only make the conversation more pleasant for the user, but it
will also make it easier for the user to follow the conversation. In order to be a robust
system, a companion robot must always be able to keep the conversation going until
the user indicates that he is done with the conversation. This also involves real-time
aspects; e.g., to avoid confusing or boring the user, long silences should be avoided.

47

CONCEPTUAL MODEL 3.1

Additionally, a companion robot is likely to be designed for certain specific tasks,
besides communicating with its users. Depending on various factors, like the domain
for which the companion robot is designed, the type of robot, and the types of tasks
involved, this may call for capabilities involving planning, physical actions such as
moving around and manipulating objects, or electronic actions (e.g., performing a
search on the internet or turning on an electric appliance such as a microwave).

Proactiveness on the part of the robot is often desirable in tasks involving coop-
eration. A robot can be proactive on different levels: acting proactively in a con-
versation means not only answering questions from your dialogue partner, but also
thinking ahead and taking advantage of the situation by, for example, switching top-
ics and asking (return) questions. In a different way, one can act proactively in order
to achieve one’s own goals by taking initiative in performing tasks and instructing
partners in cooperative situations to perform tasks, contrary to only complying with
instructions. In Wooldridge [135], proactiveness is defined as goal-directed behavior.
Wooldridge argues that programming a purely proactive system is easy, as is a purely
reactive system. A purely proactive system only pursues its own goals and does not
take into account other agents’ goals and plans or changes in the environment. In
complex, uncertain, multi-agent settings, this is not a very successful tactic.

On the other hand, even though purely reactive systems have their advantages,
there are many problems with agents that only respond to their environment, such
as the lack of information-gathering abilities and the purely ‘short-term’ views that
reactive agents necessarily have, as explained by Wooldridge [135]. If the system were
purely reactive, the user would have to take into account the availability of kitchen
appliances, tools, and ingredients himself. When the user asks for a certain recipe, the
system would only be able to give the instructions as specified in the recipe, regardless
of the user’s level of proficiency. The system would not volunteer to assist the user,
but would only be able to follow commands from the user. In short, omitting the
proactive features of the system would result in a less effective interaction that is not
tailored to the skills of the user and requires a lot more initiative and attention from
the user. Therefore, we need to achieve an optimal balance between proactiveness
and reactiveness.

3.1.2 Requirements for reasoning

General Requirements

The participants should be able to have joint goals together (RR1). Some of the
goals may be reachable in different ways, or not reachable at all, given the current
circumstances and the capabilities of the participants. A goal should only be adopted
when it is reachable under the current circumstances (RR2). After all, finding out
that it is not possible to complete a goal when the execution has already been started,
should be avoided whenever possible. (There is still a chance that this may go wrong;
e.g., when the system erroneously believes that some essential ingredients are available
or when the environment changes during the preparation of the recipe.) So when one
of the participants proposes a joint goal that the other believes is not reachable, this
goal should not be adopted.

48

3.1 PARTICIPANTS

3

Requirement Code

Joint goals RR1
Reasoning about feasibility of goals RR2
Reasoning about plans RR3
Plans consist of atomic actions and subgoals RR4
Possibility to have different plans for a goal RR5
Instructions should be given on an appropriate level RR6
Beliefs about the domain RR7
Beliefs about capabilities of the participants RR8

Table 3.1: Requirements for reasoning

To work in this way, the system should have a notion of plans (recipes) that allows
the system to reason about them (RR3). There might be multiple alternative recipes
for a certain goal. The tasks in a plan are either subgoals (meaning that there is a
plan to achieve them) or atomic actions (RR4). Also, in order to reason about the
feasibility of goals, the system needs to have beliefs about (the current situation of)
the domain (RR7).

The participants may not have the same plan for a certain (joint) goal (RR5). If
there is a possible plan for the given goal, the participants can begin executing this
plan. If one of the participants takes on the role of instructor, his instructions should
be given on an appropriate level for the pupil: they should be understandable, but
also not too easy (RR6). For this, the system should keep an administration of what
it believes the user is capable of doing (RR8).

When giving instructions, the system can act as a tutor or an instructor. Although
both terms are sometimes used interchangeably (e.g., see Goodman et al. [63]), there
is a distinction that can be made. The main difference is that a tutor tries to teach
its pupil something, while an instructor merely makes sure that the task is completed
properly by the pupil. The practical difference is that in a tutor/pupil situation the
user can to ask why something has to be done, because he tries to learn something
from preparing the recipe. In an instructor/pupil situation we have not observed this
in our corpus. In this thesis, we will use the instructor/pupil situation, since the
tutoring aspect of the dialogues is only a secondary aspect of the dialogue, as we will
explain later in this chapter.

Domain-Specific Requirements

In the example that we introduced in Chapter 1, the user proposes French toast as
a joint goal in the first dialogue turn. In this case, not all actions in the recipe are
possible in the current situation, because not all ingredients are available. The joint
goal has to be abandoned and the system reports this to the user. The user then
introduces a new joint goal, of making a poached egg, which fortunately is possible.

There may be different possible plans to prepare a dish (e.g., poaching an egg in a
pan of boiling water vs. poaching it in the microwave). The tasks in the recipe might

49

CONCEPTUAL MODEL 3.2

also have recipes themselves: e.g., the recipe for poaching an egg contains the task
‘boil water’, for which the system also has a recipe.

The level of instructions should be appropriate. In the above example, it would
be a suboptimal strategy for the system to instruct the user as follows: “Please poach
an egg.” This instruction is too high-level, since the user does not (yet) know how
to poach an egg. Also, since the user knows how to boil water, giving instructions
to fill a container with water, turn on a heat source, place the container on the heat
source, and wait until the water starts bubbling, would be too low-level for the user
and would make the interaction tedious and frustrating for him.

In a different domain, such as setting up a weblog, we can use the same notion
of ‘recipes’ that consist of tasks and subtasks, although of course this term should
be intepreted in a less literal way than when we are actually preparing (culinary)
recipes. For the current purposes, however, we will also use the same term for different
domains; a recipe for setting up a blog consists, among other tasks, of registering a
domain and installing a blogging service such as Wordpress. We will elaborate on the
specific aspects of such recipes in the next section. Just like in the cooking domain,
the participants have beliefs about their own and each other’s capabilities and about
available tools and ‘ingredients’ such as an internet connection or an FTP client.

3.2 Domain

The system should be able to reason about the environment. One complicating factor
in our application is that the environment is dynamic, which means that the system’s
beliefs about the environment are not always accurate, since the environment may
have changed.

3.2.1 Recipes

A recipe can be viewed as a tree of actions, or, similarly, a nested list of actions.
Goals consist of actions and subgoals, which in turn consist of their own subgoals or
actions. Take for example the recipe for poached egg:

1. Pour at least four inches of water into a large pot. Bring water to a
boil.
2. Season water with salt and pepper
3. Add approximately one tablespoon of vinegar to the water
4. Reduce heat to simmer
5. Swirl the water around quickly to make a whirlpool, helps to keep the
eggs in shape.
6. Crack one egg into a ladle and lower egg into water, gently releasing
egg into the water
7. Gently move egg around in water to prevent egg from spreading in
water
8. Remove egg after two to three minutes1

1http://www.wikihow.com/Make-Poached-Eggs, retrieved on November 10, 2009 at 3:15 p.m.

50

3.2 DOMAIN

3

To illustrate the principle of a recipe being like a tree of actions, or a nested list,
we can also find a recipe for breaking an egg:

1. Grasp the egg in your dominant hand.
2. Hold it between the thumb and first two fingers.
3. Now tap the egg firmly onto a hard surface to crack the shell. You
should always use a flat surface to crack an egg rather than the edge of a
counter or bowl because there is less likelihood that bits of the shell will
go into the egg itself.
4. If the egg’s side has not completely ruptured place your two thumbs in
the cracked dent and pull apart.
5. Empty egg into a bowl or similar container before it hits the table.2

Similarly, for boiling water:

1. Use a large enough pot for the water you are heating and don’t fill it
all the way.
2. Place the pot on the stove and turn the heat under it to high.
3. Turn down the heat once the water starts boiling3

To illustrate the possibility of different recipes for a certain goal, an alternative
recipe for boiling water:

1. Put the water in a microwave-safe cup or bowl.
2. Place a non-metallic object such as a wooden spoon, chopstick, or pop-
sicle stick in the water.
3. Put the water in the microwave. Heat in short intervals, stirring regu-
larly, until the water is steaming.4

Similar ‘recipes’ exist for setting up a weblog. For example, to set up Wordpress:

1. Download and unzip the WordPress package, if you haven’t already.
2. Create a database for WordPress on your web server, as well as a
MySQL user who has all privileges for accessing and modifying it.
3. Rename the wp-config-sample.php file to wp-config.php.
4. Open wp-config.php in a text editor and fill in your database details
as explained in Editing wp-config.php to generate and use your secret key
password.
5. Place the WordPress files in the desired location on your web server: [...]
6. Run the WordPress installation script by accessing wp-admin/install.php
in a web browser. [...]5

2http://www.wikihow.com/Break-an-Egg, retrieved on November 10, 2009 at 3:14 p.m.
3http://www.wikihow.com/Boil-Water, retrieved on November 11, 2009 at 3:21 p.m.
4http://www.wikihow.com/Boil-Water, retrieved on November 11, 2009 at 3:21 p.m.
5http://codex.wordpress.org/Installing_WordPress#Famous_5-Minute_Install,

retrieved on October 4, 2010 at 4:36 p.m.

51

CONCEPTUAL MODEL 3.2

Requirement Code

Reasoning about actions (pre- and postconditions) RD1
Action identifiers are associated with physical actions RD2
Action identifiers are associated with communication RD3
Actions can be delegated RD4
Possibility of open delegation RD5
Plans are sequential RD6
Success of performed action should be checked RD7

Table 3.2: Requirements for the domain

3.2.2 Requirements for the domain

As we have seen in the previous chapter, there are different types of atomic actions:
domain actions, verbal communicative actions and nonverbal communicative actions.
These actions can be single-agent (individual actions) or multi-agent (joint actions).
As we have mentioned in Chapter 1, we use the notion of tasks to generalize over
goals and atomic actions: a task is either a goal (which can be split up into subtasks),
or an atomic action.

General Requirements

The instructor should be able to use the atomic actions for three different purposes.
First of all, the instructor can perform an atomic action itself (RD2). Performing
an action does not only involve satisfying the preconditions and then adding the
postconditions to its beliefs; usually, it also includes performing a physical action or
a communicative act. We will elaborate on communicative acts in the next section.

Secondly, the instructor can instruct the pupil to perform an atomic action (RD4).
This requires having a linguistic representation of the action in order to form an
utterance (RD3). Besides atomic actions, the system can also instruct the user to
perform higher-level tasks or achieve (sub)goals in a manner that is not specified by
the instructor. This means that the pupil has some freedom as to how the task will be
performed (RD5). This is similar to Castelfranchi’s concept of open delegation [39],
as opposed to pure executive (close) delegation, when a completely specified task is
delegated. In the case of open delegation, which Castelfranchi states is an important
concept in collaboration theory, the delegating agent believes to delegate either a
complex or abstract action (what we call a higher-level task) or a goal state.

Thirdly, the representation of an atomic action should allow the system to rea-
son about whether a plan that contains the action in question is possible, given the
circumstances (RD1). This requires the system to have beliefs about the pre- and
postconditions of an action in order to reason about them; an action is possible at a
certain given time if all preconditions are fulfilled. The sequentiality of a plan (the
fact that the tasks in a plan have a fixed order) allows the system to reason about
the possibility of a certain action in a plan, it can also use the postconditions of all
previous actions to check whether the preconditions of the action in question will be

52

3.3 INTERACTION

3

fulfilled at the time of execution in the plan (RD6).

Domain-Specific Requirements

External actions that the system can perform in a kitchen setting include turning on
electric appliances and performing non-physical actions like keeping the time. Exter-
nal actions may fail, when for example an appliance is broken, so it is useful to check
the success of the action (RD7).

In the blog setting, some examples of actions are writing a blogpost and various
actions on files, such as uploading, downloading, unzipping or editing. Unlike in the
kitchen setting, these actions are all non-physical actions, since they all happen on
a computer. However, we still have to take into account the possibility that some of
these actions may fail. For example, the action of uploading a file will fail when the
internet connection breaks down during the process.

Communicative actions are similar in both domains. We will elaborate on the
required communicative actions in the next section when we discuss the requirements
for the interaction.

3.3 Interaction
In this section, we will present a formalization of the specific type of dialogues that will
typically be conducted by the participants in this particular domain, and examples
of errors that can occur in these dialogues.

A dialogue is in itself a joint activity, but can also be used to coordinate a joint
activity such as preparing a recipe. This dichotomy reflects different types of goals
that dialogue partners have.

Since we have defined dialogues to be purposeful joint activities, we assume that
the initiator of a dialogue has at least one goal in initiating a dialogue. For current
purposes, we assume that he has one (primary) domain goal. Dialogues generally
follow a dialogue pattern that depends on the type of this domain goal. In this section,
we treat three different types of domain goals and the types of cooperative dialogues
that result from those goals: information-seeking dialogues, tutoring dialogues, and
task-oriented dialogues.

Since we would like to formalize these types of dialogues, we also treat some
research on dialogue systems and models of these types. First of all, we will briefly
introduce the three different types, and then elaborate on each type in the rest of this
section.

In Figure 3.1, we show the triangle metaphor from Ahn et al. [1]. Here, we
have two participants, A and B, and a domain. The arrows between the participants
represent information that is exchanged between them, usually in the form of linguistic
utterances in a dialogue. The arrows from the participants to the domain denote the
fact that the participants can manipulate the domain (i.e. perform actions in the
domain). The arrows from the domain to the participants denote the fact that the
participants can observe the domain.

Information-seeking dialogues are dialogues where only participant A in the trian-
gle metaphor can get information from the domain, so, in order to get this information,

53

CONCEPTUAL MODEL 3.3

participant B (the information seeker) must ask A (the information provider) for this
information. Tutoring dialogues are dialogues where participant A is an expert on
the domain and may quiz B (the pupil) on domain knowledge. Also, similarly to
information-seeking dialogues, B can get domain information from A when needed.
In some task-oriented dialogues, either B is an expert on the domain and/or task
and therefore gives A instructions on how to perform a certain task, or B wants to
have a certain task performed on the domain and therefore gives A instructions. An-
other type of dialogue that we could consider, but which we leave for future work
at this time, social dialogues, do not pertain to the domain at all, but merely to the
interaction between the two participants.

Domain

Participant
B

Participant
A

zondag 23 januari 2011

Figure 3.1: The triangle metaphor [1]

The types of dialogues are fundamentally different in the way in which the two
participants interact with each other and the domain (see Figure 3.1). When looking
at the triangle metaphor above, tutoring and task-oriented dialogues have the ‘full’
range of interactions as represented in Figure 3.1. Both participants can interact with
the domain (represented by the arrows from the participants to the domain), perceive
the domain (the arrows from the domain to the participants), and interact with each
other (the arrows between the participants). Information-seeking dialogues miss a
few arrows, as represented in Figure 3.2: the arrows between participant B and the
domain are omitted, meaning that B can only access the domain via A.

Domain

Participant
B

Participant
A

zondag 23 januari 2011

Figure 3.2: A variant on the triangle metaphor

We make the distinction between these different types of dialogues because they

54

3.3 INTERACTION

3

tend to follow different patterns, which we will elaborate on later in this section.
Also, we use the different types of dialogues as the basis for our system. The dialogues
generated by our system will have some of the key properties of all these dialogues. At
the end of this section, we will explain how the different dialogue types are combined
in our framework.

We will also explore some typical errors that can occur in cooperative dialogues.
Generally, any dialogue act that does not fit into (a combination of) the dialogue
models that we will present below, is an erroneous dialogue act. This does not mean
that the models will be unsuccessful, but the move in question should be repaired, in
order to avoid a total communication breakdown.

3.3.1 Information-seeking dialogues

In an information-seeking dialogue, one of the participants is the information seeker,
the other is the information provider. The information provider is collaborative and
may get a reward for providing the information to the information seeker. Typically,
the information seeker initiates the dialogue by providing a query to the information
provider, after which the information provider gathers the information and gives it
back to the information seeker. If the information provider does not have the re-
quested information, he informs the information seeker of this. Morik [95] describes
information-seeking dialogues as dialogues between a user (the information seeker)
and a system (the information provider) as interactions where “the system brings
about changes only on the user’s mind by communicative actions”.

The initiator of an information-seeking dialogue is typically the information seeker.
His primary goal is obtaining information. This is caused by an information gap in
the information seeker’s beliefs. However, information gaps are not always relevant
enough to be addressed; sometimes the cost of finding the required information is
higher than the cost of accounting for the multiple possible worlds that stem from
the information gap. The information seeker expects his dialogue partner to have this
information, or at least does not know that he does not have the required information
[94]. Alternatively, the information provider can initiate the dialogue to offer infor-
mation. He may do this with or without the prospect of getting a reward from the
information seeker.

Bunt [32] states that information dialogues are the most practical type of dia-
logue to study, because of practical reasons (it is a useful application to develop) and
methodological reasons (the premises are relatively simple and straightforward, but
not trivial).

Example of an information-seeking dialogue

This is an example of a human-human information-seeking dialogue from our corpus:

A: I eh would like to eat something.
B: That sounds like a good plan.
A: I’ll check the fridge. There’s bacon, spinach, mushrooms, carrots, ehm
cream cheese, regular cheese... Can you find something?

55

CONCEPTUAL MODEL 3.3

B: Well, maybe we could make a spinach salad?
A: Spinach salad.

Previous work on information-seeking dialogues

Stein and Maier [114] present a formalisation of information-seeking dialogue se-
quences in the so-called ‘Conversational Roles’ (COR) model, developed from analyses
of a corpus of information retrieval dialogues. There are two different ideal courses of
action: either initiated by the information seeker (A requests information from B), or
initiated by the information provider (B offers information to A). Alternative courses
of action include situations where either participant withdraws from the interaction,
or where the information seeker is not happy with the information that B offers.

Ideal course of action (complying with role expectations)
Dialogue(A,B)→ request(A,B); promise(B,A); inform(B,A); be-contented(A,B)
Dialogue(A,B)→ offer(B,A); accept(A,B); inform(B,A); be-contented(A,B)

Some examples of alternative courses of action
Dialogue(A,B) → offer(B,A); withdraw(B,A)
Dialogue(A,B) → offer(B,A); reject(A,B)
Dialogue(A,B) → offer(B,A); accept(A,B); withdraw(B,A)
Dialogue(A,B)→ offer(B,A); accept(A,B); inform(B,A); be-discontented(A,B)
Dialogue(A,B) → request(A,B); reject(B,A)
Dialogue(A,B)→ request(A,B); promise(B,A); inform(B,A); continue(A,B);
Dialogue(A,B)
Dialogue(A,B)→ request(A,B); promise(B,A); withdraw(B,A); Dialogue(A,B)
...

As shown in the model above, there are many different possibilities for information-
seeking dialogues. For ease of presentation, it is possible to represent the possibilities
in an information state visualization [123], as we will do later in this chapter with a
number of different dialogue types.

Hintikka and Saarinen [75] treat information-seeking dialogues as two-player games
with a payoff that depends on the information-content of the final thesis of the player:
more informative theses earn higher payoffs. There are four possible kinds of moves
that can be performed by the players: initial moves, deductive moves (where one
or more steps of tableau construction are applied), interrogative moves (where the
player asks a question) and assertive moves (where the player puts forward a new
thesis). It should be noted that an initial move is simply an assertive move that is
posed at the start of the interaction. When one of the players poses a question (an
interrogative move), his dialogue partner may either give a direct full answer or deny
the presupposition of the question.

Clearly, the goal of both dialogue partners is to gain as much information as
possible in order to make their final theses more informative and thereby earn higher
payoffs. This is a difference with our system, where only one of the participants is
trying to gain information (the information seeker) and the other is simply enabling

56

3.3 INTERACTION

3

him to do so. Also, the information seeker does not necessarily attempt to gain as
much information as possible, but only wants to obtain a specific piece of information.

A model of information-seeking dialogues

We have recorded and analyzed several information-seeking dialogues and combined
them into an information state visualization (cf. information states [123]), that repre-
sents typical information-seeking dialogues that we would like our system to conduct,
in Figure 3.3. It should be noted, as with the other models that we will present later
in this chapter, that the states in the model are only believed states, not necessarily
factual states; the system can mistakenly believe that a certain state is the case (e.g.,
by mishearing the user’s reply). The reasoning and dialogue rules that generate the
dialogues should represent this model.

B: offer
info

A: accept

A: request
info-search

A: reject

B: accept

A: specify
properties

B: propose
solution

A: accept

A: request
more info

B: provide
more info

zondag 23 januari 2011

Figure 3.3: An information-seeking dialogue where A is the information seeker and B is
the information provider

Although our model is similar to the COR model that we presented above, there
are some differences. Most notably, Stein and Maier introduce opportunities for with-
drawing from the conversation in every single step; while this is something that can
happen in a dialogue, we would like our model to show only the successful dialogues,

57

CONCEPTUAL MODEL 3.3

since we will treat all other dialogue moves as errors (see Chapter 7). Also, what
we miss in the COR model is an extra type of move in which the information seeker
specifies some properties of his desired result, separately from his request for an
information-search, since almost all of our recorded dialogues show this move.

A dialogue turn by one of the participants may consist of more than one dialogue
act as we show them in our model in Figure 3.3. For example, participant B can initi-
ate the dialogue with an offer to find a recipe, to which A replies with two subsequent
dialogue acts: the acceptance of the offer, and the specification of properties.

In short, the dialogue is conducted as follows. First, the participants establish
that B will find certain information for A, either because A requests information and
B accepts, or because B offers to find information and A accepts. Then, A specifies
properties that the information should adhere to, and B proposes a solution that
matches these criteria. Then, A has three different options: he may either reject the
proposal (after which he may specify additional properties), request more information
about the proposal (after which B should give him this information), or accept the
information given by B.

We can map the example dialogue above on this model. Participant A requests
an information search (specifically, a recipe query) by stating: “I would like to eat
something.” Then, B accepts by saying: “That sounds like a good plan.” A states
his desired properties for a recipe: “There’s bacon, spinach, mushrooms, carrots,
cream cheese, regular cheese...” B proposes a solution: “Maybe we could make a
spinach salad?” To this, A answers positively: “Spinach salad.” This concludes the
information-seeking part of the dialogue.

Errors specific to information-seeking dialogues

Most typical errors that occur in the information-seeking dialogues in our corpus
involve misunderstanding of queries, caused by incorrect presuppositions like beliefs
about the dialogue partner’s preferences or discrepancies between the ontologies of
the participants. For example:

A: Something with vegetables, and meat.
B: Lasagna with chicken and tomato?
A: That’s not meat.
B: Chicken is meat, right?
A: No, that’s chicken.

In the above dialogue, A does not think chicken is meat, presumably contrasting
(red) meat with poultry, as is sometimes done in categorizing recipes. In contrast, B
thinks chicken is meat, which is true according to the standard definition of meat6.
Similar errors are likely to occur when definitions are not clear, like in the case of
tomatoes and cucumbers, which are botanically classified as being fruit, but in collo-
quial use typically grouped under vegetables.

Let’s compare this dialogue excerpt to the information state visualization for
information-seeking dialogues that we presented in Figure 3.3. Participant A specifies

6the flesh of animals as used for food, Dictionary.com, retrieved on May 27th, 2010

58

3.3 INTERACTION

3

his desired properties (“Something with vegetables, and meat”), to which B replies
with a proposed solution (“Lasagna with chicken and tomato?”), but then A rejects
this solution on the grounds of a misinterpreted property specification (“That’s not
meat”). Apparently, something had already gone wrong in the first step of this inter-
action: the properties that A meant to specify were not the properties that B used
to search for a recipe. In order to repair this, A and B have to reach an agreement
on A’s desired properties. They do not necessarily have to agree on whether chicken
is meat or not, but B merely has to understand that A wants a recipe with any meat
other than chicken.

If the information provider does not have expert knowledge on the domain, he
might not be able to answer some questions from the information-seeker about the
query results:

A: And eh, a packet of tutti frutti.
B: Tutti frutti? What’s that?
A: Well ehm, fruit I guess.
B: Fruit, what kind of fruit?
A: Well, I don’t know.
B: You don’t know.
A: It doesn’t say [in the recipe].

Additionally, it is possible that the information provider does not have the desired
information that the information seeker is attempting to obtain:

A: Do you have access to the list of passengers?
B: No, we don’t get the passenger lists. They stay at the departure airport.
A: So you don’t know who landed?
B: No, I don’t.

Here, the dialogue is aborted unsuccessfully when B cannot accept A’s request for
an information search.

3.3.2 Tutoring dialogues

When initiating a tutoring dialogue, the primary goal of both participants is to in-
crease and/or test the pupil’s knowledge, usually on a specific subject. In order to
achieve this, the tutor asks the pupil test questions (as opposed to real questions, such
as in information-seeking dialogues) and/or gives the pupil information, usually in the
form of hints, explanations, and corrections. The pupil’s answers and/or actions are
evaluated.

Example of a tutoring dialogue

The example of a tutoring dialogue that we quote here is not an exerpt from a real
dialogue. The teaching/learning process in all of our recorded dialogues is left implicit
by the participants, so there are no ‘visible’ signs of the tutoring aspect in the dia-
logues. To make the dialogue more perspicuous for the user, we do explicitly include

59

CONCEPTUAL MODEL 3.3

tutoring in our model. This example of a tutoring dialogue is taken from the example
dialogue in Chapter 1:

B: I will now teach you to poach an egg. First you have to boil some
water.
A: Okay.
[rest of recipe preparation]
B: Remove the egg from the water.
A: I’ve removed the egg from the water.
B: You have now poached an egg. Do you think you can do it by yourself
next time?
A: Yes.

Previous work on tutoring dialogues

According to Beun et al. [10], at least two different kinds of tutoring dialogues can
be distinguished. First of all, in the ‘traditional’ tutoring interaction, the basic move
is the teacher giving information to the student; then, in the diagnostic phase, the
teacher asks the student a question, the student answers, and then the teacher gives
feedback. In the second type of tutoring dialogue, the student and the teacher can
engage in a question-answer game where the teacher tries to elicit certain responses in
order to get the student to reflect on his own beliefs; take for example teaching tactics
such as the Socratic dialogue (debates about questions like “What is justice?”). Beun
later introduces a third type of tutoring dialogue where the teacher gives the student
a example case with a certain underlying problem. It is then up to the student to
figure out the questions that have to be answered, and then of course to answer them.
In this situation, it is important that the teacher gives feedback on both phases. In
this thesis, we only treat tutoring dialogues of the first type, since this is the type
that is most useful in our particular domain.

AutoTutor [65] is a tutoring system that engages in a mixed-initiative dialogue
with the pupil, meaning that both dialogue partners can initiate new topics of discus-
sion or ask questions. AutoTutor has a “curriculum script” that contains questions,
problems, expectations, misconceptions, and most relevant subject matter content.
Dialogue moves in tutoring dialogues include test questions, real questions, feedback
from the tutor (positive, neutral and negative), and several types of declarative moves:
answers, hints, corrections, assertions and summarizations.

One obvious difference between ‘pure’ tutoring dialogues like in AutoTutor and
the recipe dialogues in our system is that in tutoring dialogues, the pupil rarely
asks questions [65], while we have found that in the recipe dialogues in our corpus,
questions are quite common. Of course this is because the tutoring in the recipe
dialogues is only a relatively minor aspect of the dialogues, whereas the execution of
the task is the most important one. We can explain this by emphasizing the difference
between information tutoring and task tutoring; in the former, the pupil is trying to
learn information, while in the latter, the pupil is trying to learn how to perform a
task. This may also include information (learning the steps in the task), but the main
focus of the dialogue is the task itself.

60

3.3 INTERACTION

3

Bunt [33] emphasises that transparency and naturalness are very important in
tutoring dialogues. Naturalness is important for the student’s focus on the task at
hand (not having to put extra effort in conducting the dialogue), while transparency
will improve the student’s understanding of his own performance. In order to achieve
this, the tutor should have a model of the student’s level of expertise on the topic.
Also, this calls for a distinction between task-oriented dialogue acts and dialogue
control acts. Using dialogue control acts makes the dialogue more transparent; e.g.,
after the student’s answer to a question, the tutor should say something along the
lines of: “Correct. Next question: ...” before moving on to the next question.

A model of tutoring dialogues

In Figure 3.4, we illustrate how a tutoring dialogue in our system is typically con-
ducted.

A: request task

B: accept

B: information

B: learned?

A: yes A: no

zondag 23 januari 2011

Figure 3.4: A generic tutoring dialogue where participant A acts as pupil and participant
B acts as tutor

The dialogue is conducted as follows. Participant A requests a task to be per-
formed, which B accepts. Then, B gives A the requested information (the instructions
in the task), which may take several dialogue turns. After the task is finished, B asks
A if he has learned the task. Then, A can reply positively or negatively. In either
case, the dialogue is then finished.

61

CONCEPTUAL MODEL 3.3

Errors specific to tutoring dialogues

Some typical errors that occur in tutoring dialogues are wrong responses and misun-
derstandings of questions or answers. An interesting factor of tutoring dialogues is
that many errors of the pupil may be expected/anticipated by the tutor. This means
that we do not call them dialogue errors, since they still fit in the dialogue model,
but instead they are treated as an integral part of the tutoring dialogue.

Expectations can be used in tutoring systems; e.g., the relatively simple expectation-
and misconception-tailored (EMT) dialogue [64]. This system asks the user test ques-
tions, expects the user to answer correctly, and compares the actual answers with its
expectations. Misconceptions (misunderstandings) are also anticipated, which allows
for a relatively easy way of addressing them. According to Graesser [65], this is also
how human tutors deal with their pupils.

3.3.3 Task-oriented dialogues

When beginning a task-oriented dialogue, the initiator’s primary goal is completing a
task or getting his dialogue partner to complete a task. In our case, the system acts
as an expert that guides the user through the preparation of a recipe.

Example of a task-oriented dialogue

In our system, a task-oriented (sub)dialogue would typically be something like this
exerpt from a dialogue from our corpus:

A: And now you can arrange the tomatoes on the baking dish in a single
layer.
B: Okay.
A: And the goat cheese on top of it.
B: Okay [whistling] okay, almost done, okay that’s done.

Previous work on task-oriented dialogues

Other examples of task-oriented dialogue systems are TRAINS-95 [4] [53] and its
successor TRIPS [54]. In TRAINS-95, the user and the system are given a set of
cities, routes and trains on certain locations, and need to figure out the most efficient
set of train routes possible. The route planner in the system is deliberately weak,
so the system needs the user to figure out the most optimal solution. Research with
TRIPS focuses on a similar planning task, but is more advanced and more complex
with respect to the domain (the task is more complicated), the reasoning (plans can
be more complex), and the interaction (the collaborative problem-solving model is
more advanced). In both systems, the user can ask the system questions (“How long
will it take to move from A to B?”) and give it commands (“Pick up the people at
location A.”). The system will then execute the tasks in the (virtual) domain. In this
way, is actually doing exactly the opposite of our system, where the system is giving
instructions to the user, who then executes the tasks.

62

3.3 INTERACTION

3

Winograd’s SHRDLU [134] works in the same way: the user can give the system
instructions on grasping and moving objects in a ‘block world’ and ask questions
about the objects (e.g., “How many blocks are not in the box?”).

A model of task-oriented dialogues

A: instruction

(if task is
not finished)

A: assist

B: inform
success

(if task is
finished)

B: inform
success

B: inform
 understood B: inform

failure

B: request explanation

B: inform failure

zondag 23 januari 2011

Figure 3.5: A generic task-oriented dialogue where participant A instructs participant B to
perform a certain task

Figure 3.5 represents the typical task-oriented (instruction) dialogue. In this di-
alogue, participant A has the ‘manual’ or recipe of a certain task, and participant
B has access to the domain where he can perform the required actions in order to
complete the task. A recipe instruction dialogue is an instantiation of this generic
task-oriented dialogue.

For each instruction in the recipe, A starts by giving the instruction. Then, B
can perform any of four different dialogue actions. Firstly, B may inform A that he
has successfully completed the task, in which case the dialogue is either concluded
successfully (if there are no more instructions left) or the next instruction is given.
Secondly, B can inform A that he has understood the instruction, after which he will
(attempt to) perform the task and inform A of his success in doing so (in which case,
the dialogue ends or continues as specified before) or of his failure in doing so, after

63

CONCEPTUAL MODEL 3.3

which A provides assistance. Thirdly, B can inform A that the action has failed, after
which A provides assistance. Fourthly, B can ask A for an explanation, after which A
also provides assistance. In the cases where A provides assistance, B can subsequently
again choose between these four options.

We can map the example dialogue on the model as follows. A gives an instruction
(“And now you can arrange the tomatoes on the baking dish in a single layer”),
to which B replies that he has performed the task (“Okay”). Then, A gives a new
instruction (“And the goat cheese on top of it”). Then, B informs A that he has
understood the instruction (“Okay [whistling] okay, almost done”) and then gives a
confirmation that he has succeeded in performing the task (“Okay that’s done”).

Errors specific to task-oriented dialogues

Some typical errors that occur in task-oriented dialogues are misunderstandings of
instructions, and misunderstandings in the meaning of ‘okay’ (‘understood’ vs. ‘done’)
[66]. Furthermore, from our corpus of dialogues, slips of the tongue and turn-taking
errors appear to be more common in task-oriented dialogues than in information-
seeking dialogues.

Similarly to in information-seeking dialogues, a situation may occur where the
instructor gives an instruction that he himself does not completely understand. This
only happens if the instructor in the task-oriented dialogue does not have expert
knowledge of the domain but merely has a list of instructions for the task.

A: Then the sauce has to simmer for circa fifteen minutes.
B: With the lid on?
A: Eh, doesn’t say, but simmering is probably with the lid on.

Also specific for task-oriented dialogues are errors in the following of instructions.
These errors might be detected some dialogue turns after they occur, like in the next
example, where participant B is trying to rebuild a LEGO R© construction from an
example that only A has. A and B can both observe the domain and point at blocks,
but only B is allowed to manipulate the domain. Halfway through this segment of
the dialogue, A discovers that he made a mistake earlier in the dialogue, which is
discovered when B needs a brick that is not available.

A: Yeah, ehm... A red square one here.
B: The long one?
A: No, a square, sm– small.
B: That’s not possible, I don’t have it. A red one, I have to remove that
somewhere then... Is this red one...?
A: Yeah, that one is correct.
B: That one is correct?
A: Yes. Oh wait, I did make a small mistake.
B: Should...
A: Uh take this one off... Yes, and then this brick off of here
B: Yeah.
A: And then remove the square and put the long one in. Yeah, like that.

64

3.3 INTERACTION

3

3.3.4 Mixtures between different types of dialogues

An example of a task-oriented tutoring system is Steve [102]. Steve teaches his pupils
how to perform certain tasks. For this process, he chooses one of three different
roles: a tutoring move (e.g., giving feedback to the student), an instruction move, or
a dialogue control move (a turn-taking or grounding act). Steve’s highest priority is
always to respond to the student (tutoring moves). If no such move is needed, Steve
will perform a dialogue control move, if required. If neither a tutoring or dialogue
control act is needed, Steve will continue with the next instruction of the task.

The virtual character REA [15], a digital real estate agent that is capable of
interacting multimodally, is specifically designed to make small talk with the user in
order to build up trust. Since REA functions as a (virtual) real estate agent, it is
very important to build trust with the user, which is indeed one of the effects of social
dialogue that Bickmore and Cassell found [15]. REA assesses her dialogue moves on
a scale of face threat, combines this with the current level of solidarity and familiarity
that she holds with the user, and picks a relevant topic for the user. Based on these
factors, she chooses whether or not the next dialogue move will be a social move
(small talk) or a domain-related move.

Our recipe dialogues are also a mix of some different types of dialogues. They
are information-seeking dialogues in the sense that the user seeks information about
certain recipes, they are tutoring dialogues in the sense that the system teaches the
user to prepare a certain recipe, and they are task-oriented dialogues because they
focus on a certain task (preparing the recipe). A system that combines these categories
will, typically, for each turn choose a role. This means that not all three categories
are used simultaneously; rather, the system switches between the different types of
dialogues.

For our system, we have chosen a set pattern according to which the dialogue
is conducted. At the start of the dialogue, the user will usually initiate a recipe
choosing dialogue, a typical example of an information-seeking dialogue. The recipe
preparation dialogue is mostly a task-oriented instruction dialogue, but has properties
of a tutoring dialogue when the system presents the task at hand to the user (“I will
teach you how to poach an egg”) and closes off the task and asks the user whether
he knows the task now (“You have poached an egg now. Do you think you can poach
an egg by yourself the next time?”).

In Figure 3.6, we describe possible recipe searching and preparation dialogues that
we would like our system to be able to produce. In this model, U stands for user and
S for system. The user always initiates the dialogue, either by directly requesting
a joint goal or by requesting a recipe. In the latter case, the system will propose a
recipe, which the user can then accept or reject. If the user rejects the recipe, the
system will propose a different one. When the user has accepted the recipe or when
system accepts the joint goal that the user requested, the system will acknowledge
this.

Then, the recipe preparation will start. In this part of the dialogue, the main
process is as follows. Either the system will instruct the user to perform a certain
task, after which the user may or may not acknowledge that he is going to perform
the task, then the user performs this task and may or may not confirm that he has

65

CONCEPTUAL MODEL 3.3

U: request
recipe

S: propose
recipe

U: accept

U: request
joint goal

U: reject

S: ok

 S: do
task S: I will

 do task

S does
task

U does
task

(if goal not
reached)

S: you will
learn subgoal

(if goal
reached)

S: do task

U does
task

(if subgoal not
reached)

(if subgoal
reached)

S: you have
performed
subgoal.
Capable?

U: yes

U: no

S: done!

U: I will
do task

U: I have
done task

Ø

zondag 23 januari 2011 Figure 3.6: A recipe searching and preparation dialogue

performed the task. Alternatively, the system will inform the user that it will perform
a certain task, after which it performs the task. As long as the goal is not reached,
this will be repeated; if the goal is reached, the system informs the user that he is
done.

Additionally, there is the tutoring process, where the system informs the user
that it will teach him to prepare a certain subgoal. In this case, during the tutoring
process, the system will not offer to perform tasks, but will only instruct the user to
perform tasks (after which the user is, of course, expected to perform a task). This
will be repeated as long as the subgoal in question is not reached. When the subgoal
is reached, the system informs the user of this, and asks him whether he is capable

66

3.3 INTERACTION

3

Requirement Code

One primary domain goal RI1
At least speech acts inform and request RI2
Participants inform each other about status of goals and plans RI3
Modeling of mutual belief RI4
Implementation of dialogues according to the dialogue model in Fig-
ure 3.6

RI5

Ability to answer questions RI6
Ability to respond to requests from other participants RI7

Table 3.3: Requirements for the interaction

of performing the task in question on his own the next time. The user can answer
positively or negatively to this; either way, the dialogue will return to the regular
instruction process.

3.3.5 Requirements for interaction

General Requirements

In order to maintain correct and sufficient mutual beliefs, we need to model the con-
cept of mutual belief (RI4). Also, the system should always communicate about the
status of the tasks and the goals in question (RI3). The same goes for joint persis-
tent goals, as we have seen in the previous chapter. To communicate this necessary
information, the system needs a few different kinds of speech acts: at least inform
and request are required (RI2). It should be noted that these speech acts are at the
pragmatic level and could take different syntactic forms. For example, a request can
take the form of an inform speech act on the syntactic level: e.g., “You need to boil
some water.” We will discuss the analysis of such indirect speech acts in Chapter 6.

Inform is used when the user states that he is done with a task, and when the
system informs the user that it will perform a task. When one of the participants
has performed a task or is planning to perform a task, the other participant is not
necessarily aware of this. In order to make the status of the task in question mutually
believed, the performer of the task must inform the other participant of this. Also,
when the current goal is completed or dropped, the system will inform the user of
this in order to make the status of the goal mutually believed.

Request is used when one of the participants requests the other to perform a
certain task. Morante [94] distinguishes between request and instruct; the former is a
weaker version of the latter. When instruct is used, the addressee’s attitude towards
the instructed action is not taken into account by the speaker, while for request, the
willingness of the addressee is taken as a precondition. In our research, this distinction
is irrelevant, both for requests from the system and from the user. In case of requests
from the system, the user is always the initiator of the joint plan and we assume that
when one adopts a joint goal, one is always willing to perform the necessary actions
for this. Conversely, in case of requests from the user, because of the system’s role as

67

CONCEPTUAL MODEL 3.4

a cooperative assistant, it is always willing to perform actions that the user requests
from it.

The different types of dialogues that we have treated in this section should all be
accounted for in our system. The dialogues should follow the dialogue model that we
have presented in this chapter (RI5). Additionally, in order to behave cooperatively,
the system should be able to answer questions from the user (RI6) and follow requests
from the user (RI7).

Domain-Specific Requirements

In a recipe dialogue, different kinds of questions from the user should be expected. The
different kinds of questions can range from not knowing how to do something (“How
do I boil water?”) to needing more detailed information (“How thinly should I slice
them?”). Handling these questions involves starting a new (parallel) ‘side’ process
for answering these questions while the recipe instruction dialogue is temporarily
suspended until the issue is resolved.

Another type of question is a request to expand the current recipe step to its
subtasks (“How do I poach an egg?”). Questions about the future steps in the recipe
include requests for the next instruction (“What do I have to do next?”) and more
general questions about the recipe (“Should I cut them now or can I leave it until
later?” or “What do I need the wine for?”).

Additionally, the user can request the system to perform an action (“Can you keep
the time for me?”). If the system is capable of performing this action, it should do so;
otherwise, it should inform the user that it is not capable of performing the action.

The same principles hold for the blog instruction system.

3.4 Multimodal interaction
As we have seen in the previous chapter, interaction is usually conducted over multi-
ple modalities. This multimodal interaction consists of (joint) activities and dialogue.
In multimodal interaction in general, users interact with a computer through several
different input modes. Besides the usual mouse and keyboard (or touch screen) inter-
face, users may also be able to talk to the computer or point at physical objects or at
things on a screen. This multimodal interaction can also apply to output modalities
of the system: the computer might be able to respond to the user not only on the
computer screen, but also in other ways, like speaking to the user. In the same way,
multimodal dialogues are conversations that use different modalities, as humans usu-
ally do when talking face-to-face. The most notable other modalities besides speaking
and listening are visual modalities, such as pictures on a computer screen, or gestures
or facial expressions, either on an animated face on a computer screen or on a physical
robot.

The large amount of information that is involved in in a multimodal interaction
is both an advantage and a disadvantage: a multimodal interaction is usually more
robust than an interaction that is only conducted on a single modality, but on the
other hand, misunderstandings may emerge if information in different modalities is
inconsistent. Also, the fact that there may be input over multiple modalities that is

68

3.5 MULTIMODAL INTERACTION

3

Requirement Code

Synchronization of input RM1
Synchronization of output RM2
Intuitive representation of multimodal interaction RM3

Table 3.4: Requirements for multimodal interaction

connected but may or may not occur exactly simultaneously, means that multimodal
interaction has a relatively large tendency to become complicated and confusing. This
creates the need for synchronization of input and output.

Van Dam [47] presents a model for human-computer interaction in which actions in
graphical user interfaces (GUIs) are interpreted as dialogue turns. This allows for an
integrated approach of multimodal human-computer interaction where information is
exchanged through linguistic (speech or text) and graphical (most notably on-screen)
means. We present a similar model in which visual information (in the form of events
taking place in the domain) is also taken into account as input, besides the linguistic
input that forms the basis of the dialogue.

3.4.1 Requirements for multimodal interaction

Input over different modalities needs to be synchronized (RM1). For example, causally
dependent actions in different modalities rarely happen exactly at the same time
[97], but should be interpreted together. For example, a deictic gesture (some form
of pointing) is often not performed at exactly the same time as the uttering of a
sentence with a deictic component, e.g., “Could you give me more information about
this restaurant?” Humans usually interpret these events as happening simultaneously.
This illustrates the need for synchronization of input to different modalities.

In our system, if the user gives an answer to the system’s question and the system
sees the user performing some action a very short timespan later, these events should
be interpreted as happening at the same time instead of one after the other. The time
span can be defined differently for different users; e.g., elderly and disabled people
may need a longer time span to perform concurrent actions than, for example, younger
people with computer experience.

Besides multimodal input, also multimodal output needs to be synchronized (RM2).
For example, a speech synthesizer may need a relatively long time to prepare a sen-
tence and turn it into a sound file, while screen output may be ready almost instan-
taneously. If both of these output modalities are so strongly interconnected that they
need to be conveyed to the user at the same time, this means that the screen output
needs to be put ‘on hold’ until the speech synthesizer is also ready.

Because multimodal interaction is much more complex than text-only conversation
systems, we believe that it is important to have an intuitive way of representing and
modeling multimodal interaction (RM3).

69

CONCEPTUAL MODEL 3.5

3.5 Error handling

There are several different reasons to implement error handling in a dialogue system.
Because is it unlikely that a conversation goes exactly as planned, it is desirable to
implement error handling in order to ensure that the dialogue partners will be able
to get out of an error situation. In this way, error handling will “contribute to a more
efficient and satisfactory human-computer interaction” [12]. In this section, we present
our definition of errors, explore some related work, and give a list of requirements that
we believe an error handling module for a task-oriented system should comply with.

3.5.1 Our definition of errors

An error is usually defined as a deviation from accuracy or correctness; a mistake, as
in action or speech. Errors have to do with discrepancies between the intended conse-
quences of an action (including communicative actions) and the actual consequences
of that action. In order to use this definition, we need to define what this ‘correctness’
is. We will take the dialogue models from this chapter as the norm for successful dia-
logues. Basically, this means that dialogue moves that adhere to the dialogue models
are allowed, and any other moves are errors. These moves that fall outside the dia-
logue models must be handled in some way that will bring the conversation back to
the dialogue as it was planned.

As we have seen in Chapter 2, the notion of success is twofold: an utterance
can be successful or unsuccessful, and the dialogue itself can also be successful or
unsuccessful. To take a pragmatic viewpoint on the matter, we will only look at the
success of utterances. However, the aim to adhere to the dialogue models as much as
possible in order to prevent a dialogue breakdown is of course strongly connected to
the aim to avoid unsuccessful dialogues.

