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Chapter 1

Introduction

1.1 Music Information Retrieval

Music Information Retrieval (MIR) is an emerging, interdisciplinary science [21]
that aims at retrieving information from music. It draws on fields like musicology,
cognitive psychology, linguistics, library science, and last, but not least, computer
science.

Michael Kassler mentioned the term “Musical Information Retrieval” (MIR) as
early as 1966 [31]. He describes an assembler-like programming language called
MIR which can be used to navigate music scores and find positions that fulfill
certain criteria. He realized that his language had somewhat limited capabilities,
for example that it would be very difficult to write an MIR program that could
recognize whether a musical piece is a parody of another one. Interestingly enough,
he claimed that the problem of Optical Music Recognition (OMR) was solvable at
a cost of about one million dollars, and that an OMR system would be able to
transcribe printed music scores at a rate of several thousand musical symbols per
minute. Unfortunately, he did not offer any guess on how many of those symbols
would be recognized correctly. Fourty years after Kassler's talk, Don Byrd presented
a paper [8] at ISMIR 2006 (see page 8 for an explanation of “ISMIR") that does
not mention the transcription speed, which really is not a very serious concern, but
shows that even the best contemporary OMR programs still produce double-digit
numbers of errors per page including, for example, incorrectly recognized pitches
for up to 20 % of the notes, and several percent of incorrectly recognized note
durations.

Still, in the late 20th century, along with other areas of Multimedia Information
Retrieval such as Image Retrieval or Video Retrieval, Music Information Retrieval
started to flourish. Around the end of the 20th century, storage space (hard drives,
flash memory) became cheap and abundant, and file formats such as MP3 were
developed that made it possible to store vast amounts of music in good quality.
These advances, along with the fact that processing power has become cheap and
abundant as well, have created both the need for automatically retrieving informa-
tion from music and new possibilities to address this need. Unlike many other art
forms such as painting, music stays very enjoyable even if it is stored or transmitted
digitally. This leads to large collections of digital music that can be difficult to
manage.



Rainer Typke: Music Retrieval based on Melodic Similarity
2 1. Introduction

Traditional methods of organizing digital music collections by using metadata
quickly reach their limits because metadata are frequently unreliable, missing, or
extremely expensive to create (a good example is Pandora, see 2.2.11), and also
because it is not always easy to invent good categories one could use for metadata.
For example, people with different tastes will need very different sets of music genres
for characterizing their collection. For some people, it is important to distinguish
between categories such as Trance, House, Dance-Pop, Acid, maybe some more
categories and Classical Music, while for others a categorization such as Popular
Music, Baroque, Classical Music, Romanticism, and music from the 20th century
(just to name a few) would be more useful. Unfortunately, users from these two
groups even use similar labels (“Classical”) for very different concepts. By not
relying on manually attached labels, but rather on the music itself for retrieval and
clustering tasks, one can avoid not only a lot of work, but also tricky problems like
this.

One can gain a good overview of typical MIR tasks by looking at the MIREX
competition! for MIR algorithms. The tasks from its first two rounds in 2005 and
2006 can be grouped into classification, feature extraction, alignment, and retrieval.

o Classification:

— Audio Artist Identification. Map audio recordings to labels identifying
the artist who created the recording.

— Audio/Symbolic Genre Classification. Determine the musical genre
for audio or MIDI recordings.

e Feature Extraction:

— Audio Melody Extraction. Extract the main melodic line from poly-
phonic audio. This involves two subtasks: Voicing detection (deciding
whether a particular time frame contains a “melody pitch”) and pitch
detection (deciding the most likely melody pitch for each time frame).

— Audio Onset Detection. List the onset times of notes in audio record-
ings.

— Audio Drum Detection. Determine the onset times and corresponding
drum class names of drum events in polyphonic music; that is, unlike
the previous task, only detect drum onsets instead of those of any note,
and also analyze which class the drum belongs to.

— Audio Tempo Extraction. Determine the perceived tempo for audio
recordings.

— Audio and Symbolic Key Finding. Determine the key for a given
audio recording or MIDI file.

— Audio Beat Tracking. Unlike the drum detection or tempo extraction
task, the problem here is to determine the beat locations in an audio
recording.

e Alignment: Score Following. Real-time alignment of a music signal (audio
or MIDI) to a music score.

e Retrieval:

1See http://www.music-ir.org/mirexwiki/index.php/Main Page
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— Audio Music Similarity and Retrieval. Calculate a similarity matrix
for a list of given audio files.

— Query by Humming?, Symbolic Melodic Similarity. Given a query,
search a collection for pieces that contain melodically similar musical
material.

This task list shows mainly MIR tasks that are neither satisfactorily solved nor
extremely far from a solution. For example, the identification of recordings based
on excerpts is not a MIREX task because there are already efficient and effective
methods known, such as Shazam'’s method (see Section 2.2.15) or MusicDNS3. On
the other hand, some tasks are still far from a satisfying solution, for example the
automatic conversion of audio recordings to MIDI files or even an intermediate step
towards that goal, the separation of several audio sources (various instruments or
voices in a polyphonic piece of music) that are found within one recording.

1.2 Topics of this thesis

The main topic of this thesis is a method for the “Symbolic Melodic Similarity”
task, that is, measuring melodic similarity for notated music such as MIDI files.
Chapter 2 describes several methods for solving this and similar tasks, along with
examples of Music Information Retrieval systems that implement these methods.

In Chapter 3, a music search algorithm is developed and studied which views
music as sets of notes that are represented as weighted points in the two-dimensional
space of time and pitch. Two point sets can be compared by calculating how
much effort it would take to convert one into the other; effort is measured by
determining how much weight has to be moved over what distances. The point
sets are more similar if there are fewer and smaller movements of weight needed.
This transportation-based similarity measure has some desirable properties such as
continuity and the ability to match any combination of polyphonic and monophonic
music.

To make these point set comparisons efficient enough for searching large databases,
the distances between every item (point set) in the database and a small, fixed set
of special (vantage) point sets can be pre-calculated. Whenever a new query needs
to be compared to the items in the database, one can restrict the search to those
items with similar distances to the special point sets. The application of this van-
tage indexing method to music is described in Chapter 4. Vantage indexing was
first suggested for image retrieval [90].

For studying the performance of the transportation-based search algorithm and
other, similar ones, the creation of a ground truth for a large music collection (RISM)
is described in Chapter 5, along with a performance measure and the application of
both the ground truth and the measure for the MIREX algorithm competition.

In Chapter 6, a distance measure is described that is inspired by transportation
distances, but puts additional constraints on what flows are possible. If the Earth
Mover's Distance (defined in Section 3.1.2) is used for comparing a set containing
some points with very large weights to another set with very light points at similar

2For a definition of “"Query by Humming”, see Section 1.5.

3MusicDNS (http://www.musicdns.org/)is an open source audio fingerprinting system. Un-
like Shazam, it needs more than just a few seconds of audio to identify a track. See Section
2.2.7.
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positions, it can happen that the heavy points are partially matched with points
that lie far away in the time dimension. This usually does not make musical sense.
It can be avoided by constructing a graph with nodes that represent notes and
edges that connect notes. For such a graph, the solution of a maximum-flow,
minimum-cost problem can be used for comparing point sets in a fashion similar
to how the Earth Mover's Distance works. To make unwanted flows less likely, the
weight distribution can be normalized before solving the maximum-flow, minimum
cost problem. Supporting polyphony can be achieved by constructing the network
accordingly.

Chapter 7 concludes the thesis with a brief overview of its contribution, open
issues, and some thoughts about the future of Music Information Retrieval.

This thesis contains material that was published in peer-reviewed journals and
at international conferences.

e Chapter 2: Rainer Typke, Frans Wiering, Remco C. Veltkamp: A Survey of
Music Information Retrieval Systems. Proceedings of the Sixth International
Conference on Music Information Retrieval (ISMIR), London, September 2005
[81]

e Chapter 3:

— Rainer Typke, Panos Giannopoulos, Remco C. Veltkamp, Frans Wier-
ing, Ren van Qostrum: Using transportation distances for measuring
melodic similarity. Proceedings of the International Conference on Mu-
sic Information Retrieval (ISMIR), pages 107-114, Baltimore, October
2003 [75, 76]

— Frans Wiering, Rainer Typke, Remco C. Veltkamp: Transportation Dis-
tances and their Application in Music-Notation Retrieval. In: Music
Query: Methods, Strategies, and User Studies (Computing in Musicol-
ogy 13, 2004), pages 113-128. CCARH and MIT Press. [93]

— Remco C. Veltkamp, Frans Wiering, Rainer Typke: Content Based Music
Retrieval. In: Encyclopedia of Multimedia, Borko Furht (Ed.), ISBN: 0-
387-24395-X, Springer 2006. [89]

— Rainer Typke, Remco C. Veltkamp, Frans Wiering: Searching notated
polyphonic music using transportation distances. Proceedings of the
ACM Multimedia Conference, pages 128-135, New York, October 2004
[77]

— Rainer Typke, Frans Wiering, Remco C. Veltkamp: A search method for
notated polyphonic music with pitch and tempo fluctuations. Proceed-

ings of the Fifth International Conference on Music Information Retrieval
(ISMIR), pp. 281-288, Barcelona, October 2004 [79]

— Rainer Typke, Frans Wiering, Remco C. Veltkamp: Transportation dis-
tances and human perception of melodic similarity. ESCOM Musicae
Scientiae, 2007 [83]

e Chapter 4: Reinier H. van Leuken, Remco C. Veltkamp, Rainer Typke: Se-
lecting vantage objects for similarity indexing. International Conference on
Pattern Recognition (ICPR) 2006, Hong Kong [87]

e Chapter 5:
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— Rainer Typke, Marc den Hoed, Justin de Nooijer, Frans Wiering, Remco
C. Veltkamp: A Ground Truth For Half A Million Musical Incipits. Pro-
ceedings of the 5th Dutch-Belgian Information Retrieval Workshop (DIR)
2005, Utrecht, the Netherlands, pages 63-70. [73, 72]

— This publication was selected to also appear in the Journal of Digital
Information Management:
Rainer Typke, Marc den Hoed, Justin de Nooijer, Frans Wiering, Remco
C. Veltkamp: A Ground Truth For Half A Million Musical Incipits. Jour-
nal of Digital Information Management 3(1), 2005, pages 34-39 [74]

— Rainer Typke, Remco C. Veltkamp, Frans Wiering: A measure for eval-
uating retrieval techniques based on partially ordered ground truth lists.
International Conference on Multimedia & Expo (ICME) 2006, Toronto,
Canada [78]

— Rainer Typke, Frans Wiering, Remco C. Veltkamp: Evaluating the Earth
Movers Distance for measuring symbolic melodic similarity, MIREX ab-
stract, 2005 [80]

— Rainer Typke, Frans Wiering, Remco C. Veltkamp: MIREX Symbolic
Melodic Similarity and Query by Singing/Humming, MIREX abstract,
2006 [82]

1.3 The usefulness of melodic similarity measures

As the list of MIREX tasks shows, one can distinguish two main groups of meth-
ods for content-based searching of music databases: methods for audio data and
methods for notated music. Some Music Information Retrieval systems combine
the two by first converting an audio signal into a symbolic description of notes and
then searching a database of notated music. Since many researchers work on tasks
for automatically creating symbolic descriptions of audio recordings (such as beat
detection, onset detection, melody extraction, and even complete transcription to
MIDI of the notes in an audio recording), methods that perform well for symbolic
data are eventually going to be useful for audio data as well.

Melody search engines (search engines which serve the information need for
pieces of music that contain musical material which is melodically similar to a given
query) can be useful for a variety of purposes and audiences:

e Query-by-Humming: in record stores, it is not uncommon for customers to
only know a tune from a record they would like to buy, but not the title of the
work, composer, or performers. Salespeople with a vast knowledge of music
who are willing and able to identify tunes hummed by customers are scarce,
and it could be interesting to have a computer do the task of identifying
melodies and suggesting records. A Query-by-Humming device would also
be interesting for libraries, as a phone service similar to Shazam (see Section
2.2.15), or to aid internet users with the task of retrieving entertaining MP3
files for buying them online.

e A search engine that finds musical scores similar to a given query can help
musicologists find out how composers influenced one another or how their
works are related to earlier works of their own or by other composers. This
task has been done manually by musicologists over the past centuries. If
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computers could perform this task reasonably well, more interesting insights
could be gained faster and with less effort.

e Copyright issues could be resolved, avoided or raised more easily if composers
could easily find out if someone is plagiarizing them or if a new work exposes
them to the risk of being accused of plagiarism.

For example, the symbolic melodic similarity retrieval algorithm described in
Chapter 3 is used as one of the starting points for Frans Wiering's “Witchcraft”
project*, which aims at creating a search tool that helps test hypotheses about
oral transmission of folk songs. This tool is also going to be integrated in the
Nederlandse Liederenbank to provide access to the folksong collection of “Onder de
Groene Linde", taking into account the problem of oral variation.

1.4 Important features for melody, invariances in
perception

Melody is one of the most memorable and characteristic features of Western music.
The main topic of this thesis is a retrieval method for melodically similar items, so
a few words about what makes melodies similar and what does not are in place.

From the cognitive theory of music [71], we know that melodic motion (char-
acterized by successive pitch intervals) and contour are very important for the per-
ception of a melody. For the rhythmical aspect, patterns are perceived in relation
to an underlying pulse that defines the tempo.

Melodic motion and contour as well as the rhythmic patterns do not change if
the tempo is changed. Rhythm is always defined in relation to the pulse, and if the
pulse gets slower or faster, the rhythm stays the same (unless the tempo change is
extreme). For pitch intervals and melodic contour, it is obvious that they are not
affected by tempo changes. Also, if a melody is transposed to a different key, these
things do not change. Therefore, a basic requirement for a melody search engine
is that its distance measures are invariant under transposition and augmentation
or diminution.> Another musical feature that does not influence the perception of
melodies is timbre; making a melody search engine ignore timbre is trivial if it uses
notation.

Studies such as Selfridge-Field's article [70] show that melodic similarity is con-
tinuous. Local melodic changes such as lengthening a note or moving it up or down
a step are usually not perceived as changing the identity of a melody, and by ap-
plying more and more changes, the perceived relationship to the original becomes
only gradually weaker. Also, melodies are generally quite resistant to the insertion
of all sorts of ornamentation. Mozart's variations on “Ah, vous dirai-je, maman”
can serve as an illustration for this. See Figure 1.1.

4http://www.cs.uu.nl/research /projects/witchcraft/

5In Section 3.5.2, we will see that the performance of a search engine can still be improved
by attaching a cost to tempo changes. The main reason for this is that there are limits to the
tempo invariance of human perception. Snyder [71] explains, for example, that there are some
fixed thresholds for time intervals within which events are perceived as happening concurrently;
whenever one changes the tempo such that some musical events cross one of these thresholds,
perception will change. So, a good distance measure for melodies should not necessarily be always
invariant under tempo changes, but allow for controlling the influence of tempo changes on the
resulting distances.
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Figure 1.1: A few excerpts from Wolfgang Amadeus Mozart: Twelve variations on “Ah,
vous dirai-je, maman”, K. 300e.

1.5 Some terms and basic facts

For the rest of this book, we will use the following terms without defining them
again:

Pitch The pitch of a sound determines as how “high” it is perceived. Different
areas of the cochlea are responsible for detecting different pitches. A musical in-
strument or singer produces a spectrum of signals with different frequencies. For a
pitched instrument, there is a fundamental frequency (often abbreviated as “F0"),
accompanied by overtones whose frequencies are multiples of the fundamental fre-
quency. FO estimation is an important task for pitch detection.

Chroma In a Music Information Retrieval context, chroma is a 12-dimensional
vector containing the spectral energy of each of the 12 traditional pitch classes of
the equal-tempered scale. This feature takes the close octave relationship in melody
and harmony into account as it is prominent in Western music.

Intensity/loudness The amplitude and therefore the energy of the musical signal
determines how intense or loud music is perceived.

Timbre Timbre is best defined as what it is not: it is the qualities of sounds that
make them distinguishable and that do not fall under either pitch or loudness.

e

Intervals When speaking about “intervals”, we usually mean intervals between
pitches. The sequence of intervals between subsequent notes is important for the
perception of melody.

Onset time, duration A note usually starts with a very short pitchless attack,
followed by the presence of a clearly detectable pitch for a certain amount of time.
By “onset time", we mean the point of time when a note starts, and a note's
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duration is determined by the time period between the onset time and the point of
time when the note stops being audible (the offset time).

Melodic contour By “melodic contour”, we mean a sequence of interval direc-
tions in a melody. If this sequence only distinguishes between “up”, “down”, or
“repeat”, we call it “gross contour” to express the fact that the information from
the interval sequence is very much reduced.

N-grams We call a group of n subsequent notes an n-gram.

Query by Humming With “Query by Humming”, we mean that the user enters
a search query by singing, humming, or whistling it into a microphone. That is,
the query contains a pitch vector, but not necessarily a measure structure or lyrics.
Neither pitches nor tempo are quantized, and onsets or notes need to be detected
after the query has been entered if this information is needed by the search algorithm.

1.5.1 Acronyms

The following acronyms will appear frequently when talking about music information
retrieval:

ISMIR ISMIR is the main music information retrieval conference. It started as
“International Symposium on Music Information Retrieval”; now it is a veritable
conference and not just a symposium. For more information, see http://www.
ismir.net.