Beside moves that fall outside of the dialogue models, we must make sure that
the mutual beliefs of the dialogue participants are both internally consistent and
consistent with the dialogue partners’ private beliefs. Since we assume that dialogue
contributions are always added to the dialogue partners’ mutual beliefs unless specified
otherwise, we need to repair such inconsistencies immediately. This means that all
inconsistencies between utterances and the hearer’s beliefs should be detected and
addressed as quickly as possible.

According to Airenti et al. [3], there are two types of errors: the ‘inference chain’
(cf. dialogue model) is interrupted, or it“follows a complete path different from the
one intended by the actor”. In the first case, the dialogue is aborted (before all goals
have been achieved) and therefore unsuccessful. The second case is caused by the
incorrect application of rules, caused by incorrect beliefs that the agent has. “In fact,
it is precisely the presence or absence of certain representations that may lead the
partner to apply a rule that the actor did not want him to apply [or vice versa].” In
this case, the dialogue does continue, but in an undesirable way. Errors in mutual
beliefs are also mentioned: one of the possible causes for the application of incorrect
rules is if “representations supposedly shared by the actor and the partner, in fact
are not.”

Here, we have our two types of errors: the application of a rule that is unexpected

70

3.5 ERROR HANDLING

3

by the addressee, or incorrect beliefs about the mutual beliefs of the dialogue partners.
In conclusion, we define an erroneous dialogue move as a move that satisfies at least
one of the following conditions:

1. It is an unexpected contribution; that is, it is inconsistent with the addressee’s
intentions.

2. It signals or introduces an inconsistency in the mutual beliefs of the dialogue
partners.

If an error is detected, it should be repaired immediately so that the participants
can return to the planned course of the dialogue. Goffman [62] sees repair dialogues
simply as ‘side sequences’ from the main dialogue. This view is supported by Taylor
[120], who proposes a “general protocol grammar” that also describes handling of
ambiguity and errors. Taylor proposes a flow chart that looks similar to our dialogue
models as presented in Chapter 3, though on a different level than our dialogue models,
for each primary message in the dialogue. Every Primary dialogue contribution by
an Originator can either be accepted (with or without feedback) by the Recipient, or
a subdialogue is activated in case an error or ambiguity is observed by the Recipient
or in case a correction is provided by the Originator after the Recipient’s feedback.

Related work on error handling

The digital real estate agent REA [15] can correct errors whenever the agent misunder-
stands the user’s utterance. This error correction, however, seems to consist mostly
of answering requests for clarification from the user [36], while our error handling
system handles a broader scope of errors.

In Turunen and Hakulinen [125], an error handling system with seven phases is
programmed in Jaspis. First of all, an error is detected. Second, a diagnosis of
the cause of the error is made. Third, the system plans a correction. Fourth, the
correction is executed. Fifth, the system informs the user about the error. Sixth,
the error handling phase is closed and the system returns to the primary dialogue.
The seventh step that Turunen and Hakulinen mention is preventing errors, which
is rather a separate process than a step in the main error handling process. In our
system, the detection of errors is comparable to step one and two, and the repair of
errors corresponds with step three and four. We do not explicitly inform the user of
the fact that an error is being repaired (step five) or explicitly close the error handling
phase (step six). Error prevention (step seven) is something that we leave for future
work.

Beun and Van Eijk [12] state that the goal of repairing an error is establishing
alignment between the dialogue partners. This can be achieved by employing two
tactics: first of all, resolving detected discrepancies, and secondly, avoiding potential
discrepancies as a result of quantity implicatures. Resolving detected discrepancies
is done by generating a feedback message, while avoiding potential discrepancies is
done by analyzing the possible discrepancies that can result from a message and then
generating the message that will avoid possible discrepancies as much as possible.
The addressed discrepancies are purely of the form of conceptual mismatches (on the

71

CONCEPTUAL MODEL 3.5

ontological level). While this is an important type of discrepancy, we will address a
broader scope of errors in this thesis. The repair depends on the formal pragmatic
model (which contains information such as private and common beliefs and a user
model), the role of the system, and the disparities between the user’s and the system’s
beliefs. A difference with our work is that Beun and Van Eijk have a closed world
assumption because the system is an expert (if the system does not believe that p,
then it believes that not p). We do not have a closed world assumption; in our system,
¬Bp is not the same as B¬p.

3.5.2 Error handling in our system

The goal of the error handling framework that we present in this thesis is to augment a
basic instruction system with an error handling module that makes the system robust
[16] [101]; in other words, the system should not crash, stop before reaching its goals,
or resort to generic responses such as “I’m sorry, I don’t know what you mean.” While
the latter option is less bad than simply withdrawing from the interaction, it is not
an optimal response for three reasons. First of all, a response that is more tailored
to the specific type of error will give the user a better suggestion of how to continue
the conversation. Secondly, giving specific responses results in a more transparent
error handling subdialogue, since it gives the user more information about what the
system believes went wrong. Thirdly, especially in cases where errors tend to occur
frequently, a generic response may cause more displeasure for the user, as we have
seen in the first example dialogue in Chapter 1.

We have investigated human-human dialogues for the handling of errors in a nat-
ural way, but we do not necessarily handle all errors in a similar way to humans. In
human-human dialogues, a generic reaction like ‘what?’ or ‘sorry?’ may indicate,
amongst others, a mishearing, a misunderstanding, or insecurity about the meaning
or purpose of the utterance. The answer to such an utterance may differ between or
even combine different approaches: e.g., repeating the information literally or par-
tially, offering a more detailed explanation of (part of) the information, or indicating
the reason for the utterance. However, we wish to be as clear as possible in the
handling of errors and should thus avoid such generic responses.

One of the most important problems that should be avoided is the presence of
inconsistencies between the mutual beliefs of the participants. In any interaction
between two or more agents that are not specifically tailored to each other’s goals,
values, ontology, and vocabulary, and that do not by design have complete and ac-
curate beliefs about each other’s mental states, etcetera, there are always uncertain
factors at play. Also, in real-world situations (as opposed to deterministic computer
models), there are uncertainties in the environment, such as unexpected events or
unexpected consequences of actions.

Since it is not always possible to find out the exact status of these uncertain
factors, or computationally feasible to take all possibilities into account, agents can
have assumptions that might in practice sometimes be false (cf. default reasoning).
If an error occurs, it might be caused by one of these assumptions being false, and in
that case we must initiate the corresponding repair strategy.

Examples of assumptions that may be false:

72

3.5 ERROR HANDLING

3

Requirement Code

No generic responses RE1
Always respond RE2
Generic error handling tactic for task-oriented dialogues RE3
Address errors immediately when they occur RE4
(Mutual) belief inconsistencies should be avoided/resolved RE5
Be as cooperative as possible, even when an error occurs RE6
Take multimodal input into account when handling errors RE7
Hold dialogue according to the dialogue model as much as possible RE8

Table 3.5: Requirements for error handling

• all participants have accurate beliefs about their own and each other’s capabil-
ities

• all participants have accurate perceptions of and beliefs about the domain

• if one of the participants says something, all others hear and understand it
correctly and it becomes mutually believed

• all participants only say things they believe to be true

• all participants are cooperative

• all participants are communicative about the status of the current (sub)goal
(i.e. when it is finished, they inform the other participant(s) of this)

This is not a complete list of such assumptions. Also, these assumptions are of
different types and different levels. Some are about communicative conventions that
are based on the cooperative nature of the participants (e.g., adherence to Grice’s
maxims, communication about the status of subgoals), while others are basic as-
sumptions about the circumstances of the interaction (e.g., reliable communication
channel, accurate perceptions of the domain). The fact that we explicitly take these
to be assumptions (and not facts) gives us an entry point for error handling: when
something out of the ordinary occurs, it is probably caused by one of those assump-
tions that is, in fact, false. For example, if the user disagrees with the system about
whether a certain food item is in stock, the assumption that the system has accurate
beliefs about the domain is in this case possibly false.

We do not take into account possible errors in all of these assumptions, but instead
focus on a selected subset of them.

3.5.3 Requirements for error handling
In Table 3.5 we show the list of requirements for error handling.

Since we present our dialogue system framework on the level of speech acts, we will
not treat speech recognition errors such as mishearings. In Chapter 7, we will explain
in more detail which errors we will and will not treat. However, as we have stated

73

CONCEPTUAL MODEL 3.6

above, one of the main errors that we focus on is belief inconsistencies, which should
be avoided as much as possible and resolved whenever they are detected (RE5).

As we have stated in the previous subsection, the system should not resort to
giving generic responses such as “I don’t know what you mean” (RE1). Additionally,
the system should always respond to input from the user (RE2).

We wish to construct our error handling framework in a way that enables us to
reuse it in other task-oriented dialogue systems (RE3). This means that our error
handling framework is a generic set of rules for error detection and handling, that
forms a separate module from the main dialogue system, and that can be used with
other task-oriented dialogue systems that follow the principles that we present in this
chapter and in Chapter 4.

When our system detects a problem serious enough to warrant a repair, it should
try to initiate and repair the problem at the first opportunity after detecting it (Clark’s
Principle of repair [40]; RE4). It is important to detect errors as soon as possible and
address them immediately when they are detected, in order to prevent an error spiral
caused by an increasingly frustrated user [76]. For these reasons, the responses that
our framework produces should be constructive and should reflect the error that has
been detected.

In handling errors, the system should be as cooperative as possible (RE6); this
means that even when a question is not expected, the system should still answer it. For
the correct interpretation of input it may be necessary to consider input over multiple
modalities. To account for this, the system needs to have a unified error handling
strategy to deal with multimodal input (RE7). Because the system can only conduct
dialogues according to its dialogue rules, the system should always attempt to have
the dialogue go according to its dialogue models. This means that any unexpected
dialogue moves should be addressed by informing the user of the dialogue move that
was expected, to motivate a return to the planned course of the dialogue (RE8).

3.6 Conclusions and future work

In this chapter, we have presented a number of requirements for a cooperative system
that can produce dialogues that have information-seeking, task-oriented, and tutoring
aspects. Tables 3.1, 3.2, 3.3, 3.4, and 3.5 summarize the requirements that we have
presented, sorted into requirements that pertain to reasoning, the domain, the inter-
action, multimodal interaction, and error handling, respectively. In the next chapters,
we will show how our framework fulfills these requirements. We have also presented
a dialogue model for recipe instruction dialogues that our system should be able to
produce (Figure 3.6).

Our system is mainly designed for goal-oriented purposes: instructing a pupil,
making sure a task is performed or a goal is reached, and conveying information in
a matter-of-fact manner. We take these task-oriented aspects of the interaction as
the main constituent of the system, but some form of social behavior and politeness
may also be taken into account to ensure a pleasant interaction. When beginning a
social dialogue, the initiator’s primary goal is building up a positive relationship and
an emotional bond between the dialogue partners. Another goal of such a dialogue

74

3.6 CONCLUSIONS AND FUTURE WORK

3

can be to teach the dialogue partner “more sophisticated communication skills” [22]
by conditioning with positive responses.

But then, also errors in social dialogues must be taken into account. A typical error
that can occur in social dialogues is impoliteness or rudeness [24]. Face-threatening
acts (ibid.) are acts that might lower the face (i.e. value, honor, social status) of
the dialogue partner. These acts should be avoided as much as possible. Besides
deliberate face-threatening acts, participants in a joint activity might also make errors
in assessing the face-threat of their acts (i.e. the extent to which their actions are
face-threatening for other participants). This can especially happen when agents
from different (sub)cultures interact, since both the content of face and the acts that
are face-threatening differ in different cultures and subcultures. For example, when
offered a small gift or favor, it is customary for a member of Western society to
reply with a simple “Thanks”, while in India, a more appropriate reaction is “I am
humiliated, so awful is my debt.” [24] Either reply would be considered impolite in
the other culture. This reflects the difference in the extent to which the action is
considered a face-threatening act in both cultures; in Western cultures, an offer is not
very face-threatening, but in Asian cultures, an offer as small as a glass of ice-water
implies a large debt. We leave the addition of such factors to our dialogue model as
a possible topic of future work.

In future work, it could be interesting to explore also the requirements that we
believe are not essential; e.g., a system that can work with multiple users or a system
consisting of multiple instructors.

75

4 Architecture

The question of whether computers
can think is just like the question of
whether submarines can swim.

Edsger W. Dijkstra

In this chapter, we will take the requirements from the previous chapter and con-
struct an architecture for an agent that can conduct task-oriented dialogues with a
user. The architecture we present in this chapter is based on our view on a generic
companion robot architecture [116] and contains the components that are needed to
satisfy the aforementioned requirements. Furthermore, we will present a visualiza-
tion that can assist designers in creating a multimodal interaction system. In the
next chapter, we will discuss the specific implementation of our basic system, and
in Chapter 7, we will augment the basic system with error handling that follows the
requirements that we have presented in Section 3.5.

The chapter is divided in four parts, which mirror the first four parts from Chapter
3; error handling (the fifth part) will be treated in Chapter 7. For clarity, we have
marked parts of our proposed implementation with the requirement codes that we have
listed in the tables in the previous chapter. In Section 4.1, we discuss the participants
in the interaction, treating the user and the system (4.1.1), the reasoning (4.1.2),
specifically focusing on the concept of capabilities (4.1.3) and the user model (4.1.4),
and finishing with a companion robot architecture in 4.1.5. Section 4.2 pertains to the
domain, specifically to the formalisation of the domain (4.2.1), the formalisation of
recipes (4.2.2) and actions (4.2.3) and introducing the concept of opportunities (4.2.4).
In Section 4.3, we discuss interaction, focusing on dialogue goals (4.3.1), dialogue
planning that results from those goals (4.3.2), the information that can occur as
communicated content of speech acts (4.3.3), and briefly, on natural language (4.3.4).
In Section 4.4, we discuss multimodal interaction in more detail, and in Section 4.5
we finish the chapter with conclusions and future work.

77

ARCHITECTURE 4.1

4.1 Participants

4.1.1 User and system

Despite the possibility of having multiple participants in various roles, we have de-
veloped our framework for a setting where a single user acts as the pupil who will
execute most of the actions and a companion robot takes on the role of instructor.
The specific companion robot for which we have developed our framework is the iCat,
as we have explained in Chapter 1.

As we have seen in the previous chapter, our system should allow for mixed-
initiative action and interaction in dynamic environments. Important aspects of this
are the presence of joint goals that all participants want to achieve, and the fact that
it is not a priori clear which of the participants are able to perform certain actions
that are needed to achieve the joint goal. The latter aspect implies that it is also
not a priori clear which plan should be selected in order to achieve a given joint goal,
since the appropriateness of a plan depends on the abilities of the participants and
on the environment.

4.1.2 Reasoning

As we have seen in Chapter 2, mutual beliefs, joint goals and joint plans are key
concepts in any cooperative interaction. Therefore, we augment the BDI model [19]
with some extra rules that enable us to work with the mutual/joint versions of its
basic concepts of beliefs, goals, and plans (requirements RR1 and RI4).

For each joint goal G that the system and the user have together, they will attempt
to achieve this goal together in a cooperative manner. The system does not necessarily
have exactly one plan for a certain joint goal (requirement RR5); it may have no plan,
or more than one plan. Before a joint goal is adopted, the system checks whether
it has a (joint) plan to achieve the current joint goal, and then checks whether the
actions in this plan are possible, given the circumstances (requirement RR2). We will
elaborate on this process later in this chapter when we discuss actions. If there is no
such plan, the system informs the user of this. If there is more than one possible plan
available, the system randomly chooses one.

If the recipe passes these checks, the preparation of the recipe can start by calling
the procedure prepare(G, P), for goal G and plan P. This procedure involves jointly
preparing the recipe with the user by giving the user instructions about the prepa-
ration of the recipe and/or performing certain actions, depending on the system’s
beliefs about which tasks can be performed by which participant.

checked-done(T) is a property of task T. If the system believes that
checked-done(T), this means that the system has checked that task T is done, re-
gardless of how and by whom, which is not important at this point. This belief can
be reached in a number of ways: whenever the system has performed the task, when
it has observed that the task is done, or when the user informs the system that he
has performed the task (requirement RD7).

78

4.1 PARTICIPANTS

4

4.1.3 Capabilities
Having the capability to perform a certain task means having the skill to perform it
and knowing how it is done. Capabilities are used to determine the level on which
the system gives instructions and the choice of the participant that will perform the
task. The system always gives instructions it believes the user can work with (not
too easy, not too difficult); i.e. tasks that the system believes the user is capable of
performing (requirement RR6).

capable(A, T) is a relation between agent A and task T. If the system believes
capable(A, T), this means that the system believes that agent A can perform task T

autonomously and single-handedly. It should be noted that the concept of capabilities
does not take into account the current circumstances in the performance of the task
(such as the availability of ingredients), but merely states tasks that can be performed
by the agent in question whenever the necessary preconditions are fulfilled.

Grosz and Kraus’ [71] concept of CBA (‘can bring about’) is similar to our concept
of capabilities. Something that we do not include in our definition of capabilities, but
is included in the definition of CBA, is the notion of “various situational constraints
on the performance of the action” that the particular plan needs to satisfy (e.g., being
done by a certain time).

Capabilities are explicitly registered in the beliefbase of the system and are of
the form capable(U, Boil water). They are added to the beliefbase when the user
informs the system that he is capable of performing a certain task. Also, when the
user has performed a certain task and confirms that he is able to do it autonomously
the next time, the system adds the belief that the user is capable of performing this
task to the beliefbase.

If the system believes that the user is not capable of performing a certain task,
the system will not instruct him to perform this task, but instead split the task into
subtasks that it believes the user is capable of performing, and instruct the user to
perform these (requirement RR8).

Recall Castelfranchi’s open delegation [39], where is it not necessary for an agent
to have a complete plan of a goal state or higher-level task that it delegates to another
agent. To enable our system to openly delegate tasks to the user, it is possible that
the system believes that the user is capable of performing a certain higher-level task
T without believing that he is also capable of performing all atomic actions that are
in the system’s recipe for T (requirements RD4 and RD5). This can have different
causes: either the system has incomplete beliefs about the user’s capabilities, or the
user has a different recipe to achieve T. For example, the capability of making Eggs
Benedict (half of a breakfast muffin, topped with ham, a poached egg, and hollandaise
sauce) does not necessarily imply the capability of making breakfast muffins; after all,
one could simply buy them instead of making them. Making the breakfast muffins
from scratch is only one of the possible plans that can be formed in order to achieve
the subgoal in question.

4.1.4 User model
In order to have an effective communication, it is necessary to have beliefs about
the dialogue partner’s mental states [51] [106]. We use such a user model also for

79

ARCHITECTURE 4.1

error detection and repair, but also on a more basic level, it can be seen as one of
the key principles of communication. Scassellati [106] states that a theory of mind
(“the ability to correctly attribute beliefs, goals, and percepts to other people”) is
one of the defining concepts of human interactions. Scassellati uses a theory of mind
in a humanoid robot and integrates it with vision and visual processing, which allows
the robot to determine the direction of gaze and deduce the point of attention of
the interaction partner. We do not use such physical cues and therefore are not
able to deduce information about attention of the user, but we can use other input
(most prominently, the user’s communicative acts) to deduce as much information as
possible.

Scassellati bases his system partially on work by Leslie [85], who uses three dif-
ferent modules that process three corresponding classes of events: events that can be
explained by mechanical rules (mechanical agency), events that can be explained by
intentions and goals of agents (actional agency), and events that can be explained in
terms of attitudes and beliefs of agents (attitudinal agency). Of these three, we only
use the latter two. The concept of attitudinal agency can furthermore be used for
“understanding that others hold beliefs that differ from our own knowledge or from
the observable world” [106], which we may in turn use for error handling (see Chapter
7).

The user model is also tightly connected to pre- and (expected/desired) postcon-
ditions of communicative actions. For example, the action of informing is “generally
defined to be an action whose main effect on hearer’s mental state is that the hearer
believes that the speaker believes the propositional content [of the communicative
act].” [51]

4.1.5 Architecture

In Steunebrink et al. [116], we have presented a generic architecture for companion
robots (see Figure 4.1), which abstracts from specific robot details, making it useful for
different types of companion robots. The architecture contains functional components
that each contain several modules that are functionally related. Modules drawn as
straight boxes represent data storages, the rounded boxes represent processes, and the
ovals represent sensors and actuators. Each process is allowed to run in a separate
thread, or even on a different, dedicated machine.

This architecture takes into account the possible existence of multiple input modal-
ities, multiple input preprocessing modules for each input modality, databases for fil-
tering, storing, and querying relevant information, action selection engines for com-
plex, goal-directed, long-term processes such as conversing, planning, and movement,
an emotion synthesizer producing emotions that influence action selection and facial
expressions, multiple (reactive) low-level behaviors that can compete for output con-
trol, multiple output preprocessing modules including a conflict manager, and finally,
multiple output modalities. The interfaces (arrows) between different modules indi-
cate flow of data or control. Note that only the ‘ultimate’ companion robot would
fully implement all depicted modules; a typical companion robot implementation will
probably leave out some modules or implement them empty, awaiting future work.

For a more detailed description of the complete architecture, we refer to Steune-

80

4.1 PARTICIPANTS

4

Figure 4.1: A generic architecture for a companion robot [116]

brink et al. [116]

Our instantiation of the generic architecture

From this proposed architecture, we will only describe the parts that we use in this
thesis. In Figure 4.2, we show only the parts that we use in our framework. In this
section, we will first describe the functional components (represented as blocks in the
figure) and then the interfaces (represented by arrows) between the components.

The input modalities in our system are, in essence, a camera and a microphone.
The input preprocessing that we use consists of speech recognition followed by natural
language processing. For this, we use Functional Discourse Grammar (see Chapter
6). The input from the camera should be processed to recognize certain objects. As
we have seen in the previous chapter, there is a need for an input synchronizer that

81

ARCHITECTURE 4.1

Figure 4.2: Our system architecture, based on the generic architecture from Steunebrink et
al. [116]

can link processed data from different modalities, in order to pass it as a single event
to another module.

We do not use any low-level behaviors or such as face tracking and gaze directing,
blinking, breathing, and other ‘idle’ animations at this time. We have also not taken
into account any homeostasis processes such as the need for interaction, sleep, and
‘hunger’ (e.g., low battery power), nor reactive emotions such as startle and disgust.
Similarly, we also do not use the emotion synthesizer.

The ‘heart’ of the architecture is formed by the action selection engines. These
are cognitive-level processes that select actions based on collections of data, goals,
plans, events, and rules. The outputs that they produce can generally not be directly
executed by the actuators, but will have to be preprocessed first to appropriate control
signals. As we have mentioned above, the reasoning engine is based on the BDI

82

4.1 PARTICIPANTS

4

paradigm [19]. It decides which actions to take based on events, rules, goals, beliefs,
and plans. There may be multiple action selection engines; for example, we could
separate the reasoning about recipes and ingredients, dialogue management, and error
handling. In this thesis, we take one action selection engine for the basic system and
one for error handling. We do not have a separate dialogue engine, like the generic
architecture in Figure 4.1, because in our framework, the dialogue emerges from joint
goals and is therefore tightly coupled to the main reasoning process that handles the
joint goals.

In our system, the databases in the architecture are different parts of the beliefs
of the BDI agent. For example, the domain knowledge (recipes) and user model are
all part of the agent’s beliefs. The agent also has a mental model of its own goals and
plans in order to be able to reason about them. It should be noted that in terms of
the BDI theory, the databases component plus the working memories of the action
selection engines constitute the system’s beliefs.

The actions selected by the action selection engines may be sent to an output pre-
processing module that prepares them for the output modules. The reasoning engine
contains an extra process called the utterance formulator; the task of this module is
to convert an illocutionary act to fully annotated text, i.e. the exact text to utter
together with information about speed, emphasis, tone, etc. This text can then be
converted to audio output by the text-to-speech module (in the output preprocessing
component).

The output preprocessing module makes sure that the different processes that all
try to control the robot’s actuators at the same time are not conflicting. The conflict
manager takes care of this. The output preprocessing module also converts output
from the utterance formulator to motor and audio signals. This functionality is pro-
vided by the text-to-speech module, which is also assumed to produce corresponding
lip sync animations. All output modalities or actuators are grouped in the lower right
corner of Figure 4.2. When implemented on the iCat, our system would be able
to produce sounds and facial expressions, and perform non-physical external actions
such as turning on and off electrical appliances.

For clarity, the arrows in Figure 4.2 appear to lead from one functional compo-
nent to another, while they actually connect one or more specific modules inside a
functional component to other modules inside another functional component. The
raw data that is obtained by the input sensors is sent to the input preprocessing com-
ponent for processing. Data from each sensor is sent to the appropriate processing
module; e.g., input from the camera is sent to the vision processing module, while
input from the microphone is sent to the speech recognition module.

After the processed data is synchronized by the input synchronizer, it is sent
to the action selection engines, where it is placed in the events modules inside the
engines. The processed data is also sent to the databases. Furthermore, the action
selection engines can form expectations about future events. These expectations are
sent from the action selection engines back to the input processing modules. They can
then use these expectations to facilitate processing of input. For example, the speech
recognizer will function better if it has a number of possible input options to match
the input with. In Chapter 6, we will discuss how these expectations can facilitate
natural language processing.

83

ARCHITECTURE 4.1

All processing modules in the input preprocessing component have access to ontol-
ogy information, which they might need to process raw data properly; e.g., the vision
processing module might need ontological information about a perceived object in
order to classify it as a particular item. This also ensures the use of consistent data
formats. Updates to the databases can be performed by the action selection engines.
Query results can be requested by the action selection engines from the databases.

Output requests are sent from the interpreters inside the action selection engines to
the output preprocessing component. The different types of output requests are sent
to different modules inside the output preprocessing; e.g., (annotated) utterances from
the dialogue engine’s utterance formulator are sent to the text-to-speech module. The
synchronization of all output signals is taken care of by the conflict manager. Finally,
Control signals are gathered and synchronized by the conflict manager inside the
output preprocessing component and sent to the appropriate output modality.

Other instantiations of the generic architecture

The division between layers in horizontally layered architectures (e.g., Lemon et
al. [84], Taylor [120] [121], Thórisson [122]) is similar to the division between the
action selection engines and the low-level behaviors in the generic architecture. The
concept of layers is useful for deliberative systems: the system can give the user quick
feedback, e.g., a tentative reply (e.g., “Just a second” or “Let me think about that”)
from the reactive layer (usually visualized as the bottom layer), while the delibera-
tive layer (usually the top layer) processes the input further and more thoroughly,
performing operations such as deep parsing and database queries that may take more
time than is acceptable for a dialogue turn. This dichotomy allows for a system that
is both quick and thorough. In our system, we have not at this point employed a
lower level in the sense of the low-level behaviors from the generic architecture.

Lemon et al. [84] use two layers: the Content Layer and the Interaction Layer,
which are modeled according to Clark’s [40] distinction between the communicative
track and the meta-communicative track. Lemon’s dialogue architecture contains
several modules that are grouped into the two layers: the Interaction Layer handles
processes like turn management, immediate grounding (e.g., “ok” directly after input
from the user), anaphora resolution and generation, and shallow parsing. The Content
Layer takes care of utterance planning, communicative intentions, content manage-
ment, and communicates with “the rest of the agent architecture” (presumably, the
reasoning engine).

Thórisson [122] even sees the need for three layers: a Content Layer, a Process
Control Layer and a Reactive Layer, plus an Action Scheduler Module that coordi-
nates them. The Reactive Layer is usually able to respond within one second, and
controls processes such as blinking and determining the next fixation point. The Pro-
cess Control Layer regulates aspects of an interaction such as dialogue turns and gaze
direction. The Content Layer contains knowledge (separated into dialogue knowl-
edge and topic knowledge) and reasoning. Thórisson’s Process Control Layer is an
intermediate level between our action selection engines and our low-level behaviors,
although its functionality may be compared to that of the input synchronizer and the
output synchronizer.

84

4.2 DOMAIN

4

Breazeal [21] uses competing behaviors for the robot Kismet in order to achieve
an emerging overall behavior that behaves like a small child. Kismet has a number of
different response types with activation levels that change according to its interaction
with a user. In Breazeal’s architecture for Kismet, the Behavior System and Moti-
vation System can be mapped on the low-level behaviors of the generic architecture;
however, it lacks cognitive reasoning (which was not necessary for this application),
which is in our architecture provided by the action selection engines. Other com-
ponents in the architecture pertain to input and output processing, which map to
corresponding preprocessing modules in our architecture. The difference between
the architecture for Kismet and our instantiation of the generic architecture is that
Kismet has low-level behaviors and does not use any action selection engines, while
our system only has action selection engines and no low-level behaviors.

The architecture of Max, the “Multimodal Assembly eXpert” developed at the
University of Bielefeld [77], can also be mapped to the generic architecture. It uses
a reasoning engine that provides feedback to the input module to focus attention
to certain input signals, which is similar to our concept of expectations as we will
explain in Chapter 6, when we discuss natural language processing. It also has a
lower-level Reactive Behavior layer that produces direct output without having to
enter the reasoning process, and a Mediator that performs the same task as our
conflict manager (i.e. synchronizing output). Max’s architecture is quite similar to
our architecture, although Max only has one (BDI) reasoning engine, where we have
provided for two or more action selection engines.

4.2 Domain

4.2.1 Formalizing the environment

In order to reason about actions, the system has beliefs about the environment, or
more precisely, the availability of ingredients, appliances, tool and such. This can be
represented as, for example, available(egg) and available(saucepan) (require-
ment RR7).

It may be useful to represent kitchen tools in an ontological model in order to
reason more generally about categories of tools, since in most kitchens there is more
than one type of pan, and more than one pan of a specific type, for example. In
this sense, specific pans may be denoted as frying-pan1, frying-pan2, saucepan1,
saucepan2, etc., whereas in pre- and postconditions of actions it is more useful to say
that a saucepan is needed, instead of specifying a specific saucepan. Then, saucepan1
and saucepan2 will have to be classified as saucepans, so that the availability of either
saucepan is acceptable as a precondition for the action in question.

4.2.2 Recipes

The recipes that we have presented in the previous chapter are not formal enough to
be used by our system. We formalize these ‘colloquial’ recipes by adding steps that
are left implicit (such as “fill the pot with water”) and removing vague instructions
(“use a large enough pot”) to obtain more formal representations of the recipes. For

85

ARCHITECTURE 4.2

example, the two recipes from the previous chapter can be formalized as we have done
in Figure 4.3.

A recipe is a relation between a goal (i.e. a recipe) and a plan. A recipe looks like

Recipe name = [Task1, ..., Taskn]

The names of the recipe and the tasks are only identifiers (strings) that cannot
be semantically analyzed. These identifiers point to the actual actions (requirement
RD2). For ease of reading and understanding, we use the description of an action
with underscores as the identifier of the action.

A different term for a list of tasks is a plan (requirement RR4). Because the tasks
in the list can also represent recipes themselves (e.g., boil water, which also has a
recipe, is a subtask of the recipe poach egg), a recipe is really a nested list, as we
show in Figure 4.4. Such a nested list can also be viewed as a tree, as we show in
Figure 4.5. Every task in a recipe either has a recipe or is an atomic action; this means
that the leaves of the tree are atomic actions. Note that this is only true in theory;
in reality, participants may have incomplete beliefs, e.g., missing certain recipes for
subgoals. As we have stated before, this does not mean that such a recipe cannot be
taken on, it simply means that the subgoal in question has to be openly delegated to
one of the other participants in order to complete the recipe.

Plans are sequential, meaning that Taskn has to be completed before Taskn+1 can
be initiated (requirement RD6). This is a simplified view on recipes; usually, there
is some flexibility in the order of the instructions, especially when multiple tasks are
being done at the same time, when the order of steps is not important, or when
timing factors are in play; e.g., when preparing a salad, the tomatoes may be cut
before or after the cucumbers. However, in our framework, we take recipes to be
strictly sequential, for ease of reasoning. We leave a more complex representation of
recipes for future work.

To illustrate that a recipe for setting up a weblog has the same properties, we
show two examples in Figure 4.6.

Beliefbase:

boil water = [

fill container with water,

turn on heat source,

place container on heat source,

wait until water starts bubbling]

poach egg = [

boil water,

add white vinegar,

crack egg,

stir boiling water,

drop egg into center of water,

keep time 3-4 minutes,

remove egg]

Figure 4.3: Two examples of recipes

86

4.2 DOMAIN

4

poach egg = [

[fill container with water,

turn on heat source,

place container on heat source,

wait until water starts bubbling],

add white vinegar,

crack egg,

stir boiling water,

drop egg into center of water,

keep time 3-4 minutes,

remove egg]

Figure 4.4: A recipe as a nested list

poach egg

boil water add white vinegar crack egg ...

fill container
with water

turn on
heat source

place container
on heat source

wait until water
starts bubbling

zondag 23 januari 2011

Figure 4.5: A recipe as a tree

4.2.3 Actions

As we have seen in the previous chapter, atomic actions have preconditions and post-
conditions (requirement RD1). An action can only be performed if all of its precondi-
tions are (believed to be) true. The postconditions of an action become true as soon
as the action is completed. The action is represented as follows:

{ Preconditions } Action identifier { Postconditions }

An example of an action in a recipe is:

{ available(C) and container(C) and available(water) }
fill container with water { filled(C, water) and not available(C) }

87

ARCHITECTURE 4.2

Beliefbase:

configure wp-config = [

rename wp-config,

open wp-config,

fill in wp-config,

save wp-config]

install wordpress = [

download wordpress,

unzip wordpress,

make db and user,

configure wp-config,

upload to(wordpress, httpdocs),

run install script(wordpress)]

Figure 4.6: Two examples of recipes that can be used in the process of setting up a weblog

Thus, the action of which Fill container with water is the identifier, is only
possible when an object that is a container is available and if water is available. The
action identifier itself (Fill container with water) does not specify which container
should be filled with water; the variable C is introduced in the preconditions and will
be bound to a suitable object if such an object is found. After the action is performed,
the object is believed to be filled with water and no longer available.

As we have mentioned in the previous subsection to apply to tasks in general, the
names of the actions are actually irrelevant, though of course a suitable name helps
for the readability of the recipes. The identifier of the action does not have a semantic
correlation with the action itself. The above action could just as well be represented
as follows:

{ available(C) and container(C) and available(water) }
actionId 523 { filled(C, water) and not available(C) }

Besides the beliefs that are updated by performing an action, there are also con-
nections between the action identifier and the external action and between the action
identifyer and its linguistic representation (requirement RD3; see Chapter 6 where we
elaborate on the linguistic representation of actions).

4.2.4 Opportunities

For reasoning about whether goals are feasible, we introduce the concept of oppor-
tunities (requirement RR3). There is a clear difference between opportunities and
capabilities, even though both pertain to whether an action can be performed by an
agent; opportunities depend on the environment and are used to reason about whether
a goal should be adopted, whereas capabilities depend on the skills and knowledge
of the participants and are used in the process of working through a plan for a goal
that has already been adopted, to determine what instruction the instructor will give.
This difference is comparable to the difference between opportunities and abilities in
Van der Hoek et al. [126].

Having the opportunity to perform a certain task means having the physical and
practical possibility to do it (depending on circumstances and available resources). For
example, if some actions in a certain recipe require a toaster, but there is no toaster
available, this means that none of the participants have the opportunity to perform

88

4.3 INTERACTION

4

these actions and the recipe in question will not be pursued. Checking opportunities
is especially useful in a dynamic environment [50].

Resources that are taken into account are, most notably, tools, appliances, and
ingredients. Counting appliances and tools as resources avoids situations where a
recipe step requires an appliance or tool that is already occupied by another recipe
step. For example, this excludes combinations of a main course and a dessert that
both have to be prepared in the oven. In actual situations, sometimes these can be
combined, when both dishes have to be in the oven at the same temperature and
the oven is sufficiently large for both containers, but for ease of reasoning, we rule
out these combinations at this time, and leave them for future work instead. Having
ingredients as resources ensures that there are always enough ingredients in stock
before a recipe is selected.

Opportunities are used in the planning phase to rule out any recipes that are not
possible at the given time. Stating that there is an opportunity to perform task T
means that at this specific time it is practically possible to perform T given the current
circumstances as represented in the system’s beliefs about the domain. Opportunities
are not explicitly registered in the beliefbase of the system. Instead, the system uses
the pre- and postconditions of the atomic actions in the recipe to reason about them,
together with its beliefs about the availability of ingredients, appliances and tools;
e.g., if a certain pan is needed for a task but the system believes the pan is dirty,
there is no opportunity to perform the task in question (unless one of the participants
cleans the pan, making it available again, of course). Similarly, if a microwave is
needed for a task but the system believes that the user does not own a microwave,
there is no opportunity to perform the task in question.

For this, we use checked-opportunity(P), which is a property of plan P. If the
system believes that checked-opportunity(P) is true (i.e. if it can be derived from
the beliefbase), this means that plan P is practically possible for the participants to
perform given the circumstances at the present moment.

Grosz and Kraus’ [71] concept of CBAG (‘can bring about group’) is similar to
our concept of checked-opportunity, meaning that it is possible for the participants
to perform the task in question together, given the current circumstances.

4.3 Interaction

4.3.1 Dialogue goals

The system has one primary domain goal (requirement RI1); we take the primary
application for our system to be the preparation of recipes. Therefore, the default
dialogue type is the task-oriented dialogue. Some aspects of the other dialogue types
may be present; e.g., the user may ask the system for more information about recipe
steps. In this case, the system searches for this information in the beliefbase and
inform the user of the answer or of its lack of knowledge on the subject (requirement
RI6).

89

ARCHITECTURE 4.3

4.3.2 Dialogue planning
The planning of the dialogue follows from the content of the recipes, the theory of joint
activities as we presented in Chapter 2, and the dialogue models that we presented
in Chapter 3 (requirement RI5).

The two most notable speech acts in the dialogue are inform, which is used when-
ever a task is completed, and request, which is used whenever the system delegates a
task to the user (requirements RI2 and RI3). Conversely, when the user requests the
system to perform a task, it should comply whenever possible (i.e. if it believes that
it is capable of performing the task in question) (requirement RI7). Unless proven
otherwise, the system will assume that when it has said something, it is mutually
believed by the user and the system (requirement RI4).

4.3.3 Communicated content
The communicated content of the communicative acts can be one of the following:

jointgoal(goalname) means that the goal with the identifier goalname is a joint
goal

no plan(goalname) means that the system does not have a plan for the goal with
the identifier goalname

accept(goalname) means that the system accepts the goal with the identifier goalname

possible(taskname) means that the task with the identifier taskname is possible at
this moment

available(ingredient) means that the ingredient with the identifier ingredient

is available

available(tool) means that the tool with the identifier tool is available

recipe([requirements]) represents a list of requirements for a recipe

performed(participant, taskname) means that the task with the identifier taskname
is performed by participant

next-action(participant, taskname) means that the next action in the current
recipe is the task with the identifier taskname and that it should be performed
by participant

expected(event) means that the speaker expects event to happen next

start-learning(participant, taskname) means that participant will now start
learning the task with the identifier taskname

finished(taskname) means that the task with the identifier taskname is now fin-
ished

reason(proposition, explanation) means that the reason why proposition is
explanation

no-information(proposition) means that the system does not have the requested
information about proposition

abort(goalname) means that the goal with the identifier goalname is aborted

90

4.4 REPRESENTATION OF MULTIMODAL INTERACTION

4

These options may all be preceded with not to denote their negation.

Besides the optioned mentioned above in the list, all atomic statements in the
beliefbase can also be the communicated content of inform and query-if.

4.3.4 Natural language

Though our example dialogues are in natural language, we use FIPA Standard Com-
municative Acts [55] as the interaction language of our system. In Chapter 6, we will
elaborate on the generation and parsing of natural language using Functional Dis-
course Grammar. In the architecture as pictured in Figure 4.2, this is represented in
the Input Preprocessor (parsing) and the Utterance Generator in the Action Selection
Engine (language generation).

4.4 Representation of multimodal interaction

As we have shown in the previous chapter, a situated dialogue system should be
able to plan multimodal interaction. Although we have not completely implemented
this functionality at this point, we have developed a way to represent multimodal
interaction that we believe is intuitive and facilitates the development of such systems
[129] (requirement RM3).

In our example dialogue that we have presented in Chapter 1, an error occurs
when the user takes a bottle of red vinegar instead of white vinegar (as the system
intended him to). In order to treat our visualization of multimodal interaction, we
will first discuss a slightly modified version of this part of the example dialogue, where
the user correctly follows the system’s instruction:

System: “Please add some vinegar to the water.”
User adds vinegar to the water.
User: “I have added some vinegar.”
System: [next instruction]

To illustrate in a principled way how dialogue partners coordinate their actions,
both internally and externally, we present a representation scheme for multimodal
dialogues in the style of a music score in Figure 4.7 [129]. We visualize this small
dialogue in a way that resembles sheet music in several ways.

Both dialogue partners have six tracks that represent different modalities of input,
output, and reasoning, comparable to staves in musical notation. The tracks resemble
the idea of different instruments that play together in an orchestra. The set of relevant
modalities may be different in other dialogue systems or situations, in which case the
tracks of the dialogue score can be adapted, just like different pieces of music that
may require different instrument groups in an orchestra. Each dialogue partner can
be seen as a section of instruments inside an orchestra, like strings, wood instruments,
or a rhythm section. The instruments inside each section are closely connected, like

91

ARCHITECTURE 4.4

Figure 4.7: Part of the example dialogue, in a dialogue score visualization [129]

the different modalities of a dialogue participant are, but they do interact with the
other instrument groups like dialogue partners interact with each other.

The system’s part of the dialogue is represented by six tracks: two input tracks
(hearing and vision), three output tracks (speech, facial expressions, and physical
actions), and a reasoning track. The reasoning track is the only internal track. In
order to facilitate the correct interpretation of input, the hearing and vision tracks
are driven by expectations about the user’s actions, which are in turn formed by the
dialogue models as we have presented in the previous chapter and on which we will
elaborate in Chapter 6. For example, if the system expects the user to grab the white
vinegar bottle in order to add vinegar to the water, the vision module will actively
watch out for the white vinegar bottle. The output tracks are quite straightforward
in their behavior. The ‘lips’ track is a subtrack of ‘face’, which means that the lips
follow the facial expression, unless this is overruled by speech output, in which case
the lips have to perform lip sync actions. The six tracks of a human user are the
same as those of the system, except we do not distinguish the subtrack ‘lips’ inside
the ‘face’ track of the user.

Everything that happens in the dialogue is represented in the order of occurrence,
from left to right. Events that happen (practically) simultaneously are situated di-
rectly above/below each other, showing how input on different modalities may be
connected (requirement RM1). The arrows show which events are related and de-
pend on each other, in a way that notes in a melody depend on each other: they have
to be played in a certain order.

Not all of the arrows in Figure 4.7 have exactly the same meaning: arrows can
represent internal or external events. For example, an arrow from a block in the
reasoning track to a block in the face, speech, or physical action track means a signal
to execute a plan (internal event), while an arrow from the vision or hearing track to

92

4.5 REPRESENTATION OF MULTIMODAL INTERACTION

4

a block in the reasoning track is an external event (input). External arrows (that lead
from one participant to another) represent perceptions, i.e. information given from
one dialogue partner to the other. A typical example of this is speech by dialogue
partner A that is heard by dialogue partner B. Internal arrows point from one channel
to another within the private score of one of the dialogue partners. They represent
internal information moving from one module to another, either because the sending
module gives the information to the receiving module or because the receiving module
actively retrieves the information from the sending module.

Information may also be given to several modules at the same time, for example
when speech and lip movement are synchronously driven by information from the
reasoning channel. Then, these actions are synchronized by the output synchronizer
(requirement RM2). There are four different types of internal arrows. First, arrows
from an input channel to a reasoning channel represent sensory data that is being of-
fered to a module that can process the information. Secondly, arrows from a reasoning
channel to an input channel represent execution of an active sensing plan, which en-
ables the input channel to actively watch out for certain input. Thirdly, arrows from
a reasoning channel to an output channel represent plan execution. Finally, arrows
within the reasoning channels represent goal/plan revision.

Only the hypothetical ‘orchestra conductor’ (the designer of the system) would
have the complete ‘sheet music’ of the dialogue; both dialogue partners only have
access to their own half of the dialogue score and can only form hypotheses and
expectations about each other’s internal actions based on the input they get from
their dialogue partner and the output they produce themselves. To illustrate this, we
have made a distinction between grey blocks and arrows and black blocks and arrows
in Figure 4.7: the grey blocks and arrows are events that the system cannot know
or control. The system can only presume that certain processes are going on inside
the user, and the only way to check this is to synchronize on the black blocks in the
bottom half of the dialogue score (e.g., ‘takes white vinegar’): the output by the user.
If these expected events happen, the dialogue proceeds as planned.

The dialogue score in Figure 4.7 is a typical example of an extract from a dialogue
that goes exactly as expected, since it fits in the dialogue model that we have presented
in the previous chapter: the system instructs the user to perform a certain task, and
then the user performs the task and informs the system of this. We will treat a version
of the dialogue score where an unexpected event occurs in Chapter 7, and elaborate
on the error handling tactics that can be employed by the system in order to return
to the planned course of the dialogue.

With respect to converting a dialogue score to a program, the different blocks in
the score can essentially be viewed as (parts of) plans. If different tracks contain
blocks at overlapping time points in the dialogue score, then there are plans that
have to be executed in parallel. Moreover, in most cases these parallel plans have
to be synchronized (e.g., facial animation should be timed with the speech synthesis
for lip synchronization and word emphasizing animations). This poses a challenge for
programming the behavior of the robot. The dialogue score visualization helps the
designer of a multimodal system by identifying which tracks and blocks there are in
a particular scenario, and how the flow of information and control between blocks is
organized.

93

ARCHITECTURE 4.5

4.5 Conclusions and future work

In this chapter, we have presented an architecture for our system and proposed some
general properties of the participants, the domain and the interaction. The properties
that we proposed are based on the requirements that we put forward in the previous
chapter. We have proposed the use of a BDI agent as the central reasoning engine
of the system. We use the notion of capabilities to be able to reason about the level
of instructions that the system gives to the user and the notion of opportunities to
reason about whether a proposed goal is feasible under the current circumstances.