MIREX MIREX is a TREC-like series of comparisons for algorithms. MIREX
stands for “Music Information Retrieval Evaluation eXchange”. See http://www.
music-ir.org/mirex2006/.

RISM Répertoire International des Sources Musicaux. The International Inventory
of Musical Scores describes itself as “a cross-country non-profit joint venture which
aims at comprehensive documentation of the worldwide existing musical scores”.
See http://rism.stub.uni-frankfurt.de/. RISM has created a collection of
musical incipits and metadata, the “RISM A/II" collection, that covers material from
several centuries. We used this collection for comparing the retrieval algorithm that
is described in this book to other approaches. Subsets of this collection were used
for the “Symbolic Melodic Similarity” MIREX task in 2005 and 2006.

TREC The Text Retrieval Conference (TREC) started yearly competitions for
retrieval algorithms in 1992. See http://trec.nist.gov/.


http://www.ismir.net
http://www.ismir.net
http://www.music-ir.org/mirex2006/
http://www.music-ir.org/mirex2006/
http://rism.stub.uni-frankfurt.de/
http://trec.nist.gov/

Chapter 2

Related work

In this chapter, we will give a brief overview of different search methods, followed
by a list of MIR systems as examples for implementations of these methods. These
MIR systems were collected with the help of a website, http://mirsystems.info.
We conclude the chapter by mapping the surveyed systems to retrieval tasks, users,
and search levels such as genre, work, or instance.

2.1 Search methods for music

While it is possible to search music by working exclusively in the audio domain, many
search methods combine some transcription into a symbolic representation, followed
by searching symbolic data. We are going to present symbolic and audio techniques
in separate sections and describe distance measures and indexing techniques.

2.1.1 Searching symbolic data
String-based methods for monophonic melodies

Monophonic music can be represented by one-dimensional strings of characters,
where each character describes one note or one pair of consecutive notes. Strings
can represent interval sequences, gross contour, sequences of pitches and the like,
and well-known string matching algorithms such as algorithms for calculating editing
distances, finding the longest common subsequence, or finding occurrences of one
string in another have been applied, sometimes with certain adaptations to make
them suitable for matching melodies.

Figure 2.1 illustrates the fact that there are quite common variation techniques
that are not naturally supported by string-based methods. Frequently, a variation of
a melody is perceived as melodically similar, but contains many more notes, leading
to string representations with many more characters. Constructing a similarity
measure for strings that still recognizes this kind of similarity without producing
false positives is not easy.

Distance Measures Some MIR systems only check for exact matches or cases where
the search string is a substring of database entries. For such tasks, standard string
searching algorithms like Knuth-Morris-Pratt and Boyer-Moore [34], [16] can be
used. Themefinder (see Section 2.2.19) searches the database for entries matching

9
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Figure 2.1: Detecting melodic similarity with string-based methods can be difficult in
cases like this example (inspired by Geraint Wiggins, ISMIR 2006 [13]).

regular expressions. In this case, there is still no notion of distance, but different
strings can match the same regular expression.

For approximate matching, it can be useful to compute an editing distance with
dynamic programming. Musipedia is an example of a system that does this (see
Section 2.2.8). Simply computing an editing distance between query strings and
the data in the database is not good enough, however, because these strings might
represent pieces of music with different lenghts. Therefore, it can be necessary to
choose suitable substrings before calculating an editing distance.

Indexing For finding substrings that match exactly, the standard methods for in-
dexing text can be used (for example, inverted files, B-trees, etc.). The lack of the
equivalent of words in music can be overcome by just cutting melodies into n-grams
[18] and indexing those.

For most editing distances that are actually useful, the triangle inequality holds®.
Therefore, the vantage indexing method described in Chapter 4 can be used for
those, but other methods like metric trees or vantage point trees [96] are also
possible.

Set-based methods for polyphonic music

Unlike string-based methods, set-based methods do not assume that the notes are
ordered. Music is viewed as a set of events with properties like onset time, pitch,
and duration. This makes set-based methods suitable to polyphonic music.

Distance Measures Clausen et al. [11] proposed a search method that views scores
and queries as sets of notes. Notes are defined by note onset time, pitch, and dura-
tion. Exact matches are supersets of queries modulo Z x Z-shifts, and approximate
matching is done by finding supersets of subsets of the query or by allowing alter-
native sets.

The method described in this book (see Chapter 3) also views scores and queries
as sets of notes, but instead of finding supersets, it uses transportation distances
such as the Earth Mover's Distance for comparing sets.

In Section 3.5.1 (page 42), we compare our own method to PROMS by Clausen
et al. and to several C-BRAHMS algorithms.

Indexing By quantizing onset times and by segmenting the music into measures,
[11] make it possible to use inverted files. [75] exploit the triangle inequality for
indexing, which avoids the need for quantizing. Distances to a fixed set of vantage

LAn example for a not very useful editing distance would be one where any character can be
replaced with one special character at no cost. That way, the detour via a string consisting only of
that special character would always yield the distance zero for unequal strings of the same length.
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objects are pre-calculated for each database entry. Queries then only need to be
compared to entries with similar distances to the vantage objects.

Probabilistic Matching

The aim of probabilistic matching methods is to determine probabilistic properties
of candidate pieces and compare them with corresponding properties of queries. For
example, the GUIDO system (see Section 2.2.5) calculates Markov models describing
the probabilities of state transitions in pieces and then compares matrices which
describe transition probabilities.

Distance Measures Features of melodies such as interval sequences, pitch se-
quences, or rhythm can be used to calculate Markov chains. In these Markov chains,
states can correspond with features like a certain pitch, interval, or note duration,
and the transition probabilities reflect the numbers of occurrences of different subse-
quent states. The similarity between a query and a candidate piece in the database
can be determined by calculating the product of the transition probabilities, based
on the transition matrix of the candidate piece, for each pair of consecutive states
in the query. See Section 2.2.5 for an example of a MIR system with probabilistic
matching.

Indexing: Hierarchical Clustering Transition matrices can be organized as a tree.
The leaves are the transition matrices of the pieces in the database, while inner
nodes are the transition matrices describing the concatenation of the pieces in the
subtree. See Section 2.2.5 or [26] for a more detailed description.

2.1.2 Searching audio data
Extracting perceptionally relevant features

A natural way of comparing audio recordings in a meaningful way is to extract an
abstract description of the audio signal which reflects the perceptionally relevant
aspects of the recording, followed by the application of a distance function to the
extracted information. An audio recording is usually segmented into short, possi-
bly overlapping frames which last short enough such that there are not multiple
distinguishable events covered by one frame. Wold et. al. [94] list some features
that are commonly extracted from audio frames with a duration between 25 and 40
milliseconds:

e Loudness: can be approximated by the square root of the energy of the signal
computed from the short-time Fourier transform, in decibels.

e Pitch: the Fourier transformation of a frame delivers a spectrum, from which
a fundamental frequency can be computed with an approximate greatest com-
mon divisor algorithm.

e Chroma: From pitch, one can calculate chroma. Miiller et al. [47, 48], for
example, use chroma for aligning different audio recordings of the same work
or finding occurrences of audio queries in a recording.
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e Tone (brightness and bandwidth): Brightness is a measure of the higher-
frequency content of the signal. Bandwidth can be computed as the magnitude-
weighted average of the differences between the spectral components and the
centroid of the short-time Fourier transform. It is zero for a single sine wave,
while ideal white noise has an infinite bandwidth.

o Mel-filtered Cepstral Coefficients (often abbreviated as MFCCs) can be
computed by applying a mel-spaced set of triangular filters to the short-time
Fourier transform, followed by a discrete cosine transform. The word “cep-
strum” is a play on the word “spectrum” and is meant to convey that it is
a transformation of the spectrum into something that better describes the
sound characteristics as they are perceived by a human listener. A mel is a
unit of measure for the perceived pitch of a tone. The human ear perceives
changes in frequency below 1000 Hz differently from changes above 1000 Hz.
Mel-filtering is a scaling of frequency that takes this fact into account.

e Derivatives: Since the dynamic behaviour of sound is important, it can be
helpful to calculate the instantaneous derivative (time differences) for all of
the features above.

Audio retrieval systems such as SuperMBox (see Section 2.2.18) compare vectors of
such features in order to find audio recordings that sound similar to a given query.

Audio Fingerprinting

If the aim is not necessarily to identify a work, but a recording, audio fingerprinting
techniques perform quite well. See [9] for a review of audio fingerprinting algorithms.
Phone-based systems for identifying popular music (e. g., Shazam) use some form
of audio fingerprinting. A feature extractor is used to describe short segments of
recordings in a way that is as robust as possible against the typical distortions caused
by poor speakers, cheap microphones, and a cellular phone connection, as well as
background noise like people chatting in a bar. Such features do not need to have
anything to do with human perception or the music on the recording, they just
need to be unique for different recordings and robust against distortions. These
audio fingerprints, usually just a few bytes per recording segment, are then stored
in a database index, along with pointers to the recordings where they occur. The
same feature extractor is used on the query, and with the audio fingerprints that
were extracted from the query, candidates for matching recordings can be quickly
retrieved. The number of these candidates can be reduced by checking whether the
fingerprints occur in the right order and with the same local timing. Besides the
obvious purpose of identifying recordings, audio fingerprints can also be used for
estimating the quality of recordings [17].