In Table 4.8 we show that we have treated all requirements from Chapter 3, except
for the requirements that pertain to error handling, which we will treat in Chapter 7.
The page numbers in the table refer to the page in this chapter where the requirement
in question is treated.

Req. Page Req. Page Req. Page Req. Page
RR1 78 RD1 87 RI1 89 RM1 92
RR2 78 RD2 86 RI2 90 RM2 93
RR3 88 RD3 88 RI3 90 RM3 91
RR4 86 RD4 79 RI4 78
RR5 78 RD5 79 RI5 90
RR6 79 RD6 86 RI6 89
RR7 85 RD7 78 RI7 90
RR8 79

Figure 4.8: The page numbers in this chapter where the requirements from the previous
chapter are treated.

Implementing the multimodal aspects is something that we have left for future
work; however, we believe that the dialogue score visualization will be helpful in this
process. More information can be added to the dialogue score visualization, like visual
recognition of facial expressions of the user by the system. As future research, a more
advanced way to handle multimodal interaction to our system is also something to
be explored; e.g., a multimodal output generator in the style of Max [78]. The BEAT
system by Cassell et al. [37] appears to offer a good starting point for the generation
of gestures based on linguistic and contextual information.

It would also be interesting to construct a parser for recipes that can be used to
easily add recipes to the database. With the development of recipe markup standards
such as RecipeML [56] and Google Recipes1, it is becoming easier to do so, although
these formats leave the recipe instructions as they are, in natural language. They only
provide for the formalization of ingredients and required tools and such. In our system,
the instructions are the most important part of the recipe that is to be formalized, in
order to allow the system to reason about capabilities and opportunities, so a recipe
parser should include a way to elicit a formal representation of recipe instructions,
including their pre- and postconditions, from recipe instructions that are written in

1http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=173379, retrieved
June 14th, 2010

94

4.5 CONCLUSIONS AND FUTURE WORK

4

natural language.
When reasoning about opportunities, it would be useful to also count agents as

resources. This enables the system to work out parallel plans; e.g., recipe steps like
‘wait for n minutes’ can be performed in parallel with other tasks. For example:

{ available(C) and container(C) and available(water) and available(user) }
Fill container with water { filled(C, water) and not available(C) }

This means that the system can more easily reason about the execution of parallel
actions; for example, leaving a dish in the oven for a certain timespan does not require
the user to be available, which means that he can work on another part of the recipe
in the meantime. In contrast, two tasks that need to be performed by the same actor
can generally not be performed simultaneously. Also, counting agents as resources
makes the system more suited for multiple users.

95

5 Implementation of a
Recipe Assistant

Every program has (at least) two
purposes: the one for which it was
written, and another for which it
wasn’t.

Alan J. Perlis

In this chapter, we specify the implementation of an agent that is capable of having
task-oriented dialogues with a user, based on the requirements and architecture that
we have presented in the previous chapters. We present a framework for a dialogue
system that engages in mixed-initiative interaction by not only reacting to queries
and instructions from the user, but also taking initiative in a proactive way in order
to reach a shared goal. In order to do this, the framework is based on the BDI model
[41], augmented with notions of joint goals, abilities, capabilities, and different speech
acts, which we present in 2APL-like pseudocode.

In Table 5.1, we show part of the example dialogue in the form of FIPA ACL com-
municative acts and (examples of) their corresponding natural language utterances.
In this chapter, we will present a framework that can produce such dialogues.

We will first present some details of 2APL and the interaction language that we
use in Section 5.1, treating the beliefbase and the goalbase (5.1.1), the different types
of basic actions (5.1.2), the types of reasoning rules (5.1.3), the deliberation cycle
that uses those rules (5.1.4), and the subset of FIPA-ACL communicative acts that
we use in our framework (5.1.5). Then, in Section 5.2, we present the program, which
consists of four distinct part: the selection of joint goals (5.2.1), the planning phase,
which regulates the adoption of plans (5.2.2), the instruction phase, which pertains to
the task itself (5.2.3), and a set of rules for answering questions and following requests
from the user, which may occur at any time in the interaction (5.2.4). In Section 5.3,
we will present a simpler version of the example dialogue, without any errors, that
can be constructed with the rules that we present in this chapter and a smaller set
of rules to represent the user (5.3.1). In 5.3.2, we show how those rules can indeed
construct the simper example dialogue. In Section 5.4, we discuss some aspects of
the concrete implementation (5.4.1) of the framework and the problems that were
encountered in this process (5.4.2). In Section 5.5, we will present conclusions and

97

IMPLEMENTATION OF A RECIPE ASSISTANT 5.1

FIPA ACL Communicative act Natural language utterance

send(S, request,

jointgoal(french toast))

User: I would like to prepare French
toast

send(U, inform, not

possible(french toast))

System: That’s not possible

send(U, inform, not

available(bread))

System: We don’t have any bread

send(S, request, recipe(breakfast)) User: Do you have another breakfast
recipe for me?

send(U, propose, poach egg) System: How about poached egg?
send(S, inform, accept(poach egg)) User: Alright, I would like to make a

poached egg
send(U, inform,

possible(poach egg))

System: Okay

send(U, inform, start-learning(U,

poach egg))

System: I’ll teach you how to poach an
egg

send(U, request, next-action(U,

boil water))

System: Please boil some water

send(S, request, next-action(S,

turn on heat source)

User: Can you turn on the stove for
me?

Table 5.1: Part of the example dialogue in FIPA ACL Communicative acts

future work.
In the (pseudo)code that we present in this chapter and in Chapter 7, B(p) means

the belief that p (or: p is present in the Beliefbase of the agent), and I(p) means the
intention that p (or: p is present in the current Planbase of the agent).

5.1 The 2APL programming language
We present the algorithms in pseudocode in the style of the agent-oriented program-
ming language 2APL [48]. 2APL allows us to specify the beliefbase, goalbase and
planbase according to the principles of the BDI model. In this section, we briefly
introduce the concepts from 2APL that we work with in the remainder of this thesis.

5.1.1 The beliefbase, the goalbase, and the planbase
The beliefbase is a Prolog file containing statements the agent holds to be true. These
statements can be either simple (atomic) beliefs, e.g., capable(U, Boil water)., or
complex rules, which define concepts that make it easier to write and read plans. One
example of such a complex rule that we use in our program, on which we will elaborate
later in this chapter, is the concept checked-done, which is used to ‘summarize’ three
different conditions under which the system believes that a recipe step is done. To
avoid having to write down all three of these options each time the concept is used, we
use a Prolog rule for abbreviation. These Prolog rules are situated in the beliefbase

98

5.1 THE 2APL PROGRAMMING LANGUAGE

5

of the agent and take the form head : − body., meaning that whenever body is true
(i.e. derivable from the beliefbase), head is true.

A goal denotes a situation that the agent wants to realize. Goals reside in the
agent’s goalbase. In order to achieve a goal, an agent can adopt a plan. In this thesis
we focus on joint goals, which are of the form jointgoal(recipename) (for example,
jointgoal(poach egg)). Joint goals are not a standard concept in 2APL, but we
introduce them as a subset of regular goals that will be treated in a unified way, as we
will present in Section 5.3. In contrast to regular goals, which specify a goal state, we
specify our joint goals with recipe names. This is only a naming convention that we use
for ease of reading (the alternative, which specifies a goal state, would look something
like jointgoal(done(poach egg))) or jointgoal(prepared(poach egg))).

In the planbase, the intentions of the agent are represented. When a plan is
adopted, it is added to the planbase.

5.1.2 Types of basic actions

In 2APL, there are six different types of actions an agent can perform: belief updates,
goal dynamics actions, belief and goal test actions, communication actions, external
actions, and abstract actions. In this section, we briefly introduce these 2APL action
types.

When a belief update action is executed, the beliefbase of the agent is updated.
Beliefs can be added, altered, or removed. Belief updates are internal actions and
therefore not visible to other agents (except of course if the program specifically
states that (some) updates should be communicated to other agents). A belief update
action has preconditions, which specify conditions under which the belief update can
be executed, and postconditions, which specify the changes in beliefs that are made
when the belief update action is executed.

Goal dynamics actions are also internal actions. They regulate the adopting and
dropping of goals. For adopting goals, there are two options: adding a goal at the
beginning of the goal base (adopta), meaning that it will be addressed first, or at
the end (adoptz). Abandoning goals is done with the action dropgoal(G). It is also
possible to drop all goals that are a subgoal of G (dropsubgoals(G)), or drop all
goals of which G is a subgoal (dropsupergoals(G)).

The system can also perform belief and goal test actions, which are basically (Pro-
log) queries. They are expressions of the predicate argument form that check whether
a belief or goal is derivable from the agent’s beliefbase or goalbase, respectively. These
actions can be used to instantiate a variable with a value, or to block the execution
of (the rest of) a plan (if the test fails).

A communication action is an action that passes a message to another agent. In
our system, the other agent can be either another computational agent or a human
agent (the user). A communication action is of the form send(receiver, speech

act, content). The speech acts are the FIPA Standard Communicative Acts [55],
on which we will elaborate in Section 5.1.5, and include inform and request, which
fulfills our communication requirements as stated in the previous chapters. If the
receiver is a human agent, the communication action is sent to the language generation
module, which turns it into discourse acts in natural language. We will elaborate

99

IMPLEMENTATION OF A RECIPE ASSISTANT 5.1

further on discourse acts and the language generation module in Chapter 6.
External actions are actions that have an effect on the physical domain, such as

turning on the microwave. In our application domains, recipes typically consist of
external actions, like cutting vegetables, turning on electric appliances and (in the
weblog setting) uploading files. It should be noted that not all of these actions end
up being done by the system, but most of them are instead redirected to the user by
way of an instruction, which is a communication action that has the external action
in question as (part of) its content.

Finally, abstract actions allow the encapsulation of a plan by a single action,
making plans easier to write and to read.

5.1.3 Reasoning rules
Most importantly, the system contains Planning Goal Rules (PG-rules) and Procedu-
ral Rules (PC-rules). PG-rules translate a goal into a plan and take the following form:
Goal < − Guard | Plan. This rule will get activated when Goal is the first goal in
the goalbase and Guard (a Prolog query) is derivable from the beliefbase. Then, Plan
(a list of actions) will be put in the planbase for subsequent execution. PC-rules look
the same as PG-rules, but their head is an atom instead of a goal; they are activated
when an external event is detected, when an abstract action is executed, or when the
system receives a message from another agent. Messages from other agents take the
form message(sender, speech act, content). In Section 5.1.5, we will elaborate
on such messages.

To distinguish between these different kinds of rules and information in the system,
we specify for each of the pseudocode rules in this chapter in which part of the system
it resides (PC-rules, PG-rules, Beliefbase or Goalbase).

5.1.4 The deliberation cycle
In 2APL, rules are applied in the following order: first the system tries to apply each
PG-rule once, then it executes the first actions of all selected plans. Then, it processes
external events, then internal events and finally any incoming messages.

5.1.5 FIPA-ACL communicative acts
The FIPA-ACL Communicative Acts [55] that we use are:

Inform The sender informs the receiver that a given proposition is true. Content:
A proposition.

Propose The action of submitting a proposal to perform a certain action, given
certain preconditions. Content: A tuple containing an action description, rep-
resenting the action that the sender is proposing to perform, and a proposition
representing the preconditions on the performance of the action.

Query If The action of asking another agent whether or not a given proposition
is true. Content: The action of asking another agent whether or not a given
proposition is true.

100

5.2 THE PROGRAM

5

Query Ref The action of asking another agent for the object referred to by a refer-
ential expression. Content: A descriptor (a referential expression).

Request The sender requests the receiver to perform some action. (One important
class of uses of the request act is to request the receiver to perform another
communicative act.) Content: An action expression.

Of course, all natural language utterances from the user need to be parsed into
2APL messages. Also, conversely, all outgoing communicative acts need to be pro-
cessed into natural language utterances. For both of these processes, we use Func-
tional Discourse Grammar [74] [128]. We will elaborate on this in Chapter 6. We
have described the possibilities for the communicative content of these speech acts in
Section 4.3.3.

5.2 The program

We repeat the dialogue model from Chapter 3 in Figure 5.1.

In our formal framework, the dialogue consists of three main phases. First of all,
the user and the system select a joint goal together. This may be an information-
seeking dialogue, where the user specifies a number of desirable properties and the
system proposes an appropriate joint goal, which the user can then accept or decline.
Alternatively, the user can simply state a joint goal. The second phase of the dialogue
is the planning phase. In this phase, the system checks whether there is a viable plan
for the selected joint goal, given the current domain circumstances (e.g., availability
of tools and ingredients). For this, we use the concept of opportunities that we
introduced in Section 4.2.4, and on which we will elaborate later in this section. If
there is no such plan, the system informs the user of this, and the user can either
accept the system’s assessment (and the joint goal is abandoned) or overrule it, for
example in cases where the user knows a different plan for the (sub)goal in question
which does not require tools or ingredients that are not available. The third and final
phase of the dialogue is the instruction phase, which includes the actual preparation
of the recipe and some tutoring aspects.

5.2.1 Joint goal selection

The joint goal can be selected in two different ways: either the user simply requests a
joint goal, or he requests a recipe that satisfies certain criteria, in which case a recipe
selection subdialogue is iniated.

In Figure 5.2, we show how a joint goal is adopted when the user requests it. If
the system receives a message from the user, requesting of the system that they adopt
joint goal G together, the system adopts this as a joint goal at the beginning of its
beliefbase. In situations where the system is used by more than one user, the joint
goal should also specify the set of participants of the joint goal. However, as we have
stated in the previous chapters, at this time we assume that there is only a single
user and that the participants of the joint goal are always the user and the system.

101

IMPLEMENTATION OF A RECIPE ASSISTANT 5.2

Figure 5.1: The recipe searching and preparation dialogue

(1) PC-rules:

message(U, request, jointgoal(G)) < − true |
adopta(jointgoal(G))

Figure 5.2: Adopting a goal

Therefore, we leave out the specification of the set of participants from the joint goal
and only specify the goal state itself.

Alternatively, the user can initiate the recipe selection phase, as illustrated in

102

5.2 THE PROGRAM

5

(2) PC-rules:

message(U, request, recipe(C)) < − true |
recipesearch(C)

(3) PG-rules:

recipesearch(C) < − suitablerecipe(C, R) |
send(U, propose, R);

if message(U, inform, accept(R))

then adopta(jointgoal(R))

else recipesearch(C)

(4) Beliefbase:

suitablerecipe(C, R) : −
fitcriteria(C, Rlist),

pickrandom(Rlist, R).

Figure 5.3: The recipe selection phase

Figure 5.3, by requesting a recipe that fits a list of criteria C. The criteria for the dish
can be of various types; e.g., ingredients that should or should not be in the recipe,
cuisine (country of origin, etc.), cooking method, dietary restrictions, etc. Then, the
system uses this list of criteria to search the database for a suitable recipe R. If there
is more than one recipe that fits the specified criteria, the system randomly chooses
one of these dishes, and proposes this to the user. The user can then either accept
recipe R (which means that it will be adopted as a joint goal) or reject the dish, in
which case the system performs a new recipe search.

5.2.2 Rules for the planning phase

As illustrated in Figure 5.4, joint goals are represented as jointgoal(G), where G is
the goal and the participants are the system and the user. The first condition that
the system checks after adopting a joint goal is whether there is a recipe for this goal
in the beliefbase (i.e. whether G = P is derivable from the beliefbase, for the specified
goal G and any plan P). If there is no recipe for G in the beliefbase, the user is informed
of this and the goal is dropped (rule 5a).

If there is a recipe for the goal in question, the system checks whether for all
actions in the recipe, at least one of the participants has the opportunity to perform
it, given the current circumstances in the domain (e.g., available tools, ingredients,
appliances). This is done by checking whether checked-opportunity(P) is true for
plan P that has just been instantiated as a plan for the current joint goal G. We will
explain checked-opportunity in more detail below.

Depending on whether checked-opportunity is true, two courses of action may
be taken. First of all, in case it is true (rule 5b), the user is informed that the system
accepts the joint goal, and the instruction phase is initiated by calling rule prepare(P,
G). We will explain this in the next subsection. However, if checked-opportunity

103

IMPLEMENTATION OF A RECIPE ASSISTANT 5.2

(5) PG-rules:

a. jointgoal(G) < − not B(G = P) |
send(U, inform, no plan(G));

dropgoal(jointgoal(G))

b. jointgoal(G) < − B(G = P) and

B(checked-opportunity(P)) |
send(U, inform, possible(G));

prepare(G, P)

c. jointgoal(G) < − B(G = P) and reason(not possible(G, X))

not B(checked-opportunity(P)) |
send(U, inform, not possible(G));

send(U, inform, reason(not possible(G, X));

dropgoal(jointgoal(G))

Figure 5.4: Criteria for pursuing joint goals

is not true (rule 5c), the preparation of the recipe cannot be initiated, because (at
least) one of the actions in the plan cannot be performed due to the fact that its
preconditions will not be satisfied when it has to be performed, given the current
state of the domain. In our example, this happens when the user proposes French
toast: one of the actions in the recipe has available(bread) as a precondition, and
since the system does not believe this to be true, the plan cannot be initiated and the
goal must be dropped. In this case, the system informs the user of this fact and also
gives the reason why the goal is not possible (the failed precondition). It is then up
to the user whether he wants to choose another joint goal or to take actions to satisfy
the failed precondition (by buying bread, for example).

In Figure 5.5, we show how checked-opportunity is computed by a number of
Prolog rules in the beliefbase of the system. In order to compute checked-opportunity
of a plan P, the system will reason about the pre- and postconditions of the atomic
actions in P (including P’s subtasks). This requires ‘unfolding’ the recipe tree to a
list of atomic actions (rule 6): all subgoals in the task tree of P are fully expanded,
resulting in a nested list of atomic actions (makenestedlist), and this nested list is
converted to a flat list (flatten).

Subsequently, for each action in the list, the system checks if its preconditions
(Prec) are derivable from the relevant part of the beliefbase (DomainBeliefs, the
system’s beliefs about the domain, e.g., availability of ingredients) and the postcon-
ditions of all previous actions in the recipe (Postcondlist in Figure 5.6, which we
will explain below). In other words, if the preconditions of task Tn in the list are
derivable from (the list of) the system’s beliefs about the domain plus all postcon-
ditions of the preceding tasks T1 ... Tn−1, check-opportunity is true for task Tn.
If each task Tn in the expanded, flattened list for task P satisfies this condition,
checked-opportunity(P) is true (rule 6).

The list of postconditions of a list of actions is computed by postcondlist. The

104

5.2 THE PROGRAM

5

(6) Beliefbase:

checked-opportunity(P) : −
makenestedlist(P, Pcomplete),

flatten(Pcomplete, Pflat),

check-opportunity([], [], Pflat).

(7) Beliefbase:

a. check-opportunity([], [], [X|Tail]) : −
check-opportunity([], X, Tail).

b. check-opportunity(Prevlist, X, [Y|Tail]) : −
{ Prec } X { Postc } ,

postcondlist(Prevlist, Postcondlist),

append(Postcondlist, DomainBeliefs, BeliefList),

derivable(Prec, BeliefList),

append(Prevlist, [X], NewPrevlist),

check-opportunity(NewPrevlist, Y, Tail).

c. check-opportunity(Prevlist, X, []) : −
{ Prec } X { Postc } ,

postcondlist(Prevlist, Postcondlist),

append(Postcondlist, DomainBeliefs, BeliefList),

derivable(Prec, BeliefList).

Figure 5.5: Checking whether the participants are able to perform the recipe under the
current circumstances

(8) Beliefbase:

a. postcondlist([],).

b. postcondlist([X|Tail], Y) : −
{ Prec } X { Postc } ,

append(Y, Postc, Y1),

removeifnegated(Y1, Y2),

postcondlist(Tail, Y2).

Figure 5.6: Checking whether the participants are able to perform the recipe under the
current circumstances

first argument of postcondlist is the list of actions for which the postconditions
have yet to be derived, and the second argument is the list of postconditions that
have already been derived by this recursive function. When the first argument is
an empty list, all postconditions have been gathered (rule 8a). For now, we assume
that the pre- and postconditions are conjunctions of literals. Still, postconditions

105

IMPLEMENTATION OF A RECIPE ASSISTANT 5.2

may contain negations, in cases where the postconditions of an action specify the
removal of certain information from the beliefbase. In order to account for this, we
have introduced removeifnegated, which for every negated literal in a list, removes
all instances of this literal (positive and negative) from the list. What remains is
list Y2, which contains only positive literals that have not been negated by other
postconditions.

5.2.3 Rules for the instruction phase
In Figure 5.7, we show how the instruction phase works. Briefly, the main process of
the instruction phase consists of giving an instruction to the user, waiting until the
user has completed it and then repeating this process with the next instruction, until

(9) PC-rules:

a. prepare(G, []) < − true |
send(U, inform, finished(G)); dropgoal(jointgoal(G))

b. prepare(G, Tlist) < − not B(capable(U, G)), B(capablelist(U,

Tlist)) |
send(U, inform, start-learning(U, G));

teachprepare(G, Tlist);

send(U, query-if, capable(U, G));

if message(U, inform, capable(U, G)) then

AddBelief(capable(U, G)) else skip;

send(U, inform, finished(G)); dropgoal(G)

c. prepare(G, [T|Tail]) < − B(capable(U, T)) |
send(U, request, next-action(U, T));

checked-done(T)?; prepare(G, Tail)

d. prepare(G, [T|Tail]) < − B(capable(S, T)) |
send(U, inform, next-action(S, T));

@domain(T, performed(S, T), Time-out);

checked-done(T)?; prepare(G, Tail)

e. prepare(G, [T|Tail]) < − not B(capable(U, T)), B(T = Tlist),

B(capablelist(U, Tlist)) |
send(U, inform, start-learning(U, T));

teachprepare(T, Tlist);

send(U, query-if, capable(U, T));

if message(U, inform, capable(U, T)) then

AddBelief(capable(U, T)) else skip;

prepare(G, Tail)

f. prepare(G, [T|Tail]) < − not B(capable(U, T)), B(T = Tlist) |
prepare(G, Tlist); prepare(G, Tail)

Figure 5.7: Rules for preparing the recipe

106

5.2 THE PROGRAM

5

(10) PC-rules:

a. teachprepare(T, []) < − true |
send(U, inform, performed(T))

b. teachprepare(T, [Tfirst|Tail]) < − true |
send(U, request, next-action(U, Tfirst));

checked-done(Tfirst)?; teachprepare(T, Tail)

Figure 5.8: Rules for teaching the user to perform a task

the recipe is finished. If the user is not capable of performing a task but the system
is, the system will perform the task and inform the user about this. As we have
stated in previous chapters, the system should avoid giving too easy or too difficult
instructions, in order to make the interaction pleasant and useful for the user. This
means that the system always gives instructions that it believes the user is capable
of understanding and performing.

For clarity, we will first explain some of the most basic concepts that are used
in this complex rule: capablelist and checked-done. In Figure 5.9 we show how
capablelist works. It computes whether a certain participant X is capable of per-
forming all tasks in list Y. Note that while capablelist is recursive, capable itself is
not: if the system believes that the user is capable of performing a certain task T, he
is not automatically capable of performing all of T’s subtasks. After all, the user may
have a different recipe for T that involves different subtasks. For example, imagine a
situation where the system’s only recipe for making spaghetti bolognese involves mak-
ing fresh pasta, and the system believes that the user is capable of making spaghetti
bolognese. This does not mean that the user is capable of making fresh pasta, if the
user has a different recipe for the subtask ‘preparing pasta’, which involves cooking
store-bought pasta.

(11) Beliefbase:

a. capablelist(, []).

b. capablelist(X, [Y|Tail]) : − capable(X, Y), capablelist(X,

Tail).

Figure 5.9: Checking whether a participant is capable of performing all actions in a list

As illustrated in Figure 5.10, the system knows that a task is done when either of
the following three conditions holds: when the user has informed the system that he
has performed task T (rule 12a), when the system itself has successfully performed T

(rule 12b), or if the system has observed that task T is done (rule 12c).
Now, we will explain the prepare procedure in more detail. Starting with the

highest node in the recipe tree, if the system believes that either participant is capable
of performing this task, it should be performed by this participant; in this case, the

107

IMPLEMENTATION OF A RECIPE ASSISTANT 5.2

(12) Beliefbase:

a. checked-done(T) : − message(U, inform, performed(U, T)).

b. checked-done(T) : − performed(S, T).

c. checked-done(T) : − observe(done(T)).

Figure 5.10: Checking whether a step is done

system either informs the user that he should perform the task (if the user is capable
of doing it) or informs the user that the system itself will perform the task (if the
system is capable of doing it), and in the latter case of course it also performs the
task. If the system believes that neither participant is capable of performing the task,
the same process is repeated for each subtask of the task in question. After the user
is instructed to perform a task, the system will check whether the task is done before
continuing with the next instruction.

In more detail, the procedure prepare(G, P) has two arguments: G is the joint
goal that the system and user are working towards, and P is the list of tasks that still
need to be done. The code in Figure 5.7 has five different cases: first of all, if the
list of tasks is already empty (rule 9a), this means that there are no more tasks to
perform and the recipe is done. The user is informed of this and goal jointgoal(G)
is dropped.

Secondly (rule 9b), there is the possibility where the user is not capable of prepar-
ing the complete recipe G, but is capable of preparing all subtasks of G: capablelist(U,
Tlist). In this case, the system will attempt to teach the user how to perform G.
We have chosen to use the precondition capablelist in order to keep the learning
process perspicuous (to avoid nested learning processes, which may cause unclear
situations). The system will first tell the user that it will try to teach him how to
perform G. Then, a teachprepare procedure is called for G, which is similar to the
regular prepare procedure and on which we will elaborate below. When G is finished,
the system will inform the user of this and ask him whether he thinks he will be able
to perform G by himself the next time. Note that for computational agents there is
no reason why they would not be capable of G at this point in the interaction, but in
order to take into account the unpredictability of human users, we have built in this
check. Only when the user gives a positive reply, the system adds capable(U, G) to
its beliefbase.

The third case (rule 9c) is the case where the user is capable of performing the
first task from the list of tasks, task T, to be done. If this is true, the system requests
the user to perform task T and then waits until the task is done (checked-done) to
continue. Then, the procedure prepare is called anew, but of course task T is removed
from the head of the list of tasks that still need to be done.

The fourth case (rule 9d) is activated only when the user is not capable of per-
forming task T, but the system is. (Note that the order of the rules is important
here: if the user would have been capable of performing T, rule 9c would have been
activated first, and rule 9d would not have been reached.) The system informs the

108

5.2 THE PROGRAM

5

(13) BeliefUpdates:

a. { p } RemoveBelief(p) { not p }
b. { not p } AddBelief(p) { p }

Figure 5.11: Adding and removing beliefs

user that it will perform task T itself, and subsequently of course also performs the
task.

Fifthly (rule 9e), we have a procedure that is similar to the way the learning
process is initiated for the goal itself, but here it is for one of the subtasks of the goal.

Finally (rule 9f), if none of the participants are capable of performing T and when
it does not qualify for teaching (i.e. if the user is not capable of performing all of
its subtasks), T will be expanded into the list of its subtasks, Tlist, and stuck to
the front of the queue of next tasks. This means that the prepare procedure will be
repeated for each of the subtasks of T, followed by the rest of the task list that is still
in the queue after T is done.

The procedure teachprepare, which we show in Figure 5.8, is a simplified ver-
sion of prepare. Because the system has already checked if the user is capable of
performing all of the (direct) subtasks of the learning task T, the only thing that
teachprepare does is instruct the user to perform the subtasks of T in the order in
which they are listed (rule 10b), and when all subtasks of T are done, inform the
user of this (rule 10a). Then, the remainder of the teaching procedure in prepare is
continued as we have specified above.

Finally, in Figure 5.11 we show how beliefs are added to and removed from the
beliefbase.

5.2.4 Rules for answering questions and following requests

We make one addition to the dialogue models that we have presented in Chapter 3:
because the system should always be cooperative w.r.t. the user, we always allow the
user to ask questions to the system, and request actions from the system, provided
that the actions are relevant to the joint goal. (If they are not, the error handling
module will address this, as we explain in Chapter 7.)

During the instruction phase, the user can ask the system questions about the
recipe, the ingredients, and the preparations. When a message from the user enters
the eventbase, the system puts the current plan (the instructions in the recipe) on hold
and first answers the question. Another type of message from the user is a request
for action (e.g., keeping the time, printing out a document). In this case, the system
will not only have to perform the action itself, but it also has to inform the user of
this in order to keep the mutual beliefs of system and user correct and complete.

In the example dialogue in Chapter 1, the user posed the following question:

109

IMPLEMENTATION OF A RECIPE ASSISTANT 5.3

User: “How long should I stir the water?”
message(U, query-ref, info(stir water, duration)

System: “Stir the water briefly.”
send(U, inform, duration(poach egg, stir water, briefly))

The rules for answering questions from the user are shown in Figure 5.12. These
rules are quite straightforward: if the user asks about the truth of a certain proposition
p (by uttering message(U, query-if, p)), there are two main options: if p is in
the beliefbase of the system, it will answer positively (rule 14a); if not p is in the
beliefbase of the system, it will answer negatively (rule 14b). Note that we do not
adhere to a closed-world assumption in our system; if an agent does not believe that
p is true, this does not automatically imply that not p is true. If the system believes
neither p nor not p, this means that it does not have any information about p and
can therefore not answer the question. In this case, an error handling subdialogue is
initiated (which we will explain in Chapter 7).

The only exception to this is belief about capabilities; the lack of belief that par-
ticipant A is capable of performing p is equal to the belief that A is not capable of
performing p. For this, we have added an extra rule that is activated if the proposi-
tional content of the message is capable(A, p) (rule 14c). Then, if the system does
not believe capable(A, p), this means that A is believed not to be capable of p, and
therefore the system should also reply negatively. For all other types of propositional
content, if neither p nor not p are in the beliefbase and the user asks whether p is
true, this is an error and should therefore be repaired, as we will explain in Chapter
7.

The user can ask the system extra information about actions by asking info(A,

Property, G) for an action A and a Property that can be various types of infor-
mation, but is always related to the current joint goal G (rule 14d). In the example
dialogue, the user asks for the duration of the action stir water in this recipe. The
system has duration(poach egg, stir water, briefly) in its beliefbase and will
therefore answer send(U, inform, duration(poach egg, stir water, briefly)

(“Stir the water briefly”).
If the user requests the system to perform a task, the system will perform this

task if it is capable of doing so (capable(S, T)) and if it believes that the task is
possible at this time (checked-opportunity(T) (rule 15). The opportunity check is
necessary for two reasons: first of all, the environment is dynamic and therefore it
is possible that some of the circumstances have changed; secondly, since the system
openly delegates tasks to the user, it is possible that this particular task was not in
the system’s original plan for the joint goal. If the task is not possible at this time
and/or if the system is not capable of performing the task, an error subdialogue is
initiated, as we will explain in Chapter 7.

5.3 Generation of a simpler example dialogue
In this section, we show that part of the example dialogue can be generated with
the rules presented in this chapter. Since we have not yet treated the rules for error

110

5.3 GENERATION OF A SIMPLER EXAMPLE DIALOGUE

5

(14) PC-rules:

a. message(U, query-if, p) < − B(p) |
send(S, inform, p)

b. message(U, query-if, p) < − B(not p) |
send(S, inform, not p)

c. message(U, query-if, capable(X, p)) < − not B(capable(X, p)) |
send(S, inform, not capable(X, p))

d. message(U, query-ref, info(A, Property, G)) < −
Property(G, A, X) |
send(U, inform, Property(G, A, X))

(15) PC-rules:

message(U, request, next-action(S, T)) < − capable(S, T) and

checked-opportunity(T) |
send(U, inform, next-action(S, T));

@domain(T, performed(S, T), Time-out);

checked-done(T)?;

send(U, inform, performed(S, T))

Figure 5.12: Answering questions and following requests from the user

handling yet, we will now show how an alternative version of the example dialogue,
in which no errors occur, is generated by the rules in this chapter.

In order to create a complete dialogue from the rules that we have presented in
this chapter, we would also have to model the user in the same way, as an agent.
Below, we present a simple version of a user agent, which complies with the system’s
instructions when it believes that it is capable of performing them, and can also learn
new recipes.

5.3.1 The user agent

When the user has a goal G, but no recipe (plan P) to achieve this goal, it will request
the system to adopt G as a joint goal, as illustrated in Figure 5.13 (rule 16). If
the system confirms the joint goal (i.e. if the recipe successfully passes the system’s
opportunity check in rule 5), G is added as a joint goal at the beginning of the goalbase.
Note that the user will still keep G as a private goal until the joint goal is completed.

In Figure 5.14, we show how the user handles the initiation of the learning process.
When the system informs the user that he is to start learning task T, the belief
tentativeRecipe is added with an empty list as the tentative recipe for T (rule 17).
During the course of the instructions for T’s subtasks, this empty list will be filled
with tasks, as we will explain below.

In Figure 5.15, we show how the user handles receiving instructions. If the user
believes that he himself is capable of performing the instructed task T (rule 18a), he
will perform task T, make sure that it is done, and then inform the system that he

111

IMPLEMENTATION OF A RECIPE ASSISTANT 5.3

(16) PG-rules:

goal(G) < − not B(G = P) |
send(S, request, jointgoal(G));

if message(U, inform, possible(G)) then adopta(jointgoal(G));

else skip

Figure 5.13: User code: rules for introducing a joint goal

has indeed performed the task.
If the user has a tentative recipe in his beliefbase (rule 18b), he will append the

new instruction T to the existing tentative recipe P, creating a new tentative recipe
NewP. He will then substitute P with NewP in the beliefbase. Finally, since the user is
not only learning the recipe but also preparing it at the same time, he will of course
also perform T in the same way as usual.

When the system informs the user that the current joint goal G is finished (Fig-
ure 5.16), the user will simply drop goal G as a regular goal and a joint goal if he
was not in the process of learning a recipe for G (rule 19a). If the user was learning
a recipe for G (rule 19b) and the system informs the user that he has performed the
task in question, the user will substitute the tentative recipe with a finished recipe,
which is simply of the form G = P, in which P is the list of instructions that has been
built up step by step during the instruction phase. The user also adds the belief that
he is capable of performing the goal in question to his beliefbase (capable(U, G)).

The system may ask the user questions about his beliefs, for example when it has
just taught the user a recipe and is about to add the new capability to its beliefbase, as
we have seen before in this chapter. In Figure 5.17, we show how the user handles this
in a very straightforward way: simply, if the system asks whether X is true, the user
answers positively if he believes that X is true (rule 20a) and negatively if he believes
that X is not true (rule 20b). If the question is about a capability that is not present
in the beliefbase, the answer is also negative (rule 20c). These rules are comparable
to the system’s rules for answering questions that we have presented earlier in this
chapter.

5.3.2 An alternative version of the example dialogue

In the three Tables 5.2, 5.3, and 5.4 at the end of this chapter, we present a version
of the example dialogue that we can construct with the rules that we have presented

(17) PC-rules:

message(S, inform, start-learning(U, T)) < − true |
AddBelief(tentativeRecipe(T = [])

Figure 5.14: User code: starting to learn a recipe

112

5.3 GENERATION OF A SIMPLER EXAMPLE DIALOGUE

5

(18) PC-rules:

a. message(S, request, next-action(U, T)) < −
capable(U, T) |
@domain(T, performed(U, T), Time-out);

checked-done(T)?;

send(S, inform, performed(U, T))

b. message(S, request, next-action(U, T)) < −
tentativeRecipe(G = P) |
append(P, T, NewP);

RemoveBelief(tentativeRecipe(G = P));

AddBelief(tentativeRecipe(G = NewP));

@domain(T, performed(U, T), Time-out);

checked-done(T)?;

send(S, inform, performed(U, T))

Figure 5.15: User code: following instructions from the system

(19) PC-rules:

a. message(S, inform, finished(G)) < −
dropgoal(G); dropgoal(jointgoal(G))

b. message(S, inform, performed(G)) < −
tentativeRecipe(G = P) |
RemoveBelief(tentativeRecipe(G = P));

AddBelief(G = P);

AddBelief(capable(U, G))

Figure 5.16: User code: finishing a recipe

in this chapter. As we have mentioned above, this example dialogue contains none
of the errors that the dialogue in Chapter 1 does, since we have only presented our
basic task-oriented dialogue system in this chapter; in Chapter 7, we will show that
we can construct the complete dialogue from Chapter 1 if we add an error handling
module to the basic system.

The Tables 5.2, 5.3, and 5.4 should be read in order and from top to bottom,
where each line represents an internal or external event. When multiple events result
from the application of one rule, the rule number is augmented with the comment
‘(contd.)’ for each subsequent event after the first one.

The left column of the table represents the actor of the current rule and the number
of the rule that is applied. The middle column represents the specific instantiation
of the rule, communicative act or belief update that is being executed. The third
column represents any observable events that result from the application of the rule

113

IMPLEMENTATION OF A RECIPE ASSISTANT 5.3

(20) PC-rules:

a. message(S, query-if, p) < − B(p) |
send(S, inform, p)

b. message(S, query-if, p) < − B(not p) |
send(S, inform, not p)

c. message(S, query-if, capable(X, p)) < − not B(capable(X, p)) |
send(S, inform, not capable(X, p))

Figure 5.17: User code: answering yes/no-questions

in question, such as utterances or actions that are being performed by the actor in
question.

In brief, the resulting dialogue goes as follows:

1. User: I would like to prepare a poached egg.
2. System: Alright, I will teach you to poach an egg. Please boil some
water.
3. (User boils water)
4. User: I have boiled water.
5. System: Please add some vinegar to the water.
6. (User adds vinegar to the water)
7. User: I have added some vinegar.
8. System: Please crack an egg into a soup ladle
9. (User cracks egg into soup ladle)
10. User: I have cracked an egg into a soup ladle
11. System: Please stir the boiling water
12. (User stirs boiling water)
13. User: I have stirred the boiling water
(etc., until the recipe is done)
14. System: You have now poached an egg. Will you be able to do it by
yourself the next time?
15. User: Yes.
16. System: Okay, we’re done!

Now, we can clearly see that this dialogue matches with the dialogue model that
we have presented in Figure 5.1:

1 U: request joint goal

2 S: ok; S: you will learn subgoal; S: do task

3 U does task

4 U: I have done task

5 S: do task

6 U does task

7 U: I have done task

114

5.4 IMPLEMENTATION AND ISSUES WITH 2APL

5

8 S: do task

9 U does task

10 U: I have done task

11 S: do task

12 U does task

13 U: I have done task

(etc., until subgoal is reached)
14 S: you have performed subgoal. Capable?

15 U: yes

16 S: done!

With this, we have shown that the dialogue model from Chapter 3, the rules from
this chapter, and the simpler example dialogue are all consistent with each other.

5.4 Implementation and issues with 2APL

5.4.1 Implementation

A functional demo of a recipe assistant has been constructed [72] with an imple-
mentation of our framework in 2APL. The environment is a virtual ‘kitchen’ on a
computer screen, with the workspace on the left hand side and a virtual ‘kitchen
cabinet’ with icons that represent ingredients and tools on the right hand side, as is
shown in Figures 5.18, 5.19, and 5.20.

Besides performing actions on the environment, the user can send messages to
the system by selecting one of a number of given options in a drop-down menu at
the bottom of the screen. The dialogues produced by the system follow the dialogue
model from Chapter 3. The dialogue model was also the basis for the selection of
options that are represented in the drop-down menu at the bottom of the screen,
from which the user can choose his dialogue contribution.

The instructor agent is represented as a Microsoft Agent that gives instructions
through speech and text (represented in a text balloon). There are a number of
different Microsoft Agents that can be selected, including Peedy (Figure 5.18), Genie
(Figure 5.19), and Merlin (Figure 5.20). In order to create a varied interaction,
each of the speech acts has a number of different linguistic instantiations; e.g., for
the communicative action send(U, inform, p), some of the options are “Yes”, “Of
course”, “Sure” and “Yup”.

The user can select tools and ingredients on the right hand side of the screen and
drag them onto the workspace. They can either be placed on an empty spot in the
workspace, or onto other objects in order to perform actions such as filling a pan with
water (by dragging the ‘water’ icon onto the ‘pan’ icon in the workspace), turning on
the heat source under a pan (by dragging the ‘fire’ icon onto the ‘pan’ icon in the
workspace), or cutting an ingredient (by dragging the ‘knife’ icon onto the ingredient
icon in the workspace and selecting the action ‘cut’).

While we abstract from the meaning of cooking actions in our framework and
only represent them by identifiers such as boil water, the cooking actions in the
implementation have to be specified semantically, representing tools and ingredients

115

IMPLEMENTATION OF A RECIPE ASSISTANT 5.4

Figure 5.18: The system informs the user that he has just prepared macaroni.

in such a way that allows the user to manipulate them by performing cooking actions.
Preconditions are also listed: an action such as fill container with water requires
a suitable container and a specified amount of water, while stir water requires a
tool that is suitable for stirring.

In the implementation, the tools are ordered in two categories: container-tools,
such as pans and bowls, which can contain ingredients, and executive-tools, such as
knives and spoons, which can be used to perform operations on ingredients. Four
parameters can be defined on tools: besides a name (identifier), title (the name that
is shown in the interface) and an image, container-tools also have a certain maxi-
mum capacity, while for executive-tools it is necessary to define which actions can be
performed with it (e.g., a spoon can be used for stirring, but not for cutting).

Ingredients have six parameters: besides a name, title and image, the parameter
capacity specifies the minimum capacity that a container must have to contain the
ingredient, the parameter unit indicates the measuring units that are used for the
ingredient (e.g., grams, pinches, cups, tablespoons), and the parameter amounts in-
dicates the steps in which the ingredient can be measured in the interface (e.g., water
can be added in amounts of 50 ml: 50, 100, 150, 200, and so on).

The recipes are defined as lists that look like R[a0, a1, a2, a3], where the actions a0
... a3 are defined separately; for example, a0 = select(pan). The tools and ingredients
are defined separately from the recipe, to allow for reuse of tools and ingredients in
different recipes. As in our framework, recipes can contain sub-recipes with the tag
include and a specification of the identifier of the recipe that is included at this point.
The system’s beliefs about the capabilities of the user are implemented and allow the
system to give subgoals of the recipe as instructions to the user (e.g., ‘boil water’
instead of its subtasks).

The implementation also includes the functionality of teaching the user how to
prepare (parts of) recipes. Corresponding with the rules that we have presented in
this chapter, the system announces to the user that it is going to teach him how to
perform a certain task, then gives the instructions, and then concludes by informing

116

5.4 IMPLEMENTATION AND ISSUES WITH 2APL

5

Figure 5.19: The system has just instructed the user to prepare plain macaroni as a subtask
of the recipe for macaroni bolognese.

the user that the task is completed and asking him whether he can perform the recipe
in question by himself the next time (see Figure 5.18).

When the system instructs the user to prepare (a subtask of) a recipe that he
believes the user is capable of preparing, he informs the user of this. In Figure 5.19,
we show the situation where the system and the user are making macaroni bolognese
together, the system believes the user is capable of preparing plain macaroni, and has
just instructed the user to do this.

The user can ask the system for explanation at any point in the instruction dia-
logue. For example, when the system has instructed the user to stir, the user can ask
“How?” and the system will answer with an object that can be used for stirring (see
Figure 5.20).

Figure 5.20: The user asks the system how to stir.

The implemented system does not cover our complete framework. For example,

117

IMPLEMENTATION OF A RECIPE ASSISTANT 5.5

the concept of opportunities is not implemented at this time, and some additional
extensions would have to be programmed before opportunities can be implemented.
First of all, the available quantity of the ingredients is not registered in the imple-
mented system; instead, all ingredients are taken to be infinitely available. Also, the
state of the environment cannot be saved at the end of the interaction and loaded
for the next interaction. Both of these aspects are needed in order to reason with
opportunities.

Another aspect that is not implemented at this time is the possibility for the user
to request actions from the system. This also requires an extra functionality that is
not implemented: in this implementation, the instructor is not able to manipulate the
domain. This means that the system cannot volunteer to perform tasks. In a future
(extension of this) implementation, we would like to integrate this functionality.

5.4.2 Issues with 2APL
Although we have represented our framework in a 2APL-like pseudocode, there are
some aspects of our system that cannot be easily or optimally implemented in 2APL.
Our algorithms require a substantial amount of introspection: reasoning about one’s
own goals, plans, and actions. Unfortunately, 2APL does not support the ability to
reason about anything outside of the beliefbase, which means that most of the rules
in our framework that work with recipes are not possible in 2APL. To work around
this shortcoming, a recipe has to be represented in two locations: first of all as a plan
in the system’s planbase, and secondly in the beliefbase, so the system can use it to
reason about opportunities before the plan in question is adopted.

In the current implementation, the recipes, tools, actions, and ingredients are all
defined in three different programming languages: Java, Prolog and XML. While
XML is the main representation language of the recipes, the system also required a
Prolog representation for use as part of the beliefbase, and a Java representation is
needed for constructing the objects in the interface. It may be worth investigating
whether it is possible to construct a parser that can convert the XML representations
of the recipes, tools, actions, and ingredients to their counterparts in Prolog and Java,
so that they only have to be represented in XML.

Another issue that was encountered in the implementation is the synchronisation
of the Microsoft Agents with the 2APL agents. The Microsoft Agents, which are repre-
sented by the virtual characters on the computer screen, have to pronounce utterances
and make gestures, which takes much longer than the computational operations that
the 2APL agents have to perform. In order to prevent the Microsoft Agent and the
2APL agents to run out of sync, the interface has to be blocked, or frozen, when the
Microsoft Agent performs an action. This means that the user cannot manipulate
the objects on the screen if the Microsoft Agent is performing an action or saying
something.

5.5 Conclusions and future work
In this chapter, we have presented a set of rules in the style of a 2APL program
that can generate a recipe preparation dialogue. The resulting dialogue that is gen-

118

5.5 CONCLUSIONS AND FUTURE WORK

5

erated depends on the agent’s beliefs, in particular beliefs about the capabilities of
the participants and beliefs about the current state of the task domain, and a set
of recipes. The resulting system engages in mixed-initiative dialogues, with reactive
aspects (e.g., being able to answer questions from the user) and proactive aspects
(e.g., rejecting goals that cannot be achieved under the current circumstances). The
resulting dialogues adhere to the dialogue model that we presented in Figure 5.1.