Set-based Methods

Clausen and Kurth used their set-based method (see Section 2.1.1; a description
of the rather similar C-BRAHMS algorithm P1 can be found on Page 42) also for
audio data. They use a feature extractor for converting PCM? signals into sets that
can be treated the same way as sets of notes.

2PCM (Pulse Code Manipulation): raw uncompressed digital audio encoding.
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Self-Organizing Map

Self-Organizing Map (SOM), a very popular artificial neural network algorithm in
the unsupervised learning category, has been used for clustering similar pieces of
music and classifying pieces, for example by [63]. Section 2.2.16 describes their
system, which extracts feature vectors that describe rhythm patterns from audio,
and clusters them with a SOM. A SOM consists of units which are ordered on a
low-dimensional grid (usually 2-dimensional, so that it can be nicely put onto a
page). A model vector in the high-dimensional data space is assigned to each of
the units. During the training, the model vectors are fitted to the data such that
the distances between the data items and the corresponding closest model vectors
are minimized. The model vectors can contain any features.

2.2 MIR Systems

Table 2.1 gives an overview of the characteristics of some MIR systems. The fol-
lowing subsections contain additional information about these systems.

2.2.1 audentify!

URL: http://www-mmdb.iai.uni-bonn.de/eng-public.html

The fingerprints are sequences of bits with a fixed length, where every bit describes
one audio window. The collection contains about 15.000 MP3 files (@128kBit/s),
approx. 1.5 month of audio data.

Literature: [39], [38], [64], [37], [12]

2.2.2 C-Brahms

URL: http://www.cs.helsinki.fi/group/cbrahms/demoengine/

C-Brahms employs nine different algorithms called P1, P2, P3, MonoPoly, Interval-
Matching, ShiftOrAnd, PolyCheck, Splitting, and LCTS offering various combina-
tions of monophony, polyphony, rhythm invariance, transposition invariance, partial
or exact matching. In Section 3.5.1, we report the results of a comparison of our
method with some C-Brahms algorithms. P3 was also submitted to MIREX 2006,
see Section 5.3.2, page 92.

Literature: [86], [42], [41]

2.2.3 CubyHum

Edit distances of one-dimensional pattern sequences (here: pitch intervals) are
calculated. Nine interval classes are used; intervals above 6 semitones are not
distinguished. Filtering is done with the LET algorithm [10] with some heuristic
adjustments. CubyHum still looks at every single database entry in every search.
Literature: [57]
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Table 2.1: Content-based Music Information Retrieval systems: Input
types, matching properties, features, indexing methods, and col-

lection sizes.
) o
c 3
S £ .
2 o |z 5 4
4+ ; ol
@x ] -2 £ o o | x o}
| 2| € S |o (e |52 : E|g8 |
h= € =] o =~ ~ B o 7)) K m o =
=] < bl (@] X (7] —_ E=) = 1S ] O > 7]
c © T ol [} o > 2 = [0} © [ o P IS
] S 2|38 |z |5 |2 5|0l | N|S| < @
el m 2 = = < 3 S = = @ = Q [
s ; El ER =} 15} S o o |l | Ol o E <
s |luo|lUO|0O|O | =2 |2 c s |la|lO|lwvn|la|lvn |n |-
Input
Audio ° . ° ° ° o | o | @ ° °
Symbolic ° ° . o | o °
Matching
Audio ° o o | o
Symbolic o [ [} [} . ° o ° [ [ . o
Exact ° ° ° °
Approxi- e | o o |0 | o . ] . o | o | o o | o .
mate
Poly- o | o . ] . ° o | o
phonic
Features
Audio ° °
finger-
prints
Pitch ° [} . ° ° ° ° °
Note Du-
ration
Timbre
Rhythm ° o | o ° ° ° ° °
Contour ° ° °
Intervals . °
Other ° ° °
Indexing
8 2
8
8 B E = | 8 8 H
i 2| s O |Z| wl|i f
el b S [ = -
9] ] S w | @ | = 3 3
£ S|l | 8Ll R8]E] 2|
2lslGls|slels|2|3|2slgltlgl:lc
£ c | c £ c > £ |0 £ c > | =1 > T c
Collection Size
[=) =
S K]
S 8 T | S| 9 S E n | & |8
Clololg|lol@d|®|8|lo|l@|lo|lsg|lo| 2|22
79} ~ i = T9] - — - o N [ee] 0 i N 0
— eV} [T A — [« -~ [qV] — — — A [32] — — ™




Rainer Typke: Music Retrieval based on Melodic Similarity
2.2 MIR Systems 15

2.2.4 Cuidado Music Browser

Besides similarity measures based on intrinsic audio features such as rhythm, energy,
and timbre, there are also similarity measures based on metadata. A co-occurrence
matrix keeps track of similar contexts like a radio program, album playlist, or web
page. The authors do not describe an indexing method.

Literature: [53], [55], [54]

2.2.5 GUIDO/MIR

URL: http://www.informatik.tu-darmstadt.de/AFS/GUID0/index.html
Queries are a combination of melodic (absolute pitch, intervals, interval types,
interval classes, melodic trend (upwards or downwards)) and rhythmic information
(absolute durations, relative durations, trend). First-order Markov chains are used
for modeling the melodic and rhythmic contours of monophonic pieces of music.
There is one Markov chain for each piece and each melodic or rhythmic query type.
The states of these chains correspond with melodic or rhythmic features.
Transition matrices are organized as a tree (leaves: pieces; inner nodes: tran-
sition matrices describing the concatenation of the pieces in the subtree) with the
aim of ruling out data with transition probabilities of zero at an early stage of the
search, and heuristically guiding the search.
Literature: [26]

2.2.6 Meldex/Greenstone

URL: http://www.nzdl.org/fast-cgi-bin/music/musiclibrary

Meldex uses two matching methods: Editing distance calculation with dynamic
programming and a state matching algorithm for approximate searching [95]. With
the state matching algorithm, the authors get a much lower complexity than with
dynamic programming (O(kn 4+ m + a) instead of O(mn), where n is the length of
the pattern, m is the length of the string, and a is the alphabet size) by maintaining
k copies of the dynamic programming array, where the ith matrix holds values for
matches with up to ¢ errors. The folk song collection is composed of the Essen and
Digital Tradition collections.

Literature: [44], [4]

2.2.7 MusicDNS

URL: http://www.musicdns.org/

MusicDNS is open-source audio fingerprinting software that aims at identifying
tracks of recorded music. Unlike Shazam, it operates on a relatively long sample
of audio (2 minutes or the whole track, whichever is shorter) and is therefore not
designed to be able to identify tracks based on just a few seconds of audio, and it also
cannot pick individual songs out of mash-ups. A fingerprint is calculated in several
steps: first, the audio sample is converted to a series of spectra using FFT (Fast
Fourier Transform). Frequency bins holding information about the amplitude are
viewed as a matrix (with the rows corresponding to time and columns to frequency).
This matrix is turned into a much smaller matrix (512 bytes) with a “Singular Value
Decomposition”. Finally, “peak trajectories” are determined from the matrix by
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looking for prominent frequencies that have continuities from frame to frame. The
four strongest trajectories are included in the fingerprint.
Literature: [49]

2.2.8 Musipedia

URL: http://www.musipedia.org

The search engine retrieves the closest 100 entries according to either the editing
distance of gross contour strings or the Earth Mover's Distance for a given melody
or rhythm. The collection can be edited and expanded by any user. For indexing,
the vantage object method described by [77] is used for the first 6 characters of the
contour string or segments of the point sets that represent melodies or rhythms.
Musipedia was known as “Tuneserver” in an earlier development state.
Literature: [58], [75], [77]

2.2.9 Muugle

URL: http://give-lab.cs.uu.nl/muugle

The “Musical Utrecht University Global Lookup Engine” is a modular framework
that is intended for the purpose of comparing different MIR techniques using the
same data collection. Among the implemented search techniques are some of the
C-Brahms algorithms as well as the Earth Mover’s Distance and the Proportional
Transportation Distance.

Literature: [6]

2.2.10 notify! Whistle

URL: http://www-mmdb.iai.uni-bonn.de/projects/nwo/index.html
Monophonic queries are matched against polyphonic sets of notes. A rhythm tracker
enables matching even if there are fluctuations or differences in tempo. The audio
queries can be symbolically edited in pianoroll notation.