We have specified the rules of the system in a 2APL-like pseudocode. The success-
ful implementation of part of our framework has shown that it is indeed suitable for
the development of a task-oriented dialogue system. Unfortunately, not all algorithms
can be easily implemented in 2APL and it should therefore be investigated whether
other agent programming languages may be more suitable for the implementation of
our framework. Alternatively, workarounds can be found for most of the issues.

For future work, a possible extension for the system is more flexibility in the
handling of recipes that fail the opportunity check. If the system concludes that none
of the participants are able to perform one of the actions, the recipe might still be an
option, if the user knows a way to achieve one of the action’s supergoals in a different
way that is not known to the system. For example, imagine there is no water boiler
present in the kitchen and the only recipe for boiled water that the system knows is
to boil it in a water boiler. In this case, the precondition for one of the actions in
the recipe will be the availability of a water boiler, which is not derivable from the
system’s beliefbase. However, the user might be able to boil water in a pan on the
stove or in the microwave. To account for this, the system would need to ask the user
if he is capable of performing one of the action’s supergoals; for example by saying:
“We have to boil water for this recipe, but there is no water boiler available. If you
know how to boil water without a water boiler, we can still prepare this recipe.” If
the user responds positively, the system should treat the task ‘Boil water’ as sort of
a black box, not unfolding it to its subgoals.

We have decided that if both participants are capable of performing a certain
task, the system will always ask the user to perform the task in question. Because
the system also fuctions as a tutor for the user, we have decided to keep the system’s
involvement in the recipe preparation to a minimum. Alternatively, we could specify
a laziness (or eagerness) property for the system, meaning that if this parameter
is set to ‘eager’, the system will perform all tasks in the recipe that it is capable
of performing, regardless of the user’s capabilities. (The system’s behavior as it is
specified in this chapter would fall under ‘lazy’.)

In the future we would also like to account for more complex recipe trees that in-
volve parallel (interleaving) tasks. This will involve a different algorithm for comput-
ing opportunities, where different possible configurations w.r.t. the order of subtasks
of parallel tasks should be checked. An option for this is GPGP (generalized partial
global planning) [86], a framework that is developed for use in teams of agents to
facilitate the coordination between the agents.

Furthermore, we would like to eventually extend the system with a more advanced
recipe selection phase.

119

IMPLEMENTATION OF A RECIPE ASSISTANT 5.5

Actor:
Rule
no.

Communicative act, PC-rule or
BeliefUpdate

Action or utterance

U Starting state: goal(poach egg)

U: 16 send(S, request,

jointgoal(poach egg))

User: I would like to prepare
a poached egg

S: 1 adopta(jointgoal(poach egg))

S: 5b send(U, inform,

possible(poach egg))

System: Alright

U: 16 adopta(jointgoal(poach egg))

S: 9b send(U, inform,

start-learning(U, poach egg))

System: I will teach you to
poach an egg

S: 9b
(contd.)

teachprepare(poach egg,

[boil water, add white vinegar,

crack egg, stir boiling water,

drop egg, wait 3-4 minutes,

remove egg])

U: 17 tentativeRecipe(poach egg = [])

S: 10b send(U, request, next-action(U,

boil water))

System: Please boil some wa-
ter

U: 18b tentativeRecipe(poach egg =

[boil water])

U: 18b
(contd.)

@kitchen(boil water,

performed(U, boil water),

Time-out)

(User boils water)

U: 18b
(contd.)

send(S, inform, performed(U,

boil water))

User: I have boiled water

S: 10b
(contd.)

checked-done(boil water)

S: 10b
(contd.)

teachprepare(poach egg,

[add white vinegar, crack egg,

stir boiling water, drop egg,

wait 3-4 minutes, remove egg])

S: 10b send(U, request, next-action(U,

add white vinegar))

System: Please add some
vinegar to the water

U: 18b tentativeRecipe(poach egg =

[boil water, add white vinegar])

U: 18b
(contd.)

@kitchen(add white vinegar,

performed(U, add white vinegar),

Time-out)

(User adds vinegar to the wa-
ter)

U: 18b
(contd.)

send(S, inform, performed(U,

add white vinegar))

User: I have added some vine-
gar

Table 5.2: An alternative version of the example dialogue in which no errors occur (part 1)

120

5.5 CONCLUSIONS AND FUTURE WORK

5

Actor:
Rule
no.

Communicative act, PC-rule or
BeliefUpdate

Action or utterance

S: 10b
(contd.)

checked-done(add white vinegar)

S: 10b
(contd.)

teachprepare(poach egg,

[crack egg, stir boiling water,

drop egg, wait 3-4 minutes,

remove egg])

S: 10b send(U, request, next-action(U,

crack egg))

System: Please crack an egg
into a soup ladle

U: 18b tentativeRecipe(poach egg =

[boil water, add white vinegar,

crack egg])

U: 18b
(contd.)

@kitchen(crack egg,

performed(U, crack eggr),

Time-out)

(User cracks egg into soup la-
dle)

U: 18b
(contd.)

send(S, inform, performed(U,

crack egg))

User: I have cracked an egg
into a soup ladle

S: 10b
(contd.)

checked-done(crack egg)

S: 10b
(contd.)

teachprepare(poach egg,

[stir boiling water, drop egg,

wait 3-4 minutes, remove egg])

S: 10b send(U, request, next-action(U,

stir boiling water))

System: Please stir the boil-
ing water

U: 18b tentativeRecipe(poach egg =

[boil water, add white vinegar,

crack egg, stir boiling water])

U: 18b
(contd.)

@kitchen(stir boiling water,

performed(U,

stir boiling water), Time-out)

(User stirs boiling water)

U: 18b
(contd.)

send(S, inform, performed(U,

stir boiling water))

User: I have stirred the boil-
ing water

(etc., until teachprepare-list is empty)
S: 10a send(U, inform,

performed(poach egg))

System: You have now
poached an egg

U: 19b RemoveBelief(tentativeRecipe(

poach egg = [boil water,

add white vinegar, crack egg,

stir boiling water, drop egg,

wait 3-4 minutes, remove egg])

Table 5.3: An alternative version of the example dialogue in which no errors occur (part 2)

121

IMPLEMENTATION OF A RECIPE ASSISTANT 5.5

Actor:
Rule
no.

Communicative act, PC-rule or
BeliefUpdate

Action or utterance

U: 19b
(contd.)

AddBelief(poach egg =

[boil water, add white vinegar,

crack egg, stir boiling water,

drop egg, wait 3-4 minutes,

remove egg])

U: 19b
(contd.)

AddBelief(capable(U,

poach egg))

S: 9b
(contd.)

send(U, query-if, capable(U,

poach egg))

System: Will you be able to
do it by yourself the next
time?

U: 20a send(S, inform, capable(U,

poach egg))

User: Yes

S: 9b
(contd.)

AddBelief(capable(U,

poach egg))

S: 9a send(U, inform,

finished(poach egg))

System: Okay, we’re done!

U: 19a dropgoal(poach egg);

dropgoal(jointgoal(poach egg))

S: 9a
(contd.)

dropgoal(poach egg)

Table 5.4: An alternative version of the example dialogue in which no errors occur (part 3)

122

6 Parsing and Generating
Natural Language

The great thing about human
language is that it prevents us from
sticking to the matter at hand.

Lewis Thomas

Although we only treat errors on the speech act level in this thesis, and abstract
from any communication errors such as mishearings, we will still treat some insights
in the field of natural language processing and generation in this chapter. We have
chosen Functional Discourse Grammar (FDG) [74] as our preferred way of natural
language processing and generation. There are of course many other possibilities for
language interpretation and generation, but FDG matches well with our BDI system,
for reasons which we will explain below.

FDG describes how a communicative intention is transformed into an utterance via
four levels of representation, and consequently, FDG literature mostly describes the
process that translates a communicative intention into a natural language utterance.
We have taken up the challenge of focusing our research on the reverse process, and
an algorithm has been developed for parsing natural language utterances to elicit
the communicative intentions that lie behind them [128] [80]. Briefly, this algorithm
takes the representation of an utterance on one of the four levels of representation
of FDG, takes it apart into smaller pieces called ‘chunks’, translates these chunks to
another FDG level, and then puzzles these chunks back together according to a set of
rules. Although most discourse acts have more than one function [28], we will focus
on eliciting the main domain-related function of the discourse act.

Because the communicative acts that are given as output by the system are quite
simple and straightforward in our current application, we will not delve too deeply
into the generation of natural language. For this purpose, we can simply program
a straightforward utterance generator, that adds some variables (e.g., the linguistic
representation of tasks) to some standard frames (e.g., a standard form in which
instructions are given). We only have to define sentence structures for the different
communicative acts and have a database of natural language representations for the
propositional content, such as “poach an egg” for poach egg.

Note that there can be different natural language instantiations of the com-

123

PARSING AND GENERATING NATURAL LANGUAGE 6.1

municative acts in the example dialogue. For example, send(U, inform, not

possible(french toast)) can be translated into many different natural language
utterances; beside the version in the example dialogue, “That’s not possible”, other
options are “We cannot make French toast”, “It is not possible for us to prepare
French toast at this time”, or “Sorry, that’s not an option”. Some communicative acts
can even be instantiated as different sentence types; for example, send(U, request,

next-action(U, boil water)) can be instantiated as an imperative, as in the ex-
ample dialogue, “Please boil some water”, but also as a question: “Can you please
boil some water?” or as a declarative sentence: “You should boil some water.” In the
implementation of our model, a number of natural language utterances were imple-
mented for each possible dialogue move by the system; e.g., as we mentioned in the
previous chapter, “Yes”, “Of course”, “Sure” and “Yup” are some of the options for
the dialogue move send(U, inform, p).

Following most literature on Functional Discourse Grammar [74], we will describe
the theory ‘top-down’ in Section 6.1, starting with a communicative intention that is
formed in the conceptual component (6.1.1), the contextual component (6.1.2), the
grammatical component with its four levels: interpersonal (6.1.3), representational
(6.1.4), morphosyntactic (6.1.5) and the phonological level, which we treat together
with the output component (6.1.6). In Section 6.2, we will explain how we can make
the parsing of a natural language utterance in FDG easier with our knowledge of the
dialogue models that we presented in Chapter 3 of this thesis. In Section 6.3, we will
then describe how a natural language utterance can be parsed to a communicative
intention using FDG, first treating the process of parsing to the representational
level (6.3.1) and then to the interpersonal level (6.3.2). This generates some specific
problems in translating from one FDG level to another, and in Section 6.4 we will focus
on one specific example of such a problem, namely the interpretation of indirect speech
acts, first explaining about the verb-construction (6.4.1) and then the speech act
assignment (6.4.2). Finally, in Section 6.5 we will finish this chapter with conclusions
and future work.

6.1 A brief introduction to Functional Discourse Gram-
mar

Functional Discourse Grammar [74] is a grammar theory that describes how commu-
nicative intentions are encoded into linguistic utterances. It does not strive to be
a theory of discourse; the word ‘discourse’ in the name only indicates its focus on
discourse acts and on linguistic utterances in the context of a discourse. FDG is a
‘typology-based theory’, meaning that it attempts to encompass all languages. On
the other hand, if FDG is applied to a language where certain phenomena do not
apply, they can simply be left out of the FDG representations, as we will see later in
this chapter.

FDG is based on Functional Grammar [49]. It is, as the name suggests, a func-
tional theory, as opposed to Chomskyan transformational grammars. As all functional
theories, FDG relates the function of an utterance to its form (a ‘function-to-form’
approach), focusing on the process of translating a communicative intention (the ‘func-

124

6.1 A BRIEF INTRODUCTION TO FUNCTIONAL DISCOURSE GRAMMAR

6

Figure 6.1: The components of Functional Discourse Grammar [74]

tion’) into a natural language utterance (the ‘form’) by way of a formulation process.
In contrast, its predecessor, Functional Grammar [49], takes a ‘form-to-function’ ap-
proach, focusing rather on the explanation of formal properties of syntactic units in
terms of their functions in communication.

The framework of FDG consists of four main components: the conceptual compo-
nent, in which communicative intentions are formed; the contextual component, which
contains contextual information; the output component; and, most importantly, the
grammatical component, which translates a communicative intention via four levels
to a phonological structure that is then given to the output component. The four
levels in the grammatical component are called the interpersonal level, the represen-
tational level, the morphosyntactic level, and the phonological level. These levels are
roughly comparable to the four levels of Van Dam [47], which were inspired by the

125

PARSING AND GENERATING NATURAL LANGUAGE 6.1

Layered Protocols from Taylor [120] to which we referred earlier in this thesis. The
components of FDG are illustrated in Figure 6.1.

The architecture of FDG mirrors the three fundamental modules in a language
system from Levelt [87]: the conceptualizer, the formulator, and the articulator. In
FDG, these correspond to the conceptual component, the grammatical component
and the output component, respectively. (The contextual component from FDG is
not present in Levelt’s theory.) In our architecture as we have presented in Chapter
4, the modules from Levelt roughly correspond to the reasoning engine, the utterance
formulator and the output component.

The conceptual and contextual components are the only parts of the FDG struc-
ture that are non-linguistic; all layers in the grammatical component, and naturally
the output component, pertain specifically to linguistic information. As we have men-
tioned above, all components in FDG are language-specific. For the non-linguistic
components, this is reflected in the types of information that are present there; for
example, information that does not have any direct effect on the communicative in-
tention is not represented in the conceptual component, as we will explain below.
What information this is, differs between languages.

The translation from a communicative intention to representations on the interper-
sonal and representational levels is done through the process of formulation, while the
translation from these pragmatic and semantic representations into morphosyntactic
and phonological structures is called encoding [74].

One of the aims of FDG is to be a single theory that can explain all grammatical
aspects of an utterance, encompassing everything from phonological to pragmatic
information. This allows for a unified treatment of linguistic phenomena that can
occur on different levels, such as anaphora; e.g., the demonstrative pronoun ‘that’
can refer to a referent on different levels, as is illustrated by these examples:

A: Get out of here!
B: Don’t talk to me like that!

A: I had chuletas de cordero last night.
B: Is that how you say ‘lamb chops’ in Spanish?1

In the first example, B’s that refers to the communicative strategy employed by
A, which is a pragmatic aspect of A’s utterance. In the second example, that refers
to the specific term chuletas de cordero, not to the referent, making it an anaphor on
the morphosyntactic level. For similar examples for the representational (semantic)
and phonological levels, see Hengeveld and Mackenzie [74].

On the other hand, not all levels in the grammatical component are used every
time (the maximal depth principle [74]). For example, an utterance such as “Okay”
does not contain any direct references to the world outside the conversation and
therefore does not need to pass through the representational level, which deals with
these aspects of linguistic representation.

In FDG, the discourse act is taken to be the basic unit of analysis [74]. A discourse
act is defined as “the smallest identifiable unit of communicative behavior” (cf. Kroon
[79]). There is not necessarily a one-to-one mapping between discourse acts and

1Examples from Hengeveld and Mackenzie [74]

126

6.1 A BRIEF INTRODUCTION TO FUNCTIONAL DISCOURSE GRAMMAR

6

sentences or clauses, which other theories of language tend to take as basic units. A
discourse act may be part of a move, which is defined as “the minimal free unit of
discourse that is able to enter into an exchange structure”, meaning that it has some
function in moving towards the conversational goal (in contrast with discourse acts,
which do not have to have such a function). A move may contain more than one
discourse act, but always has one central (main) discourse act.

FDG is a suitable choice for us to combine with a BDI-based reasoning engine,
since FDG specifically connects the form of a natural language utterance to the goals
and beliefs of the agent that utters it, via the conceptual component. Since FDG does
not specify the conceptual component in much detail and only states that it develops
the communicative intentions, we can use a BDI reasoning engine as our conceptual
component.

The representations of discourse acts on all four levels in the grammatical com-
ponent are in the form of hierarchical structures. For example, the representation of
the sentence “I can’t find the red pan” on the interpersonal level is as follows:

(Mi : [
(Ai : [

(Fi : DECL (Fi))
(Pi)S
(Pj)A
(Ci : [

(+id +s Ri : I (Ri))
(Ti)FOC

(+id +s Rj : [(Tj) (Tk)](Rj))TOP

] (Ci))
] (Ai))

] (Mi))

Roughly, this means that there is one move Mi (the complete utterance), which
contains one discourse act Ai (also encompassing the complete utterance), which con-
tains one delarative sentence type (Fi : DECL), one participant who is the speaker
((Pi)S), one who is the addressee ((Pj)A), and the communicated content of the dis-
course act, Ci. This communicated content consists of a referent Ri (referring to the
speaker again, here represented by the personal pronoun I), a subact of ascription
that is the focus of the utterance (Ti)FOC (denoting the relation ‘can’t find’ between
the speaker and the red pan), and another referent, which is the topic of the utter-
ance (Rj)TOP (‘the red pan’) and which contains two subacts of ascription Tj and
Tk (referring to ‘red’ and ‘pan’). Both referents have two operators, +id and +s,
denoting respectively the fact that they are identifiable and specific. A referent can
be identifiable (+id) or unidentifiable (-id), denoting whether or not the addressee is
familiar with the referent; a referent can be specific (+s) or unspecific (-s), denoting
whether or not there is one distinct referent that the speaker refers to. An example
of an unidentifiable, non-specific referent is “I am looking for someone to help me.”
[74]

We do not aim to give a complete FDG tutorial here. For more detailed informa-

127

PARSING AND GENERATING NATURAL LANGUAGE 6.1

tion and for examples of FDG structures on the other levels, we refer to Hengeveld
and Mackenzie [74]. However, we hope that the above example gives the reader a
general idea of how FDG structures look and what types of information they contain.

6.1.1 The conceptual component

The conceptual component in the general layout of FDG is the part where commu-
nicative intentions and the corresponding mental representations are formed. The
conceptual component roughly corresponds to the BDI reasoning engine in our sys-
tem; we can use the communicative acts that are formed by the BDI reasoning engine
as the communicative intentions in the conceptual component of FDG. A commu-
nicative intention can be encoded into different types of sentence types. For example,
a request can get encoded into an interrogative (“Can you give me the salt?”), a
declarative (“I need the salt”), or an imperative (“Pass me the salt!”). The choice
between these options may depend on various factors.

Interestingly, the FDG literature uses the term ‘illocution’ not in the same way
as Searle [110] and Austin [9] do. In FDG literature, the term ‘illocution’ is used
for sentence types such as declaratives and interrogatives, while in contrast, Austin
and Searle use the term to denote the act that is performed in saying something,
such as promising or offering. This sense seems to correspond rather to the commu-
nicative intention in FDG. In the remainder of this chapter, to avoid confusion, we
will wherever possible use ‘sentence type’ for the concept ‘illocution’ as it is used in
FDG-literature, and ‘speech act’ to denote the concept that Searle and Austin call
‘illocution’.

In the FDG literature, not much focus is put on the conceptual component. The
exact form of a communicative intention is not specified. Hengeveld and Macken-
zie [74] stress Butler’s [34] proposal that ‘conceptual content proper’ and ‘affec-
tive/interactional content’ should be distinguished, which corresponds with the dis-
tinction between the interpersonal and representational level.

As we have mentioned above, our BDI reasoning engine can be seen as the con-
ceptual component of FDG. It forms communicative intentions based on the beliefs,
goals and plans of the agent.

6.1.2 The contextual component

Dialogue context is a highly important source of information in an interaction. The
context of a dialogue is all information that influences the formulation and encoding of
a communicative intention in a significant way. In other words, it is the combination
of all (background) information in a dialogue situation: dialogue history, discourse
topic, salient words or topics, a world model, user model, etcetera. According to
Dynamic Interpretation Theory [26] [27], context corresponds to the complete set of
beliefs in the BDI paradigm [94]. Without context, it is impossible to interpret input
correctly; usually, not all information is present in the utterance itself. For example,
the meaning of an utterance that only consists of the word ‘yes’ depends highly on
the question or utterance that it is a reply to.

128

6.1 A BRIEF INTRODUCTION TO FUNCTIONAL DISCOURSE GRAMMAR

6

The contextual component in FDG is an essential component. After all, the ‘Dis-
course’ in the term Functional Discourse Grammar emphasizes the fact that utterances
should always be interpreted in the context of the discourse. The contextual com-
ponent contains descriptions of the content and form of the preceding discourse, the
physical context, and social relationships between the participants in the discourse.
Reflexives, anaphora, and narrative chaining are all based on information that the
grammatical component receives from the contextual component. The contextual
component contains two types of information: it contains information that it receives
from the grammatical component which is relevant to the form of subsequent utter-
ances (comparable to a dialogue history or our dialogue models), and longer-term
information, including sociocultural context [46].

This dichotomy between dialogue context and longer-term information is similar
to the two subcategories of context, local and global, in which Bunt [25] splits all of
his five dimensions of context. The five dimensions of context are as follows: linguistic
context (in a broad sense, including prosodics), semantic context (underlying task and
task domain), physical context (place, time, communication channels), social context
(roles, institutional setting, rights and obligations) and cognitive context (beliefs,
intentions, plans, attitude, discourse topic). These five dimensions of context are all
split into two subcategories: local and global aspects (global aspects stay the same
throughout the dialogue, local aspects change per utterance).

As in the case of the conceptual component, Hengeveld and Mackenzie [74] do not
elaborate on the internal constitution of the contextual component. However, they do
state some more details on the contents of the contextual component. For example, it
only contains information that influences the processes of formulation and encoding
in a significant way. Information that is present in the contextual component includes
information that influences phenomena such as anaphora and reflexives. Hengeveld
and Mackenzie state that only information that one would need to correctly interpret
an utterance is included in the contextual component.

On the other hand, a lot of real world knowledge is needed in the higher-level
interpretation of some utterances. Take, for example, the combination of these two
sentences:

“I read a book yesterday. The author lives in Amsterdam.”

In order to correctly interpret ‘the author’ in the second sentence as the author of
the book mentioned in the first sentence, the system needs to have knowledge about
the concepts ‘book’ and ‘author’ that connects the two. So, to be able to deal with
this type of phenomenon, the contextual component would need to contain a lexical
database containing semantic and ontological information, such as WordNet [52] or
FrameNet [104].

6.1.3 The interpersonal level

The interpersonal level of FDG pertains to the relation between the speaker and
the addressee, and to the effects that the speaker intends his utterance to have on
this relation. It is mostly comparable to the pragmatic content of the utterance,

129

PARSING AND GENERATING NATURAL LANGUAGE 6.1

although it only contains pragmatic elements that pertain to the linguistic form of
the utterance.

The translation from the communicative intention in the conceptual component
to a structure on the interpersonal level includes the addition of specific language-
bound information, such as the distinction between informal and formal forms of
certain words (e.g., vous vs. tu in French, a distinction that is not present in English).
Information that influences such decisions is taken from the contextual component.

The structure on the interpersonal level contains sentence types, such as DECL
(declarative), INTER (interrogative), and IMPER (imperative). The exact set of
sentence types that is used depends on the type of natural language that the utter-
ance is to be expressed in; only sentence types that are “justified by the grammatical
distinctions present in the language” will be used on the interpersonal level. En-
glish only contains declaratives, interrogatives, imperatives, optatives (“Let him...”
or “May he...”), hortatives (“Let’s...”) and miratives (“How beautifully...!”) [74].
Some languages have specific grammatical structures for other sentence types, such
as admonitives (warnings). For example, in Mandarin Chinese the word ou is a spe-
cific admonitive marker. However, in English, warnings are usually expressed through
the use of imperatives (“Watch out!”), but do not have their own specific syntactic
markers. Therefore, the concept of admonitives is not used in FDG structures for the
English language.

Some decisions pertaining to the concrete form of the utterance are already made
on this level; for example, the distinction between implicit and explicit performatives:
“I will do the washing up” vs. “I promise I will do the washing up”. Also, some
modifiers may be introduced on this level, e.g., ‘sincerely’, ‘to be honest’, ‘frankly’.
The interpersonal level also includes operators such as irony.

The participants are represented on this level as Speaker and Addressee. Beside
the participants and the sentence type, there is of course the communicated content,
which contains “the totality of what the Speaker wishes to evoke in his/her commu-
nication with the Addressee” [74]. Part of the communicated content may be distin-
guished as Focus or Background, which are marked by so-called Focus markers. The
Focus is the most important/salient part of the utterance; the Background is the rest
of the utterance. A second dimension that may be distinguished in the communicated
content is Topic/Comment: the Topic is what the utterance is about; the Comment
is what is being said about the topic. The two dimensions Focus/Background and
Topic/Comment are notably different, although they may get instantiated on lower
levels in similar ways with various devices such as word order (on the morphosyntactic
level) and/or stress (on the phonological level).

6.1.4 The representational level

The semantic properties of a discourse act are represented on the representational
level. Similarly to the interpersonal level, this level also only represents information
that pertains to the linguistic form of the resulting utterance, though on this level
the information is semantic, while on the interpersonal level it is pragmatic. The
representational and interpersonal levels are strongly related and have a consider-
able degree of parallellism; whereas the interpersonal level pertains to the relation

130

6.1 A BRIEF INTRODUCTION TO FUNCTIONAL DISCOURSE GRAMMAR

6

between the participants, the representational level deals with the relation between
the utterance and the world outside the discourse. The way the structure on the rep-
resentational level is built up depends partially on the structure at the interpersonal
level and partially on the communicative intention from the conceptual component.

In FDG, four basic semantic categories are distinguished in which entities can
be classified on the representational level: as an individual (e.g., chair), a state of
affairs (e.g., meeting), a propositional content (a mental construct; e.g., idea), or
a property (e.g., color). Additionally, when FDG is applied to a certain language,
entity categories that have specific linguistic properties in that language are also
distinguished, following the principle that FDG is tailored to specific languages. In
English, there are additional entity categories for location, time, episode, manner,
reason and quantity.

6.1.5 The morphosyntactic level

As with the interpersonal and representational levels, there is also a certain amount
of parallellism between the morphosyntactic level and the phonological level. As is
shown in Figure 6.1, both the morphosyntactic and the phonological level take input
from both the interpersonal and representational levels.

The morphosyntactic level represents all lexical information in the utterance. It
is at this point in the translation from communicative intention to natural language
utterance that the clauses, phrases and words are chosen and put into place. The
structure at the morphosyntactic level looks very similar to other types of syntactic
structures, using concepts such as subject, object, adjective and noun phrase to denote
parts of the structure.

In the translation from the interpersonal and representational levels to the mor-
phosyntactic level, there are two important processes that take place: positioning and
alignment. The former process determines at which position in the utterance hier-
archically related units will be positioned; e.g., adverbs with a scope over the whole
sentence will be positioned differently than adverbs with a scope over only a verb.
Alignment takes care of the positioning of non-hierarchically related units, such as
location and time (as in: “I read a book in a pub yesterday).

6.1.6 The phonological level and the output component

We will not deal with the phonological level and the output component in much detail
here, but only shortly describe them. More extensive information on these topics can
be found in Hengeveld and Mackenzie [74].

The phonological level contains phonological representations (phonemes) of the
information that is present on the morphosyntactic level. Additional information
such as stress and tonal patterns are also present on the phonological level. Even
though the phonological level may contain important information, we have chosen to
abstract from phonological information in this thesis.

The output component deals with ‘analogue’ matters such as intensity, duration,
and characteristics that reflect individual voice quality and such, whereas the phono-

131

PARSING AND GENERATING NATURAL LANGUAGE 6.2

logical level (and all other levels in the grammatical component) encodes digital in-
formation.

6.2 Expectations in FDG

There are various assumptions that can assist us in eliciting the speaker’s communica-
tive intention from his utterance. In a cooperative dialogue situation, both dialogue
partners usually act with a considerable amount of predictability. As we have seen in
the previous chapters, in order to use these types of information, it is useful to keep a
(BDI) user model in the form of a formalization of the conceptual component of the
user. With this model, some expectations about the FDG structures can be formed
by the system. When receiving input from the user, the system will attempt to match
the input from the user with the (partial) structures that can already be formed at
the FDG levels.

These expectations are based on the dialogue model that we presented in Chapter
3, and the current state of the dialogue. Forming expectations can help with speech
recognition and input processing. From the set of possible communicative acts that
the system expects the user to perform, some possibilities for parts of the FDG repre-
sentations can be listed. The events in the dialogue can be linguistic or non-linguistic,
but in this chapter we focus on linguistic events. For example, when the system has
given the user an instruction, the system expects the user to comply with his instruc-
tion and inform the system of this. Alternatively, the system may expect the user to
request explanation about the current instruction (e.g., “How long should I stir the
water?”).

Using the dialogue model is also helpful in interpreting an utterance: the vocabu-
lary of the speech recognizer can be adapted to the expected events, which will yield
greater confidence and a smaller word error rate in the recognized utterances. Also,
some beliefs about the context will help with the parsing of the input to the higher
FDG levels. For example, a question starting with the words “Can you...?” can be
interpreted either as a query-if (“Can you understand Dutch?”) or as a request (“Can
you tell me what time it is?”). The interpretation of such indirect speech acts may
benefit from a framework where the system expects one of these speech acts, but not
the other, depending on factors such as the current (joint) goal or whether certain
information is present in the mutual beliefs of the participants. We will present an
algorithm for the interpretation of such utterances in Section 6.4.

There is no one-to-one mapping from a communcative intention to a natural lan-
guage utterance; there are many different FDG structures that can result from one
particular communicative intention. One aspect that can facilitate the process is
that the system only has to distinguish between the different expectations (in the ex-
ample mentioned above: message(U, inform, performed(U, A)) and message(U,

query-ref, info(A, Property, G))). This means that the system only has to find
out which part(s) of the FDG structure are different for the possible expectations.
Based on those differences, it is easier to find the relevant information in the parsing
process when receiving input from the user.

An advantage of using FDG is that it allows us to encode various pieces of infor-

132

6.2 EXPECTATIONS IN FDG

6

mation on different levels, that can all be used to distinguish between the different
expectations. Parsing to FDG structures on the morphosyntactic and representa-
tional level is quite feasible, as we will see in the next sections, but parsing to the
interpersonal level and eliciting the communicative intention is much more difficult.
On the other hand, expectations for the upcoming input are more certain on the
higher levels; while it is difficult to predict the morphosyntactic structure of a certain
communicative intention, we have noticed that predicting partial structures on the
interpersonal and representational levels is easier. We can use the expectations that
we base on our dialogue models together with the results of parsing on all four levels,
which allows us to match input with expectations with a higher degree of certainty
and robustness than if we would only have one level on which to match input with
expectations.

6.2.1 Translating the dialogue model to FDG expectations

We can construct a number of different options for the upcoming dialogue move that
the user will perform, based on the dialogue model that we have presented in Chapter
3. Then, these options are translated to partial FDG structures on the different levels,
to represent the expectations for the different options. When a dialogue move from
the user is detected, it will be parsed to (partial) FDG structures and compared to
the expectations.

In this subsection we will treat an example of how expectations can be formed for
partial FDG structures after the system gives an instruction to the user. To keep the
examples clear and simple, we will treat only two options between which the system
has to distinguish: the user informs the system of his successful completion of the task
(message(U, inform, performed(U, A))) and the user asks for certain information
about the current task (message(U, query-ref, info(A, Property, G))).

Apart from specific expectations that will distinguish these two options, we can
also define some general expectations about the FDG structures that we expect to be
present in both options. For example, on the interpersonal level, there will probably
be one move, consisting of one discourse act (which specifies whether the user informs
the system that he has performed the task in question, or asks for explanation about
the task). An additional discourse act with more information might be present (a
request for a new instruction, for example), but in this section we will solely discuss
the main discourse act.

Translating these general expectations to lower levels, we can predict that the dis-
course act corresponds with one state-of-affairs (denoted by e) on the representational
level, and on the morphosyntactic level with one clause. On the representational level,
the user is usually the Actor, the object that he performed (or should perform) the in-
struction on is expected to be the Undergoer, and the action he performed is expected
to be a function (denoted by f).

Expectations for message(U, inform, performed(U, A))

When the user informs the system that he has performed the requested action, the
structure on the interpersonal level will probably look like this:

133

PARSING AND GENERATING NATURAL LANGUAGE 6.2

(Fi : DECL (Fi)) (Pi)S (Pj)A
(Ci : [

(- expression of success -)FOC

(- (part of) instruction -)TOP

] (Ci))

The sentence type Fi is a declarative, and the discourse act has two participants:
(Pi) as the speaker and (Pj) as the addressee (note that the S and the A on the
interpersonal level stand for Speaker and Addressee and are not the same as A and
U for Actor and Undergoer on the representational level, or S and U for System and
User that we use throughout this thesis). The communicated content Ci contains two
parts: an expression of success that is the focus of the utterance, and the instruction
(or part of it) that is the topic of the utterance.

On the representational level, one discourse act corresponds with one state-
of-affairs (denoted by e). Again, the structure will most probably contain referring
expressions to (part of) the instruction, the user is expected to be the Actor, the
object that he performed the instruction on is expected to be the Undergoer, and
the action he performed is expected to be a function (denoted by f). Most likely, a
negative modifier will not be present in the structure.

We cannot construct very accurate expectations at the morphosyntactic level,
beside the fact that the utterance will most likely be declarative, as we have already
seen on the interpersonal level. Most likely, there will be one clause (corresponding to
the one discourse act on the representational level). Some words that are associated
with a successful action might be present, such as ‘done’ or ‘succeeded’. However,
attention should be paid to the possible presence of a negative term in combination
with one of these words; e.g., “I didn’t succeed” is obviously not an expression of
success.

Expectations for message(U, query-ref, info(A, Property, G))

There are a few features that are likely to be present in an utterance from the user
asking the system for more information. The user will most likely state the specific
aspect of the instruction that he needs additional information about, and the sentence
type of the utterance will most likely be a question. On the interpersonal level,
the structure will probably contain:

(Fi : INTER (Fi)) (Pi)S (Pj)A
(Ci : [

(- property -)FOC

(- (part of) instruction -)TOP

] (Ci))

As we have said, the sentence type (Fi) is interrogative. There are two participants
of the discourse act: Pi as the speaker and Pj as the addressee. The communicated
content Ci now consists of a property that is the focus of the sentence (e.g., duration,

134

6.3 NATURAL LANGUAGE PARSING WITH FDG

6

temperature, size) and the instruction (or a part of it) that is the topic of the sentence.
For example, when the user asks: “How long should I stir the water?”, the instruction
‘stir the water’ is the topic of the sentence, and the property ‘how long’ is the focus.

The structure on the representational level is expected to contain a state-of-
affairs (denoted by e), a reference to the instructed action (denoted by f), and a
reference to a property of the instructed action.

Again, we cannot make an accurate expectation of the representation of a com-
municative intention on the morphosyntactic level. The utterance is most likely a
question and may therefore contain wh-words such as ‘what’, ‘how’ or ‘why’. The ut-
terance most likely contains words that indicate parameters of the instructed action,
such as, in this case, ‘duration’, ‘time’ or ‘(how) long’. Additionally, words that refer
to (parts of) the instruction and/or objects may be present, although they may be
absent if ellipsis is used (e.g., when the user simply asks “How long?”).

6.3 Natural language parsing with FDG

The translation from a communicative intention in the conceptual component to a
representation on the interpersonal and representational levels is done through the
process of formulation. For interpreting input and inferring the speaker’s intentions
from it, we need to focus on reversing this process: eliciting the communicative in-
tention from the speaker’s utterance. This is a non-trivial process, as there is no
one-to-one mapping from a natural language utterance to a communicative intention
and vice versa.

In order to automatically transform a transcribed utterance to a communicative
intention, we need to go ‘backwards’ through the four levels of representation. A repre-
sentation that dissects the text or speech from the input module into morphosyntactic
constituents can be reasonably well achieved by any off-the-shelf speech recognition
and/or parsing technology, with small modifications to generate FDG structures on
the morphosyntactic level instead of another hierarchical representation of the syntax.
The difficulties will be in deriving the representational and interpersonal level from
the morphosyntactic level and the input utterance, and transforming the structures
on the representational and interpersonal levels to a communicative intention.

FDG is a relatively new grammar theory, and our parser which can translate
morphosyntactic structures into corresponding structures on the interpersonal and
representational level [128] [80] is the first to do so. The algorithm involves a way
to parse utterances to a morphosyntactic representation, an algorithm to compute
the structure at the representational level given the structure at the morphosyntactic
level, and an algorithm to compute the structure at the interpersonal level given the
structures at the representational and morphosyntactic levels. From the interpersonal
level, the utterance still needs to be matched to a certain communicative intention.
We leave this for future work.

A structure on the morphosyntactic level can be relatively easily obtained from a
fragment of natural language with a conventional parser. We will not elaborate on
this process in this thesis.

135

PARSING AND GENERATING NATURAL LANGUAGE 6.3

6.3.1 Parsing to the representational level

A Prolog parser has been developed [80] that can translate FDG structures on the
morphosyntactic level to structures on the representational level. The algorithm has
been tested on a small fragment of English; the following sentences can successfully
be parsed by the system:

• “I’m hungry.”

• “What would you like to cook?”

• “Can you do something with those ingredients?”

• “I’ll look for a recipe.”

Given a structure on the morphosyntactic level, the algorithm works in three
stages, which we will explain below. To understand the algorithm, it is convenient to
view an FDG structure as a tree, where the hierarchical structure is represented as
branches of a tree. In the example of an FDG structure that we have seen above in
Section 6.1, the Move is the top node of the tree, with the Act as its only subnode.
The Act has four subnodes: the sentence type (F), the speaker (Pi), the addressee
(Pj), and the communicated content (C).

The first stage of the algorithm is the treewalk stage, in which the nodes of the
morphosyntactic tree are, part for part, translated into partial representational struc-
tures. The result of this stage is a sequence of such ‘chunks’. This translation process
uses a lexicon that contains entries for nouns, verbs, adjectives and adverbs. Gram-
matical words, such as articles and prepositions, are represented by the structure itself
and therefore do not occur as nodes.

Each of the chunks that result from the treewalk stage has a number of combi-
nation criteria nodes, which specify how the chunks can be combined to form a tree
on the representational level. These are used in the second stage, the composition
stage. Additionally, the algorithm may use extra chunks that represent representa-
tional frames, which can be used as ‘glue’ to put the content chunks together. The
combination criteria nodes that have not been combined yet are represented as a list,
the open spots queue. The goal of the composition stage is to combine the chunks in
such a way that the open spots queue is empty. The algorithm takes the first open
spot from the queue, tries to find another node that fits it, and when such a node
is found, combines the two nodes and removes the appropriate open spots from the
queue. Prolog’s backtracking mechanism can be used whenever the algorithm is stuck
(when the open spots queue is not empty, but no matching nodes can be found).

The final phase of the algorithm is the coreference resolution phase. In this phase,
any existing coreferents are filled in in the representational structure. Besides obvious
coreference phenomena such as anaphora, this phase also resolves implicit subjects.
For example, in the phrase “I like to play chess”, the agent ‘I’ is both the subject
of ‘like’ and also, implicitly, of ‘play chess’. While this double representation is not
represented on the morphosyntactic level, it is represented as such on the represen-
tational level. The parser is only built to process such verb phrases when they are
fronted by the word ‘to’. In this case, a special coreference node is generated by the

136

6.4 PARSING INDIRECT SPEECH ACTS

6

treewalk stage. This node is ignored by the composition stage, but resolved in the
coreference resolution stage, when it is replaced with a node that corresponds with
the morphosyntactic subject of the clause.

6.3.2 Parsing to the interpersonal level
Though we have not developed an algorithm to translate structures from the mor-
phosyntactic and representational levels to the interpersonal level, we envision it as
a similar algorithm to the process that we have explained above. However, there are
some aspects of this process that make it a bit more complicated. For example, in-
formation from the morphosyntactic and representational levels has to be combined.
This makes the process a two-dimensional algorithm, so to speak.

Also, parsing to the interpersonal level introduces some extra problems such as
non-literal interpretation. This may require some extra ‘non-literal interpretation’
algorithms. We will elaborate on one such algorithm, which deals with the interpre-
tation of indirect speech acts, in the next section.

There are, however, some partial structures that we can already derive from
lower levels. For example, we can use syntactic information such as left disloca-
tion (e.g., “It is the red pan that I can’t find”), which points to a topic/comment or
focus/background distinction. Also, information from the phonological level can be
used for this distinction (stress and tonal patterns). For the distinction between topic
and comment, the contextual component plays an important role, since it contains
the dialogue history so far; the part of the input utterance that has already been
mentioned before in the dialogue is then likely to be the topic.

Additionally, some standard translations may be present in a lexicon, similarly
to the lexicon of tree chunks that the algorithm uses. For example, the participants
(speaker and addressee) can be extracted from the structures on the lower levels.
Operators such as +id and +s can be extracted from indicators such as the presence
of a definite article in the morphosyntactic structure.

6.4 Parsing indirect speech acts
In this section, we will present an example of one of the problems that may arise
in natural language processing when we try to translate an FDG structure from one
level to a higher level, and finally, to a communicative intention. As with many of
these processes, we need extra information than is present in the utterance itself (or
in the FDG structure) in order to make the correct translation. When using FDG
for the generation of utterances, communicative intentions are already instantiated as
sentence types on the interpersonal level. This means that in the process of parsing
an utterance, information from the morphosyntactic level can be directly used to
construct (part of) the communicative intention of the utterance.

As we have pointed out above, there is no one-to-one correspondence between
communicative intentions and natural language utterances. A communicative inten-
tion can be instantiated into different sentence types. For example, a request can
be instantiated as an interrogative (“Can you please stir the water?”), an imperative
(“Stir the water!”), or a declarative (“You have to stir the water.”). The reverse is of

137

PARSING AND GENERATING NATURAL LANGUAGE 6.4

course also true: a specific sentence type can originate from any number of commu-
nicative intention types, meaning very different things. For example, an interrogative
can be a real question (“What time is it?”), a test question (“How much is 2 + 2?”),
a request (“Can you pass the salt?”), an expression of surprise (“Are you serious?”),
or a compliment (“Did you know that you look really good in that dress?”).

This poses an issue in natural language parsing that can only be resolved by
taking into account the context of the utterance. For example, the question: “Can
you turn on the microwave?” can be, depending on the circumstances, interpreted in
a direct sense as a question about someone’s physical abilities or in an indirect sense
as a request to turn on the microwave. Indirect speech acts are speech acts in which
the communicative intention does not match with the communicative act; e.g., an
interrogative that is an instantiation of a request for action, and not, as it may seem
at first sight, a question: “Can you tell me what time it is?” The difference is clear to
see in the expected responses. If the question “Can you turn on the microwave?” is
meant as a request for action, the appropriate response is to turn on the microwave.
However, when it is meant as a real question, the expected answer is either “Yes” or
“No”.

The relation between the linguistic form of an utterance and its underlying com-
municative intention is a complex matter (see e.g., Beun and Piwek [14], Levinson
[88], Searle [111]). Although surface features such as wh-words (what, why, etc.),
prosodics, and the grammatical form of the sentence may considerably contribute to
the determination of the speech act, the relation is also determined by contextual
cues, such as the participants’ physical abilities. So, when a user is exploring the
functionalities and capabilities of his new kitchen assistant, the question may well be
interpreted as a real question, while in the context of a recipe preparation dialogue,
the question should more likely be interpreted as a request for action.

When some of these contextual factors are known, such as the goal of the dialogue,
we can use surface features of an utterance to elicit its communicative intention and
yield a correct result in most cases. In the DenK-project [29], a computational frame-
work was developed for the detection of the communicative intention of utterances
that contain modal verbs, such as ‘can’, ‘would’ and ‘must’ [13]. This framework is
part of a dialogue system that can conduct dialogues about an electron microscope
domain. The architecture of the system reflects a natural dialogue situation where a
user has direct access to the domain of discourse (by pointing or direct manipulation)
or indirectly by symbolic means (communication). Here, we present an adaptation
of this framework for use in a task-oriented (instruction) dialogue where the system
assists the user with the preparation of a recipe.

The basic functionality of the algorithm is as follows. If an utterance by the user
contains a modal verb or the verb ‘want’, the system uses a special parsing algorithm
to parse the utterance into a so-called verb-construction. The verb-construction con-
tains particular characteristics of the utterance that contribute to the interpretation
of the speech act, such as the modal verb in question, the sentence type (declarative
or interrogative), and the actor (system or user). Based on a combination of these
characteristics, the system uses a collection of speech act assignment tables to look
up the desired interpretation.

So, for instance, the example that we mentioned above, “Can you turn on the mi-

138

6.4 PARSING INDIRECT SPEECH ACTS

6

crowave?”, contains the modal verb ‘can’, has an interrogative form, and the system is
the actor of the verb phrase that follows the modal verb (‘turn on the microwave’) (see
Beun et al. [14]). Since we assume the task-oriented context of a recipe preparation
dialogue, we abandon the literal meaning of the utterance, and the system will look
up the meaning of the utterance in the table for the modal verb ‘can’. The utterance
will be interpreted as a request, in this case a request for switching on the microwave.
Below, we will treat in more detail how the system reaches this conclusion.

Although the linguistic expressions uttered by the user may take an enormous
variety of surface forms, the DenK-system distinguishes only a limited number of
speech acts: RI (request for information), RA (request for action) and RI POS (request
for information about a possibility). We have adapted the algorithm for our system
and use query-if, query-ref, request, and inform as the results of the algorithm.

6.4.1 Special verbs and the verb-construction

In order to determine the communicative intention of the utterance, the system uses
‘special verbs’ that pertain to relations between the dialogue partners and the domain
information. We distinguish between modal verbs (can, will, etc.), and three types
of other verbs: ‘tell’, ‘ask’, and ‘know’. These verbs all stand for categories of verbs
that have a similar meaning; for example, ‘inquire’ falls under the category ‘ask’, and
‘believe’ falls under the category ‘know’. Other verbs, which pertain to the domain,
are called domain verbs (cook, cut, take, stir, turn on, etc.).

Utterances by the user are transformed into so-called verb-constructions, repre-
sented in BNF-notation: [13]

VERB CONS(partner, verb1, polarity, partner, verb2, sentence type,

domain info)

partner :: = S | U | nil

verb1 :: = modal | want | nil

modal :: = can | could | may | must | might | shall | should

| will | would

polarity :: = pos | neg

verb2 :: = tell | ask | know | nil

sentence type :: = dec | int

domain info :: = method | prop-if | prop-ref

The partner (S for System, U for User) occurs twice in this framework: the first
time as the subject of verb1, the second time as the (usually implicit) subject of
verb2. Verb1 is the modal auxiliary or the verb want; if the main verb of the sentence
is another verb, the value of this field will be nil. Furthermore, it should be noted
that only when verb1 is want there can be a difference between the two occurrences
of partner in the verb-construction; compare ‘I want to know...’, where the subject
of ‘want’ is the same as the (implicit) subject of ‘know’ with ‘I want you to know...’,
where the subject of ‘want’ (which is ‘I’) is not the same as the subject of ‘know’

139

PARSING AND GENERATING NATURAL LANGUAGE 6.4

(which is ‘you’). The values pos and neg in the field polarity mean that the sentence
is, respectively, positive or negative.

Verb2 is the second verb in the sentence; we use tell, ask and know as prototypical
verbs to represent the verb categories mentioned above, but they can be replaced with
others, as we have mentioned above. If no such verb occurs in the sentence (i.e. when
verb2 is either not present in the utterance or it is a domain verb such as ‘cook’ or
‘turn on’), it is represented as nil in the verb-construction.

The field sentence type represents the sentence type: declarative (dec) or interrog-
ative (int). Imperative sentences are not included in the system, because they do not
occur in combination with modal verbs (sentences such as “Can turn the microwave
on!”). Finally, domain info represents the information about the kitchen domain (the
communicated content). We make a distinction between methods, which do not have
a value and represent actions that can be performed in the domain (e.g., ‘(to) turn
on the microwave’), and content that has a value, which we divide into propositions
(prop-if) on the one hand, which have a truth value (e.g., ‘whether we have white
vinegar’) and properties (prop-ref) on the other hand, which have a string as a value
(e.g., ‘how long I should stir’).

Because the verb-construction was developed specifically for use in an instruction
system, we assume that it only parses utterances that are directed to the system, in a
single-user situation. Therefore, the word ‘you’ in the utterance to be parsed is always
the system (S) and ‘I’ is always the user (U). The example that we presented earlier in
this section (“Can you turn on the microwave?”) is represented in a verb-construction
as VERB CONS(S, can, pos, nil, nil, int, method).

Other examples of sentences with their representation in the verb-construction
are:

“May I ask you whether we have white vinegar?” →
VERB CONS(U, may, pos, U, ask, int, prop-if)

“I want you to turn on the microwave.” →
VERB CONS(U, want, pos, S, nil, dec, method)

“I want you to tell me how long I should stir.” →
VERB CONS(U, want, pos, S, tell, dec, prop-ref)

6.4.2 Speech act assignment for utterances with ‘can’

In this subsection, we present our adapted version of the table for the modal verb
‘can’. The DenK-tables for the other modal verbs [13] can be adapted in a similar
manner. The resulting values in the tables are, as mentioned above, inform, request,
query-if, and query-ref. We use query to generalize over query-if and query-ref,
which we have found to correspond with, respectively, prop-if and prop-ref, as we
will explain below. Additionally, * indicates that the utterance is inadequate, whether
pragmatically, semantically or syntactically. Utterances of this type are not expected,
but if they do occur, they are clearly a case for an error handling module, albeit on a

140

6.5 CONCLUSIONS AND FUTURE WORK

6

CAN tell ask know nil
method prop method prop method prop method prop

U dec * * * * * * inform *
U int request * request query * query query *
S dec * request * * * * request *
S int * request * * * * request *

Figure 6.2: Speech act interpretation of VERB CONS(partner1, can, pos, partner2,

verb2, sentence type, domain info), where partner1 equals partner2.

different level than the error handling that we present in Chapter 7. Since we do not
treat problems in input parsing in Chapter 7, we leave this for future work.

All possible instantiations of sentences of the form ‘(partner) can (verb1) (do-
main info)’ (e.g., “You can turn on the microwave.”) and ‘Can (partner) (verb1)
(domain info)?’ (e.g., “Can you tell me whether we have white vinegar?”) are sum-
marized in Table 6.3, which can be found at the end of this chapter. For these
sentences, we use ‘(to) turn on the microwave’ as method, and ‘how long I should
stir’ as prop-ref. To keep the size of the table somewhat manageable, we have only
specified sentences with prop-ref in this table; sentences with prop-if yield the
same results, except that utterances featuring prop-if yield query-if, where utter-
ances featuring prop-ref yield query-ref. E.g., the result of “Can I ask you how
long I should stir?” (where domain info is prop-ref) is query-ref, while the result
of “Can I ask you whether we have vinegar?” (where domain info is prop-if) is
query-if.

In this table, we have indicated, for instance, that the sentence “I can know how
long I should stir” yields a pragmatically inadequate interpretation in the current
context. While this sentences is grammatically correct, it does not make sense in the
recipe preparation context and is therefore indicated in the table as pragmatically
inadequate (*). As an example of a pragmatically felicitous utterance, the sentence
“Can you turn on the microwave?” is classified as a request.

The interpretations in this table were decided based on our intuitions as natural
language users. The question of pragmatic correctness (and interpretation) of some
sentences is more difficult than for others; e.g., the meaning of utterances such as “I
can tell you to turn on the microwave” is the subject of more debate than utterances
such as “Can you tell me how long I should stir?”, which is quite straightforward in
the current context.

We have summarized this list of results in a smaller and much more concise way
in Table 6.2. The rows in the table represent the partner and sentence type, while the
columns represent verb2 and domain info. Tables of this type can be constructed for
all different modal verbs.

6.5 Conclusions and future work

In this chapter, we have shown a possible way of interpreting and formulating nat-
ural language utterances that a BDI-based system could use for its communication

141

PARSING AND GENERATING NATURAL LANGUAGE 6.5

with a human user. For this, we use Functional Discourse Grammar, which consists
of a grammatical component with four levels (interpersonal, representational, mor-
phosyntactic, and phonological), a conceptual component, which we take to be the
BDI reasoning engine of the system, and a contextual component, which contains
extra information that is needed to formulate or interpret the utterance, and in our
framework is part of the beliefbase of the system.

In addition to a general tactic for interpreting natural language utterances, we have
focused on the interpretation of indirect speech acts that contain modal verbs, and
shown that it is possible to extract their intended meaning without considering the
meaning of the modal verbs themselves. Given a number of contextual factors of the
interaction, such as the type of dialogue (task-oriented, information-seeking, etc.), the
meaning of an indirect speech act can be based on a small number of characteristics of
the utterance. This appears to be a promising way to deal with these indirect speech
acts.

As we have defined in previous chapters, anything that does not fit in the dialogue
model is an error. In terms of expectations, that means that any input that cannot
be matched with one of the expected responses in the current state is an error. In
the next chapter, we will elaborate on the detection and handling of errors.

As future work, we would like to extend the parsing algorithm that we have pre-
sented in this chapter to make translations between all levels of FDG. Also, a more
detailed implementation of the contextual component is in order; however, as we have
explained in this chapter, the content of the contextual component is a complicated
matter and may consist of a large semantic database.

A linguistic issue that we have encountered in human-human dialogues is the prob-
lem with different uses of ‘okay’ by the user after the system has given an instruction
[66]. In some cases, the user means that he has performed the task in question and
is ready for the next instruction, but in some cases it merely means that the user
has understood the instruction and will start performing the task. A possible way to
handle this is to set a default meaning for ‘okay’ and then leave the exception cases
to an error repair module.

Another issue for future work is to extend the system for the indirect interpretation
of speech acts that we have presented in Section 6.4. The table for the interpretation
of utterances with the modal verb ‘can’ that we have presented in this chapter is only
one of the 11 tables that make up the total system: nine tables for the nine modal
verbs, one for the verb ‘want’, and a table for utterances that have a domain verb as
the main verb. This also involves an additional case for error handling: the utterances
that are marked as incorrect (a * in the tables in this chapter) should be interpreted as
errors and therefore require an appropriate response from the error handling module.

As we have mentioned in the introduction of this chapter, dialogues and dialogue
acts are generally multifunctional [28]. In the presented algorithms, we have focused
on eliciting the main domain-related function of discourse acts (e.g., the instruction).
This model can be enriched by expanding the algorithm to elicit additional commu-
nicative functions (e.g., dialogue feedback such as time and turn allocation, politeness
functions, and so on). Then, it would also be interesting to classify the dialogue acts
and their communicative functions in the DIT++ taxonomy [28]. This will allow our
work to be coupled to the ISO standard based on the taxonomy, which is currently

142

6.5 CONCLUSIONS AND FUTURE WORK

6

being developed [30]. This will provide a better way to compare our models and
algorithms to other work on the subject and open possibilities to link our work to
other algorithms and dialogue systems.

Utterance VERB CONS result
I can tell you to turn on the microwave (U, can, pos, U, tell, dec, method) *
I can ask you to turn on the microwave (U, can, pos, U, ask, dec, method) *
I can know to turn on the microwave (U, can, pos, U, know, dec, method) *
I can turn on the microwave (U, can, pos, U, nil, dec, method) inform

Can I tell you to turn on the microwave? (U, can, pos, U, tell, int, meth) request

Can I ask you to turn on the microwave? (U, can, pos, U, ask, int, method) request

Can I know to turn on the microwave? (U, can, pos, U, know, int, method) *
Can I turn on the microwave? (U, can, pos, U, nil, int, method) query-if

You can tell me to turn on the microwave (S, can, pos, S, tell, dec, method) *
You can ask me to turn on the microwave (S, can, pos, S, ask, dec, method) *
You can know to turn on the microwave (S, can, pos, S, know, dec, method) *
You can turn on the microwave (S, can, pos, S, nil, dec, method) request

Can you tell me to turn on the microwave? (S, can, pos, S, tell, int, method) *
Can you ask me to turn on the microwave? (S, can, pos, S, ask, int, method) *
Can you know to turn on the microwave? (S, can, pos, S, know, int, method) *
Can you turn on the microwave? (S, can, pos, S, nil, int, method) request

I can tell you how long I should stir (U, can, pos, U, tell, dec, prop-ref) *
I can ask you how long I should stir (U, can, pos, U, ask, dec, prop-ref) *
I can know how long I should stir (U, can, pos, U, know, dec, prop-ref) *
I can how long I should stir (U, can, pos, U, nil, dec, prop-ref) *
Can I tell you how long I should stir? (U, can, pos, U, tell, int, prop-ref) *
Can I ask you how long I should stir? (U, can, pos, U, ask, int, prop-ref) query-ref

Can I know how long I should stir? (U, can, pos, U, know, int, prop-ref) query-ref

Can I how long I should stir? (U, can, pos, U, nil, int, prop-ref) *
You can tell me how long I should stir (S, can, pos, S, tell, dec, prop-ref) request

You can ask me how long I should stir (S, can, pos, S, ask, dec, prop-ref) *
You can know how long I should stir (S, can, pos, S, know, dec, prop-ref) *
You can how long I should stir (S, can, pos, S, nil, dec, prop-ref) *
Can you tell me how long I should stir? (S, can, pos, S, tell, int, prop-ref) request

Can you ask me how long I should stir? (S, can, pos, S, ask, int, prop-ref) *
Can you know how long I should stir? (S, can, pos, S, know, int, prop-ref) *
Can you how long I should stir? (S, can, pos, S, nil, int, prop-ref) *

Figure 6.3: Verb-constructions and indirect interpretations for positive sentences with the
modal verb ‘can’

143

7 Error Handling

To err is human, but to really foul
things up you need a computer.

Paul Ehrlich

The framework that we presented in Chapter 5 can be used to construct much
simpler versions of the example dialogue that we presented in Chapter 1. In this
chapter, we will present error handling strategies that can detect and repair errors of
different types, so that dialogues in which errors occur can still be successful. First,
let us again consider the example dialogue from Chapter 1:

User: I would like to prepare French toast.
System: That’s not possible, we don’t have bread available.
User: Can you give me another recipe for breakfast?
System: Would you like to make a poached egg?
User: Alright, I would like to make a poached egg.
System: Okay, I’ll teach you how to poach an egg. First, you have to boil
some water.
User: Can you turn on the stove for me?
System: I’m not able to turn on the stove.
User: Okay, I will turn on the stove. (pause) I’ve boiled water.
System: Add some vinegar to the water.
(User opens a red vinegar bottle)
System: That’s the wrong bottle. Please add white vinegar.
User: We don’t have any white vinegar.
System: We do have white vinegar. I know this because I bought it.
User: Okay, you’re right. I’ve added vinegar to the water.
System: Crack an egg into a soup ladle.
User: I’ve cracked the egg into a soup ladle.
System: Stir the boiling water.
User: How long should I stir the water?
System: I don’t know.
User: Okay, I’ve stirred the water.

145

ERROR HANDLING 7.0

System: Drop the egg into the center of the water.
User: I’ve dropped the egg into the water.
System: Now wait 3-4 minutes.
(3 minutes later)
User: I’ve waited 3-4 minutes.
System: Remove the egg from the water.
User: I’ve removed the egg.
System: You have now poached an egg! Will you be able to do it by
yourself next time?
User: Yes.
System: Okay, we’re done!

Compare this with the dialogue that results from the rules in Chapter 5, which is
much simpler:

User: I would like to prepare a poached egg.
System: I will teach you to poach an egg. Please boil some water.
User: I have boiled water.
System: Please add some vinegar to the water.
User: I have added some vinegar.
(etc., until the recipe is done)
System: You have now poached an egg. Will you be able to do it by
yourself the next time?
User: Yes.
System: Okay, we’re done!

Apart from the first two utterances and the last three dialogue turns, this sec-
ond dialogue only consists of instructions (by the system) and confirmations that the
instructions have been performed (by the user). In contrast, the first dialogue con-
tains a considerable number of deviations from this ‘flawless’ dialogue. All of these
deviations are handled successfully and after each of these deviations, the dialogue is
resumed, eventually concluding successfully after the recipe is finished.

In this chapter, we present a framework for handling errors in cooperative task-
oriented dialogues. We will present a set of rules that can detect and repair errors on
the speech act level in dialogues that are produced by the system that we presented in
Chapter 5. Just as in Chapter 5, we take communication actions with a speech act and
a communicated content as primitives of communication. This means that we abstract
from speech recognition errors and other purely communicative errors. Therefore, we
will assume a perfect communication channel and matching vocabularies and not
handle errors in those categories. In the first section of this chapter, we will elaborate
on the different types of errors and specify which errors we will treat in this chapter.

The framework that we present is tailored specifically to address errors in coop-
erative task-oriented dialogues. Error handling in other types of dialogues may be
different [103], depending on factors such as the roles of the participants, the type of
goal or goals in the interaction, and the extent of cooperativity between the partici-
pants. Since we take a cooperative system as our basis, we will assume that there are

146

7.1 DEFINITION OF ERRORS

7

no errors pertaining to the goals of the system. This leaves the beliefs and intentions
of the user and the system as possible sources of errors.

The general idea of errors is comparable to failed felicity conditions (cf. Austin
[9]) of the contributions in the dialogue, mainly focusing on two possible problems:
avoiding inconsistencies in the dialogue partners’ mutual beliefs, and following the
dialogue model for the applicable dialogue types as presented in Chapter 3. This
means that any input that is inconsistent with the system’s beliefbase or with one of
the next steps in the dialogue model will have to be addressed as an error. When
detecting an error, the error is categorized so that the types of errors can be connected
to their respective repair strategies. Then, the repair is initiated.

Section 7.1 focuses on defining errors. First, we will discuss the scope of this
chapter (7.1.1), and specify which types of errors we do not treat in this thesis (7.1.2).
In 7.2, we present the types of errors that occur in the dialogues that our system will
conduct: inconsistencies between the dialogue partners’ mutual beliefs (7.2.1) and
inconsistencies between the dialogue partners’ intentions (7.2.2). In Sections 7.3 and
7.4, we will respectively treat the detection and the repair of these errors. Section
7.3 is divided in subsections in which we present rules for the detection of errors in
different types of input: inform (7.3.1), query-if (7.3.2), query-ref (7.3.3), request
(7.3.4), and performed actions (7.3.5). Section 7.4 focuses, again, on the two types
of errors: repairing belief discrepancies (7.4.1) and repairing intention discrepancies
(7.4.2). In Section 7.5, we treat some ideas for the handling of multimodal errors
with the help of the dialogue score that we presented earlier in this thesis. In 7.6,
we will present how we validated our work, showing how the example dialogue from
Chapter 1 can be produced with the rules that we present in this thesis (7.6.1), discuss
the implementation of error handling techniques (7.6.2), and like in Chapter 5, some
issues with 2APL that were encountered in the implementation (7.6.3). Then, we will
finish this chapter with conclusions and future work in 7.7.

7.1 Definition of errors

In order to be able to detect errors, we first have to define what errors exactly are.
As we have seen in Chapter 2, there are different ways in which a dialogue can be
successful or unsuccessful, most notably distinguishable in success at the utterance
level and success at the dialogue level. We take the dialogue model in Figure 3.6 as
the norm for successful dialogues.

As we have stated in Chapter 3, an erroneous dialogue move is a move that holds
at least one of the following conditions:

1. It is an unexpected contribution; that is, it is inconsistent with the addressee’s
intentions.

2. It signals or introduces an inconsistency in the mutual beliefs of the dialogue
partners.

The error handling tactics that we present in this chapter are general and unified,
and can therefore be used to construct error handling modules for any task-oriented

147

ERROR HANDLING 7.1

dialogue system that adheres to the principles that we have presented in this thesis
(requirement RE3).

7.1.1 Scope of this chapter

In this subsection, we distinguish different levels of communication (and therefore,
potential errors) and explain which types of errors we will cover in this thesis. Clark
[40] presents four levels of action:

Level 4 Proposal and consideration

Level 3 Signaling and recognition, or meaning and understanding

Level 2 Presentation and identification

Level 1 Execution and attention

If everything goes right, there are four joint actions that are performed by the
speaker and hearer together. On level 1, the speaker is articulating words and the
hearer is attending to the speaker’s voice. On level 2, the speaker presents a signal and
the hearer is identifying the words of the speaker. On level 3, the speaker is performing
a speech act (e.g., asking a question) to the hearer and the hearer recognizes what the
speaker means. On level 4, the speaker proposes a joint project (e.g., the continuation
of a conversation) and the hearer accepts that proposal.

The upper three levels can be roughly compared to Austin’s [9] terminology: level
2 represents the locutionary aspect of a dialogue act, level 3 represents the illocu-
tionary aspect and level 4 represents the perlocutionary aspect. Clark’s four levels of
interaction are also similar to the ones that Allwood [6] distinguishes (contact, per-
ception, understanding, and reaction) and the ones which are distinguished in DIT
[27] (attention, perception, understanding, evaluation, and execution; presumably,
evaluation and execution together correspond to Clark’s Level 4).

On each of these four levels, something can go wrong. If none of the levels have
been executed successfully, the hearer has not noticed that the speaker has executed
communicative behavior. If only level 1 is successful, the hearer has only noticed that
the speaker has executed some form of communicative behavior, but not understood
any words (e.g., because of a noisy channel). If only level 1 and 2 are successful, the
hearer has identified the speaker’s presentation correctly, but not been able to con-
struct the full meaning of the utterance (e.g., because the speaker mentions a person
or object that the hearer cannot identify). If only levels 1, 2 and 3 are successful, the
hearer has understood what the speaker meant by his utterance, but is not considering
accepting the joint project (e.g., the hearer is uncooperative).

Errors on higher levels can be caused by errors on lower levels. If a contribution of
dialogue partner A is verbal, possible causes for any problem are that dialogue partner
B misheard A’s utterance, that B misconstrued (misunderstood) A’s utterance or that
A made a slip of the tongue.

Errors are not always bad or unexpected. There are communicative probes [40] that
are carried out with the expectation that they may not succeed. These communicative
probes are specifically tailored to one of the levels that we mentioned above. An
example of a communicative probe on level 1 (Hearing) is “Is anyone home?”, which

148

7.1 DEFINITION OF ERRORS

7

may fail if there is nobody there that hears the utterance. On level 2 (Identification),
one could ask “Do you speak English?” in order to test whether the hearer is able to
identify the speaker’s signal, and so forth for the higher levels. These probes can be
compared to giving feedback on different levels with dialogue control acts [94].

Because the coding and decoding of messages (via these different layers) may be
faulty, there can be ‘feedback loops’ [121] on every level of communication. For each
level, these feedback loops can be different. For example, on level 4, if the addressee
is unwilling to take up the joint project, the initiator of the joint project may try to
convince the addressee, while a feedback loop on level 3 can involve an explanation
by the initiatior that clarifies the unidentified referent.

In this work, we only deal with errors on level 3 and 4, although we will treat
errors on level 1 and 2 briefly later in this section. A major difference between errors
on level 1 or 2 and errors on level 3 or 4 is that the former levels pertain to the
communication channel and not to the BDI configuration of the participating agents.
For now, we abstract from errors on level 1 and 2, assuming that the interpretation on
those levels is faultless (or that errors in those levels are solved by a different process).

In the terms of Allwood [5], we assume a correct S-interpretation (where S stands
for symbol) of an utterance. S-interpretation does not take into account any belief or
stand on the factual status of the information, but solely the content of the information
itself. In other words, the hearer S-interprets a symbol if he (1) apprehends the
information, and (2) apprehends the information as if it were conventionally tied
to a symbol. Any further interpretation of the information represented by a signal
(conclusion-drawing, inference, emotional states, attitudes, behavior) are not included
in the S-interpretation of the signal.

7.1.2 Errors that fall outside the scope of this thesis

In this subsection, we will briefly specify which types of errors in dialogues we do not
handle in our system.

Speech recognition errors

In speech recognition errors, we can distinguish two types of errors: unhearings and
mishearings (misunderstandings). An example of an unhearing is:

A: “It costs five.”
B: “How much did you say?”
A: “Five dollars.”
B: “I’ll take it.” (Example from Goffman [62], p. 295)

An example of a mishearing:

A: “Have you ever had a history of cardiac arrest in your family?”
B: “We never had no trouble with the police.”
A: “No. Did you have any heart trouble in your family?”
B: “Oh, that. Not that I know of.” (Example from Goffman [62], p. 295)

149

ERROR HANDLING 7.1

An important difference between these two cases is who detects the error; in
the first case (unhearing), the addressee detects the errors, while in the second case
(mishearing/misunderstanding) it is the speaker who signals that something has gone
awry, since he gets an incorrect response from the addressee [62]. The latter case is
what Clark [40] calls ‘third-turn repair’: the first turn is the question, the second turn
is the answer (which signals an incorrect construal), and the third turn is the repair.

Speech recognition errors are more likely to occur in noisy environments [2]. The
situation gets even more difficult if we consider spontaneously spoken speech [82] [57],
since colloquial language use by human speakers is often grammatically ill-formed in
many ways. We do not deal with errors in speech recognition or in the parsing of spon-
taneously spoken speech in our system, since we take speech acts as our interaction
language. For more about recognition-based errors, see e.g. Bourguet [17].

Turunen and Hakulinen [125] state that the detection of semantic errors is quite
straightforward; if an error is detected, but the recognition confidence scores are good
(above a certain treshold), then the error is probably semantic. Since we abstract from
recognition errors, this way of narrowing down the detection of errors is not applicable
in our error handling system, although it is a good starting point for future work if we
want to implement an additional error handling module for speech recognition errors.

Error prevention and self-repair

An agent can attempt to prevent errors as much as possible by employing certain
dialogue tactics. Grounding information (regularly giving feedback) will help with
the detection of (potential) errors in an early stage. Thorough studies of feedback
can be found in Allwood’s work (e.g., on the topics of linguistic feedback [8] and
gestural feedback [7]). Adjusting oneself to the dialogue partner syntactically and
semantically is another way of preventing errors. Misunderstandings can also be
avoided by a proactive approach in the dialogue; e.g., by asking specific questions
[73]. On the other hand, to maintain a natural interaction, the agent must alternate
between this active approach and a more passive approach [109].

Another way to prevent errors is to try to find out the dialogue partner’s lack of
understanding in an early phase. Breazeal [20] mentions that there are various affec-
tive cues that humans use in order to signal their understanding or misunderstanding,
such as facial expressions, vocal prosody, and body posture. Breazeal contrasts these
with social cues such as gaze direction and feedback gestures like nods and eyebrow
movements. These cues can be used to infer the mental state of the interaction partner
and can therefore regulate the “rate and content of information transferred”.

Beun and Van Eijk [12] introduce the concept of indirect mismatches for pre-
venting errors. When the system has a reasonable expectation that the user would
adopt incorrect beliefs after receiving a planned utterance from the system, the system
changes the utterance in order to ensure that the user would not infer any incorrect
information from it. For example, if the user asks “Is this toxin poisonous?”, the sys-
tem can reasonably expect that if it replies “Yes”, the user would infer that there are
some toxins that are not poisonous. Instead, the system should reply “Yes, because
toxins are always poisonous” or something along those lines, in order to cancel the
implicature that the user could otherwise make. In contrast with these indirect mis-

150

7.1 DEFINITION OF ERRORS

7

matches, direct mismatches can be detected from the semantic content of the user’s
message. We will elaborate on direct mismatches later in this chapter.

Agents can also evaluate possible actions with respect to the consequences that
they are expected to have in the current situation. Breazeal [20] states that this is a
useful strategy; if an agent does not have such a ‘sense of value’, it cannot distinguish
whether its actions are socially acceptable, especially when the social acceptability of
action varies in different contexts. For example, calling someone by their first name
is not socially acceptable in some formal situations – some situations are so formal
that calling someone by their first name is unacceptable, even if it is someone that
one would usually call by their first name; a PhD defense is a good example of such
a situation. This tactic could be employed to prevent errors that the agent expects
to occur when performing a certain action.

In human-human dialogues, errors can be prevented with dialogue control acts.
For example, in one of the dialogues in our corpus, an instruction dialogue where A
instructed B to build a LEGO R© building from an example that only A had access
to, a lot of errors occurred. After a few instructions, B asked A to adapt his way of
giving instructions: “Just start by saying which block I need, because that’s what I
listen to first.” For now, we leave error prevention for future work.

Besides error prevention, another type of errors that we do not treat in this thesis
is self-repair. This occurs during the utterance of a dialogue contribution and may
occur in situations where, for example, the speaker detects a slip of the tongue while
speaking, or if the situation changes during the course of the utterance. Detection
(by the hearer) of self-repair can also be helpful in order to prevent misunderstand-
ings. Shriberg et al. [112] have found that using a combination of pattern matching,
syntactic and semantic analysis and acoustics, repairs within an input sentence can
be detected quite well.

Uncooperative behavior

Allwood [5] states that any failure to cooperate, whether intentionally or unintention-
ally, is a misunderstanding. When a receiver intentionally ignores the communicative
intention of the sender that is more than the S-interpretation of the utterance, he is
guilty of literalism: the receiver fails to interpret the sender’s utterance pragmatically.
For example, when a speaker utters “It’s cold”, meaning to get the addressee to close
the window, the addressee is guilty of literalism when he replies “It surely is” instead
of closing the window.

Allwood states that there is also unintentional literalism, which appears to contra-
dict his definition of literalism as an intentional failure to cooperate. Unintentional
literalism is not caused by unwillingness to cooperate, but by false inferences that are
made by the addressee. We assume that all dialogue partners are cooperative and
will therefore not intentionally fail to cooperate. Therefore, we will assume that all
errors are of the type of false inferences.

Quantitative error research

Steidl et al. [113] predict success in dialogue steps and whole dialogues in a quan-
titative manner, based on some linguistic features. Walker et al. [130] also apply a

151

ERROR HANDLING 7.2

quantitative method in error handling, using a training database of dialogues with
human users to learn the detection of problems in dialogues. While these are interest-
ing alternative approaches, we will only treat the handling of errors in a qualitative
way, in order to have a close coupling to our basic dialogue system as presented in
Chapter 5.

7.2 Examples of the two types of errors
As we have stated in Chapter 3, we define an erroneous dialogue move as a move that
holds at least one of the following conditions:

1. It is an unexpected contribution; that is, it is inconsistent with the addressee’s
intentions.

2. It signals or introduces an inconsistency in the mutual beliefs of the dialogue
partners.

These conditions roughly correspond to Clark’s fourth and third levels of action
that we introduced earlier in this chapter: a contribution that is inconsistent with the
addressee’s intentions can be called a failure of proposal and consideration (level 4),
while an inconsistency in mutual beliefs is roughly on the same level as signaling and
recognition (level 3).

In this section, we present some examples of errors in human-human dialogues.
As we have stated above, we treat two different types of errors: first of all, inconsis-
tencies between the mutual beliefs of the dialogue participants (requirement RE5),
and secondly, inconsistencies between the intentions of the dialogue partners. Since
we developed our system according to the BDI architecture, there are three parts of
the system where errors can occur: in the beliefs, in the goals, and in the intentions
of the dialogue partners. Because our system functions in a cooperative setting, we
assume that the dialogue partners have the same (joint) goals. This means that there
can only be errors in the beliefs and in the intentions of the dialogue partners. In this
section, we explore both of these error types based on occurrences in human-human
dialogues. The goal of this categorization is to connect the types of errors to their
respective repair strategies. In the next section, we will treat the detection of errors,
and in Section 7.4, we will treat repair tactics for the errors.

For every dialogue contribution by the speaker (whether it is an external action
that is being observed or a linguistic contribution), there are two possible problems:
it does not fit in the dialogue models, or it is inconsistent with the addressee’ beliefs.
Because we can assume that the dialogue partners only say things that they hold to be
true (cf. Grice’s maxim of quality [69]), the latter means that there is an inconsistency
between the dialogue partners’ beliefs, which should be resolved as soon as possible, to
avoid more errors in the future. Since the system can only conduct dialogues according
to its dialogue model, it is also important that the actual dialogue deviates as little
as possible from the model. So, to avoid dialogue breakdown if the dialogue partner’s
contribution does not fit in the dialogue models, the system should first address the
contribution (e.g., if it is a question, answer it) and then bring the dialogue back to
the dialogue model (Requirement RE2).

152

7.2 EXAMPLES OF THE TWO TYPES OF ERRORS

7

7.2.1 Inconsistencies between the dialogue partners’ mutual beliefs

The belief inconsistencies that we treat in this thesis are of the type where the
speaker’s utterance contains or presupposes information that the hearer believes to
be untrue. If the speaker’s utterance presupposes certain information that the hearer
does not believe (and neither its negation), we call this a belief gap. There are a
number of possible approaches to take when encountering a belief gap. For exam-
ple, the hearer may not accept the utterance (since believing the presupposition is a
requirement for accepting it), or alternatively, simply accept the presupposition and
add it to his beliefs. Although the case of a belief gap is an interesting one, we take a
pragmatic approach and do not treat belief gaps deeply in this thesis. If the dialogue
partner’s utterance contains presuppositions that are not present in the agent’s beliefs
(and neither are their negations), the agent will simply add this information to its
beliefs.

We will first give two examples of cases where the mutual beliefs of the participants
do not match.

A: Hello, could you tell me at what time the AF 914 from Cairo will land?
[...]
B: Well, that’s a flight from Paris...
A: Yes, but it’s coming...
B: So they probably have to transfer there.

A: Something with vegetables, something with meat.
B: Lasagna with chicken and tomatoes?
A: That’s not meat.
B: But chicken is meat.
A: No, that’s chicken.

In both of these examples, an inconsistency is detected between the beliefs of A
and B: whether AF 914 is a flight from Cairo (A’s beliefs) or Paris (B’s beliefs), and
whether chicken is meat (B’s beliefs) or not (A’s beliefs). These two cases differ in the
type of information in which an inconsistency is detected. In the first case, the flight
number (AF 914) does not match the origin of the flight (Cairo, should be Paris), so
it is factual information that A has incorrect beliefs about. In the second case, the
inconsistency is on an ontological level: B believes that chicken is a type of meat,
with which A disagrees.

The repairs that are being employed in these two examples are quite straightfor-
ward. In the first example, B detects the error and states the correct information
(“that’s a flight from Paris”). When A does not fully comply with this correction,
B gives an explanation (“they probably have to transfer there”) that is meant to
convince A that B is right. In the second example, B also simply states information
that he believes to be true that contradicts with A’s utterance (“that’s not meat”).
Just like in the previous case, A also does not comply with the correction and instead
states his own beliefs again (“chicken is meat”). B persists in his correction (“no,
that’s chicken”).

153

ERROR HANDLING 7.2

It should be noted that the handling of this type of error is not necessarily about
the factual truth of the conflicting information. It is simply a case of all participants
reaching agreement on one or the other.

Another example of this type of error is when dialogue partner A gives dialogue
partner B an instruction that B is not capable of performing. In this case, apparently
A believed that B could perform the action (otherwise he would not have given B
the instruction), with which B disagrees. Being an expert on his own capabilities, B
should then inform A of his lack of capability to perform the action in question.

Another instantiation of this type of error is the following example: a situation
where dialogue partner B performs an incorrect action (i.e. a different action than
dialogue partner A intended him to perform). The cause of this error is that B
apparently believes that he should perform another action.

A: And that one goes in the middle on top of it. Only on those two pins.
No, a bit to that side. No to– only on that edge. To the left. No, keep it
in that orientation.

In the next example, A gives B an instruction that B is trying to follow, but B
does not immediately perform the correct action (unfortunately we do not have any
information about B’s actions during this dialogue). As a repair, A keeps giving B
new instructions during the performance of the action that are meant to get B to
perform the correct action, and B keeps checking whether the action he is performing
is the correct one.

B: Like this?
A: No, eh north–south.
B: Like this?
A: No, eh in north–south orientation.
B: Like this?
A: Yes, but on the west side.
B: Like this?
A: Yes.

It should be noted that a wrong action is not always due to incorrect beliefs.
Norman [96] presents a classification of action slips: mistakes in actions that are not
due to errors in beliefs, but that are purely accidental. These action slips can be
sorted into three categories: errors in the formation of the intention, faulty activation
of schemas, and faulty triggering. For example, action schemas are triggered by certain
conditions and intentions; some variable may be incorrectly instantiated, which can
lead to action slips such as putting a glass in the fridge and the milk in the cupboard.
We do not treat these types of errors directly, but if the system observes the user
performing an incorrect action, it could be that this was an action slip instead of an
intentional action. The error can nevertheless be repaired in the same manner, as the
repair will alert the user that he is performing an incorrect action (even though it is
not caused by an error in the user’s beliefs).

154

7.2 EXAMPLES OF THE TWO TYPES OF ERRORS

7

7.2.2 Inconsistencies between the dialogue partners’ intentions
If the user performs a dialogue action that does not fit in the system’s dialogue model
at that point of the dialogue, the user apparently has different intentions than the
system expected him to have. In this case, the system should attempt to get the
dialogue back to the model (and thus to its intentions) as quickly as possible. After
all, the system can only conduct constructive dialogues according to its own plans.

To illustrate this type of error, we will first give two examples.

A: I would like to get an impression of the arrival times of airplaines from
Dublin to Schiphol, could you give me some arrival times or not?
B: Is that about airplanes that are going, eh, today?
A: Airplanes from Dublin, at what time they’re arriving in Amsterdam.
B: Today?
A: Eh, isn’t that every day?
B: Yes, but I have a lot from Dublin and sometimes there are delays and
so on, so I would like to know whether you want to know the arrival times
of today or just in general.
A: Well it’s about eh eh the day after tomorrow that’s what I’m more
interested in.

A: What do you want to eat?
B: Pasta pesto!
A: Do you want red pesto?
B: I want pasta!
A: You want pasta with pesto. There’s red pesto, there’s green pesto...
B: Eh, I would like green pesto with that.

In the first example, A does not answer B’s question (“Is that about planes that
are going today?”), but instead repeats part of his own question. A only answers B’s
question after B has explained why it is necessary for A to give him this information.
In the second example, B also does not answer A’s question (“Do you want red
pesto?”) until after B explains why he needs this information.

In the next example, B needs additional information from A in order to perform
the action correctly.

A: And on top of that, exactly on top, goes another green one.
B: Also a square one?
A: Yes, also a square one.

Since B apparently had multiple options for the object in question (“another green
one”), he asked A for more specific information; apparently, B had a green square
object and a green non-square, and therefore, expected to get sufficient information
by asking this question (“Also a square one?”).

Dialogue partners may also disagree about the state of the dialogue that they think
they are in. In the next example, B presumes that the dialogue is finished after A’s first
utterance and proceeds to close the dialogue (“thank you, bye bye”), while A meant
to give B more information. Fortunately, B has only signaled a close of the dialogue

155

ERROR HANDLING 7.3

and has not actually put down the phone, so A can give the additional information
that he meant to give (“But you have to transfer in Dordrecht and Leiden”).

A: Those leave from Tilburg to Schiphol at two minutes past the whole
hour and two minutes past the half hour.
B: Yes thank you, bye bye.
A: But you have to transfer in Dordrecht and Leiden.
B: Oh yes, thank you, bye bye.

In our error handling framework, we do not analyze what the exact cause is of
this type of error (too much information, too little information, ...), but instead, we
will attempt to behave cooperatively by answering questions and fulfilling requests
from the user at any point in the dialogue wherever possible, and additionally, alert
the user of the path of the dialogue that the system expected him to follow (e.g., “I
was expecting you to [...]”).

7.3 Detecting errors
In this section, we will present our algorithm for the detection of errors. In the next
section, we will elaborate on how we repair the errors.

As we have shown in the system architecture in Chapter 4, the error detection
process in our system can be seen as a separate agent (i.e. separate reasoning engine)
from the basic system that we presented in Chapter 5, and functions as a sort of
filter or monitor that checks all incoming messages for certain properties which signal
that there is a problem with the message in question. We can see this as similar to
checking the felicity conditions [9] for all input from the user; the conditions that we
present in this section are similar to felicity conditions, meaning that if they are not
satisfied, a repair subdialogue should be initiated.

Because the detection rules work in this manner, we present our error detection
rules sorted by type of input. In our system, the different speech acts are inform,
propose, query-if, query-ref, and request. However, because propose is only
used by the system, we do not treat it in this section. Additionally, we do treat
the observation of an action a, observe(done(a)). In this section, we will treat
the conditions that signal errors for each type of input, and activate the appropriate
error repair tactic with the content of the input in which the error was detected as a
parameter. In the next section, we will treat the different repair tactics ordered in the
two categories of intention discrepancies and belief discrepancies (requirement RE1).

Belief discrepancies and deviations from the dialogue model may occur simulta-
neously. If this happens, the belief discrepancy should always be repaired first, and
then the deviation from the dialogue model. Morante [94] shows that issues with
(tentative) mutual beliefs always have to be handled first, because otherwise they are
added to the mutual beliefs of the participants and believed to be common ground.

In the explanation of the possible errors that follows, the dialogue is between
participants A and B, and A has just made a contribution to the dialogue. If B
detects one of the problems stated below, the detected error will have to be resolved.
We will treat these repairs in Section 7.4.

156

7.3 DETECTING ERRORS

7

We separate the detection and repair of errors by having the error detection agent
call PR-rules (plan revision rules) that stand for repair tactics. We do this in order
to make it easier to re-use repair tactics if necessary. When an error is detected, the
rest of the dialogue is temporarily suspended until the error is repaired (requirement
RE4).

7.3.1 Detecting errors in inform

When A’s contribution is message(A, inform, p), there is a problem if p is incon-
sistent with B’s beliefs about the mutual beliefs of A and B. The mutual beliefs of the
participants should be consistent with their private beliefs, and if A says something
and it is not attacked by either of the participants, it will become mutually believed
by the participants. Therefore, to avoid inconsistencies between B’s private beliefs
and the mutual beliefs of A and B, if A informs B that p, and p is inconsistent with
B’s beliefbase, B should resolve this inconsistency immediately.

Presuppositions are partially taken into account, since belief inconsistencies are
already detected if only part of p is inconsistent with the system’s beliefbase. So, for
example, consider the utterance “I saw Lucy’s boyfriend yesterday.” This utterance
presupposes the proposition ‘Lucy has a boyfriend’. If A says this utterance to B,
while B believes that Lucy does not have a boyfriend, the communicated content
of the utterance (saw(A, X) ∧ relationship(Lucy, X)) is inconsistent with B’s
beliefs about Lucy’s relationship status (not relationship(Lucy, X)).

If B did not know that Lucy has a boyfriend, the utterance is still felicitous, even
though the presupposition was not (yet) in B’s beliefs about the mutual beliefs of
the dialogue partners and thus, A’s beliefs about the mutual beliefs of the dialogue
partners were incorrect. However, since B did not believe that Lucy does not have a
boyfriend, this new information is not inconsistent with his private and mutual beliefs
and therefore, B can can simply add it to his private and mutual beliefs after hearing
A’s utterance.

We do not treat the detection of presuppositions from utterances in this thesis, but
we refer to Beun and Van Eijk [12], where the notion of presuppositions is compared
to sequentiality. In the interpretation phase, the presuppositions are extracted from
the utterance. We take presup(p) to be the set of presuppositions for utterance p.

We introduce some rules in our system that watch out for input that matches the
conditions that we have just mentioned.

In the first two rules (21 and 22), belief inconsistencies are detected. If the system
disagrees with the presuppositions of p (rule 21), this has to be addressed first, before
the truth of p itself is debated (rule 22). After all, the system is not able to adequately
interpret p if it does not agree with p’s presuppositions. For example, it is impossible
to disagree with the utterance “I saw Lucy’s boyfriend yesterday” if one does not
believe that Lucy has a boyfriend; the referent Lucy’s boyfriend can therefore not be
instantiated and it is impossible to construct a proper representation of the utterance.
Therefore, the order of the rules is such that the repair tactic for disagreement with
presuppositions is called first, before the repair tactic for disagreement with the utter-
ance itself. In both cases, the repair untrue is called, with the debated information
as its argument.

157

ERROR HANDLING 7.3

(21) message(U, inform, p) <- B(not presup(p)) |

repair(presup(p), untrue)

(22) message(U, inform, p) <- B(not p) |

repair(p, untrue)

(23) message(U, inform, p) <- not I(message(U, inform,)) |

repair(p, unexpected-inform)

Figure 7.1: Detecting errors in inform

The last rule (rule 23) is activated if it was not the system’s expectation to receive
an inform message from the user. This does not necessarily mean that the dialogue
move itself is erroneous, but because the system can only conduct dialogues according
to the dialogue models, we have introduced this repair rule to ensure that the user is
aware of the reaction that the system was expecting of him.

An example of rule 21 is present in our example dialogue. The user says
send(S, inform, not available(white vinegar)) (“We don’t have any white
vinegar”), which will arrive in the system’s eventbase as message(U, inform, not

available(white vinegar)). The propositional content of the utterance, not

available(white vinegar), is clearly inconsistent with the system’s belief that white
vinegar is available (available(white vinegar)). In this case, the rule repair(not

available(white vinegar), untrue) is called.

7.3.2 Detecting errors in query-if

When A’s contribution is message(A, query-if, p), there is a problem if B does
not know whether p is true or not (rule 24). Because we do not have a closed world
assumption, the absence of p in B’s Beliefbase does not imply that not p is true. In
other words, there is a problem if neither p, nor not p is in B’s beliefbase.

There is also a problem if B believes that the presuppositions of p are untrue (rule
25). This is the case when, for example, the question “Is Lucy visiting her boyfriend
today?” is asked, and the addressee does not believe that Lucy has a boyfriend. Then,
the same repair as in the previous subsection is called, namely repair(presup(p),

untrue).
For example, the user may ask “Do we have toilet paper?”, which will arrive

in the system’s eventbase as message(U, query-if, available(toilet paper)).
Since neither available(toilet paper) nor not available(toilet paper) are in
the beliefbase, the system has no information about the availability of toilet paper
and should therefore inform the user of this.

As we have mentioned in Chapter 5, the only exception to this rule is in the
case where p is capable(X, Y). For this type of belief, we do have a closed world
assumption: the lack of belief that capable(X, Y) means that X is not capable of

158

7.3 DETECTING ERRORS

7

(24) message(U, query-if, p) <- not B(p) and not B(not p) and

not (p = capable(,)) |

repair(p, no-information)

(25) message(U, query-if, p) <- B(not(presup(p))) |

repair(presup(p), untrue)

Figure 7.2: Detecting errors in query-if

doing Y. We have already presented rules for this in Chapter 5, but for completeness
we also add the condition that p is not equal to capable(X, Y) in this error detection
rule.

It should be noted that in order to be cooperative, the system should always
answer questions from the user (requirement RE6). This means that for messages of
the type query-if and query-ref (which we will treat in the following subsection),
errors of the type of intention discrepancies do not exist. These questions should
always be answered by the system, if possible, even if they appear to be irrelevant.

7.3.3 Detecting errors in query-ref

When A’s contribution is message(A, query-ref, info(a, Property, G)), there
is a problem if the system does not have the requested information (rule 26). As
we have seen in Chapter 5, the proposition info(a, Property, G) refers to a belief
of the form Property(G, a, X), where a property of action a with respect to goal
G has value X; for example, duration(poach egg, stir water, briefly) refers to
the fact that the water should be stirred briefly if the current joint goal is to poach
an egg.

If the system does not have a statement in the beliefbase that matches the re-
quested Property(G, A, X), the system should inform the user of this. Additionally,
when the user disagrees with the presuppositions of the content of the question (rule
27), this should also be repaired. For example, “Where does Lucy’s boyfriend live?”
when the addressee does not believe that Lucy has a boyfriend.

(26) message(U, query-ref, info(A, Property, G)) <-

not B(Property(G, A,)) |

repair(info(A, Property, G), no-information)

(27) message(U, query-ref, p) <- B(not(presup(p))) |

repair(presup(p), untrue)

Figure 7.3: Detecting errors in query-ref

159

ERROR HANDLING 7.3

For example, the user may ask send(S, query-ref, duration(stir water))

(“How long should I stir the water?”), which will arrive in the system’s eventbase
as message(U, query-ref, duration(stir water)). If there is no statement that
matches duration(poach egg, stir water,) in the Beliefbase, the system cannot
answer the user’s question.

Just like in the previous subsection w.r.t. messages of the type query-if, the
system should always be cooperative in answering questions. Therefore, the second
type of error, the intention discrepancy, also does not hold for messages of the type
query-ref.