Literature: [38]

2.2.11 Pandora

URL: http://www.pandora.com

An internet radio website that allows users to say whether they like or dislike a
given song, and in response plays only songs that the user should like. For all
songs in Pandora’s database, a long list of features (chosen by the “Music Genome
Project”) have been manually extracted. From the combination of these features
and the user’s responses, Pandora calculates which other songs the user should
like. There are hundreds of features, many of them on a rather abstract level and
therefore hard to calculate by a computer. As an example, here are some of the
features whose names start with “A”: Abstract Lyrics, Acousti-Synthetic Sonority,
Acoustic Bass Solo, Acoustic Drum Samples, Acoustic Guitar Layering, Acoustic Pi-
ano Accompaniment, Acoustic Rhythm Guitars, Acoustic Rhythm Piano, Acoustic
Rock Instrumentation, Acoustic Sonority, Afro-Cuban Influences, Aggressive Drum-
ming, Aggressive Female Vocalist, Aggressive Male Vocalist, Altered Female Vocal,
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Altered Male Vocal, Altered Piano Timbres, Altered Vocal Sound, Ambient Sound-
scapes, Ambiguous Lyrics, Angry Lyrics, Angular Melodies, Atmospheric Produc-
tion, Avant-garde Leanings.

More information:
http://en.wikipedia.org/wiki/Pandora_(music_service)

2.2.12 Probabilistic “Name That Song”

This system uses not only music, but also lyrics for matching. All note transitions
and words from the query must occur at least once in a piece for it to be considered
a match. The pieces in the database are clustered. The probability of sampling is
computed for each cluster. A query is then performed in several iterations 7. In
each iteration, a cluster is selected and the matching criteria are applied to each
piece in this cluster until a match is found, which then becomes the rank-ith result.
The clustering makes it unnecessary for the algorithm to visit every single piece
in the database.
Literature: [7]

2.2.13 PROMS

URL: http://www-mmdb.iai.uni-bonn.de/forschungprojekte/midilib/
PROMS views database entries and queries as sets of notes. Matches are supersets
of queries. Queries can be fuzzy (a set of finite, nonempty sets of possible notes
instead of a set of notes).

PROMS relies on measure information for segmenting and quantizes pitches and
onset times. This makes it possible to use inverted files.
Literature: [11]

2.2.14 Cornell’'s “Query by Humming”

URL: http://www.cs.cornell.edu/Info/Faculty/bsmith/query-by-humming.
html

After pitch tracking with autocorrelation, maximum likelihood, or cepstrum analy-

sis, the gross contour is encoded with the alphabet U/D/S (up/down/same). The
Baeza-Yates/Perleberg pattern matching algorithm is then used for finding all in-
stances of a pattern string in a text string so that there are at most & mismatches.
Literature: [22]

2.2.15 Shazam

URLs: http://www.shazam.com, http://ismir2003.ismir.net/presentations/
Wang . PDF

Audio fingerprints describe the relative time and pitch distances of future peaks
within a fixed-size target zone for a given peak in the spectrum (“landmark™). For

all database entries with fingerprints that match some fingerprints in the query, it

is checked whether they occur at the correct relative times and at the correct land-
marks. This method is very robust against noise and distortion caused by using a
mobile phone connection and added background noise.

Literature: [92]
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2.2.16 SOMeJB - The SOM-enhanced JukeBox

URL: http://www.ifs.tuwien.ac.at/"andi/somejb/
A Self-Organizing Map (SOM) is used for clustering pieces. The SOM consists of
units which are ordered on a rectangular 2-dimensional grid. Feature vectors contain
amplitude values for selected frequency bands.

Training the neural network, the Growing Hierarchical Self-Organizing Map (GH-
SOM), an extension of the SOM, results in a hierarchical organization.
Literature: [63], [56], [62], [61], [60]

2.2.17 SoundCompass

Users first set a metronome to a convenient tempo and then hum their melody so
that the beats coincide with metronome clicks. Three feature vectors (Tone Transi-
tion, Partial Tone Transition, Tone Distribution) are stored for overlapping windows
covering the songs (16 beats long, 4 beats apart from each other). SoundCompass
performs Euclidean distance calculations, accelerated with an index.

Literature: [36]

2.2.18 Super MBox

URL: http://neural.cs.nthu.edu.tw/jang/demo/

The acoustic input is converted into a pitch sequence with a time scale of 1/16
second. Dynamic time warping is used to compute the warping distance between
the input pitch vector and that of every song in the database.

Literature: [29]

2.2.19 Themefinder

URL: http://themefinder.org

Themefinder provides a web-based interface to the Humdrum thema command,
which allows searching of databases containing musical themes or incipits with string
matching algorithms.

Literature: [35]

2.3 Retrieval Tasks

MIR systems can be aimed at solving different MIR retrieval tasks. It is worthwhile
to map the systems to these tasks.
Three main audiences can be distinguished that can benefit from MIR:

1. industry: e. g. recording, broadcasting, performance
2. consumers
3. professionals: performers, teachers, musicologists
The level at which retrieval is needed may differ considerably:
1. work instance: the individual score or sound object

2. work: set of instances that are considered to be essentially the same



Rainer Typke: Music Retrieval based on Melodic Similarity

2.3 Retrieval Tasks 19
genre rtis work instance
(performer/composer)
a3 | .eopyright and royaltles |
@ - | plagidrism 't,. ----- L -
< \ S g recommendat‘lon" Gt %y, \
: 5 <70 FRRORS)
a _sounds like i O‘%/p /VJ
N B 5 3 < (/ A
S| fsi mdod; ¥ p@f@?pes ,;S
7 G — : CHRSOR S
5 CoTR b :emotion: "t i : %1)77
: : R : : E w
a |isylen oy ey |
P : P 4&&04//0%,, "ogentlflcatlon f
& : Ipé Dy g, o :
ey g T ;¢ feature g @f%oo J.?@,g,
L o L s
3 2. Cwintertextuality’,
% S | composer - B '
- = B, .~ source

Figure 2.2: A mapping of MIR systems to retrieval tasks. See Section 2.3 for a discussion.

3. artist: creator or performer of work

4. genre: music that is similar at a very generic level, e. g. classical, jazz, pop,
world music

This is not a strict hierarchy. Artists perform in different genres, and one work can
be performed, even created, by multiple artists. Also, there is rather a continuum.
Genres can be divided into subgenres, artists grouped in schools. Even the “work”
concept is not a fixed given. Beethoven's Third Symphony, for example is deter-
mined by the composer's score, and changing even one note can be a violation of the
work, for example the famous “false entry” of the French Horn at the beginning of
the recapitulation. On the other hand, different renditions of "I did it my way" are
usually considered the same work even though the musical content may be rather
different.

MIR retrieval tasks can be characterised by audience and level of retrieval. Often,
tasks connect a subrange of the continuum (see Figure 2.2). A non-comprehensive
overview of tasks (for typical search tasks and their frequencies of occurence, see
also [40]) includes:

e Copyright and royalties: receive payments for broadcast or publication of mu-
sic (suitable methods: audio fingerprinting for identifying recordings, distance
measures for melodic similarity for finding other works with the same musical
material).

e Detection of plagiarism: the use of musical ideas or stylistic traits of another
artist under one's own name (suitable methods: same as for copyright and
royalties).
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e Recommendation: find music that suits a personal profile (suitable methods:
collaborative filtering, comparison of feature vectors as it is done by Pandora
(see Section 2.2.11), classification/clustering methods such as SOM).

e Sounds like: find music that sounds like a given recording (suitable methods:
same as for recommendation).

e Mood: find music that suits a certain atmosphere (suitable methods: same
as for recommendation).

e Emotion: find music that reflects or contradicts an emotional state (suitable
methods: same as for recommendation).

e Style: find music that belongs to a generic category, however defined (suitable
methods: same as for recommendation).

e Performer: find music by (type of) performer (suitable methods: same as for
recommendation).

e Feature: employ technical features to retrieve works in a genre or by an artist
(suitable methods: same as for recommendation).

e Composer: find works by one composer (suitable methods: same as for rec-
ommendation).

e Intertextuality: finding works that employ the same material or refer to each
other by allusion (suitable methods: same as for copyright and royalties).

e Identification: ascribing a work or work instance to an artist or finding works
containing a given theme, query by humming (suitable methods: same as for
copyright and royalties).

e Source: identifying the work to which an instance belongs, for example be-
cause metadata are missing (suitable methods: same as for copyright and
royalties).

Although many basic methods can be used for different purposes (for many tasks,
we said that the same methods are suitable as for recommendation), the suitable
features differ for the various tasks. For example, recommendation works well with
a mixture of abstract features and lower-level features as it is used by Pandora.
The "sounds like" task, however, can be performed with more low-level audio fea-
tures that could possibly be extracted automatically instead of relying on humans.
The "composer” task, on the other hand, can be solved successfully by looking at
features such as note patterns in scores [3].