7.3.4 Detecting errors in request

A precondition of requesting an action is that the speaker believes that the addressee
can perform the requested action [44]. So, if A requests action a from B, but B is not
capable of performing this action (rule 28), there is an error in A’s beliefs. In other
words, when A’s contribution is message(A, request, next-action(a)), there is a
problem if capable(B, a) is not in B’s beliefbase.

Another precondition of requesting an action is that the speaker believes that the
action is practically possible at this time. If the addressee does not believe this to be
true (if checked-opportunity(a) for the requested action a is not in the addressee’s
beliefbase) (rule 29), the action cannot be performed. This is the case when, for
example, the speaker requests the addressee to take an egg from the fridge when the
addressee believes that there are no eggs available. Then, the action of taking an egg
from the fridge is of course not possible.

If the task is not possible at this time and/or if the system is not capable of per-
forming the task, an error subdialogue is initiated, in which the system should inform
the user of this problem. The order in which the rules are presented is important:
if both the opportunity check and the capability check will fail, the system will first
encounter the capability check (the rule that has not capable(S, T) as a condition)
and inform the user that it is not capable of performing the task. We have chosen
this order because the system’s beliefs about its own capabilities are always correct,
while there may be errors in its beliefs about the domain and therefore about the
opportunity check. Therefore, stating of incapability to perform the requested task
is a stronger reason why it will not perform the task.

A special case is when the user requests the goal to be aborted (rule 31). In this
case, the system first checks if this is really the user’s intention, and if it is, it removes
the goal from its goalbase. Otherwise, it reminds the user of the next dialogue state
that it was expecting.

In the example dialogue, the user asks “Can you turn on the stove?”, which
will arrive in the system’s eventbase as message(U, request, next-action(S,

turn on heat source)). Since the system believes that it is not capable of turn-
ing on the stove (it does not believe capable(S, turn on heat source)), this is an
erroneous request and an error handling subdialogue has to be initiated.

Also, if the system believes that the action is not possible under the current
circumstances, it should inform the user of this. Recall that the system has already
checked whether its plan for the current goal is possible when he adopted the goal.

160

7.3 DETECTING ERRORS

7

(28) message(U, request, next-action(S, a)) <- not B(capable(S, a)) |

repair(a, action-incapable)

(29) message(U, request, next-action(S, a)) <- not

B(checked-opportunity(a)) |

repair(a, action-impossible)

(30) Beliefbase:

inplan(T, G) :-

makenestedlist(G, Gcomplete),

flatten(Gcomplete, Gflat),

member(T, Gflat).

(31) message(U, request, abort(G)) <- I(next dialogue state) |

send(U, query-if, abort(G));

if message(U, inform, abort(G)) then send(U, inform, accept);

dropgoal(jointgoal(G))

else send(U, inform, expected(next dialogue state))

Figure 7.4: Detecting errors in request

Therefore, an error of this type only happens if the user is executing a different plan
than the system has, or if the circumstances have changed after the system calculated
the opportunity check when it adopted the joint goal.

As for intention discrepancies, there are three different types of unexpected input
in the case of request: first of all, when a is not in the system’s plan for the current
goal, secondly, when the action is in the current plan, but has already been performed,
and thirdly, when the system was not expecting the user to request an action from
the system. In each of these cases, the request can be seen as an unexpected request.
However, since we want to approach error handling from a practical viewpoint and
the system should be cooperative w.r.t. the user’s goals, the system should simply
perform the requested actions.

7.3.5 Detecting errors in performed actions
When A observes that task T has just been performed (done(T)) (rule 32), there is
a problem if B did not intend A to perform T; in other words, if T is not in B’s plan
for the current joint goal G.

In the example dialogue, the user opens a red vinegar bottle instead of a white
vinegar bottle. Thus, the system observes done(open red vinegar bottle), which
is a subtask of the task add red vinegar. Since that action is not in the plan for the
goal poach egg, it is a wrong action and the system will address it as such.

If the system was not expecting the user to perform an action (not

161

ERROR HANDLING 7.4

(32) observe(done(T)) <- jointgoal(G) and not inplan(T, G) |

repair(T, wrongaction)

(33) observe(done(T)) <- not I(observe(done()) |

repair(T, unexpected-action)

Figure 7.5: Detecting errors in performed actions

I(observe(done()))) (rule 33), this does not necessarily mean that an incorrect
action was performed; however, to make sure that the system and the user are still
working towards the same joint goal, the system will still address the error.

7.4 Repairing errors

We have categorized the errors so that we can apply different repair strategies to
errors in different categories: repairing a belief error requires a different strategy than
addressing an an intention discrepancy.

7.4.1 Repairing belief discrepancies

The goal of repairing belief descrepancies is to keep the common ground of the dialogue
partners consistent. Because common ground is “a sine qua non for everything that
we do with others” (Clark [40]), “the repair of mismatches [...] is an essential part of
the process that we call cooperative conversation” (Beun and Van Eijk [12]). As we
have mentioned earlier, we assume that agents only say things that they believe to
be true.

As we have seen in the previous section, there are five types of belief discrep-
ancy repairs that we distinguish: untrue, no-information, action-incapable, action-
impossible, and wrongaction.

Untrue

Generally, when two dialogue partners disagree about something, they can choose to
resolve this difference or to simply take note of each other’s beliefs. While it is not
necessarily a problem for agents to disagree, the common ground of the agents should
be consistent with their private beliefs, at least in a cooperative setting. When an
agent has said something, we assume it to be mutually believed, unless an objection is
made immediately (as we have stated in Chapter 2), and therefore any inconsistencies
between an utterance and an agent’s private beliefs should be solved immediately, to
prevent the other agent from thinking that it is mutually believed by all participants.

According to McCoy [89] [90], a response to a misconception consists of three
parts: first of all, a denial of the incorrect information, secondly, a statement of the

162

7.4 REPAIRING ERRORS

7

correct information, and thirdly, a justification for the denial and the correct response
given.

(34) repair(capable(U, T), untrue) <- T = [Tfirst|Tail] |

RemoveBelief(capable(U, T));

if next-action(U, T) then RemoveIntention(next-action(U, T));

AddIntention(next-action(U, [Tfirst|Tail]))

else skip

(35) repair(p, untrue) <- reason(not p, X)|

send(U, inform, not p),

send(U, inform, reason(not p, X))

if message(U, inform, accept) then skip

else RemoveBelief(not p); AddBelief(p)

Figure 7.6: Repairing errors of the type untrue

When the user states that he is not capable of performing a task T (rule 34),
the system simply removes this belief (capable(U, T)) from its beliefbase, since we
assume that the participants always have accurate beliefs about their own capabilities.
The user may have simply informed the user of his incapability to perform a certain
task that is relevant to the current joint goal G, in which case nothing else needs to
be done, but if the user informs the system that he is not able to perform the task
that the system has just requested him to do, the system needs to give the user lower-
level instructions. We do this by checking whether T is the next action that the user
should perform, and if this is the case, we remove T from the list and replace it with
the subtasks of T.

W.r.t. the notation of this rule, it should be noted that T = [Tfirst|Tail] does
not mean that T is identical to the list [Tfirst|Tail], but instead, the statement
T = [Tfirst|Tail] is in the beliefbase, where T is the name of the recipe and the
list is the list of instructions, of which Tfirst is the first instruction and Tail the
remainder of the list.

When the system believes that the user has incorrect beliefs and the subject of
disagreement p is not a capability (rule 35), the system simply states his beliefs about
the matter in question. Then, the system searches its beliefbase for a reason why it
holds p to be false, and then, according to McCoy’s proposed strategy above, informs
the user of its belief that not p, and the reason for this (reason(not p, X)).

This can have three different results: the user convinces the system of his beliefs,
the system convinces the user of his beliefs, or they ‘agree to disagree’: both keep
their own beliefs and add a new belief, stating that the dialogue partner believes dif-
ferently (e.g., believes(user, is(chicken, type of(meat))), while keeping their
own belief that not is(chicken, type of(meat))). As for the first two options: be-
cause the user has the end responsibility for the preparation of the recipe, the system
will only give its justifications for its beliefs and then wait for the user to accept or
reject them. If the user rejects them, the system will adjust its beliefs accordingly; if

163

ERROR HANDLING 7.4

the user accepts them, the system expects the user to adjust his own beliefs. At this
time, we have chosen to only implement the first two options; we leave the ‘agree to
disagree’ option for future work (see e.g., Lebbink [83]).

This type of error occurs in the example dialogue:

User: “We dont have any white vinegar.”
System: “We do have white vinegar. I know this because I bought
it.”
User: “Okay, you’re right.”

In his first utterance, the user says something that the system be-
lieves to be false (not available(white vinegar)), since the system believes
available(white vinegar). This means that a repair is activated, and the sys-
tem states his beliefs about the matter and the reason for this [89]. The user accepts
this and changes his beliefs about the matter, nothing changes in the system’s beliefs,
and the dialogue can continue as planned.

No-information

If the user asks the system for information that the system does not have, the system
simply informs the user of this.

(36) repair(p, no-information) <- true |

send(U, inform, no-information(p))

Figure 7.7: Repairing errors of the type no-information

In this case, there is no fixed expected reaction from the user; he can try to find
the answer elsewhere, or simply carry on with the task without the information he
requested.

This type of error also occurs in the example dialogue:

System: “Stir the boiling water.”
User: “How long should I stir the water?”
System: “I don’t know.”
User: “Okay.”

When the user asks the system how long the water should be stirred, the system
searches for information of the type duration(poach egg, stir water,). Since
this information is not present in the beliefbase, this repair is called and the system
replies with the fact that it has no information available about the requested property.
The user accepts this and carries on with the task.

164

7.4 REPAIRING ERRORS

7

Action-incapable

When the user requests the system to perform a task that the system cannot perform,
the system also simply informs the user of this.

(37) repair(T, action-incapable) <- true |

send(U, inform, not capable(S, T))

Figure 7.8: Repairing errors of the type action-incapable

This repair, similarly to the first case for repair(capable(U, T), untrue) above,
is based on the assumption that all of the participants have accurate beliefs about
their own capabilities, which means that there is no discussion possible about this
type of belief. In this case, it is up to the user whether he wants to perform task T

himself or abort the joint goal altogether.

User: “Can you turn on the stove for me?”
System: “I’m not able to turn on the stove.”
User: “Okay.”

In the example dialogue, the user requests the system to turn on the stove, which
unfortunately it is not capable of doing. The system informs the user of this and the
user accepts this information. (Contrary to the untrue-repair, in this case there is
no reason for discussion about the truth of this statement or to state the reason for
their beliefs about the matter, as all participants have accurate beliefs about their
own capabilities.)

Action-impossible

When the user requests an action of the system that is not possible under the current
circumstances, the system informs the user of this.

(38) repair(T, action-impossible) <- true |

send(U, inform, not possible(T))

Figure 7.9: Repairing errors of the type action-impossible

In this case, it is also up to the user whether he wants to find a different way to
achieve task T or one of its supergoals, or abort the joint goal altogether. Alternatively,
if the user wishes to disagree with the system about the possibility to perform T, he
can simply state why he thinks T is possible, in which case the repair subdialogue

165

ERROR HANDLING 7.4

Untrue will be initiated. This means, as we have seen above, that the user may
convince the system that he is right (and then the system will alter his beliefs) or vice
versa.

Wrongaction

When the user performs an incorrect action, the system tells him that this is not the
correct action and states what action it was expecting him to perform. The user may
give an explanation for the action that he performed; after all, the user may have a
different plan for the current (sub)goal, or the action may be unrelated to the goal,
and it is therefore preliminary to condone the action as being incorrect.

(39) repair(T, wrongaction) <- jointgoal(G) |

send(U, inform, not next-action(U, T)),

send(U, request, next-action(U, planned-action)),

if message(S, inform, unrelated(T)) then skip

else if message(S, inform, accept) then skip

else if message(S, inform, inplan(T, Tsub)) then

remove(G, Tsub, NewG); checked-done(Tsub)?; prepare(NewG)

Figure 7.10: Repairing errors of the type wrongaction

In general, there are several different reasons why the user may have performed the
wrong action. First of all, the user may have performed an action that is not related
to the current joint goal, in which case the action was not actually an incorrect action,
it was just not planned by the system.

Secondly, the user may have misunderstood the system’s previous instruction or
made an action slip [96]; in this case, the action was really incorrect. In both of these
cases, if the user informs the system that this was the reason, the dialogue can go on
as planned.

The third case is a little more complicated: the user has a different plan for the
current goal or one of its subgoals. If this is the case, the user should specify which
(sub)goal S he will autonomously achieve, then the system will remove this subgoal
from the stack of next actions, and continue the instruction from there. For example,
when the system instructs the user to boil water, and the system only has a recipe for
boiling water that involves boiling it in a pan on the stove, it appears to be a wrong
action if the user takes the water boiler and starts to fill it with water. However, in
this case the user can state that he will autonomously boil water and the system will
wait until this is done, and then continue with the rest of the recipe.

In the example dialogue, the system is expecting the user to add white vinegar,
but an error is detected when he grabs the red vinegar bottle:

166

7.4 REPAIRING ERRORS

7

System: “Add some vinegar to the water.”
(User opens a red vinegar bottle)
System: “That’s the wrong bottle. Please add white vinegar.”
(...)
User: “Okay, you’re right.”

The example dialogue is a bit more complicated than this, since another error
occurs in the middle of this one (the user informs the system that there is no white
vinegar, which calls for a repair of the type untrue, as we have shown above), but for
clarity we have extracted the part that is solely about the wrong action and presented
it here. The user grabs the wrong bottle, which the system perceives. The system
then informs the user that his action is incorrect. After repairing the untrue error,
the user accepts the system’s assessment of the incorrectness of the action and goes
on to use the correct type of vinegar.

7.4.2 Repairing intention discrepancies

The main goal of repairing this type of error is to bring the dialogue back to the
dialogue model as quickly as possible (requirement RE8), since the system is only
capable of conducting dialogues according to those patterns. Therefore, all repairs
end with a rule that informs the user what the system expected his next dialogue
contribution to be. Since the dialogue is cooperative, the user is expected to be
willing to return to the planned course of the dialogue.

Another consequence of the cooperative setting of the dialogue is the fact that
there are only two types of intention discrepancies that we treat in this thesis:
unexpected-inform and unexpected-action. As we have explained in Chapter 5,
dialogue contributions that contain the other speech acts are never seen as errors,
because the system will simply answer any questions and follow any requests from
the user whenever possible. This means that this type of errors does not occur in
these dialogue contributions, but solely in inform utterances and actions.

Unexpected-inform

When the user unexpectedly informs the system of something, the system adds the
information to the beliefbase, informs the user of this, and then also informs the user
of the input that it was expecting from him. Note that it is at this point never the
case that the system believes not p, since belief discrepancies are always repaired
before intention discrepancies.

For example, in the middle of a recipe preparation dialogue, the user may suddenly
say: “We do not have any more vinegar.” If the system disagrees with this (i.e. it
believes that there is still vinegar), the untrue repair subdialogue that we presented
above is activated, but if the system does not disagree with this statement (i.e. it
already has this belief, or it has no belief about the matter in question), it will add this

167

ERROR HANDLING 7.5

(40) repair(p, unexpected-inform) <- I(next dialogue state) |

addBelief(p),

send(S, inform, accept(p)),

send(S, inform, expected(next dialogue state))

Figure 7.11: Repairing errors of the type unexpected-inform

belief to its beliefbase, inform the user of this (“Okay, thanks for that information”)
and state the expected next dialogue state (“I was expecting you to [...]”).

Unexpected-action

When the user performs an action at a stage in the dialogue where the system was not
expecting the user to perform an action, the system informs the user of the dialogue
state (or type of dialogue contribution) that it was expecting, just to make sure that
the user is aware of this.

(41) repair(p, unexpected-action) <- I(next dialogue state) |

send(S, inform, expected(next dialogue state))

Figure 7.12: Repairing errors of the type unexpected-action

This repair is not expected to occur very often in the dialogue, since as soon
as the joint goal of preparing a certain recipe has been established, the interaction is
completely focused on the performance of tasks that lead to the joint goal in question,
and in this stage of the interaction, performed actions can only be (believed to be)
incorrect, not unexpected. The only time in the interaction when actions can be
unexpected is before a joint goal has been adopted by the participants.

7.5 Multimodal error handling

In a multimodal interaction, errors in actions and errors in utterances must be de-
tected and handled (requirement RE7). Because actions and utterances may come
simultaneously, as we have seen in Chapter 4, they should be interpreted as one event
and possible errors should be handled accordingly. In this section, we will use our
visualization of multimodal dialogues as we presented it in Chapter 4 to illustrate the
detection and handling of errors in multimodal interaction.

There are two types of actions that may be relevant to error handling. First of all,
there are domain actions, which are part of the task that is being performed by the
participants of the dialogue to achieve their joint goal. Secondly, there are gestures
and facial expressions which signal feedback to the dialogue partner. Although the

168

7.5 MULTIMODAL ERROR HANDLING

7

latter is an interesting topic of research that has been taken up by, among others,
Allwood [7] and Beun & Bunt [11], we will treat actions of the first type and any
additional meaning they can give to simultaneously occurring dialogue acts.

There are two different ways for the system to come to the conclusion that an error
occurs: there is a maximum waiting time (if the user does not grab the white vinegar
within a certain timespan after the instruction, the system should ask what is wrong)
and if the dialogue partner performs another action than the system expected.

Generally, there are three different options at any point in the dialogue when input
from the user is expected: the user may perform the desired (physical or communica-
tive) action, the user may perform an undesired action, or the user performs no action
at all (within a certain time span). The exact way of handling these types of input
depends on the combination of the physical and communicative actions that occur
simultaneously. We illustrate this tactic by closely examining an error in the example
dialogue: the user takes a bottle of red vinegar instead of white vinegar.

System: “Add some vinegar to the water.”
User grabs the red vinegar bottle.
System: “That’s the wrong bottle, you need the white vinegar.”
User: “Sorry, I’ll get the white vinegar.”
User grabs the white vinegar bottle.

In Figure 7.13, we show how undesired input is visualized in the music score
visualization.

Figure 7.13: An example dialogue where the user starts to open the wrong vinegar bottle,
in the music score visualization.

When the system observes the user taking the red vinegar bottle instead of the
white vinegar bottle, it concludes that this is an undesired event. Several things may
have gone wrong: the user may have misunderstood the system, the white vinegar
may be finished or lost, or the user may just not know that there are two types of

169

ERROR HANDLING 7.5

vinegar and therefore mistakenly think that he got the correct vinegar bottle. While
informing the user of his mistake, the system keeps watching out for the white vinegar,
so that when the user eventually takes the white vinegar bottle, the system knows
that the task in question has been completed, so that it can then go on to the next
instruction.

In general, if something else happens instead of the desired event, the system has
to adapt its behavior and plan a repair subdialogue. This is the difference between
our representation scheme and an actual music score: while the latter is static, our
dialogue score is flexible and can be adapted on-the-fly during the dialogue to suit
undesired behavior. Table 7.1 shows how the system should handle desired and unde-
sired input in general, based on its perception of physical actions combined with the
communicative actions from the user. The table distinguishes between three different
kinds of events for both modalities.

Desired
event

Undesired event No event

Desired
reply

Everything is
ok (1)

Accidental wrong
action (4)

Ask for event (7)

Undesired
reply

Inputs clash
(2)

Problem; backup
plan (5)

Problem; no
backup plan (8)

No reply Everything is
ok (3)

Accidental wrong
action (6)

Timeout (9)

Table 7.1: Handling of (un)desired input.

In our example, the system can either see the user taking the correct vinegar bottle
(the desired event), a wrong vinegar bottle (an undesired event), or performing no
action at all (no event). The verbal response from the user is classified in desired
replies (confirming answers, like “okay” or “I have the pan”) and undesired replies
(rejecting answers such as “we don’t have any vinegar” or “I don’t know what that
is”); if the user says nothing, no reply is registered.

If the system receives the desired input in both modalities, we are in situation
1 in Table 7.1: Everything is ok. The dialogue will just proceed as planned. There
seems to be no good explanation for the situation where the system sees the user
performing the correct action (desired event) but the user gives a negative answer
(undesired reply). In this situation (2: Inputs clash), the system should ask the user
for explanation. If the system sees the user taking the white vinegar (desired event)
but the user says nothing (no reply), the situation (3: Everything is ok) is similar to
situation 1: there is no reason to suspect something is wrong and the dialogue can
proceed as planned.

In case the system sees the user taking a red vinegar bottle (undesired event) and
the user gives a positive answer (desired reply), we are in situation 4: Accidental wrong
action. The user may have unknowingly grabbed the wrong bottle, and the system’s
reaction should be to inform the user of this mistake: “That’s the wrong bottle, you
need the white vinegar.” The repair strategy wrongaction that we treated earlier in

170

7.6 IMPLEMENTATION AND ISSUES WITH 2APL

7

this chapter can be used here.
If the user gives a negative answer (undesired reply) and the system sees the user

performing an incorrect action (undesired event), the system concludes that the user
has a problem in getting the vinegar (maybe it is lost or finished). However, since
the user did perform an action, the user may have chosen to follow a backup plan:
he (willingly) performs a different action (situation 5: Problem; backup plan). In this
case, the system can give the user full responsibility for unexpected consequences of
his action (e.g., “You have another type of vinegar than the recipe specifies, but if
you think it’s okay, you can use this one too.”). This is the same course of action that
is taken as part of the repair strategy wrongaction when the user replies that he has
a different plan for the current (sub)goal.

If the user performs an incorrect action (undesired event) and says nothing (no
reply), the system presumes that the user made a mistake (situation 6: Accidental
wrong action), and should attempt to repair the situation just like in situation 2
described above: the repair strategy wrongaction can also be used here.

If the user gives a positive (desired) answer but the system does not see the user
performing any action (no event), the system should ask the user whether he has
really performed the desired action (situation 7: Ask for event): “I didn’t see you
getting the vinegar. Are you sure you have it?” Or, in terms of the repairs that we
have presented in this chapter, the system can state the expected dialogue state.

In case of a negative answer (undesired reply) and no action (no event), apparently
the plan cannot go ahead as expected and the user does not have a backup plan ready
(situation 8: Problem; no backup plan). The system should inform the user of the
expected dialogue state, just as in the case of unexpected-inform. It may also be
helpful to ask the user if he has any alternatives or if he wants to stop or pause the
process (e.g., to buy a bottle of vinegar).

Finally, if the system sees no action and hears no utterance from the user (situation
9: Timeout), it should wait for a while and then ask the user if he is still participating
in the joint activity and, similar to before, inform the user of the expected dialogue
state.

As this table is specifically made for the case where the system has just given
the user an instruction, similar tables of multimodal responses can be made for other
states in the dialogue. However, this is an especially prominent case, since it is a
specific situation where both an action and a linguistic response are expected.

7.6 Implementation and issues with 2APL

7.6.1 The example dialogue

In Figure 7.14, we repeat the example dialogue that we have presented in Chapter
1. We will now show that this dialogue results from the rules that we have presented
in this chapter and Chapter 5, in the same way that we have shown that a simpler
dialogue (without errors) can result from the rules that we presented in Chapter 5.

While the example dialogue from Chapter 5 was almost boring in its straightfor-
ward generation by the simple rules that we presented there, there are some clear
differences between this dialogue and the one that was generated by the basic system

171

ERROR HANDLING 7.6

1. User: I would like to prepare French toast.
2. System: That’s not possible, we don’t have bread available.
3. User: Can you give me another recipe for breakfast?
4. System: Would you like to make a poached egg?
5. User: Alright, I would like to make a poached egg
6. System: Okay, I’ll teach you how to poach an egg. First, you have to boil some
water.
7. User: Can you turn on the stove for me?
8. System: I’m not able to turn on the stove
9. User: Okay, I will turn on the stove. (pause) I’ve boiled water.
10. System: Add some vinegar to the water.
11. (User opens a red vinegar bottle)
12. System: That’s the wrong bottle. Please add white vinegar.
13. User: We don’t have any white vinegar.
14. System: We do have white vinegar. I know this because I bought it.
15. User: Okay, you’re right. I’ve added vinegar to the water.
16. System: Crack an egg into a soup ladle.
17. User: I’ve cracked the egg into a soup ladle.
18. System: Stir the boiling water.
19. User: How long should I stir the water?
20. System: I don’t know.
21. User: Okay, I’ve stirred the water.
22. System: Drop the egg into the center of the water.
23. User: I’ve dropped the egg into the water.
24. System: Now wait 3-4 minutes.
25. (3 minutes later)
26. User: I’ve waited 3-4 minutes.
27. System: Remove the egg from the water.
28. User: I’ve removed the egg.
29. System: You have now poached an egg! Will you be able to do it by yourself next
time?
30. User: Yes.
31. System: Okay, we’re done!

Figure 7.14: The example dialogue from Chapter 1

in Chapter 5. Several errors and unexpected actions occur, which have to be handled
by the system.

First of all, in this dialogue, the joint goal is not possible, because one of the
ingredients is not available. Then, in dialogue turn 7, the user requests a task from
the system that it is not able to do. The system repairs this by stating that it does
not have the capability to do so. In dialogue turn 11, the user performs an incorrect
action, which is perceived by the system. The system then states that this is the
wrong action and repeats the correct action (now in more detail). Then, in turn 13,
the user asserts that there is no white vinegar available, which the system contradicts

172

7.6 IMPLEMENTATION AND ISSUES WITH 2APL

7

in turn 14, also stating the reason why it believes this. The user accepts this (perhaps
because he has found the bottle of white vinegar) and the dialogue can finally go on as
planned. Then, in dialogue turn 19, the user asks a question that the system cannot
answer, because it does not have the requested information.

In a similar manner to our example dialogue in Chapter 5, we also show here how
this example dialogue is derived from the rules from Chapter 5 and this chapter. We
will show this in Tables 7.2, 7.3, 7.4 and 7.5, which are placed at the end of this
chapter.

In this dialogue, not all moves from the user are expected; as we have mentioned
in Chapter 1, the unpredictability of humans is one of the reasons why error handling
is necessary in human-computer interaction. Therefore, not all of the user’s moves
can be explained with the rules for the user agent that we have presented in Chapter
5. In these cases, the rule number for the user’s moves are left out in the Tables 7.2
to 7.5.

7.6.2 Implementation

In the implementation [72] that we have referred to earlier (in Section 5.5, when
we discussed the implementation of the basic system), some aspects of error handling
were also implemented. Unfortunately, the development of a dedicated error handling
agent was not possible within the available time. However, some error handling tactics
have been included in the implementation.

First of all, when the user performs an incorrect action, the system tells the user
that he is supposed to perform a different action, and also specifies which action this
is. The system can even specify why the performed action is incorrect; for example,
if the user selects a container that is too small, the system will tell the user that this
is the problem (see Figure 7.15).

Figure 7.15: The user selects a container that is too small.

When the system believes that the user is capable of performing a subtask of
the goal and gives the corresponding instruction, the user may at any point during

173

ERROR HANDLING 7.7

the preparation of this subtask ask what he needs to do next. Since the system
observes the user’s actions during the preparation of the subtask, it will then give the
appropriate instruction.

Also, at any point during the preparation of a subtask, the user may inform the
system that he does not know how to continue (i.e. that he is not capable of performing
the subtask). Then, the system will remove the belief that the user is capable of
performing the subtask in question, and it will start the instruction dialogue for the
subtask (again, at the appropriate point).

7.6.3 Issues with 2APL
Just like in the implementation of the basic system in Chapter 5, we have also encoun-
tered some difficulties in the implementation of the error handling module w.r.t. the
practicalities of using 2APL. The most notable issue is the fact that in 2APL, the sys-
tem can only reason about its own beliefbase and not about other parts of its internals.
For example, in this chapter we have used the notation I(next dialogue state) to
denote the system’s intentions about the dialogue state it is expecting next. Unfor-
tunately, this is not possible in 2APL, since the system has no access to its planbase.
Similarly, in our framework we add and remove information of the type next-action

to and from the planbase of the agent, which is also not possible in 2APL.
Just like in Chapter 5, to solve some of these issues in 2APL, we need to keep a

double administration of plans and goals by adding them to the beliefbase, in order
to be able to reason about them. If the system instructs the user to perform a certain
task T, it would always have to add next-action(U, T) to the beliefbase, and remove
it as soon as the user has performed the action. This also goes for dialogue states;
the set of expected dialogue moves that the user can perform should be added to the
beliefbase and updated every time the user makes a dialogue move. However, there
is still the problem of removing actions from the planbase, which is not possible in
2APL.

In order to correctly and completely implement the error handling module ac-
cording to the rules that we have presented in this chapter, we should attempt to
find workarounds for these issues in 2APL, or investigate other agent programming
languages that may be better suitable for the implementation of the system.

7.7 Conclusions and future work
In this chapter, we have presented two different types of errors: belief discrepancies
and intention discrepancies. We have presented a set of BDI-rules to detect and repair
these errors, sorted by the type of input in which they may occur. We believe that
these rules can be used in any task-oriented system in which the system instructs the
user to perform a certain task that the user has requested.

In Table 7.16 we show that we have treated all requirements from Chapter 3
pertaining to error handling in this chapter. The page numbers in the table refer to
the page in this chapter where the requirement in question is treated.

In the case of deviations from the dialogue state, it would be an interesting and
informative expansion to also include a small subdialogue about the user’s reasons for

174

7.7 CONCLUSIONS AND FUTURE WORK

7

Req Page
RE1 156
RE2 152
RE3 148
RE4 157
RE5 152
RE6 159
RE7 168
RE8 167

Figure 7.16: The page numbers in this chapter where the error handling requirements from
Chapter 3 are treated.

his dialogue contribution. After handling the contribution itself (e.g., answering the
question), the system could then ask the user why he made the dialogue contribution
in question (e.g., send(U, query-ref, reason(p, X))). However, because answers
to ‘why’-questions tend to be long and complex [127], the interpretation of such
answers is something that we leave for future research.

If dialogue partners A and B disagree about p and wish to resolve this difference,
they have to decide whether A will adopt B’s beliefs about p or the other way around.
Generally, the non-expert will adopt the expert’s beliefs, and the agent who is not in
charge will adopt the beliefs of the agent who is in charge. In our situation, however,
the situation is more difficult: the system is the expert on the recipes but the user
is the expert on the current circumstances in the kitchen. Also, the user is always in
charge. In order to deal with this, we can mark each belief with the type of domain
that it pertains to (the topic, as it were) and handle inconsistencies accordingly. We
would also like to include the possibility to register belief discrepancies (‘agree to
disagree’ [83]).

Alternatively, instead of the simple handling of belief discrepancies that we have
presented in this chapter, it would be a useful expansion to implement the possibility
to hold more advanced discussions about belief discrepancies. For this, we will have
to look into argumentation theory and persuasion dialogues [100].

An interesting addition to our error handling would be to assess whether an error
really needs to be repaired or if it would be better to let it slide; in other words,
if the cost of repairing is higher than the cost of not repairing the error. Menzel
[93], for example, states that in spontaneously spoken speech, it is easier to find an
interpretation for a grammatically ill-formed utterance than to detect and correct
the error. In order to choose an optimal tactic, we need some sort of algorithm to
estimate what the consequences of both approaches are. We can also use the two
different attitudes for error repairing that Beun and Van Eijk [12] discern: the lazy
attitude and the eager attitude. An eager system will explain a mismatch more
specifically. Depending on the exact needs of the user, the optimal strategy may
vary. Also, it may be better to let some errors slide; for example, if the dialogue
partner’s utterance starts with “My internet ...”, one could respond along the lines of
“The internet does not belong to you”, but alternatively, one could also choose not

175

ERROR HANDLING 7.7

to address this error.
Finally, in a similar fashion as with the basic system that we presented in Chapter

5, we have encountered some issues in the implementation of the error handling mod-
ule in 2APL. In order to fully implement a functional system, we will have to assess
the issues that we have found and either develop workarounds for them or investigate
the suitability of other agent programming languages.

176

7.7 CONCLUSIONS AND FUTURE WORK

7

Actor:
Rule
no.

Communicative act, PC-rule or
BeliefUpdate

Action or utterance

U Starting state: goal(poach egg)

U: 16 send(S, request,

jointgoal(french toast))

User: I would like to prepare
French toast

S: 1 adopta(jointgoal(french toast))

S: 5c send(U, inform, not

possible(french toast))

System: That’s not possible

S: 5c
(contd.)

send(U, inform, reason(not

possible(french toast, not

available(bread))))

System: We don’t have bread

S: 5c
(contd.)

dropgoal(jointgoal(french toast))

U. send(S, request,

recipe(breakfast))

User: Do you have another
breakfast recipe for me?

S: 3 send(U, propose, poach egg) System: How about poached
egg?

U. send(S, inform,

accept(poach egg))

User: Alright, I would like to
make a poached egg

S: 3
(contd.)

adopta(jointgoal(poach egg))

S: 5b send(U, inform,

possible(poach egg))

System: Okay

U: 16 adopta(jointgoal(poach egg))

S: 9b send(U, inform,

start-learning(U, poach egg))

System: I will teach you how
to poach an egg

S: 9b
(contd.)

teachprepare(poach egg,

[boil water, add white vinegar,

crack egg, stir boiling water,

drop egg, wait 3-4 minutes,

remove egg])

U: 17 tentativeRecipe(poach egg = [])

S: 10b send(U, request, next-action(U,

boil water))

System: Please boil some wa-
ter

U: 18b tentativeRecipe(poach egg =

[boil water])

U: 18b
(contd.)

@kitchen(boil water,

performed(U, boil water),

Time-out)

(User boils water)

U: 18b
(contd.)

send(S, inform, performed(U,

boil water))

User: I have boiled water

S: 10b
(contd.)

checked-done(boil water)

Table 7.2: The example dialogue (part 1)

177

ERROR HANDLING 7.7

Actor:
Rule
no.

Communicative act, PC-rule or
BeliefUpdate

Action or utterance

S: 10b
(contd.)

teachprepare(poach egg,

[add white vinegar, crack egg,

stir boiling water, drop egg,

wait 3-4 minutes, remove egg])

S: 10b send(U, request, next-action(U,

add white vinegar))

System: Please add some
vinegar to the water

U. perform(open red vinegar bottle) (User opens a red vinegar bot-
tle)

S: 32 repair(open red vinegar bottle,

wrongaction)

S: 39 send(U, inform,

not next-action(U,

open red vinegar bottle))

System: That’s the wrong
bottle.

S: 39
(contd.)

send(U, request, next-action(U,

add white vinegar))

System: Please add white
vinegar.

U. send(S, inform, not

available(white vinegar))

User: We don’t have any
white vinegar

S: 22 repair(not

available(white vinegar),

untrue)

S: 35 send(U, inform,

available(white vinegar))

System: We do have white
vinegar

S: 35
(contd.)

send(U, inform,

reason(available(white vinegar),

bought(white vinegar)))

System: I know this because I
bought it

U. send(S, inform, accept) User: Okay, you’re right
U: 39
(contd.)

skip

U: 18b tentativeRecipe(poach egg =

[boil water, add white vinegar])

U: 18b
(contd.)

@kitchen(add white vinegar,

performed(U, add white vinegar),

Time-out)

(User adds vinegar to the wa-
ter)

U: 18b
(contd.)

send(S, inform, performed(U,

add white vinegar))

User: I have added some vine-
gar

S: 10b
(contd.)

checked-done(add white vinegar)

S: 10b
(contd.)

teachprepare(poach egg,

[crack egg, stir boiling water,

drop egg, wait 3-4 minutes,

remove egg])

Table 7.3: The example dialogue (part 2)

178

7.7 CONCLUSIONS AND FUTURE WORK

7

Actor:
Rule
no.

Communicative act, PC-rule or
BeliefUpdate

Action or utterance

S: 10b send(U, request, next-action(U,

crack egg))

System: Please crack an egg
into a soup ladle

U: 18b tentativeRecipe(poach egg =

[boil water, add white vinegar,

crack egg])

U: 18b
(contd.)

@kitchen(crack egg,

performed(U, crack eggr),

Time-out)

(User cracks egg into soup la-
dle)

U: 18b
(contd.)

send(S, inform, performed(U,

crack egg))

User: I have cracked an egg
into a soup ladle

S: 10b
(contd.)

checked-done(crack egg)

S: 10b
(contd.)

teachprepare(poach egg,

[stir boiling water, drop egg,

wait 3-4 minutes, remove egg])

S: 10b send(U, request, next-action(U,

stir boiling water))

System: Please stir the boil-
ing water

U. send(s, query-ref,

info(stir water, duration,

poach egg))

User: How long should I stir
the water?

S: 26 repair(info(stir water,

duration, poach egg),

no-information)

S: 36 send(U, inform,

no-information(info(stir water,

duration, poach egg)))

System: I don’t know

U: 18b tentativeRecipe(poach egg =

[boil water, add white vinegar,

crack egg, stir boiling water])

U: 18b
(contd.)

@kitchen(stir boiling water,

performed(U,

stir boiling water), Time-out)

(User stirs boiling water)

U: 18b
(contd.)

send(S, inform, performed(U,

stir boiling water))

User: I have stirred the boil-
ing water

(etc., until teachprepare-list is empty)
S: 10a send(U, inform,

finished(poach egg))

System: You have now
poached an egg

Table 7.4: The example dialogue (part 3)

179

ERROR HANDLING 7.7

Actor:
Rule
no.

Communicative act, PC-rule or
BeliefUpdate

Action or utterance

U: 19b RemoveBelief(tentativeRecipe(

poach egg = [boil water,

add white vinegar, crack egg,

stir boiling water, drop egg,

wait 3-4 minutes, remove egg])

U: 19b
(contd.)

AddBelief(poach egg =

[boil water, add white vinegar,

crack egg, stir boiling water,

drop egg, wait 3-4 minutes,

remove egg])

U: 19b
(contd.)

AddBelief(capable(U,

poach egg))

S: 9b
(contd.)

send(U, query-if, capable(U,

poach egg))

System: Will you be able to
do it by yourself the next
time?

U: 20a send(S, inform, capable(U,

poach egg))

User: Yes

S: 9b
(contd.)

AddBelief(capable(U,

poach egg))

S: 9a send(U, inform,

finished(poach egg))

System: Okay, we’re done!

U: 19a dropgoal(poach egg);

dropgoal(jointgoal(poach egg))

S: 9a
(contd.)

dropgoal(poach egg)

Table 7.5: The example dialogue (part 4)

180

8 Conclusions

Alles hat ein Ende, nur die Wurst
hat zwei.

Stephan Remmler

As we have stated in Chapter 1, this thesis focuses on:

a BDI-based framework for a dialogue system that can instruct a user to
perform tasks consisting of predefined sequences of actions, based on a
joint goal that the user and the system have together, focusing on various
tactics to make the system more robust.

Briefly, we have developed this framework by investigating human-human dia-
logues, cooperation, and dialogue systems. Based on this, we have gathered a set
of requirements that we believe any such system should adhere to. Then, we have
constructed a framework for such a system, consisting of a basic system and an er-
ror handling module. We have also investigated a technique for natural language
processing and generation.

We summarize the conclusions in this final chapter, presenting the results as an-
swers to the research questions that we posed in Chapter 1 in Section 8.1. In Section
8.2, we will present a discussion of our results, the validation of the results (8.2.1),
point out some directions of future work (Section 8.2.2), and finish with our vision
for the future (Section 8.2.3).

8.1 Results
In this section, we present the results of our research, in the form of answers to the
research questions.

8.1.1 Cooperative dialogue
Question 1: How does a cooperative dialogue (or interaction) result from
a joint goal?

181

CONCLUSIONS 8.1

In Chapter 2, we have presented a definition of joint goals that require the par-
ticipants of the joint goal to communicate about the status of the goal and of its
subtasks. This means that we can implement cooperative interaction in a principled
way that is based on the mutual adoption of a joint goal by the participants of the
dialogue.

To come to this definition of joint goals and cooperation, we have first investigated
activities, in the broadest sense. Activities may only involve one agent that performs
actions without taking into account any other agents. Since we consider agents, these
actions are goal-directed, meaning that they are initiated by the agent in order to
achieve a goal.

Then, we have refined the concept of activities to joint activities: activities in
which more than one agents is involved. These activities are initiated to achieve
joint goals. For joint activities, it is very useful to have the concept of mutual belief.
The actions that are performed as part of joint activities may still be single-agent
actions, but may also be joint actions, performed by multiple agents together. Both
of these types of actions are participatory actions, meaning that they are part of a
joint activity.

We have then refined joint activities to dialogues: joint activities that are mainly
language-based. Beside linguistic actions, which are performed in dialogue turns,
dialogues may also contain non-linguistic actions such as gestures. Both linguistic
and non-linguistic dialogue actions need to be interpreted by the dialogue partner,
requiring the concept of grounding.

Cooperative dialogues are a subset of dialogues in which the participants adhere
to norms of cooperation. This mainly implies that they are sincere and helpful with
respect to each other and to their joint goal and that they do not hold any hidden
agendas. Participants may have private goals, as long as they do not conflict with
any joint goals. Finally, we have defined successful dialogues, which are dialogues in
which joint goals are reached.

8.1.2 Requirements

Question 2: What are the requirements for a robust cooperative task
assistant?

In Chapter 3, we have explored the context and setting of our research aim of
constructing a robust, BDI-based task assistant. In order to do this, we have studied
five different aspects of such a system: the participants, the domain, the interaction,
specifically multimodal interaction, and error handling. To ensure that the require-
ments are generic for any system that uses sequences of actions (cf. recipes), we added
an additional domain for which the requirements should also hold: besides the cooking
assistant, we also studied a system that can instruct a user to set up a weblog.

First of all, we studied the participants (the system and the user), focusing on
reasoning and on properties of companion robots. We have investigated the require-
ments that companion robots should fulfill. Some domain-specific requirements were
also encountered, which pertain specifically to cooking or to setting up weblogs. For
example, the system should be able to handle the concept of different recipes for the

182

8.1 RESULTS

8

same goal (e.g., boing water in a pan vs. in the microwave) and should be able to
reason about the capabilities of itself and the other participants.

Secondly, we studied the domain, specifically focusing on recipes and actions. For
this, we first studied recipes, discovering that they are essentially nested sequences of
actions. This also resulted in a list of requirements, including the concepts of open
and closed delegation, meaning that participants in the dialogue can be instructed to
perform atomic actions or subgoals (which are sequences of tasks, such as the subgoal
‘boil water’ for the goal ‘poach egg’), and reasoning about whether it is possible to
perform certain actions given the current circumstances.

Thirdly, we studied the interaction between the system and the user. To ac-
count for different aspects of the interaction, we studied different types of dialogues:
information-seeking dialogues, tutoring dialogues, and task-oriented dialogues. Hav-
ing analyzed such dialogues, we constructed dialogue models for the three types of
dialogues, subsequently combining them into one dialogue model for a recipe dialogue,
which contains aspects of all three dialogue types. The framework that we present in
this thesis should follow this dialogue model in the dialogues that it produces. The
dialogue models are represented as flow charts in Section 3.3.

Fourthly, we focused specifically on multimodal aspects of interaction. Multimodal
interaction, which may contain simultaneous in- or output on different modalities,
requires synchronization. Furthermore, we believe that an intuitive representation of
multimodal interaction facilitates the implementation of such a system by visualizing
the connections and relations between in- and output on different modalities.

Fifthly and finally, we studied error handling. This involved establishing a defini-
tion of errors that can occur in a system that uses speech acts with a communicated
content as in- and output (instead of natural language), thus abstracting from any er-
rors in the interpretation and formulation of speech or text. This resulted in two types
of errors: unexpected contributions (which do not fit into the dialogue model that we
presented earlier) and dialogue contributions which signal or introduce inconsistencies
in the mutual beliefs of the participants.

Our investigation of these five aspects of a robust cooperative task assistant has
resulted in a set of requirements for such a system, specifically a system that assists
the user in the preparation of recipes and/or setting up weblogs. The requirements are
sorted into five lists pertaining to the five different aspects of the system: reasoning,
the domain, the interaction, a separate list for multimodal (aspects of) interaction,
and error handling. The lists can be found in the tables in Chapter 3.

8.1.3 Basic framework
Question 3: How can we implement a basic cooperative task assistant?

In Chapters 4 and 5, we have presented a framework for a basic cooperative task
assistant. The framework is based on the BDI architecture and uses notions of joint
goals, which are tightly coupled with communication, as we have seen in Chapter
2, and capabilities and opportunities for reasoning about pre- and postconditions of
tasks that have to be performed in order to achieve the joint goals. We have also
introduced a visualization for multimodal dialogues that can help in the development
of multimodal dialogue systems.

183

CONCLUSIONS 8.1

Chapter 4 focuses mainly on the translation of the requirements from Chapter
3 to more specific aspects in the architecture of the system. Except for the error
handling requirements, which are treated in Chapter 7 (see below, under research
question 5), all of the requirements are fulfilled in the architecture that we present.
We have presented an instantiation of a generic architecture for a companion robot
which contains (only) the parts that we treat in this thesis, leaving the implementation
of additional aspects such as the emotion synthesizer for future work. The system is
represented as a BDI agent, with separate reasoning engines for the main interaction
process and for the error handling process.

We also present a formalization of recipes that fulfills the requirements from Chap-
ter 3. Recipes are represented as lists of tasks; tasks denoting either identifiers of
atomic actions, or names of other lists of tasks. Atomic actions are represented with
pre- and postconditions, allowing the system to reason about the feasibility of actions
in recipes, based on postconditions of previous actions. The interaction is always
initiated with the introduction of a joint goal by one of the participants. From this
joint goal, communicative and/or physical actions result, based on the beliefs and
rules that the participants have. Dialogue actions are modeled as FIPA-ACL com-
municative acts.

In Chapter 5, we have presented a set of rules that fit into the architecture from
Chapter 4. These rules, together with a set of beliefs and goals, can generate dia-
logues. The rules are presented in a 2APL-like pseudocode. We have sorted the rules
into three phases of the dialogue: joint goal selection, the planning phase, and the
instruction phase. Additionally, we have added rules for answering questions and fol-
lowing requests from the user. While it is true that these dialogue contributions are
not included in the dialogue model, we feel that any cooperative system should react
in a cooperative way to these contributions, as we have stated in the requirements in
Chapter 3.

Although not all of the rules that we have presented in Chapter 5 are suitable
to be directly implemented in 2APL, we have simulated the generation of a dialogue
with these rules. For this, we have constructed a set of rules that form a simple user
agent. The rules mainly pertain to complying with instructions from the system.
Furthermore, we have added a set of beliefs and goals, to which we applied the rules
of our framework. From this, a simple example dialogue resulted, without error
handling (which we treated later, in Chapter 7), but in which a recipe preparation
was successfully simulated.

8.1.4 Language generation and interpretation
Question 4: What robust approach to language generation and interpre-
tation can we use?

In Chapter 6, we have discussed a layered approach for language generation and
interpretation in the form of Functional Discourse Grammar (FDG), which uses four
levels: the phonological level, the morphosyntactic level, the representational level
(pertaining to semantic aspects) and the interpersonal level (pertaining to pragmatic
aspects). Also, we have presented a framework that uses syntactic features of utter-
ances to elicit the indirect interpretation of speech acts.

184

8.1 RESULTS

8

Although we have constructed our framework on the level of speech acts, we have
also briefly treated natural language. In Chapter 6, we gave a brief introduction to
FDG, a theory of grammar which encompasses the complete process of formulation
of natural language utterances from communicative intentions. Because these com-
municative intentions are quite similar to the communicative actions that result from
our framework that we present in this thesis, we believe that FDG can function as an
appropriate grammar theory to be coupled with our basic system.

FDG consists of four main components: the conceptual component, which is sim-
ilar to the reasoning enging in 2APL and which delivers communicative intentions
as its output; the contextual component, which is similar to the beliefbase of a BDI
agent, containing information that has an effect on the natural language output of
the system; the output component, which articulates the natural language output to
the outside world; and most importantly, the grammatical component, which contains
the aforementioned four levels of representation and is connected to all other com-
ponents. The grammatical component translates the communicative intentions from
the conceptual component to a natural language utterance, which it then delivers
to the output component. In this process, it uses information from the contextual
component to form the utterance.

While most FDG literature treats the formulation of utterances, in this thesis we
focus on the interpretation of utterances, starting with the natural language utterance
itself and parsing it to a communicative intention. While the completion of this
algorithm for the whole process is still a topic of future work, a partial algorithm was
constructed, which can translate structures on the morphosyntactic level to structures
on the representational level. We believe that similar processes can be used to make
translations on different levels to complete the whole algorithm.

One of the problems that we encountered was the interpretation of indirect speech
acts; that is, utterances that have a non-literal meaning, such as “Can you tell me the
time?”, which has the syntactic structure of a yes/no-question, but is usually meant
as a request. In Chapter 6, we also present a simple algorithm for the interpretation
of such utterances, based solely on syntactic properties of the utterance and the type
of dialogue.

8.1.5 Error handling

Question 5: How can we augment a basic cooperative task assistant with
an error handling module?

In Chapter 7, we have proposed rules to handle two types of errors in cooperative
dialogues: situations where the beliefs of the system and the user do not match, and
situations where the intentions of the system and the user do not match. We have
sorted these rules by the type of input in which they may occur, and presented tactics
for detecting and repairing these errors.

We augment our basic system, that we presented in Chapter 5, with a generic set
of rules that can detect and repair errors in cooperative, task-oriented dialogues. By
comparing our original example dialogue from Chapter 1 to the simpler version of the
example dialogue that resulted from the rules that we presented in Chapter 5, we can

185

CONCLUSIONS 8.2

see a number of deviations from the planned course of the dialogue; the errors that
occur in the dialogue and are successfully handled by the system.

After a recap of the definition of errors that we presented in Chapter 3, we pre-
sented a short overview of the main types of errors that we do not treat in this thesis:
speech recognition errors, error prevention, self-repair, and uncooperative behavior.
We also briefly explain that we have chosen a qualitative approach to error handling
to make a tight coupling to our basic system, although quantitative error research is
a promising field of research. Then, we give some examples of the two types of errors
that we treat in this thesis.

In Sections 7.3 and 7.4, we present the main error handling process: first, the
detection of errors in 7.3, and then the repair in 7.4. We have presented the rules
for the detection of errors sorted by type of input: four speech acts: inform, query-if,
query-ref, request; and performed actions. For each of these input types, a number
of conditions are given that indicate an error. For all of these errors, different repair
strategies are activated. The error repairs in Section 7.4 are sorted by type of error:
belief discrepancies and intention discrepancies. Where possible, we have illustrated
all of the repair strategies with examples from the example dialogue.

Finally, we treat multimodal error handling. With the same visualization method
for multimodal interaction that we presented in Chapter 4, we visualize an exerpt
from the example dialogue where an error occurs. We show how to detect errors
multimodally by combining two input modalities: action and speech. On each of
these modalities, three different types of events can happen: the desired event, an
undesired event, or nothing at all. Because we consider two modalities, there are
nine different combinations. We connect these combinations with an error handling
strategy that we presented earlier in the chapter.

We finish the chapter by validating our error handling rules in the same way as
in Chapter 5: we simulate the generation of a dialogue based on the presented rules,
together with a set of beliefs and goals and a user agent. For this version of the
example dialogue, we have not presented a set of rules for a user agent, since some
errors occur because not all of the (communicative or physical) actions from the user
are logically explainable. We conclude that the example dialogue can successfully be
generated from the rules that we present in this thesis.

8.2 Discussion

In this section, we discuss some positive and some negative general aspects of our
research. Then, we will again treat each separate research question, discussing the
results in a broader context; e.g., what does it mean w.r.t. the research aim, what
can we infer from the results, and what are the limitations of the results or of the
methods used.

Generally, we believe that this research contributes a broad generic basis for co-
operative task-oriented dialogue systems, both for further research into the subject
and for implementation of such a system. We have discussed various aspects of the
system, building up a framework from scratch, looking at multimodal interaction,
companion robots, dialogue theory, natural language, and error handling.

186

8.2 DISCUSSION

8

In the process of constructing this framework, we have taken care to make it as
robust as possible, since we feel that errors and breakdowns are some of the major
issues in human-computer dialogue systems. As we have stated in Chapter 1, we
believe that robustness is an interesting research topic for two main reasons: first
of all, from the point of view of human interaction, this thesis helps to study how
humans handle errors in interaction, and secondly, this thesis provides a framework
for developing a dialogue system that can produce more robust interaction.

Although there is plenty of dialogue systems research, dialogue systems are not
very widely used for practical purposes outside of the research domain. If instruction
systems become more robust and can handle errors in a natural, constructive way, we
believe that such systems are more likely to be actually used. We have attempted to
keep this in mind in the construction of our framework, and hope that this framework
can be used to make steps towards the implementation of a practical, robust task-
oriented system.

One of the strong points of this thesis is that it is strongly multidisciplinary, treat-
ing dialogue theory and natural language as well as BDI logic and agent systems. This
thesis provides a general basis for the implementation of cooperative task-oriented di-
alogue systems and treats all of the involved topics in the broader context of this
subject. An important contribution of this thesis is the connection between these
fields. Because of this, this thesis can assist researchers that are specialized in only
one of these fields to form a basic understanding of the other topics and give them
some pointers for developing a complete framework or implementation.

In Chapter 2, we studied how a cooperative interaction results from a joint goal.
The contribution of this chapter to the general research aim of developing a robust
dialogue system is the connection between the concepts of joint goals and cooperation
on the one hand, and task-oriented dialogues on the other hand. We have shown that
such dialogues can be generated based on principles from literature about joint goals
and cooperation.

In Chapter 3, we studied dialogue systems and, specifically, requirements for a co-
operative task-oriented system. We believe that the main contribution of this chapter
is the dialogue model for cooperative task-oriented dialogues. This dialogue model
adheres to the principes of cooperative dialogue that we presented in Chapter 2, and
combines features of information-seeking, tutoring, and task-oriented dialogues. A
more advanced version of such a dialogue model could be formed by keeping the sep-
arate dialogue models for the different types of dialogue, and for each dialogue action
choosing the appropriate dialogue model. However, we believe that for the current
purposes, the presented dialogue model is sufficient.

In Chapter 4 and 5, we studied how to translate the requirements from Chapter 3
into a basic cooperative task-oriented system. The contribution of this chapter is the
idea of a relatively simple framework that generates dialogues based on joint goals
that the participants have together. The rules that this framework contains, are based
on the principles of cooperation and joint goals that we presented in Chapter 2. The
generation of a dialogue based on these rules shows that the framework is sufficient
for this purpose. The establishment of formal specifications of the architecture and
the implementation and a formal proof of the relationship between them is not the
focus of this thesis and has therefore been left as a topic for future work.

187

CONCLUSIONS 8.2

In Chapter 6, we studied the generation and interpretation of natural language,
focusing on two topics: Functional Discourse Grammar and the interpretation of
indirect speech acts. The contribution of this chapter to the general research aim is the
idea that we can use multiple expectations (in this case, on the different levels of FDG)
to make language interpretation more robust. We believe that FDG is an appropriate
theory for the language generation and interpretation modules in our system, because
the Conceptual Component of FDG is comparable to the BDI reasoning engine that
our system is based on.

In Chapter 7, we studied the detection and handling of errors in a cooperative
task-oriented system. The contribution of this chapter to the general research aim
of developing a robust dialogue system is the idea that with a separate module, any
basic cooperative task-oriented system can be augmented with error handling and
made more robust. Just like in Chapter 5, we validated this framework by presenting
an example dialogue that is generated by the rules of the framework. We believe that
our error handling framework can be used to augment any BDI-based cooperative
instruction system, possibly with a few minor adjustments. In order to check this,
the error handling module has to be implemented and tested on various instantiations
of such systems.

In our view, the biggest shortcoming of the research in this thesis is that the
presented framework is not completely implemented and tested with human users.
Without this, we cannot yet give a complete and proper assessment of the value of
the framework. Testing such a system may be easier for the weblog setup task that we
mentioned earlier in this thesis (most notably in Chapter 3), since the implementation
of a fully functioning vision processing algorithm that can correctly perceive kitchen
actions is a difficult task. It is easier to implement a system that is connected to a
computer and observes actions that are performed on this computer.

8.2.1 Validation

Our basic framework was almost completely implemented, showing that it is indeed
a valid framework. However, of our error handling module, only some aspects are
implemented, leaving the rest of the implementation and validation for future work.
As a preliminary validation of our framework, we have presented a dialogue in which
errors are detected and repaired, which can be constructed with the rules that we
present in this thesis. As we have stated above, a more definitive validation can be
given if we implement the complete system and test it with human users. The value
of the framework can be fully assessed after testing whether users can perform tasks
better, faster and easier with a task assistant than with, for example, a manual.

However, this does not mean that this thesis presents only a shot in the dark. We
believe that this thesis can aid researchers in agent systems and/or dialogue systems
in the development of a robust task assistant, by providing generic frameworks for
various aspects of the process. Most notably, this consists of the requirements analysis,
the architecture, the basic system, a starting point for a natural language parser
in FDG, and an error handling module. The framework that we present is for a
cooperative, flexible system that is not only reactive, but also acts proactively in
assisting the user, by reasoning about resources and capabilities, and by detecting

188

8.2 DISCUSSION

8

and repairing errors in the interaction.

To check that this framework is at least functional as a basis for implementation,
we have emulated the construction of a dialogue by our system. We did this by
applying the rules of our framework to a set of beliefs and goals; first only the rules
from Chapter 5 to construct a basic instruction dialogue, which was not capable
of properly responding to errors, and then the rules from Chapters 5 and 7, which
resulted in a dialogue in which several different errors were detected and repaired.
Applying different sets of beliefs and goals to the framework and using different recipes
in the recipe database will result in different, but similar, dialogues.

Also, the fact that a large part of our framework was implemented in 2APL, and
that not too many issues were encountered in this process, leads us to believe that
our framework is sufficient to be used for the construction of task-oriented dialogue
systems.

For a more thorough validation, there are two more steps to be taken. First of
all, the complete system should be implemented in an agent programming language.
Then, this system should be tested in a real kitchen setting with human users, who
use the system as a recipe assistant in the preparation of recipes. Then, the quality
of the framework can be tested according to various metrics: amount of successfully
prepared recipes, amount of dialogues that are concluded successfully, and average
pleasantness of the dialogues as perceived by the users are three examples of such
metrics that can be used to evaluate the implemented system.

8.2.2 Future work

There are many points on which we can expand the system. Some of these were
originally planned, but abandoned with the ending of the Dutch Companion project,
such as the implementation of emotions, which would be an interesting addition to
the system (for a comprehensive work on the formalization of emotions, see Steune-
brink [115]). Emotions can be used not only to augment the system’s output with,
for example, facial expressions, but also to influence the system’s decisions. These
emotions can be caused by cognitive-level events, such as plans failing (disappoint-
ment), goal achievement (joy), and perceived emotions from the user (if negative:
pity). Reactive emotions like startle or disgust can also influence a robot’s emotional
state. Moreover, emotions can manifest themselves in many different ways; e.g., facial
expressions, speech prosody, selecting or abandoning certain plans, etc.

As we have pointed out in Chapter 3, an interesting topic of future work is the
incorporation of features of social dialogues into the interaction. Especially in combi-
nation with the implementation of emotion heuristics, this feature has the potential
of making the system more pleasant and intuitive to interact with.

Another aspect of the task assistant that we were not able to develop collabo-
ratively with the Dutch Companion project partners is an advanced level of multi-
modality of the dialogue system, with vision and sound processing systems and a
sound awareness module that can perceive and identify various kitchen sounds. Also,
in order to appear more natural and human-like, a companion robot could exhibit
some low-level reactive behaviors, such as blinking and following the user’s face, and
fast reactive behaviors such as startling when subjected to a sudden loud noise.

189

CONCLUSIONS 8.2

An expansion that would be helpful in the interaction is a more advanced recipe
selection phase. The user should then be able to specify a number of criteria for
his desired recipe, varying from simple to complicated: e.g., something vegetarian,
a dessert with chocolate, something healthy, or something that’s fitting for a warm
summer evening. Then, the system searches its recipe database for a recipe that sat-
isfies these criteria. In addition, the user should be able to add or retract constraints
during the recipe selection dialogue.

We would also like to implement a more sophisticated treatment of recipe trees,
possibly involving GPGP [86]. Then, we could also implement agents as resources
in order to make parallel planning possible, especially for situations with multiple
users. This involves investigating possibilities for parallel performing of tasks by the
participants, by having a notion of interleaved plans and interruptions. For example,
cooking spaghetti bolognese consists of two main subtasks: cooking the spaghetti and
cooking the bolognese sauce. However, a lot of interleaving occurs between these two
recipes: first put water to boil, then start with the sauce while waiting for the water
to boil, then when the water boils, put spaghetti in the boiling water, then continue
making the sauce, then when the spaghetti is done, drain the spaghetti, etcetera.

The task of implementing a parser that can automatically extract pre- and post-
conditions from natural language recipes (possibly in a structured markup language)
is a difficult task that requires domain knowledge, but we believe that it is certainly
an interesting and promising research path. It even seems to be of interest to parties
such as Google, who are currently working on a recipe representation format called
Google Recipes1.

In order to complete the path that we have set out upon in Chapter 6, parsing
natural language utterances using Functional Discourse Grammar, we will need to
expand the current algorithm that only translates structures from the morphosyntac-
tic level to the representational level to the complete FDG framework of four levels.
In order to elicit the correct interpretation of indirect speech acts, we will need to
complete the construction of tables for all specified verbs in Section 6.4.

Another useful and interesting expansion is to make our error handling module
more advanced, which can be done in various different ways. For example, we may
implement subdialogues about the user’s reasons for making an error; we can add
persuasion dialogues or rules for different types of beliefs to make the handling of
belief discrepancies more advanced; or we may add the possibility to reason about
whether an error is worth solving (possibly including a distinction between lazy and
eager error handling attitudes).

Finally, an important issue is sufficiently and accurately evaluating this work, as
we have mentioned above. Therefore, a crucial next step would be to completely
implement the system and then to test it in an experimental setting with real users.

8.2.3 Vision

If some of the important issues are resolved, it is very well possible that task assistants
will get more and more prevalent on many domains: in households and workplaces,

1http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=173379, retrieved
June 14th, 2010

190

8.2 DISCUSSION

8

as personal assistants, shop assistants, secretaries, etcetera. Users will be able to
acquire different task domain packages; for example, a task assistant can have several
functions, not only as a recipe assistant, but also a school tutor, a do-it-yourself
instructor, a sewing help, and an arts and crafts guide.

Ideally, task assistants are connected to the internet, allowing them access to
larger databases of information. Semantic processing can enable them to acquire
new information. An internet connection also allows the assistants to communicate
with each other, functioning as sort of a mediated social network. This is especially
interesting for systems functioning as personal assistants, who can then perform tasks
such as setting up meetings with others through their personal assistants.

Task assistants may or may not take the form of a physical robot. A virtual assis-
tant has the advantage of being more portable; for example, an online task assistant
can be accessed anywhere via the user’s smartphone or other mobile device. An ad-
vantage of physical robots is that they can help the user perform actions. On the other
hand, this does make them less versatile; an embroidery robot and a wood-cutting
robot are hardly interchangable. A solution to this is to make multiple ‘embodiments’
that can be connected to a user’s task assistant.

It’s ten o’clock in the morning on a Sunday. Lucy walks into the kitchen. She’s
in a cheerful mood and wants to make something special for breakfast. She turns on
her new recipe robot, iCat.
Lucy: Good morning iCat, can you tell me how to make Eggs Benedict?
iCat: Good morning Lucy! I’m afraid we can’t make Eggs Benedict, since we don’t
have English muffins.
Lucy: Oh, but I have this bag of muffins that I bought yesterday.
iCat: English muffins aren’t the same as regular muffins. Do you want me to explain
the difference?
Lucy: Not really, or maybe later. Do you have another suggestion for breakfast?
iCat: We can make toast and poached eggs, that’s quite similar to Eggs Benedict but
a lot less complicated. Also, we need to finish the eggs, since the expiration date is
tomorrow.
Lucy: Good thinking, iCat. Also, it’ll be nice to practice poaching an egg again.
iCat: Okay, I’ll turn on the toaster, let me know if you need help poaching the egg.
Lucy: Alright! [starts cooking]
iCat: In the meantime, I can tell you that today is going to be sunny but cold, and
that your brother asked you to confirm your attendance at his birthday next week.
Lucy: Thanks. I’ll call him back after breakfast, but you can already let him know
that I’ll be there.
iCat: [looks alarmed] Wait a second, don’t forget the vinegar before you put the egg
in!
Lucy: Oh, that’s right on time! You’re keeping a good eye on me, aren’t you?
iCat: [winks] I sure am! The vinegar is not absolutely mandatory, but it helps the
egg stay together.
Lucy: Okay, I just put the egg in the water, can you warn me when it’s done?
iCat: Sure. It’s probably about time that you put the bread in the toaster now.
Lucy: Ah, thanks for reminding me. [puts bread in toaster]

191

CONCLUSIONS 8.2

iCat: Don’t forget to take a cup of coffee, I started the coffee machine when you
walked into the kitchen.
Lucy: I didn’t even notice! Thanks, iCat. [opens fridge] Oh, but we don’t have milk...
iCat: I’m sorry, I didn’t realize that you’d want milk in your coffee. Hang on, let
me check with the neighbor’s kitchen assistant... Yes, they have milk, and they’re at
home and awake now. If you’re quick, you can go and borrow a cup of milk before
your egg is done.
Lucy: Good idea! [2 minutes later] I’m back.
iCat: The egg is about done by now, but if you want to butter your toast before you
put your egg on it, I recommend you do that first, so the egg won’t get cold.
Lucy: [takes toast out of toaster and butters it] Thanks for the advice, iCat!
iCat: You’re welcome. Enjoy your breakfast, Lucy!

192

A Appendix

GLOSSARY OF LINGUISTIC TERMS

Admonitive A speech act that denotes a warning (e.g., “Be careful not to break the
egg yolk.”).

Anaphora An expression that refers to another (preceding) expression; e.g., “We do
have white vinegar. I know this because I bought it”, where the anaphor ‘it’
refers to the referent ‘white vinegar’.

Background See Focus/Background.

Clause A group of words that consist of a subject and a predicate.

Comment See Topic/Comment.

Commissive A speech act that denotes the making of a commitment (e.g., “I will
teach you how to poach an egg.”).

Communicative act See Move.

Communicative intention The intention that a speaker has in performing a com-
municative act.

Construal The hearer’s interpretation of an utterance or event.

Context All information outside the current utterance.

Conversation Spoken form of discourse [40]; see also Dialogue.

Declarative A sentence that is a statement (e.g., “I have turned on the stove.”).

Dialogue A mostly linguistic interchange of information between two (or more) per-
sons, usually initiated in order to reach some goal(s); see also Conversation.

Dialogue control act A dialogue act that does not pertain to the domain, but to
the interaction itself.

193

APPENDIX A

Directive A speech act that denotes an order (e.g., a request or command; “Can
you turn on the stove for me?”).

Discourse A type of joint activity in which conventional language plays a prominent
role [40]

Discourse act The smallest identifiable unit of communicative behavior [79].

Encoding (FDG) The process that converts pragmatic and semantic representa-
tions into morphosyntactic and phonological ones.

Focus/Background The focus is the most important/salient part of the utterance;
the background is the rest of the utterance. (Similar to, but not necessarily the
same as Topic/Comment.)

Formulation (FDG) The process that determines valid pragmatic and semantic
representations in a language, based on a communicative intention; the strate-
gic arrangement of the communicative intention into a temporal sequence of
discourse acts.

Grounding Assuring success on three different levels: attending to, hearing and
understanding each other; establishing something as part of common ground
well enough for current purposes; integrating an utterance’s meaning with one’s
beliefs [94].

Hortative A speech act that denotes encouragement (e.g., “Let’s go!”).

Illocution (Austin), illocutionary act See Speech act.

Illocution (FDG) See Sentence type.

Imperative A sentence that is a command (e.g., “Turn on the stove!”).

Implicature Information that is suggested by an utterance, though not (convention-
ally) entailed by it. E.g., “Lucy got up and made breakfast” suggests that “Lucy
got up and then (subsequently) made breakfast”, even though the utterance,
being a conjunction, is logically equivalent to “Lucy made breakfast and got
up.”

Interrogative A sentence that is a question (e.g., “Can you turn on the stove for
me?”).

Language The creation and usage of symbols; a verbal form of interaction; the
method of human communication, either spoken or written, consisting of the
use of words in a structured and conventional way (New Oxford American Dic-
tionary).

Locutionary act The utterance of a sentence with determinate sense and reference
[88].

Mirative A speech act that denotes wonder (e.g., “How beautifully she sings!”).

194

APPENDIX

A
Modal verb A type of auxiliary verb that is used to express modality (e.g., can,

should, may).

Modifier (FDG) An element that lexically modifies a move (e.g., “to cut a long
story short”).

Move A participatory action; the minimal free unit of discourse that is able to enter
into an exchange structure [74].

Operator (FDG) An element that grammatically modifies a move (e.g., duration,
instrument).

Optative A speech act that denotes a wish or hope (e.g., “Enjoy your meal!”).

Parsing The process of analyzing text to extract its syntactic structure.

Performative A linguistic act that does not have a truth value, but constitutes the
performance of the action that it describes.

Perlocutionary act The bringing about of effects on the audience by means of
uttering the sentence, such effects being special to the circumstances of utterance
[88].

Phonology The systematic use of sound to encode meaning in any spoken human
language.

Phrase A group of words functioning as a single unit in the syntax of a sentence.

Pragmatics The way in which context contributes to meaning.

Presupposition “Presuppositions can be considered as a kind of background as-
sumptions that should be fulfilled to understand the meaning of the message.”
[118] [99]

Prosody The rhythm, stress, and intonation of speech.

Referent The object or (part of an) utterance that is referred to, e.g. by anaphora
or a deictic gesture.

Relevance The property of having a purpose with respect to the current joint ac-
tivity or to the interaction itself.

Saliency The state of (part of) an utterance of being especially noticeable or promi-
nent.

Semantics The study of how meaning is attached to natural language, and of rela-
tions between different linguistic units.

Sentence type The grammatical mood of a sentence; e.g., declarative, interrogative,
or imperative.

Speech act The making of a statement, offer, promise etc. in uttering a sentence,
by virtue of the conventional force associated with it [88].

195

APPENDIX A

Syntax The principles and rules for constructing sentences from words in natural
languages.

Topic/Comment The topic is what the utterance is about; the comment is what
is being said about the topic. (Similar to, but not necessarily the same as
Focus/Background.)

Transitional-relevance place A point in a dialogue turn where the dialogue part-
ner may begin a dialogue turn.

Turn-constructional unit A word or clause that ends in a transitional-relevance
place.

Utterance A deliberate linguistic act that conveys meaning, usually bounded by
silence.

196

1 Bibliography

[1] R.M.C. Ahn, R.J. Beun, T. Borghuis, H. C. Bunt, and C.W.A.M. Van Overveld.
The DenK-architecture: a fundamental approach to user interfaces. Artificial
Intelligence Review, 8(2):431–445, 1995.

[2] W.A. Ainsworth and S.R. Pratt. Feedback strategies for error correction in
speech recognition systems. International Journal of Man-Machine Studies,
36(6):833–842, 1992.

[3] G. Airenti, B.G. Bara, and M. Colombetti. Failures, exploitations and deceits
in communication. Journal of Pragmatics, 20(4):303–326, 1993.

[4] J. F. Allen, B. W. Miller, E. K. Ringger, and T. Sikorski. Robust understand-
ing in a dialogue system. In Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics, pages 62–70, 1996.

[5] J. Allwood. Linguistic communication as action and cooperation. PhD thesis,
Göteborg University, 1976.

[6] J. Allwood. On dialogue cohesion. Gothenburg Papers in Theoretical Linguistics,
65, 1992.

[7] J. Allwood and L. Cerrato. A study of gestural feedback expressions. In P. Pag-
gio, K. Jokinen, and A. Jönsson, editors, Proceedings of the First Nordic Sym-
posium on Multimodal Communication, pages 7–22. Citeseer, 2003.

[8] J. Allwood, J. Nivre, and E. Ahlsén. On the semantics and pragmatics of
linguistic feedback. Journal of semantics, 9(1):1–26, 1992.

[9] J.L. Austin. How to Do Things With Words. Oxford University Press, 1962.

[10] R.J. Beun, M. Baker, and M. Reiner, editors. Dialogue and Instruction: Mod-
eling Interaction in Intelligent Tutoring Systems. Springer, 1995.

[11] R.J. Beun and H. Bunt. Multimodal cooperative communication. In Cooperative
Multimodal Communication, pages 1–10. Springer, 2001.

197

BIBLIOGRAPHY

[12] R.J. Beun and R.M. van Eijk. Repairing conceptual mismatches in human-
computer dialogue. Discourse processes, 44(3):213–243, 2007.

[13] R.J. Beun, R.M. van Eijk, J-J.Ch. Meyer, and N.L. Vergunst. A computational
approach to the interpretation of indirect speech acts. In V.P. Guerrero-Bote,
editor, International Conference on Multidisciplinary Information Sciences and
Technologies, pages 311–315, Mérida, 2006. Open Institute of Knowledge.

[14] R.J. Beun and P. Piwek. Pragmatische features in DenK: Pragtags. DenK
report, 97/29, 1997.

[15] T. Bickmore and J. Cassell. Social dialogue with embodied conversational
agents. In C.J. van Kuppevelt, L. Dybkjaer, and N. Bernsen, editors, Nat-
ural, Intelligent and Effective Interaction with Multimodal Dialogue Systems.
Kluwer Academic, 2004.

[16] D. Bohus. Error awareness and recovery in task-oriented spoken dialogue sys-
tems. PhD thesis, PhD Thesis proposal, Carnegie Mellon University, Pittsburgh,
2004.

[17] M.L. Bourguet. Towards a taxonomy of error handling strategies in recognition-
based multi-modal human–computer interfaces. Signal Processing, 86(12):3625–
3643, 2006.

[18] H.P. Branigan, M.J. Pickering, and A.A. Cleland. Syntactic coordination in
dialogue. Cognition, 75:B13–B25, 2000.

[19] M.E. Bratman. Intentions, Plans and Practical Reasoning. Harvard University
Press, Cambridge, MA, 1987.

[20] C. Breazeal. Robot in society: Friend or appliance? In Proceedings of the
Autonomous Agents Workshop on Emotion-Based Agent Architectures, pages
18–26, 1999.

[21] C. Breazeal. Designing sociable robots. MIT Press, 2002.

[22] C. Breazeal and J. Velásquez. Toward teaching a robot ‘infant’ using emotive
communication acts. In B. Edmonds and K. Dautenhahn, editors, Proceedings
of the Simulated Adaptive Behavior Workshop on Socially Situated Intelligence,
pages 25–40, 1998.

[23] A.J.N. van Breemen. iCat: experimenting with animabotics. In Proceedings of
the AISB 2005 Creative Robotics Symposium, 2005.

[24] P. Brown and S.C. Levinson. Politeness: Some universals in language usage.
Cambridge University Press, 1987.

[25] H. Bunt. Context and dialogue control. Think Quarterly, 3(1):19–31, 1994.

[26] H. Bunt. Dynamic interpretation and dialogue theory. In M.M. Taylor, D.G.
Bouwhuis, and F. Néel, editors, The Structure of Multimodal Dialogue, vol-
ume 2, pages 139–166. Elsevier, 1995.

198

BIBLIOGRAPHY

[27] H. Bunt. Dialogue pragmatics and context specification. Abduction, Belief and
Context in Dialogue: studies in computational pragmatics, pages 81–150, 2000.

[28] H. Bunt. The DIT++ taxonomy for functional dialogue markup. In D. Heylen,
C. Pelachaud, R. Catizone, and D. Traum, editors, Proceedings of the AAMAS
2009 Workshop “Towards a Standard Markup Language for Embodied Dialogue
Acts”, pages 13–24, 2009.

[29] H. Bunt, R. Ahn, R.J. Beun, T. Borghuis, and K. van Overveld. Multimodal
cooperation with the DenK system. Multimodal Human-Computer Communi-
cation: systems, techniques and experiments, pages 39–67, 1998.

[30] H. Bunt, J. Alexandersson, J. Carletta, J.W. Choe, A.C. Fang, K. Hasida,
K. Lee, V. Petukhova, A. Popescu-Belis, L. Romary, C. Soria, and D. Traum.
Towards an ISO standard for dialogue act annotation. In Proceedings of LREC
2010, the Seventh International Conference on Language Resources and Evalu-
ation, pages 2548–2558, 2010.

[31] H. Bunt, R. Morante, and S. Keizer. An empirically based computational model
of grounding in dialogue. In Proceedings of the 8th SIGDIAL Conference on
Discourse and Dialogue, pages 283–290, 2007.

[32] H.C. Bunt. Information dialogues as communicative action in relation to partner
modelling and information processing. In M.M. Taylor, D.G. Bouwhuis, and
F. Néel, editors, The structure of multimodal dialogue, volume 1, pages 47–74.
Elsevier, 1989.

[33] H.C. Bunt. Dialogue control functions and interaction design. Dialogue and
Instruction, pages 197–214, 1995.

[34] C.S. Butler. Interpersonal meaning in the noun phrase. The Noun Phrase in
Functional Discourse Grammar, pages 221–261, 2008.

[35] L. Carlson. Dialogue games: An approach to discourse analysis. Reidel, 1983.

[36] J. Cassell, T. Bickmore, L. Campbell, H. Vilhjálmsson, and H. Yan. More than
just a pretty face: Conversational protocols and the affordances of embodiment.
Knowledge-Based Systems, 14(1-2):55–64, 2001.

[37] J. Cassell, H.H. Vilhjálmsson, and T. Bickmore. BEAT: the behavior expression
animation toolkit. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 477–486, 2001.

[38] C. Castelfranchi. Modelling social action for AI agents. Artificial Intelligence,
103:157–182, 1998.

[39] C. Castelfranchi and R. Falcone. From task delegation to role delegation. In
Lecture Notes in Artificial Intelligence, pages 278–289. Springer, 1997.

[40] H.H. Clark. Using Language. Cambridge University Press, Cambridge, MA,
1996.

199

BIBLIOGRAPHY

[41] P.R. Cohen and H.J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(2-3):213–261, 1990.

[42] P.R. Cohen and H.J. Levesque. Confirmations and joint action. In Proceedings of
the 12th international joint conference on Artificial intelligence, pages 951–957,
1991.

[43] P.R. Cohen, J.L. Morgan, and M.E. Pollack. Intentions in Communication.
MIT Press, 1990.

[44] P.R. Cohen and C.R. Perrault. Elements of a plan-based theory of speech acts.
Cognitive Science: A Multidisciplinary Journal, 3(3):177–212, 1979.

[45] K.M. Colby, S. Weber, and F.D. Hilf. Artificial paranoia. Artificial Intelligence,
2:1–25, 1971.

[46] J.H. Connolly. The question of discourse representation in functional discourse
grammar. A new architecture for Functional Grammar, pages 89–116, 2004.

[47] H.G.W. van Dam. Dialogue Acts in GUIs. PhD thesis, TU Eindhoven, 2006.

[48] M.M. Dastani, D. Hobo, and J.-J.Ch. Meyer. Practical extensions in agent pro-
gramming languages. In AAMAS ’07: Proceedings of the 6th international joint
conference on Autonomous agents and multiagent systems, pages 1–3. ACM
Press, 2007.

[49] S.C. Dik. The theory of functional grammar. Mouton de Gruyter, 1997.

[50] P. Doherty and J.-J.Ch. Meyer. Towards a delegation framework for aerial
robotic mission scenarios. Cooperative Information Agents XI, pages 5–26, 2007.

[51] A.F. Dragoni, P. Giorgini, and L. Serafini. Mental states recognition from
communication. Journal of Logic and Computation, 12(1):119–136, 2002.

[52] C. Fellbaum. WordNet: An electronic lexical database. MIT Press, 1998.

[53] G. Ferguson, J. Allen, and B. Miller. TRAINS-95: Towards a mixed-initiative
planning assistant. In Proceedings of the Third Conference on AI Planning
Systems, pages 70–77, 1996.

[54] G. Ferguson and J.F. Allen. TRIPS: An integrated intelligent problem-solving
assistant. In Proceedings of the National Conference on Artificial Intelligence,
pages 567–573, 1998.

[55] Foundation for Intelligent Physical Agents. FIPA-ACL communicative act li-
brary specification. Website, 2002. http://www.fipa.org/specs/fipa00037/
SC00037J.html.

[56] FormalSystems. RecipeML, 2000. http://www.formatdata.com/recipeml/.

[57] J. Foster and C. Vogel. Parsing ill-formed text using an error grammar. Artificial
Intelligence Review, 21(3):269–291, 2004.

200

BIBLIOGRAPHY

[58] R.E. Frederking. Grice’s maxims: “do the right thing”. In Computational
Implicature workshop at the AAAI-96 Spring Symposium Series, pages 21–26,
1996.

[59] S. Garrod and A. Anderson. Saying what you mean in dialogue: a study in
conceptual and semantic co-ordination. Cognition, 27(2):181–218, 1987.

[60] S. Garrod and M.J. Pickering. Why is conversation so easy? Trends in Cognitive
Science, 8(1):8–11, 2004.

[61] G. Gazdar. Pragmatics: Implicature, Presupposition and Logical Form. Aca-
demic Press, New York, 1979.

[62] E. Goffman. Replies and responses. Language in society, 5(03):257–313, 1976.

[63] B. Goodman, A. Soller, F. Linton, and R. Gaimari. Encouraging student re-
flection and articulation using a learning companion. In International Journal
of Artificial Intelligence in Education. IOS Press, 1997.

[64] A.C. Graesser, X. Hu, and D.S. McNamara. Computerized learning environ-
ments that incorporate research in discourse psychology, cognitive science, and
computational linguistics. Experimental cognitive psychology and its applica-
tions: Festschrift in honor of Lyle Bourne, Walter Kintsch, and Thomas Lan-
dauer, pages 183–194, 2005.

[65] A.C. Graesser, S. Lu, G.T. Jackson, H. Mitchell, M. Ventura, A. Olney, and
M.M. Louwerse. Autotutor: A tutor with dialogue in natural language. Behav-
ioral Research Methods, Instruments, and Computers, 36(2):180–193, 2004.

[66] A. Gravano, S. Benus, J. Hirschberg, S. Mitchell, and I. Vovsha. Classification
of discourse functions of affirmative words in spoken dialogue. In Proceedings
of Interspeech 2007, pages 1613–1616, 2007.

[67] H.P. Grice. Meaning. Philosophical Review, 66(3):377–388, 1957.

[68] H.P. Grice. Logic and conversation. In P. Cole and J.L. Morgan, editors, Syntax
and Semantics 3: Speech Acts. Academic Press, New York, 1975.

[69] H.P. Grice. Studies in the Way of Words. Harvard University Press, Cambridge,
MA, 1989.

[70] B. Grosz and C. Sidner. Plans for discourse. In P.R. Cohen, J. Morgan, and
M.E. Pollack, editors, Intentions and Plans in Communication and Discourse.
MIT Press, 1990.

[71] B.J. Grosz and S. Kraus. Collaborative plans for complex group action. Artificial
Intelligence, 86(2):269–357, 1996.

[72] R. Hagenaars. The virtual recipe assistant. Bachelor’s Thesis, Hogeschool
Utrecht, 2010.

201

BIBLIOGRAPHY

[73] P.A. Heeman, M. Johnston, J. Denney, and E. Kaiser. Beyond structured dia-
logues: Factoring out grounding. In Fifth International Conference on Spoken
Language Processing, 1998.

[74] K. Hengeveld and J.L. Mackenzie. Functional Discourse Grammar: A
typologically-based theory of language structure. Oxford University Press, Ox-
ford, 2008.

[75] J. Hintikka and E. Saarinen. Information-seeking dialogues: Some of their
logical properties. Studia Logica, 38(4):355–363, 1979.

[76] K. Hone. Empathic agents to reduce user frustration: The effects of varying
agent characteristics. Interacting with Computers, 18(2):227–245, 2006.

[77] S. Kopp, B. Jung, N. Lessmann, and I. Wachsmuth. Max – a multimodal
assistant in virtual reality construction. KI – Künstliche Intelligenz, 4(3):11–
17, 2003.

[78] S. Kopp and I. Wachsmuth. Model-based animation of coverbal gesture. In
Proceedings of Computer Animation, pages 252–257. IEEE Press, 2002.

[79] C. Kroon. Discourse Particles in Latin. A study of nam, enim, autem, vero and
at. Gieben, 1995.

[80] R. Lamers. Automated natural language processing using functional discourse
grammar. Master’s Thesis Cognitive Artificial Intelligence, 2009.

[81] S. Larsson and D.R. Traum. Information state and dialogue management in the
trindi dialogue move engine toolkit. Natural language engineering, 6(3&4):323–
340, 2000.

[82] A. Lavie. GLR*: A robust grammar-focused parser for spontaneously spoken
language. Proceedings of ESSLLI-96 Workshop on Robust Parsing, 1996.

[83] H.J. Lebbink. Dialogue and decision games for information exchanging agents.
PhD thesis, Utrecht University, Utrecht, The Netherlands, 2006.

[84] O. Lemon, L. Cavedon, and B. Kelly. Managing dialogue interaction: A multi-
layered approach. In Proceedings of the 4th SIGDIAL Workshop on Discourse
and Dialogue, pages 168–177, 2003.

[85] A.M. Leslie. Spatiotemporal continuity and the perception of causality in in-
fants. Perception, 13(3):287–305, 1984.

[86] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman,
R. Podorozhny, M. Prasad, A. Raja, R. Vincent, P. Xuan, and X. Zhang. Evo-
lution of the GPGP/TAEMS domain-independent coordination framework. Au-
tonomous Agents and Multi-Agent Systems, 9(1):87–143, 2004.

[87] W.J.M. Levelt. Speaking: From Intention to Articulation. MIT Press, Cam-
bridge, MA, 1989.

202

BIBLIOGRAPHY

[88] S.C. Levinson. Pragmatics. Cambridge University Press, Cambridge, 1983.

[89] K.F. McCoy. Reasoning on a highlighted user model to respond to misconcep-
tions. Computational Linguistics, 14(3):52–63, 1988.

[90] K.F. McCoy. Generating context-sensitive responses to object-related miscon-
ceptions. Artificial Intelligence, 41(2):157–195, 1989.

[91] M.F. McTear. Using the CSLU toolkit for practicals in spoken dialogue tech-
nology. In MATISSE Workshop on Method and Tool Innovations for Speech
Science Education, 1999.

[92] M.F. McTear. Spoken dialogue technology: toward the conversational user in-
terface. Springer, 2004.

[93] W. Menzel. Robust processing of natural language. KI-95: Advances in Artifi-
cial Intelligence, pages 19–34, 1995.

[94] R. Morante Vallejo. Computing meaning in interaction. University of Tilburg,
2007.

[95] K. Morik. User models and conversational settings: modeling the user’s wants.
In A. Kobsa and W. Wahlster, editors, User Models in Dialog Systems, pages
364–385. Springer Verlag, 1989.

[96] D.A. Norman. Categorization of action slips. Psychological review, 88(1):1–15,
1981.

[97] S. Oviatt. Ten myths of multimodal interaction. Communications of the ACM,
1999.

[98] T. Paek. Toward a taxonomy of communication errors. In Workshop on Error
Handling in Spoken Dialogue Systems, pages 53–58, 2003.

[99] P. Piwek and E. Krahmer. Presuppositions in context: Constructing bridges.
Formal aspects of context, 20, 2000.

[100] H. Prakken. Formal systems for persuasion dialogue. The Knowledge Engineer-
ing Review, 21(02):163–188, 2006.

[101] L.M. Reeves, J. Lai, J.A. Larson, S. Oviatt, T.S. Balaji, S. Buisine, P. Collings,
P. Cohen, B. Kraal, J.C. Martin, M. McTear, T.V. Raman, K.M. Stanney,
H. Su, and Q.Y. Wang. Guidelines for multimodal user interface design. Com-
munications of the ACM, 47(1):57–59, 2004.

[102] J. Rickel and W.L. Johnson. Task-oriented collaboration with embodied agents
in virtual worlds. In J. Cassell, J. Sullivan, and S. Prevost, editors, Embodied
Conversational Agents, pages 95–122. MIT Press, 2000.

[103] V. Rieser and J.D. Moore. Implications for generating clarification requests in
task-oriented dialogues. In Proceedings of the 43rd Annual Meeting on Associ-
ation for Computational Linguistics, pages 239–246. ACL, 2005.

203

BIBLIOGRAPHY

[104] J. Ruppenhofer, M. Ellsworth, M.R.L. Petruck, C.R. Johnson, and J. Schef-
fczyk. FrameNet II: Extended theory and practice, 2010. http://framenet.

icsi.berkeley.edu/book/book.pdf.

[105] H. Sacks, E.A. Schegloff, and G. Jefferson. A simplest systematics for the
organization of turn-taking for conversation. Language, 50(4):696–735, 1974.

[106] B. Scasselati. Theory of mind for a humanoid robot. Autonomous Robots,
12(1):13–24, 2002.

[107] R. Schäfer. Multidimensional probabilistic assessment of interest and knowledge
in a noncooperative dialog situation. In Proceedings of ABIS-94: GI Workshop
on Adaptivity and User Modeling in Interactive Software Systems, pages 46–62,
1994.

[108] E. A. Schegloff and H. Sacks. Opening up closings. Semiotica, 8(4):289–327,
1973.

[109] L. Seabra Lopes and A. Teixeira. Human-robot interaction through spoken
language dialogue. In Proceedings of the International Conference on Intelligent
Robots and Systems, pages 528–534, 2000.

[110] J.R. Searle. Speech acts: An essay in the philosophy of language. Cambridge
University Press, 1969.

[111] J.R. Searle. Indirect speech acts. In P. Cole and J.L. Morgan, editors, Syntax
and Semantics, Volume 3: Speech Acts, pages 59–82. Academic Press, 1975.

[112] E. Shriberg, J. Bear, and J. Dowding. Automatic detection and correction of
repairs in human-computer dialog. In Proceedings of the Workshop on Speech
and Natural Language, pages 419–424, 1992.

[113] S. Steidl, C. Hacker, C. Ruff, A. Batliner, E. Nöth, and J. Haas. Looking at the
last two turns, i’d say this dialogue is doomed – measuring dialogue success. In
Text, Speech and Dialogue, pages 629–636. Springer, 2004.

[114] A. Stein and E. Maier. Structuring collaborative information-seeking dia-
logues. Knowledge-Based Systems, 8(2-3):82–93, 1995. Special Issue on Human-
Computer Collaboration.

[115] B.R. Steunebrink. The Logical Structure of Emotions. PhD thesis, Universiteit
Utrecht, 2010.

[116] B.R. Steunebrink, N.L. Vergunst, Chr. P. Mol, F.P.M. Dignum, M.M. Dastani,
and J-J.Ch. Meyer. A generic architecture for a companion robot. In J. Filipe,
J.A. Cetto, and J.-L. Ferrier, editors, Proceedings of the 5th International Con-
ference on Informatics in Control, Automation and Robotics, pages 315–321,
Madeira, Portugal: Funchal, 2008.

[117] M. Stone. Linguistic representation and gricean inference. In Proceedings of the
International Workshop on Computational Semantics, pages 5–21, 2003.

204

BIBLIOGRAPHY

[118] P.F. Strawson. On referring. Mind, 59(235):320–344, 1950.

[119] J.A. Taylor, J. Carletta, and C. Mellish. Requirements for belief models in
cooperative dialogue. User Modeling and User-Adapted Interaction, 6(1):23–68,
1996.

[120] M.M. Taylor. Layered protocols for computer-human dialogue. i: Principles.
International Journal of Man-Machine Studies, 28(2-3):175–218, 1988.

[121] M.M. Taylor. Response timing in layered protocols: a cybernetic view of natural
dialogue. The structure of multimodel dialogue, pages 159–172, 1989.

[122] K.R. Thórisson. Layered action control in communicative humanoids. In Pro-
ceedings of Computer Graphics Europe, pages 134–143, 1997.

[123] D. Traum and S. Larsson. The information state approach to dialogue manage-
ment. Current and New Directions in Discourse and Dialogue, pages 325–353,
2003.

[124] D.R. Traum. A computational theory of grounding in natural language conver-
sation. PhD thesis, University of Rochester, 1994.