Figure 2.2 shows how the MIR systems from Table 2.1 can be mapped to the
tasks. Audio fingerprinting systems such as Shazam are particularly good at iden-
tifying recordings, that is, instances of works. This task must be based on audio
information because in two different performances, the same music might be per-
formed, and therefore only the audio information is different.

Audio data is also a good basis for very general identification tasks such as genre
and artist. SOMeJB and Cuidado both use audio features for this purpose. Since it
uses metadata, Cuidado can also cover tasks for which it helps to know the artist.

Query-by-humming systems such as SoundCompass, which is intended to be
used in a Karaoke bar, make identification tasks easier for consumers who might
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lack the expertise that is needed for entering a sequence of intervals or a contour
in textual form. These systems focus on identifying works or finding works that are
similar to a query.

By offering the possibility of entering more complex queries, systems such as
Themefinder, C-Brahms, and Musipedia cover a wider range of tasks, but they still
can only be used on the work level or for retrieving notational instances of a work.
Since they work with sets of notes or representations that are based on sets of notes,
they cannot be used for more specific tasks such as identifying specific recordings,
and their algorithms are not meant to do tasks on the more general artist and genre
levels.

2.4 Observations

We probably covered only a small part of all existing MIR systems (we left some
commercial systems out, for example MuscleFish's SoundFisher, because we could
not find research papers about them), but we can still make some observations
based on this survey.

A great variety of different methods for content-based searching in music scores
and audio data has been proposed and implemented in research prototypes and com-
mercial systems. Besides the limited and well-defined task of identifying recordings,
for which audio fingerprinting techniques work well, it is hard to tell which methods
should be further pursued. This underlines the importance of a TREC-like series of
comparisons for algorithms (such as MIREX at ISMIR; for an explanation of these
acronyms see Page 8) for searching audio recordings and symbolic music notation.

Audio and symbolic methods are useful for different tasks. For instance, iden-
tification of instances of recordings must be based on audio data, while works are
best identified based on a symbolic representation. For determining the genre of
a given piece of music, approaches based on audio look promising, but symbolic
methods might work as well.

Figure 2.2 shows that most MIR systems focus on the work level. There is a
gap between MIR systems working on the genre level and those on the work level.
Large parts of the more interesting tasks, such as specific recommendation, generic
technical features, and intertextuality, fall into this gap. Using metadata might help
cover this gap, but this would rule out the possibility of handling data for which
the quality of known metadata is not sufficient. Manual annotation quickly gets
prohibitively expensive. To fill the gap with completely automatic systems, it might
be necessary to find algorithms for representing music at a higher, more conceptual
abstraction level than the level of notes.

In the next chapter, we will describe in detail how the problem of retrieving scores
with a given melody — or musical material that is similar to it — can be addressed
by using transportation distances. This method can be implemented efficiently, and
it scored well at MIREX 2006.



Chapter 3

Using transportation distances
for measuring symbolic
similarity

In this chapter, we describe our method of using the Earth Mover's Distance (EMD)
[67] for measuring melodic similarity. The EMD is one particular instance of a
transportation distance. We will also describe another one, the Proportional Trans-
portation Distance.

We want to measure melodic similarity in order to solve the problem of retriev-
ing documents that contain musical material which is melodically similar to a given
query. We want to search large databases of symbolically encoded music (for ex-
ample, MIDI files or music scores). The solution to this problem should meet these
requirements:

e Humans should agree with the method. In other words, the retrieved items
should contain musical material that human listeners or readers would perceive
as similar to the query.

e It should be possible to implement the method efficiently. In particular, the
response time for answering queries should grow less than linearly with the
size of the database to be searched.

e The measure should be robust against pitch and tempo fluctuations. If one
would want to use it for "Query by Humming”, one would be confronted with
queries that are not quantized in either pitch or tempo, and where both can
fluctuate.

e The method should not require the data to be searched to be quantized or
rhythmically exact. If this requirement is not met, searching real-world MIDI
collections would be difficult since many existing MIDI files are recordings of
performances, for example on MIDI-enabled pianos.

e |t should be possible to search polyphonic music. It is less important, though
also desirable, to allow for the queries to be polyphonic as well.

22
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We first present some general ideas on how one can do this. Section 3.1 describes
how to represent melodies as weighted point sets, how weighted point sets can be
compared using transportation distances, and how one can normalize coordinates
and weights to get meaningful results; Section 3.2 lists some advantages of trans-
portation distances. This is followed by some sections about particular situations
that require different matching methods, such as matching musical incipits against
other incipits or matching a monophonic query against a database with polyphonic
pieces. In particular, we study the following cases:

Problem Method Evaluation Section
Matching whole in- No segmenting, Comparison with ear- 3.3
cipits against other only transporta- lier efforts of grouping
whole incipits tion distance similar incipits to-
gether (Schlichte,
Howard)
Matching  incipits Query segments MIREX 2005 3.4
against other incip- are aligned with
its, with improved incipits using ge-
partial matching in netic algorithm
the time dimension
Finding queries in One fixed seg- Comparison with  3.5.1
whole pieces ment size for C-BRAHMS and
both query and PROMS
database items
Finding queries in  Multiple segment MIREX 2006 3.5.2

whole pieces sizes

3.1 Representing music as weighted point sets

Representing music as a weighted point set in a two-dimensional space has a tradi-
tion of many centuries. Since approximately the 10th century, one popular way of
writing music has been to use a set of notes (points) in a two-dimensional space,
with time and pitch as coordinates. Varying characteristics are associated with the
notes by, for example, using different symbols for different note durations. The look
of written music has changed over the last 8 centuries, but the basic idea of repre-
senting music as a weighted point set has been followed for almost a millenium, and
it has served composers and performers well. Since weighted point sets seem to be
so well suited to representing music, it feels natural to measure melodic similarity
directly by comparing weighted point sets instead of first transforming the music
into one-dimensional abstract representations.

3.1.1 Melodies as weighted point sets

In order to be able to apply a transportation distance measure, we must transform
the melodies we want to compare into signatures. By signature, we mean a set
of points in the two-dimensional Euclidean space where each point has a weight
associated with it. The two dimensions are time and pitch.
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When transforming melodies into signatures, we create one point for each note.
Rests are encoded implicitly as the time spans that are not covered by points. As a
consequence, we do not distinguish between two subsequent quarter rests and one
half rest, but we do distinguish between two subsequent quarter notes and a half
note; only the latter sounds differently.

The time coordinate

In our database, durations of notes and their positions within measures are specified
using divisions of a quarter note, in a way similar to the MIDI format. With every
melody, the number of divisions per quarter note is stored. This number is chosen
such that the duration of every note in the melody can be specified as a whole
number. For example, if there are 96 divisions per quarter note, a quarter note has
duration 96, a half note has duration 192, and a sixteenth 24.

We want time coordinates in signatures to be independent of the number of
divisions chosen for a particular melody. Therefore, we calculate the time coordinate
of a note as the sum of the lengths of measures preceding the note plus the note's
position within its measure, divided by the number of divisions for a quarter note.
Measure lengths are calculated as follows: for each note or rest in a measure, the
duration is added to the position within the measure. The maximum of all of these
end points of notes and rests is then taken as the measure length.

In order to skip leading rests — we do not want to distinguish between melodies
that differ only in the duration of leading rests —, we then subtract the very first
note's time coordinate from all time coordinates, thereby shifting all notes so that
the first note starts at time 0.

For a complete example, see Figure 3.1 and Table 3.1.

jOhannes Brahms: Himmel strahlt so helle und klar (Zigeunerlieder)

0
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(0, 221; 1.5) (6, 192; 2)
(1.5, 209; 0.5) (5, 186; 1)
(2, 204; 1.5) (4.5, 198; 0.5)
(3.5, 215; 0.5) (4, 209; 0.5)

Figure 3.1: An example of music represented with a weighted point set. Format: (Time,
Pitch; Weight). In this example, the weights only reflect the note durations.
Because of this, the time coordinate here equals the sum of the weights of
preceding notes. Pitches are specified using Hewlett's [24] base-40 system.

Our method of determining the length of each measure without relying on the
time signature ensures that we get sensible coordinates even in cases where the
notes in a measure do not match the time signature. This actually happens with
the RISM data. See, for example, the bottom incipit in Figure 3.7, where not only
the octaves are encoded incorrectly for some notes, but there is also a mismatch of
the time signature and the contents of measures.