[125] M. Turunen and J. Hakulinen. Agent-based error handling in spoken dialogue
systems. In Seventh European Conference on Speech Communication and Tech-
nology, 2001.

[126] W. van der Hoek, B. van Linder, and J.-J.Ch. Meyer. An integrated modal
approach to rational agents. Foundations of rational agency, pages 37–75, 1998.

[127] S. Verberne. In Search of the Why. PhD thesis, Tilburg University, 2010.

[128] N. Vergunst, Lamers R., and Dignum F. Using functional discourse grammar
in an agent-based dialogue system. In M. Dall’Aglio-Hattnher, M. Chondro-
gianni, and K. Hengeveld, editors, 13th International Conference on Functional
Grammar, 2008.

[129] N.L. Vergunst, B.R. Steunebrink, M.M. Dastani, F.P.M. Dignum, and J.-J.Ch.
Meyer. Towards programming multimodal dialogues. In Proceedings of the
workshop on communication between human and artificial agents (CHAA’07),
2007.

[130] M. Walker, I. Langkilde, J. Wright, A. Gorin, and D. Litman. Learning to
predict problematic situations in a spoken dialogue system: experiments with
how may i help you? In Proceedings of the North American meeting of the
Association for Computational Linguistics conference, 2000.

[131] J. Weizenbaum. ELIZA – a computer program for the study of natural lan-
guage communication between man and machine. Communications of the ACM,
9(1):36–45, 1966.

205

BIBLIOGRAPHY

[132] Y. Wilks, editor. Close Engagements with Artificial Companions: Key Social,
Psychological, Ethical and Design Issues. John Benjamins Publishing Company,
2010.

[133] D. Wilson and D. Sperber. Relevance theory. In G. Ward and L. Horn, editors,
Handbook of pragmatics. Blackwell, Oxford, 2002.

[134] T. Winograd. Understanding natural language. Academic Press, Inc., 1972.

[135] M. Wooldridge. Introduction to Multiagent Systems. John Wiley & Sons, Inc.,
2002.

[136] M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice.
Knowledge engineering review, 10(2):115–152, 1995.

206

1 Summary

Planning dialogues is a notoriously difficult task, consisting of several non-trivial
components. Because of this, programming human-computer dialogues is also a com-
plicated task. Humans are unpredictable, make mistakes, vary their pronunciation,
change their minds halfway through utterances or actions, and so on. Although not
all errors can be solved easily, we can at least attempt to avoid total communication
breakdown.

In this thesis, we present a number of tactics to make the generation of human-
computer dialogues more robust. We focus on task-oriented dialogues, since they
have a relatively high level of predictability and a clear goal. More specifically, we
have studied the generation of dialogues in which the robot iCat instructs the user to
perform a task, most notably the preparation of a recipe that is chosen by the user
at the beginning of the dialogue.

The framework that we present in this thesis is modeled as a BDI agent. Being
an agent, it is autonomous, social, reactive and goal-directed. Its internals are repre-
sented according to the BDI (Belief-Desire-Intention) paradigm, which enables us to
consider the program and the human user in similar terms. This allows us to simulate
human-computer dialogue by representing the user as a simple BDI agent itself.

We have developed this framework by investigating human-human dialogues, prin-
ciples of cooperation, and dialogue systems. Based on this, we have gathered a set
of requirements that we believe any such system should adhere to. Then, we have
constructed a framework for such a system, consisting of a basic system and an er-
ror handling module. We have also investigated a technique for natural language
processing and generation.

In order to make the system robust and generic, we present an error handling
module that is separate from the basic dialogue system. The basic dialogue system
itself is only capable of producing and interpreting instructions that are part of the
task at hand, based on principles from dialogue theory and cooperation. The error
handling module can deal with errors such as misunderstandings and erroneous actions
by the user.

Our basic framework was almost completely implemented, showing that it is in-
deed a valid framework. Of our error handling module, only some aspects were
implemented, leaving the rest of the implementation and validation for future work.

207

SUMMARY

As a preliminary validation of our framework, we have presented a dialogue in which
errors are detected and repaired, which can be constructed with the rules that we
present in this thesis. A more definitive validation can be given if we implement the
complete system and test it with human users. The value of the framework can be
fully assessed after testing whether users can perform tasks better, faster and easier
with a task assistant than with, for example, a manual.

208

1 Samenvatting

Het plannen van dialogen is buitengewoon lastig. Dialogen bestaan immers uit ver-
schillende niet-triviale componenten. Het programmeren van mens-computerdialogen
is daarom ook een complexe taak. Mensen zijn onvoorspelbaar, maken fouten, variëren
de uitspraak van woorden, veranderen van gedachten halverwege zinnen of acties, en
zo verder. Hoewel niet alle fouten gemakkelijk kunnen worden opgelost, kunnen we
in ieder geval proberen te voorkomen dat communicatie compleet mislukt.

In dit proefschrift worden een aantal tactieken gepresenteerd om de generatie
van mens-computerdialogen meer robuust te maken. We richten ons op taakgerichte
dialogen, aangezien zij een relatief hoge mate van voorspelbaarheid en een duidelijk
doel hebben. Meer in het bijzonder behandelen we het genereren van dialogen waarin
de robot iCat de gebruiker instrueert een taak uit te voeren, namelijk het bereiden
van een recept dat door de gebruiker gekozen is aan het begin van de dialoog.

Het framework dat we in dit proefschrift presenteren, is gemodelleerd als een BDI
(Belief-Desire-Intention) agent. Een agent is autonoom, sociaal, reactief en doelge-
richt. Zijn innerlijke werking wordt gerepresenteerd volgens het BDI-paradigma, dat
ons in staat stelt het programma en de menselijke gebruiker in soortgelijke termen
te beschouwen. Dit stelt ons in staat mens-computerdialoog te simuleren door de
gebruiker als een eenvoudige BDI-agent te representeren.

Om dit framework te ontwerpen, hebben we mens-mensdialogen, principes van
samenwerking en dialoogsystemen onderzocht. Op basis hiervan hebben we een pakket
van eisen samengesteld waaraan een dergelijk systeem moet voldoen. Vervolgens
hebben we een conceptueel framework geconstrueerd, bestaande uit een basissysteem
en een foutafhandelingmodule. We hebben ook een techniek voor de interpretatie en
productie van natuurlijke taal onderzocht.

Om het systeem robuust en generiek te maken, presenteren we een foutafhande-
lingmodule die gescheiden is van het basisdialoogsysteem. Het fundamentele dialoog-
systeem zelf is alleen geschikt voor het produceren en interpreteren van instructies
die deel uitmaken van de taak in kwestie, gebaseerd op de beginselen van de dialoog-
theorie en principes van samenwerking. De foutafhandelingmodule kan omgaan met
fouten als misverstanden en onjuiste handelingen van de gebruiker.

Het framework is bijna volledig gëımplementeerd, waaruit blijkt dat het inderdaad
een valide framework is. Van de foutafhandelingmodule zijn vooralsnog slechts enkele

209

SAMENVATTING

aspecten gëımplementeerd, waardoor de rest van de implementatie en validatie ruimte
bieden voor toekomstig onderzoek. Als een eerste validatie van ons framework hebben
wij een dialoog gepresenteerd waarin fouten worden opgespoord en gerepareerd. Deze
dialoog kan worden geconstrueerd met de regels die in dit proefschrift gepresenteerd
worden. Een meer definitieve validatie kan worden gegeven als het systeem compleet
wordt gëımplementeerd en wordt getest met menselijke gebruikers. De waarde van het
framework kan volledig worden beoordeeld door te testen of gebruikers taken beter,
sneller en makkelijker kunnen uitvoeren met een taak-assistent dan met, bijvoorbeeld,
een handleiding.

210

1 Dankwoord

- Mag ik u hartelijk bedanken voor
deze fijne voorstelling?
- Gaat uw gang.
- Ik wil u hartelijk bedanken voor
deze fijne voorstelling!
- Gaat uw gang.
- Hartelijk bedankt voor deze fijne
voorstelling!
- Geen dank.
- En ik had het nog zo gevraagd!
- Ja, d’r is niks meer aan te doen.
- Oh, nou, u wordt bedankt!
- Ja, dat idee kreeg ik al!

Herman Finkers,
Het meisje van de slijterij

Er zijn talloze overeenkomsten tussen het voeren van een dialoog en het schrijven
van een proefschrift. Beide hebben over het algemeen een hoop woorden nodig, zijn
lastig te plannen, verre van triviaal, en onmogelijk om in je eentje te doen. Ik wil hier
even de tijd nemen om enkele woorden van dank uit te spreken voor de vele helpende
handen die, direct of indirect, dit proefschrift mede mogelijk hebben gemaakt.

Allereerst wil ik mijn begeleiders hartelijk bedanken. John-Jules heeft mij altijd
kunnen motiveren, ook in de tijden dat mijn onderzoek wat minder soepel liep, en wist
hierbij altijd enthousiast en gëınteresseerd te blijven. Robbert-Jan is er erg goed in
geslaagd om mij scherp te maken en te houden: geen enkel woord of zinsdeel dat niet
precies kloppend was is aan zijn arendsoog ontsnapt. Dat heeft me absoluut geholpen
om beter te leren schrijven. Soms was ik wat overweldigd door mijn begeleiders, maar
dan was er altijd weer Rogier die vroeg: “Maar wat vind je er zelf eigenlijk van?”
Zijn tip om discussie te zien als een Oosterse vechtsport (meebuigen, niet forceren)
heeft me geholpen om mijn mannetje te kunnen staan in wetenschappelijke discussies.
Ook wil ik Frank Dignum bedanken voor de vele goede inhoudelijke tips en adviezen.

211

DANKWOORD

Mijn leescommissie wil ik graag hartelijk bedanken voor de feedback waardoor ik net
even de puntjes op de i heb kunnen zetten.

Verder wil ik met name grote waardering uitspreken voor mijn collega’s Tom,
Susan, Hado, Maaike, Joost, Eric en Nick, voor alle gezelligheid, de borrels en de
uitjes. Speciale woorden van dank voor Bas en Chris, die mij al die jaren als kamer-
genoot hebben weten te verdragen (en andersom). Ook de andere collega’s uit de
IS-groep, collega’s uit andere vakgroepen, SIKS-collega’s en vele conferentiegenoten
wil ik bedanken voor alle gezelligheid en leuke (al dan niet inhoudelijke) discussies.

Annemarie, Renske, Lisanne, Jaii, Lotte en alle andere vrienden en kennissen:
bedankt! Aan de ene kant moesten jullie soms op je tenen lopen om niet per ongeluk
‘het p-woord’ te noemen, en aan de andere kant werden jullie minstens net zo vaak
door mij overstelpt met (al dan niet onbegrijpelijk) gebabbel over mijn onderzoek. Ik
ben heel blij dat jullie me nog steeds niet zat zijn na al die tijd.

Cobi, Dick, Arjan en de rest van de familie: bedankt voor de overweldigende
steun op alle gebieden. Ik wil ook nog mijn oprechte bewondering uitspreken voor de
onuitputtelijke pogingen om mijn onderzoek inhoudelijk te begrijpen. Dat doen niet
veel mensen buiten het vakgebied jullie na.

Mijn grootste dank gaat uit naar Nils. I hold a whole bool from you.

Utrecht, Nieske Vergunst
23 januari 2011

212

1 SIKS Dissertation Series

1998

1998-1 | Johan van den Akker (CWI), DEGAS
- An Active, Temporal Database of Autonomous
Objects.

1998-2 | Floris Wiesman (UM), Informa-
tion Retrieval by Graphically Browsing Meta-
Information.

1998-3 | Ans Steuten (TUD), A Contribution
to the Linguistic Analysis of Business Conversa-
tions within the Language/Action Perspective.

1998-4 | Dennis Breuker (UM), Memory versus
Search in Games.

1998-5 | E.W. Oskamp (RUL), Computeron-
dersteuning bij Straftoemeting.

1999

1999-1 | Mark Sloof (VU), Physiology of Qual-
ity Change Modelling; Automated modelling of
Quality Change of Agricultural Products.

1999-2 | Rob Potharst (EUR), Classification
using decision trees and neural nets.

1999-3 | Don Beal (UM), The Nature of Mini-
max Search.

1999-4 | Jacques Penders (UM), The practical
Art of Moving Physical Objects.

1999-5 | Aldo de Moor (KUB), Empower-
ing Communities: A Method for the Legitimate
User-Driven Specification of Network Informa-
tion Systems.

1999-6 | Niek J.E. Wijngaards (VU), Re-
design of compositional systems.

1999-7 | David Spelt (UT), Verification support
for object database design.

1999-8 | Jacques H.J. Lenting (UM), Informed
Gambling: Conception and Analysis of a Multi-

Agent Mechanism for Discrete Reallocation.

2000

2000-1 | Frank Niessink (VU), Perspectives on
Improving Software Maintenance.

2000-2 | Koen Holtman (TUE), Prototyping of
CMS Storage Management.

2000-3 | Carolien M.T. Metselaar (UVA), So-
ciaal-organisatorische gevolgen van kennistech-
nologie; een procesbenadering en actorperspec-
tief.

2000-4 | Geert de Haan (VU), ETAG, A For-
mal Model of Competence Knowledge for User
Interface Design.

2000-5 | Ruud van der Pol (UM), Knowledge-
based Query Formulation in Information Re-
trieval.

2000-6 | Rogier van Eijk (UU), Programming
Languages for Agent Communication.

2000-7 | Niels Peek (UU), Decision-theoretic
Planning of Clinical Patient Management.

2000-8 | Veerle Coup (EUR), Sensitivity Ana-
lyis of Decision-Theoretic Networks.

2000-9 | Florian Waas (CWI), Principles of
Probabilistic Query Optimization.

2000-10 | Niels Nes (CWI), Image Database
Management System Design Considerations, Al-
gorithms and Architecture.

2000-11 | Jonas Karlsson (CWI), Scalable Dis-
tributed Data Structures for Database Manage-
ment.

2001

2001-1 | Silja Renooij (UU), Qualitative Ap-
proaches to Quantifying Probabilistic Networks.

213

SIKS DISSERTATION SERIES

2001-2 | Koen Hindriks (UU), Agent Pro-
gramming Languages: Programming with Mental
Models.

2001-3 | Maarten van Someren (UvA), Learn-
ing as problem solving.

2001-4 | Evgueni Smirnov (UM), Conjunctive
and Disjunctive Version Spaces with Instance-
Based Boundary Sets.

2001-5 | Jacco van Ossenbruggen (VU), Pro-
cessing Structured Hypermedia: A Matter of
Style.

2001-6 | Martijn van Welie (VU), Task-based
User Interface Design.

2001-7 | Bastiaan Schonhage (VU), Diva: Ar-
chitectural Perspectives on Information Visual-
ization.

2001-8 | Pascal van Eck (VU), A Compositional
Semantic Structure for Multi-Agent Systems Dy-
namics.

2001-9 | Pieter Jan ’t Hoen (RUL), To-
wards Distributed Development of Large Object-
Oriented Models, Views of Packages as Classes.

2001-10 | Maarten Sierhuis (UvA), Modeling
and Simulating Work Practice BRAHMS: a mul-
tiagent modeling and simulation language for
work practice analysis and design.

2001-11 | Tom M. van Engers (VUA), Knowl-
edge Management: The Role of Mental Models
in Business Systems Design.

2002

2002-01 | Nico Lassing (VU), Architecture-
Level Modifiability Analysis.

2002-02 | Roelof van Zwol (UT), Modelling and
searching web-based document collections.

2002-03 | Henk Ernst Blok (UT), Database Op-
timization Aspects for Information Retrieval.

2002-04 | Juan Roberto Castelo Valdueza
(UU), The Discrete Acyclic Digraph Markov
Model in Data Mining.

2002-05 | Radu Serban (VU), The Private Cy-
berspace Modeling Electronic Environments in-
habited by Privacy-concerned Agents.

2002-06 | Laurens Mommers (UL), Applied le-
gal epistemology; Building a knowledge-based on-
tology of the legal domain.

2002-07 | Peter Boncz (CWI), Monet: A Next-
Generation DBMS Kernel For Query-Intensive
Applications.

2002-08 | Jaap Gordijn (VU), Value Based Re-
quirements Engineering: Exploring Innovative

E-Commerce Ideas.

2002-09 | Willem-Jan van den Heuvel
(KUB), Integrating Modern Business Applica-
tions with Objectified Legacy Systems.

2002-10 | Brian Sheppard (UM), Towards Per-
fect Play of Scrabble.

2002-11 | Wouter C.A. Wijngaards (VU),
Agent Based Modelling of Dynamics: Biological
and Organisational Applications.

2002-12 | Albrecht Schmidt (UVA), Processing
XML in Database Systems.

2002-13 | Hongjing Wu (TUE), A Reference
Architecture for Adaptive Hypermedia Applica-
tions.

2002-14 | Wieke de Vries (UU), Agent Inter-
action: Abstract Approaches to Modelling, Pro-
gramming and Verifying Multi-Agent Systems.

2002-15 | Rik Eshuis (UT), Semantics and Veri-
fication of UML Activity Diagrams for Workflow
Modelling.

2002-16 | Pieter van Langen (VU), The
Anatomy of Design: Foundations, Models and
Applications.

2002-17 | Stefan Manegold (UVA), Un-
derstanding, Modeling, and Improving Main-
Memory Database Performance.

2003

2003-01 | Heiner Stuckenschmidt (VU),
Onotology-Based Information Sharing In Weakly
Structured Environments.

2003-02 | Jan Broersen (VU), Modal Action
Logics for Reasoning About Reactive Systems.

2003-03 | Martijn Schuemie (TUD), Human-
Computer Interaction and Presence in Virtual
Reality Exposure Therapy.

2003-04 | Milan Petkovic (UT), Content-Based
Video Retrieval Supported by Database Technol-
ogy.

2003-05 | Jos Lehmann (UVA), Causation in
Artificial Intelligence and Law - A modelling ap-
proach.

2003-06 | Boris van Schooten (UT), Develop-
ment and specification of virtual environments.

2003-07 | Machiel Jansen (UvA), Formal Ex-
plorations of Knowledge Intensive Tasks.

2003-08 | Yongping Ran (UM), Repair Based
Scheduling.

2003-09 | Rens Kortmann (UM), The resolu-
tion of visually guided behaviour.

2003-10 | Andreas Lincke (UvT), Electronic

214

SIKS DISSERTATION SERIES

Business Negotiation: Some experimental stud-
ies on the interaction between medium, innova-
tion context and culture.

2003-11 | Simon Keizer (UT), Reasoning under
Uncertainty in Natural Language Dialogue using
Bayesian Networks.

2003-12 | Roeland Ordelman (UT), Dutch
speech recognition in multimedia information re-
trieval.

2003-13 | Jeroen Donkers (UM), Nosce Hostem
- Searching with Opponent Models.

2003-14 | Stijn Hoppenbrouwers (KUN),
Freezing Language: Conceptualisation Processes
across ICT-Supported Organisations.

2003-15 | Mathijs de Weerdt (TUD), Plan
Merging in Multi-Agent Systems.

2003-16 | Menzo Windhouwer (CWI), Feature
Grammar Systems - Incremental Maintenance of
Indexes to Digital Media Warehouses.

2003-17 | David Jansen (UT), Extensions of
Statecharts with Probability, Time, and Stochas-
tic Timing.

2003-18 | Levente Kocsis (UM), Learning
Search Decisions.

2004

2004-01 | Virginia Dignum (UU), A Model for
Organizational Interaction: Based on Agents,
Founded in Logic.

2004-02 | Lai Xu (UvT), Monitoring Multi-party
Contracts for E-business.

2004-03 | Perry Groot (VU), A Theoretical and
Empirical Analysis of Approximation in Sym-
bolic Problem Solving.

2004-04 | Chris van Aart (UVA), Organiza-
tional Principles for Multi-Agent Architectures.

2004-05 | Viara Popova (EUR), Knowledge dis-
covery and monotonicity.

2004-06 | Bart-Jan Hommes (TUD), The
Evaluation of Business Process Modeling Tech-
niques.

2004-07 | Elise Boltjes (UM), Voorbeeldig on-
derwijs; voorbeeldgestuurd onderwijs, een opstap
naar abstract denken, vooral voor meisjes.

2004-08 | Joop Verbeek (UM), Politie en de
Nieuwe Internationale Informatiemarkt, Grens-
regionale politiële gegevensuitwisseling en digita-
le expertise.

2004-09 | Martin Caminada (VU), For
the Sake of the Argument; explorations into
argument-based reasoning.

2004-10 | Suzanne Kabel (UVA), Knowledge-
rich indexing of learning-objects.

2004-11 | Michel Klein (VU), Change Manage-
ment for Distributed Ontologies.

2004-12 | The Duy Bui (UT), Creating
emotions and facial expressions for embodied
agents.

2004-13 | Wojciech Jamroga (UT), Using Mul-
tiple Models of Reality: On Agents who Know
how to Play.

2004-14 | Paul Harrenstein (UU), Logic in
Conflict. Logical Explorations in Strategic Equi-
librium.

2004-15 | Arno Knobbe (UU), Multi-Relational
Data Mining.

2004-16 | Federico Divina (VU), Hybrid Ge-
netic Relational Search for Inductive Learning.

2004-17 | Mark Winands (UM), Informed
Search in Complex Games.

2004-18 | Vania Bessa Machado (UvA), Sup-
porting the Construction of Qualitative Knowl-
edge Models.

2004-19 | Thijs Westerveld (UT), Using gen-
erative probabilistic models for multimedia re-
trieval.

2004-20 | Madelon Evers (Nyenrode), Learn-
ing from Design: facilitating multidisciplinary
design teams.

2005

2005-01 | Floor Verdenius (UVA), Methodolog-
ical Aspects of Designing Induction-Based Appli-
cations.

2005-02 | Erik van der Werf (UM), AI tech-
niques for the game of Go.

2005-03 | Franc Grootjen (RUN), A Pragmatic
Approach to the Conceptualisation of Language.

2005-04 | Nirvana Meratnia (UT), Towards
Database Support for Moving Object data.

2005-05 | Gabriel Infante-Lopez (UVA), Two-
Level Probabilistic Grammars for Natural Lan-
guage Parsing.

2005-06 | Pieter Spronck (UM), Adaptive
Game AI.

2005-07 | Flavius Frasincar (TUE), Hyperme-
dia Presentation Generation for Semantic Web
Information Systems.

2005-08 | Richard Vdovjak (TUE), A
Model-driven Approach for Building Distributed
Ontology-based Web Applications.

2005-09 | Jeen Broekstra (VU), Storage,

215

SIKS DISSERTATION SERIES

Querying and Inferencing for Semantic Web
Languages.

2005-10 | Anders Bouwer (UVA), Explaining
Behaviour: Using Qualitative Simulation in In-
teractive Learning Environments.

2005-11 | Elth Ogston (VU), Agent Based
Matchmaking and Clustering - A Decentralized
Approach to Search.

2005-12 | Csaba Boer (EUR), Distributed Sim-
ulation in Industry.

2005-13 | Fred Hamburg (UL), Een Com-
putermodel voor het Ondersteunen van Eu-
thanasiebeslissingen.

2005-14 | Borys Omelayenko (VU), Web-
Service configuration on the Semantic Web; Ex-
ploring how semantics meets pragmatics.

2005-15 | Tibor Bosse (VU), Analysis of the
Dynamics of Cognitive Processes.

2005-16 | Joris Graaumans (UU), Usability of
XML Query Languages.

2005-17 | Boris Shishkov (TUD), Software
Specification Based on Re-usable Business Com-
ponents.

2005-18 | Danielle Sent (UU), Test-selection
strategies for probabilistic networks.

2005-19 | Michel van Dartel (UM), Situated
Representation.

2005-20 | Cristina Coteanu (UL), Cyber Con-
sumer Law, State of the Art and Perspectives.

2005-21 | Wijnand Derks (UT), Improving
Concurrency and Recovery in Database Systems
by Exploiting Application Semantics.

2006

2006-01 | Samuil Angelov (TUE), Foundations
of B2B Electronic Contracting.

2006-02 | Cristina Chisalita (VU), Contextual
issues in the design and use of information tech-
nology in organizations.

2006-03 | Noor Christoph (UVA), The role
of metacognitive skills in learning to solve prob-
lems.

2006-04 | Marta Sabou (VU), Building Web
Service Ontologies.

2006-05 | Cees Pierik (UU), Validation Tech-
niques for Object-Oriented Proof Outlines.

2006-06 | Ziv Baida (VU), Software-aided Ser-
vice Bundling – Intelligent Methods & Tools for
Graphical Service Modeling.

2006-07 | Marko Smiljanic (UT), XML schema
matching – balancing efficiency and effectiveness

by means of clustering.

2006-08 | Eelco Herder (UT), Forward, Back
and Home Again – Analyzing User Behavior on
the Web.

2006-09 | Mohamed Wahdan (UM), Auto-
matic Formulation of the Auditor’s Opinion.

2006-10 | Ronny Siebes (VU), Semantic Rout-
ing in Peer-to-Peer Systems.

2006-11 | Joeri van Ruth (UT), Flattening
Queries over Nested Data Types.

2006-12 | Bert Bongers (VU), Interactivation –
Towards an e-cology of people, our technological
environment, and the arts.

2006-13 | Henk-Jan Lebbink (UU), Dialogue
and Decision Games for Information Exchang-
ing Agents.

2006-14 | Johan Hoorn (VU), Software Require-
ments: Update, Upgrade, Redesign - towards a
Theory of Requirements Change.

2006-15 | Rainer Malik (UU), CONAN: Text
Mining in the Biomedical Domain.

2006-16 | Carsten Riggelsen (UU), Ap-
proximation Methods for Efficient Learning of
Bayesian Networks.

2006-17 | Stacey Nagata (UU), User Assistance
for Multitasking with Interruptions on a Mobile
Device.

2006-18 | Valentin Zhizhkun (UVA), Graph
transformation for Natural Language Process-
ing.

2006-19 | Birna van Riemsdijk (UU), Cog-
nitive Agent Programming: A Semantic Ap-
proach.

2006-20 | Marina Velikova (UvT), Monotone
models for prediction in data mining.

2006-21 | Bas van Gils (RUN), Aptness on the
Web.

2006-22 | Paul de Vrieze (RUN), Fundaments
of Adaptive Personalisation.

2006-23 | Ion Juvina (UU), Development of
Cognitive Model for Navigating on the Web.

2006-24 | Laura Hollink (VU), Semantic An-
notation for Retrieval of Visual Resources.

2006-25 | Madalina Drugan (UU), Conditional
log-likelihood MDL and Evolutionary MCMC.

2006-26 | Vojkan Mihajlovic (UT), Score Re-
gion Algebra: A Flexible Framework for Struc-
tured Information Retrieval.

2006-27 | Stefano Bocconi (CWI), Vox Pop-
uli: generating video documentaries from seman-
tically annotated media repositories.

216

SIKS DISSERTATION SERIES

2006-28 | Borkur Sigurbjornsson (UVA), Fo-
cused Information Access using XML Element
Retrieval.

2007

2007-01 | Kees Leune (UvT), Access Control
and Service-Oriented Architectures.

2007-02 | Wouter Teepe (RUG), Reconciling
Information Exchange and Confidentiality: A
Formal Approach.

2007-03 | Peter Mika (VU), Social Networks
and the Semantic Web.

2007-04 | Jurriaan van Diggelen (UU),
Achieving Semantic Interoperability in Multi-
agent Systems: A Dialogue-based Approach.

2007-05 | Bart Schermer (UL), Software
Agents, Surveillance, and the Right to Privacy: a
Legislative Framework for Agent-enabled Surveil-
lance.

2007-06 | Gilad Mishne (UVA), Applied Text
Analytics for Blogs.

2007-07 | Natasa Jovanovic (UT), To Who It
May Concern - Addressee Identification in Face-
to-Face Meetings.

2007-08 | Mark Hoogendoorn (VU), Modeling
of Change in Multi-Agent Organizations.

2007-09 | David Mobach (VU), Agent-Based
Mediated Service Negotiation.

2007-10 | Huib Aldewereld (UU), Autonomy
vs. Conformity: an Institutional Perspective on
Norms and Protocols.

2007-11 | Natalia Stash (TUE), Incorporating
Cognitive/Learning Styles in a General-Purpose
Adaptive Hypermedia System.

2007-12 | Marcel van Gerven (RUN), Bayesian
Networks for Clinical Decision Support: A Ra-
tional Approach to Dynamic Decision-Making
under Uncertainty.

2007-13 | Rutger Rienks (UT), Meetings in
Smart Environments; Implications of Progress-
ing Technology.

2007-14 | Niek Bergboer (UM), Context-Based
Image Analysis.

2007-15 | Joyca Lacroix (UM), NIM: a Situated
Computational Memory Model.

2007-16 | Davide Grossi (UU), Designing Invis-
ible Handcuffs. Formal investigations in Insti-
tutions and Organizations for Multi-agent Sys-
tems.

2007-17 | Theodore Charitos (UU), Reasoning
with Dynamic Networks in Practice.

2007-18 | Bart Orriens (UvT), On the develop-
ment an management of adaptive business col-
laborations.

2007-19 | David Levy (UM), Intimate relation-
ships with artificial partners.

2007-20 | Slinger Jansen (UU), Customer Con-
figuration Updating in a Software Supply Net-
work.

2007-21 | Karianne Vermaas (UU), Fast diffu-
sion and broadening use: A research on residen-
tial adoption and usage of broadband internet in
the Netherlands between 2001 and 2005.

2007-22 | Zlatko Zlatev (UT), Goal-oriented
design of value and process models from pat-
terns.

2007-23 | Peter Barna (TUE), Specification of
Application Logic in Web Information Systems.

2007-24 | Georgina Ramrez Camps (CWI),
Structural Features in XML Retrieval.

2007-25 | Joost Schalken (VU), Empirical In-
vestigations in Software Process Improvement.

2008

2008-01 | Katalin Boer-Sorbn (EUR), Agent-
Based Simulation of Financial Markets: A
modular,continuous-time approach.

2008-02 | Alexei Sharpanskykh (VU), On
Computer-Aided Methods for Modeling and
Analysis of Organizations.

2008-03 | Vera Hollink (UVA), Optimizing hi-
erarchical menus: a usage-based approach.

2008-04 | Ander de Keijzer (UT), Management
of Uncertain Data - towards unattended integra-
tion.

2008-05 | Bela Mutschler (UT), Modeling and
simulating causal dependencies on process-aware
information systems from a cost perspective.

2008-06 | Arjen Hommersom (RUN), On
the Application of Formal Methods to Clinical
Guidelines, an Artificial Intelligence Perspec-
tive.

2008-07 | Peter van Rosmalen (OU), Support-
ing the tutor in the design and support of adap-
tive e-learning.

2008-08 | Janneke Bolt (UU), Bayesian Net-
works: Aspects of Approximate Inference.

2008-09 | Christof van Nimwegen (UU), The
paradox of the guided user: assistance can be
counter-effective.

2008-10 | Wauter Bosma (UT), Discourse ori-
ented summarization.

217

SIKS DISSERTATION SERIES

2008-11 | Vera Kartseva (VU), Designing Con-
trols for Network Organizations: A Value-Based
Approach.

2008-12 | Jozsef Farkas (RUN), A Semiotically
Oriented Cognitive Model of Knowledge Repre-
sentation.

2008-13 | Caterina Carraciolo (UVA), Topic
Driven Access to Scientific Handbooks.

2008-14 | Arthur van Bunningen (UT),
Context-Aware Querying; Better Answers with
Less Effort.

2008-15 | Martijn van Otterlo (UT), The Logic
of Adaptive Behavior: Knowledge Representa-
tion and Algorithms for the Markov Decision
Process Framework in First-Order Domains.

2008-16 | Henriette van Vugt (VU), Embodied
agents from a user’s perspective.

2008-17 | Martin Op ’t Land (TUD), Applying
Architecture and Ontology to the Splitting and
Allying of Enterprises.

2008-18 | Guido de Croon (UM), Adaptive Ac-
tive Vision.

2008-19 | Henning Rode (UT), From Docu-
ment to Entity Retrieval: Improving Precision
and Performance of Focused Text Search.

2008-20 | Rex Arendsen (UVA), Geen bericht,
goed bericht. Een onderzoek naar de effecten van
de introductie van elektronisch berichtenverkeer
met de overheid op de administratieve lasten van
bedrijven.

2008-21 | Krisztian Balog (UVA), People
Search in the Enterprise.

2008-22 | Henk Koning (UU), Communication
of IT-Architecture.

2008-23 | Stefan Visscher (UU), Bayesian net-
work models for the management of ventilator-
associated pneumonia.

2008-24 | Zharko Aleksovski (VU), Using back-
ground knowledge in ontology matching.

2008-25 | Geert Jonker (UU), Efficient and
Equitable Exchange in Air Traffic Management
Plan Repair using Spender-signed Currency.

2008-26 | Marijn Huijbregts (UT), Segmenta-
tion, Diarization and Speech Transcription: Sur-
prise Data Unraveled.

2008-27 | Hubert Vogten (OU), Design and
Implementation Strategies for IMS Learning De-
sign.

2008-28 | Ildiko Flesch (RUN), On the Use of
Independence Relations in Bayesian Networks.

2008-29 | Dennis Reidsma (UT), Annotations

and Subjective Machines - Of Annotators, Em-
bodied Agents, Users, and Other Humans.

2008-30 | Wouter van Atteveldt (VU), Seman-
tic Network Analysis: Techniques for Extracting,
Representing and Querying Media Content.

2008-31 | Loes Braun (UM), Pro-Active Medi-
cal Information Retrieval.

2008-32 | Trung H. Bui (UT), Toward Affec-
tive Dialogue Management using Partially Ob-
servable Markov Decision Processes.

2008-33 | Frank Terpstra (UVA), Scientific
Workflow Design; theoretical and practical is-
sues.

2008-34 | Jeroen de Knijf (UU), Studies in Fre-
quent Tree Mining.

2008-35 | Ben Torben Nielsen (UvT), Den-
dritic morphologies: function shapes structure.

2009

2009-01 | Rasa Jurgelenaite (RUN), Symmet-
ric Causal Independence Models.

2009-02 | Willem Robert van Hage (VU),
Evaluating Ontology-Alignment Techniques.

2009-03 | Hans Stol (UvT), A Framework for
Evidence-based Policy Making Using IT.

2009-04 | Josephine Nabukenya (RUN), Im-
proving the Quality of Organisational Policy
Making using Collaboration Engineering.

2009-05 | Sietse Overbeek (RUN), Bridging
Supply and Demand for Knowledge Intensive
Tasks - Based on Knowledge, Cognition, and
Quality.

2009-06 | Muhammad Subianto (UU), Under-
standing Classification.

2009-07 | Ronald Poppe (UT), Discriminative
Vision-Based Recovery and Recognition of Hu-
man Motion.

2009-08 | Volker Nannen (VU), Evolutionary
Agent-Based Policy Analysis in Dynamic Envi-
ronments.

2009-09 | Benjamin Kanagwa (RUN), Design,
Discovery and Construction of Service-oriented
Systems.

2009-10 | Jan Wielemaker (UVA), Logic pro-
gramming for knowledge-intensive interactive
applications.

2009-11 | Alexander Boer (UVA), Legal The-
ory, Sources of Law & the Semantic Web.

2009-12 | Peter Massuthe (TUE, Humboldt-
Universitaet zu Berlin), Perating Guidelines for
Services.

218

SIKS DISSERTATION SERIES

2009-13 | Steven de Jong (UM), Fairness in
Multi-Agent Systems.

2009-14 | Maksym Korotkiy (VU), From
ontology-enabled services to service-enabled on-
tologies. making ontologies work in e-science
with ONTO-SOA

2009-15 | Rinke Hoekstra (UVA), Ontology
Representation - Design Patterns and Ontologies
that Make Sense.

2009-16 | Fritz Reul (UvT), New Architectures
in Computer Chess.

2009-17 | Laurens van der Maaten (UvT),
Feature Extraction from Visual Data.

2009-18 | Fabian Groffen (CWI), Armada, An
Evolving Database System.

2009-19 | Valentin Robu (CWI), Modeling
Preferences, Strategic Reasoning and Collabora-
tion in Agent-Mediated Electronic Markets.

2009-20 | Bob van der Vecht (UU), Adjustable
Autonomy: Controling Influences on Decision
Making.

2009-21 | Stijn Vanderlooy (UM), Ranking and
Reliable Classification.

2009-22 | Pavel Serdyukov (UT), Search For
Expertise: Going beyond direct evidence.

2009-23 | Peter Hofgesang (VU), Modelling
Web Usage in a Changing Environment.

2009-24 | Annerieke Heuvelink (VUA), Cog-
nitive Models for Training Simulations.

2009-25 | Alex van Ballegooij (CWI), “RAM:
Array Database Management through Relational
Mapping”.

2009-26 | Fernando Koch (UU), An Agent-
Based Model for the Development of Intelligent
Mobile Services.

2009-27 | Christian Glahn (OU), Contextual
Support of Social Engagement and Reflection on
the Web.

2009-28 | Sander Evers (UT), Sensor Data
Management with Probabilistic Models.

2009-29 | Stanislav Pokraev (UT), Model-
Driven Semantic Integration of Service-Oriented
Applications.

2009-30 | Marcin Zukowski (CWI), Balanc-
ing vectorized query execution with bandwidth-
optimized storage.

2009-31 | Sofiya Katrenko (UVA), A Closer
Look at Learning Relations from Text.

2009-32 | Rik Farenhorst and Remco de
Boer (VU), Architectural Knowledge Manage-
ment: Supporting Architects and Auditors.

2009-33 | Khiet Truong (UT), How Does Real
Affect Affect Affect Recognition In Speech?.

2009-34 | Inge van de Weerd (UU), Advanc-
ing in Software Product Management: An Incre-
mental Method Engineering Approach.

2009-35 | Wouter Koelewijn (UL), Privacy
en Politiegegevens; Over geautomatiseerde nor-
matieve informatie-uitwisseling.

2009-36 | Marco Kalz (OUN), Placement Sup-
port for Learners in Learning Networks.

2009-37 | Hendrik Drachsler (OUN), Naviga-
tion Support for Learners in Informal Learning
Networks.

2009-38 | Riina Vuorikari (OU), Tags and self-
organisation: a metadata ecology for learning re-
sources in a multilingual context.

2009-39 | Christian Stahl (TUE, Humboldt-
Universitaet zu Berlin), Service Substitution – A
Behavioral Approach Based on Petri Nets.

2009-40 | Stephan Raaijmakers (UvT), Multi-
nomial Language Learning: Investigations into
the Geometry of Language.

2009-41 | Igor Berezhnyy (UvT), Digital Anal-
ysis of Paintings.

2009-42 | Toine Bogers (UvT), Recommender
Systems for Social Bookmarking.

2009-43 | Virginia Nunes Leal Franqueira
(UT), Finding Multi-step Attacks in Computer
Networks using Heuristic Search and Mobile
Ambients.

2009-44 | Roberto Santana Tapia (UT), As-
sessing Business-IT Alignment in Networked Or-
ganizations.

2009-45 | Jilles Vreeken (UU), Making Pattern
Mining Useful.

2009-46 | Loredana Afanasiev (UvA), Query-
ing XML: Benchmarks and Recursion.

2010

2010-01 | Matthijs van Leeuwen (UU), Pat-
terns that Matter.

2010-02 | Ingo Wassink (UT), Work flows in
Life Science.

2010-03 | Joost Geurts (CWI), A Document
Engineering Model and Processing Framework
for Multimedia documents.

2010-04 | Olga Kulyk (UT), Do You Know
What I Know? Situational Awareness of Co-
located Teams in Multidisplay Environments.

2010-05 | Claudia Hauff (UT), Predicting the
Effectiveness of Queries and Retrieval Systems.

219

SIKS DISSERTATION SERIES

2010-06 | Sander Bakkes (UvT), Rapid Adap-
tation of Video Game AI.

2010-07 | Wim Fikkert (UT), A Gesture inter-
action at a Distance.

2010-08 | Krzysztof Siewicz (UL), Towards an
Improved Regulatory Framework of Free Soft-
ware. Protecting user freedoms in a world of
software communities and eGovernments.

2010-09 | Hugo Kielman (UL), Politiële
gegevensverwerking en Privacy, Naar een effec-
tieve waarborging.

2010-10 | Rebecca Ong (UL), Mobile Commu-
nication and Protection of Children.

2010-11 | Adriaan Ter Mors (TUD), The world
according to MARP: Multi-Agent Route Plan-
ning.

2010-12 | Susan van den Braak (UU), Sense-
making software for crime analysis.

2010-13 | Gianluigi Folino (RUN), High Per-
formance Data Mining using Bio-inspired tech-
niques.

2010-14 | Sander van Splunter (VU), Auto-
mated Web Service Reconfiguration.

2010-15 | Lianne Bodenstaff (UT), Managing
Dependency Relations in Inter-Organizational
Models.

2010-16 | Sicco Verwer (TUD), Efficient Iden-
tification of Timed Automata, theory and prac-
tice.

2010-17 | Spyros Kotoulas (VU), Scalable Dis-
covery of Networked Resources: Algorithms, In-
frastructure, Applications.

2010-18 | Charlotte Gerritsen (VU), Caught
in the Act: Investigating Crime by Agent-Based
Simulation.

2010-19 | Henriette Cramer (UvA), People’s
Responses to Autonomous and Adaptive Sys-
tems.

2010-20 | Ivo Swartjes (UT), Whose Story Is
It Anyway? How Improv Informs Agency and
Authorship of Emergent Narrative.

2010-21 | Harold van Heerde (UT), Privacy-
aware data management by means of data degra-
dation.

2010-22 | Michiel Hildebrand (CWI), End-
user Support for Access to Heterogeneous Linked
Data.

2010-23 | Bas Steunebrink (UU), The Logical
Structure of Emotions.

2010-24 | Dmytro Tykhonov (), Designing
Generic and Efficient Negotiation Strategies.

2010-25 | Zulfiqar Ali Memon (VU), Modelling
Human-Awareness for Ambient Agents: A Hu-
man Mindreading Perspective.

2010-26 | Ying Zhang (CWI), XRPC: Efficient
Distributed Query Processing on Heterogeneous
XQuery Engines.

2010-27 | Marten Voulon (UL), Automatisch
contracteren.

2010-28 | Arne Koopman (UU), Characteristic
Relational Patterns.

2010-29 | Stratos Idreos (CWI), Database
Cracking: Towards Auto-tuning Database Ker-
nels.

2010-30 | Marieke van Erp (UvT), Accessing
Natural History - Discoveries in data cleaning,
structuring, and retrieval.

2010-31 | Victor de Boer (UVA), Ontology
Enrichment from Heterogeneous Sources on the
Web.

2010-32 | Marcel Hiel (UvT), An Adaptive Ser-
vice Oriented Architecture: Automatically solv-
ing Interoperability Problems.

2010-33 | Robin Aly (UT), Modeling Represen-
tation Uncertainty in Concept-Based Multimedia
Retrieval.

2010-34 | Teduh Dirgahayu (UT), Interaction
Design in Service Compositions.

2010-35 | Dolf Trieschnigg (UT), Proof of Con-
cept: Concept-based Biomedical Information Re-
trieval.

2010-36 | Jose Janssen (OU), Paving the Way
for Lifelong Learning; Facilitating competence
development through a learning path specifica-
tion.

2010-37 | Niels Lohmann (TUE), Correctness
of services and their composition.

2010-38 | Dirk Fahland (TUE), From Scenarios
to components.

2010-39 | Ghazanfar Farooq Siddiqui (VU),
Integrative modeling of emotions in virtual
agents.

2010-40 | Mark van Assem (VU), Converting
and Integrating Vocabularies for the Semantic
Web.

2010-41 | Guillaume Chaslot (UM), Monte-
Carlo Tree Search.

2010-42 | Sybren de Kinderen (VU), Needs-
driven service bundling in a multi-supplier set-
ting - the computational e3-service approach.

2010-43 | Peter van Kranenburg (UU), A
Computational Approach to Content-Based Re-

220

SIKS DISSERTATION SERIES

trieval of Folk Song Melodies.

2010-44 | Pieter Bellekens (TUE), An Ap-
proach towards Context-sensitive and User-
adapted Access to Heterogeneous Data Sources,
Illustrated in the Television Domain.

2010-45 | Vasilios Andrikopoulos (UvT), A
theory and model for the evolution of software
services.

2010-46 | Vincent Pijpers (VU), e3alignment:
Exploring Inter-Organizational Business-ICT
Alignment.

2010-47 | Chen Li (UT), Mining Process Model
Variants: Challenges, Techniques, Examples.

2010-48 | Milan Lovric (EUR), Behavioral Fi-
nance and Agent-Based Artificial Markets.

2010-49 | Jahn-Takeshi Saito (UM), Solving
difficult game positions.

2010-50 | Bouke Huurnink (UVA), Search in
Audiovisual Broadcast Archives.

2010-51 | Alia Khairia Amin (CWI), Un-
derstanding and supporting information seeking
tasks in multiple sources.

2010-52 | Peter-Paul van Maanen (VU),
Adaptive Support for Human-Computer Teams:
Exploring the Use of Cognitive Models of Trust
and Attention.

2010-53 | Edgar Meij (UVA), Combining Con-
cepts and Language Models for Information Ac-
cess.

2011

2011-01 | Botond Cseke (RUN), Variational
Algorithms for Bayesian Inference in Latent
Gaussian Models.

2011-02 | Nick Tinnemeier (UU), Organiz-
ing Agent Organizations. Syntax and Opera-
tional Semantics of an Organization-Oriented
Programming Language.

2011-03 | Jan Martijn van der Werf
(TUE), Compositional Design and Verification
of Component-Based Information Systems.

2011-04 | Hado van Hasselt (UU), Insights
in Reinforcement Learning - Formal analysis
and empirical evaluation of temporal-difference
learning algorithms.

2011-05 | Base van der Raadt (VU), Enter-
prise Architecture Coming of Age - Increasing
the Performance of an Emerging Discipline.

2011-06 | Yiwen Wang (TUE), Semantically-
Enhanced Recommendations in Cultural Her-
itage.

2011-07 | Yujia Cao (UT), Multimodal Informa-
tion Presentation for High Load Human Com-
puter Interaction.

2011-08 | Nieske Vergunst (UU), BDI-based
Generation of Robust Task-Oriented Dialogues.

221