The pitch coordinate

We work with Walter Hewlett's [24] Base-40 notation, which captures more in-
formation about pitch than what is stored in MIDI files. The Base-40 notation
distinguishes between notes with the same pitch, but different notations. Like MIDI
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Note Measure . . Position
Number Number Pitch40 Duration in bar

1 1 0 1920 0
2 2 221 1440 0
3 2 209 480 1440
4 3 204 1440 0
5 3 215 480 1440
6 4 209 480 0
7 4 198 480 480
8 4 186 960 960
9 5 192 1920 0

Table 3.1: The database contents for the melody shown in Figure 3.1. There are 960
divisions per quarter note, and rests are coded as notes with pitch 0. They are
stored in the database, but not represented as weighted points. To arrive at
Figure 3.1, we first normalize the time coordinates (i. e., divide them by 960).
The durations are then: 1920/960=2, 1.5, 0.5, 1.5, 0.5, 0.5, 0.5, 1, 2. All
measure lengths are 1920/960=2. Therefore, the note onset times are: 0, 2,
3.5,4,5.5,6, 6.5 7, and 8. This still includes the leading rest, which we want
to ignore, so finally, we skip the leading rest and subtract its duration from all
subsegent notes: 0, 1.5, 2, 3.5, 4, 4.5, 5, 6. These are the time coordinates in
Figure 3.1.

pitches, it is a number-line representation of musical pitch notation, but with the
added advantage of being interval-invariant. |. e., the difference between any two
base-40 pitch numbers will correctly determine the notated interval name between
those pitches.

Weights

Increasing a note’s weight increases the importance of it having a counterpart of
similar weight at the same position in the compared melody. A natural method
of using weights is to make them reflect note durations. That way, differing note
durations at corresponding positions lead to an increase in the resulting distance.
For instance, in Figure 3.1 the note weights reflect only the durations. All results
in this chapter were obtained with weights that only depend on note durations. By
adding more components, however, additional desirable effects could be achieved.
Two promising weight components are stress weight and note number weight.

Stress Weight. There are cases where melodies clearly differ, but a distance mea-
sure which ignores the positions of notes within measures fails to distinguish between
them. For example, the two melodies in Figure 3.2 would not be distinguished by
the simple distance measures used for Figures 3.6 and 3.7. By adding more weight
to notes at positions in measures which are usually emphasized, e. g. the first beat,
the measure structure can be taken into account as well.

Note Number Weight. In the RISM database, there are no clear rules about
how many notes are included in the incipits. Therefore, it happens that very similar
or identical melodies differ mainly in the number of notes that are included in the
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Figure 3.2: By adding a stress-based weight component, the distance measure can be
made to reflect different measure structures. Without that, the distance would
be zero for these clearly different melodies, provided that transpositions are
allowed.

incipit. As we shall see later, for example in Figure 3.7, there are instances where
the distance between melodies becomes very large because one of them is cut off
after fewer notes, not because they contain very different musical material. One
possible way of addressing this problem is to add an extra weight component to
each note that depends on how many notes precede it. That way, notes close to
the beginning are made more important than extra notes at the end which might
not be present in all occurrences of a melody in the database.

In Section 3.1.3, we will describe some adjustments of the signatures which we
do before applying a distance measure.

3.1.2 Dissimilarity Measures for Weighted Point Sets

For a dissimilarity measure (formally speaking, a function on asetS, d: S x S —
R* U {0}), the following properties are usually desirable:

i. Self-identity: For all x € S,d(z,z) = 0.
ii. Positivity: For all z # y in S,d(z,y) > 0.
iii. Symmetry: For all z,y € S,d(z,y) = d(y,x).
iv. Triangle inequality: For all z,y,z € S, d(z,z) < d(z,y) + d(y, 2).

A measure with all of these properties is called a metric, while a measure with
only properties i, iii, and iv is called a pseudo-metric. Depending on the application,
different properties are relevant. For measuring melodic similarity in a way that
agrees with human perception, our measure should have the self-identity property.
Symmetry might be useful as well, but it is less clear whether humans really apply
a symmetric dissimilarity measure to melodies. The triangle inequality is useful for
efficiently searching the database [5]. Positivity is not necessarily always desired.
The EMD's partial matching property, which is closely related to its lack of positivity,
can be useful.

In the following subsections, we will describe the two transportation distances
which we used.

The Earth Mover’s Distance (EMD)

The Earth Mover's Distance between two weighted point sets measures the mini-
mum amount of work needed to transform one into the other by moving weight.



Rainer Typke: Music Retrieval based on Melodic Similarity
3.1 Representing music as weighted point sets 27

Intuitively speaking, a weighted point can be seen as an amount of earth or mass;
alternatively it can be taken as an empty hole with a certain capacity. We can arbi-
trarily assign the role of the supplier to one set and that of the receiver/demander
to the other one, setting, in that way, the direction of weight movement. The
EMD then measures the minimum amount of work needed to fill the holes with
earth (measured in weight units multiplied with the covered ground distance). See
Cohen’s Ph.D. thesis [14] for a more detailed description of the EMD.

Definition Let A = {aj,a9,..,a,n,} be a weighted point set such that a; =
{(z;,w;)},i = 1,..,m, where z; € R* with w; € RT U {0} being its corresponding
weight. Let W=3"7_, w; be the total weight of set A.

The EMD can be formulated as a linear programming problem. Given two
weighted point sets A, B and a ground distance d, we denote as f;; the elementary
flow of weight from z; to y; over the distance d;;. If W,U are the total weights
of A, B respectively, the set F of all possible flows F' = [f;;] is defined by the
following constraints:

L fi;>0i=1,...,mj=1,...,n
2. 2?21 fij <wgii=1,...,m

3. fij Swuji=1,...n
4.3 S0 fij = min(W,U)

These constraints say that each particular flow is non-negative, no point from the
“supplier” set emits more weight than it has, and no point from the “receiver”
receives more weight than it needs. Finally, the total transported weight is the
minimum of the total weights of the two sets.

The flow of weight f;; over a distance d;; is penalized by its product with this
distance. The sum of all these individual products is the total cost for transforming
Ainto B. The EMD(A, B) is defined as the minimum total cost over F, normalized
by the weight of the lighter set; a unit of cost or work corresponds to transporting
one unit of weight over one unit of ground distance. That is:

minper 30y 25 fijdi

EMD(4, B) = min(W,U)

Properties and Computation. The most important properties of the EMD can
be summarized as follows:

1. The EMD is a metric if the ground distance is a metric and if the EMD is
applied on the space of equal total weight sets.

2. It is continuous, in other words, infinitesimal small changes in position and/or
weight of existing points cause only infinitesimal change in its value. More-
over, the addition of a point with an arbitrarily small weight, i. e. noise (which
can be seen as increasing its weight from zero to a positive value) leads to an
arbitrarily small change in the EMD's value.

3. It does not obey the positivity property if the sums of the weights of the two
sets are not equal. In that case, some of the weight of the heavier distribution
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remains unmatched. Therefore, the EMD allows for partial matching. As a
result, there are cases where it does not distinguish between two non-identical
sets. Sometimes this can be useful, for example when two incipits contain
identical melodies which are cut off after different numbers of notes. On the
other hand, this also leads to effects like the one we see with incipit number 12
in Figure 3.6, where the EMD yields a relatively low distance. Here the surplus
of weight is not all concentrated at the end of the melody, but distributed
over several rests and other places, which leads to a false positive.

4. In the case of unequal total weights, the EMD does not obey the triangle
inequality. A simple counterexample would be three melodies called A, B,
and AB. Let us assume that AB is the concatenation of A and B, and let
us assume that A and B are chosen so that the EMD vyields a distance of
1 between them. If A and B are positioned accordingly, both the distance
between A and AB and the distance between B and AB can be zero (because
both A and B are parts of AB). Then, d(A, B) > d(A, AB) + d(AB, B).

As a result, methods that rely on the triangle inequality for speeding up
database retrieval cannot be used in conjunction with the EMD.

The EMD can be computed efficiently by solving the corresponding linear pro-
gramming problem, for example by using a streamlined version of the Simplex al-
gorithm for the transportation problem [25]. We used Rubner's [66] EMD function,
which implements Hillier's and Lieberman’s Simplex algorithm. It is possible that
the Simplex algorithm performs an exponential number of steps. One could use
polynomial algorithms like an interior point algorithm, but in practice that would
outperform the Simplex algorithm only for very large problem sizes. Since the trans-
portation problem is a special case of the minimum cost flow problem in networks,
a polynomial time algorithm for that could be used as well.

The Proportional Transportation Distance (PTD)

Giannopoulos and Veltkamp [52] proposed a modification of the EMD in order to
get a dissimilarity measure based on weight transportation such that the surplus of
weight between two point sets is taken into account and the triangle inequality still
holds. They call this modified EMD the “Proportional Transportation Distance”
(PTD) because any surplus or shortage of weight is removed in a way that the
proportions are preserved before the EMD is calculated. The PTD is calculated by
first dividing, for both point sets, every point’s weight by its point set's total weight,
and then calculating the EMD for the resulting point sets.

The PTD is defined as follows: Let A, B be two weighted point sets, W, U the
total weights of A and B, and d a ground distance. The set F of all feasible flows
F = [f;;] from A to B is defined by the following constraints:

L fi;>0i=1,mj=1,..,n
2. Z?:l fij = wi,i = 17 ey M

m u; W .
3. Zi:l fij = JT,j = ].,...,TL

4. 2111 Z?:l fig =W



Rainer Typke: Music Retrieval based on Melodic Similarity
3.1 Representing music as weighted point sets 29

The PTD(A, B) is given by:

minper 32101 35 fijdij
w

PTD(A, B) =

Constraints 2 and 4 force all of A’s weight to move to the positions of points in B.
Constraint 3 ensures that this is done in a way that preserves the old percentages
of weight in B.

The PTD is a pseudo-metric. In particular, it obeys the triangle inequality. It
still does not have the positivity property since the distance between positionally
coinciding sets with the same percentages of weights at the same positions is zero.
However, this is the only case in which the PTD distance between two non-identical
point sets is zero. The PTD will distinguish between two sets B and B’ which differ
in only one point. It has all other properties of the EMD for equal total weight sets.

3.1.3 Ground distance, adjustments of coordinates and weights
The ground distance

For all results in this book, we used the Euclidean distance as ground distance, unless
specified otherwise. That is, the distance between two notes with the coordinates
(t1,p1) and (t2,p2) is \/(t1 — t2)? + (p1 — p2)>.

An interesting variation, especially for polyphonic music, would be to make the
distance in the pitch dimension depend on harmony instead of just calculating the
difference of pitches.

Adjustments of coordinates and weights

Before applying one of the dissimilarity measures for weighted point sets described
above, we adjust the signatures of the two melodies we want to compare in several
ways:

e In order to be able to recognize augmented or diminished versions of a melody
as similar (like for example in Figure 3.7, second group, melody 4 in compar-
ison with the melody at the top in the same figure), it can be necessary to
normalize the range of time coordinates. We chose to stretch the melody with
the smaller maximum time coordinate over a longer time such that after the
adjustment, both melodies’ maximum time coordinates equal the larger max-
imum time coordinate before the adjustment. Note that with a less careful
normalization, e. g. the adjustment of a randomly chosen melody to the other
melody's length, one can easily lose the symmetry property. We did this align-
ment of durations when we used the PTD, where there is no partial matching;
when we used the EMD, we compared the distances with and without dura-
tion alignment and took the minimum. We left the weights unchanged for
the EMD.

e It is desirable to make the distance measure independent of transpositions.
This could be done by moving one of the two melodies up or down in pitch
to a position where the distance is minimal [50]. Since finding the opti-
mum transposition would require the repeated application of the dissimilarity
measure, which would take a lot of time, we chose to transpose one of the
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melodies so that the weighted average pitch is equal. This way, the dissimilar-
ity measure for weighted point sets needs to be applied only once, but this is
not always the optimum solution. However, this approximation usually works
well enough for transposed versions of the same melody to appear closer than
other melodies from the database, see Figures 3.6 and 3.7.

e When the transportation distance is calculated, the transportation of weight
from one note to another can happen in the time dimension, the pitch di-
mension, or a combination of the two. Therefore, the range of numbers in
both dimensions affects the results. For the comparison of our method with
Howard's and Schlichte’'s, we multiplied the time coordinates with 3 in order
to avoid all points to be placed in a very narrow, long strip like in Figure 3.1,
where the pitch ranges from 186 to 221 (a range of 35), while the time only
ranges from 0 to 6. An arrangement of the points like in Figure 3.1 would
make it too cheap to move weight in the time dimension in comparison to the
pitch dimension, which would lead to notes being matched with notes that
do not really correspond with them.

The optimum factor for the time coordinate needs to be determined exper-
imentally such that the distance measure agrees well with human ideas of
melodic similarity.

An example

Figure 3.3 shows the weight flow for signatures of two melodies after adjusting them
as described above. Unlike the signature shown in Figure 3.1, the time coordinates
are now multiplied with 3 so that weight transportation in the time and pitch
dimensions are similarly expensive. In Figure 3.1, the range of pitches is much
larger than the range of time coordinates so that transportation distance measures
would match notes which do not correspond with one another. Also, the top melody
in Figure 3.3 was stretched so that the maximum time coordinates are both 28.5,
and the top melody was also slightly shifted in the pitch dimension so that the
weighted average pitches are the same.Without the pitch and duration alignments,
the distance between these two melodies would be 5.41825 instead of 0.739529.
For the sake of simplicity, we treated the grace note in the bottom melody like any
other eighth note, thereby overemphasizing it and influencing the time coordinates
of subsequent notes. A special treatment of grace notes would probably lead to
better results.

In Figure 3.3, an arrow indicates the flow and the transported weight for each
pair of weighted points between which any weight is transported. Consider, for
example, the first two notes of both melodies. Since the second melody starts with
a dotted eighth note and a sixteenth note, while the first one starts with two eighth
notes, half of the weight of the second note of the first melody is transported to
the first note of the second melody, while the other half goes to the second note.
The quarter note which is represented as a hollow circle is only partially matched.
It has a capacity of 1, but only 0.5 weight units are transported into it.
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Figure 3.3: An illustration of a weight flow with the EMD; the coordinates are adjusted
as described in Section 3.1.3. These two melodies are taken from the query
result shown in Figure 3.6. The signatures of melodies 1 and 11 from Figure
3.6 after the adjustments, shown in the format (Time, Pitch; Weight): Top:
(0, 180.138; 0.5), (1.58333, 175.138; 0.5), (3.16667, 169.138; 1), (6.33333,
192.138; 0.5), (7.91667, 197.138; 0.5), (9.5, 192.138; 1), (12.6667, 186.138;
0.5), (14.25, 192.138; 0.5), (15.8333, 197.138; 0.5), (17.4167, 192.138; 0.5),
(19, 186.138; 0.5), (20.5833, 180.138; 0.5), (22.1667, 175.138; 1), (25.3333,
180.138; 0.5), (26.9167, 175.138; 0.5), (28.5, 169.138; 1) Bottom: (0, 180;
0.75), (2.25, 175; 0.25), (3, 169; 1), (6, 192; 0.5), (7.5, 197; 0.5), (9, 192;
1), (12, 186; 0.5), (13.5, 192; 0.5), (15, 197; 0.5), (16.5, 192; 0.5), (18, 186;
0.5), (19.5, 180; 1), (22.5, 175; 1), (25.5, 180; 0.75), (27.75, 175; 0.25),
(28.5, 169; 1)

3.2 Advantages of transportation distances

From the definition, we can already see that using transportation distances for
measuring melodic similarity has the following advantages:

e Continuity: If differences between queries and database documents are small,
transportation distances deliver accordingly small values. When a query is
distorted, there is no point at which the distance would suddenly become
larger.

e Support for many distortions: Many kinds of differences such as grace
notes, differences in pitch, note durations, and rhythm are taken into account
by transportation distances without the need for their explicit anticipation.

e Partial Matching for any combination of polyphonic and monophonic
music: With some transportation distances, examples of which include the
EMD, any combination of monophonic and polyphonic music can be matched.
If one of the two compared point sets has fewer notes, the EMD automatically
picks the notes that match best and ignores those notes from the larger point
set that do not have corresponding notes in the smaller point set.
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Figure 3.4: Three incipits that all start with a sequence of the intervals ascending
major third/descending major third/ascending fifth/descending minor third.
Schlichte [69] uses this example for pointing out that interval sequences alone
are not suitable for finding melodically similar RISM incipits. The composers:
top: Schréter, Johann Samuel; middle: Schuster, Joseph; bottom: Eichner,
Ernst.

e Flexibility: Transportation distances can be fine-tuned to genres and human
perception by modifying the weighting scheme and ground distance.

In the following sections, we will look at how various variants of our distance
measure perform in comparison with other methods.

3.3 Matching incipits against other incipits

In this section, we compare the performance of the transportation distance method
for measuring the similarity of RISM incipits to earlier attempts of comparing RISM
incipits. For different problems, such as finding short queries in long pieces of
music, we need to develop the method further. This will be discussed in subsequent
sections.

3.3.1 Comparison with Schlichte’s “Frankfurt Experience”

Joachim Schlichte [69] describes an attempt of grouping similar incipits together.
This work was based on 83,243 incipits from the RISM A/Il collection. Schlichte
shows that omitting “insignificant” musical phenomena immediately leads to useless
results, even among the small subset of 83,243 out of the 476,000 incipits that are
currently available to us. The methods he classified as useless are:

e Converting the incipits into strings of intervals and comparing those, thus
ignoring rhythm, absolute pitch, and rests, leads to distances of zero between
very different pieces. Schlichte gives some examples, one of which is shown
in Figure 3.4.

e Comparing strings of pitches, ignoring only rhythm and rests, still leads to too
many false positives. Transposing all pieces into the same key before applying
this method makes matters worse.

Schlichte therefore only looked for identical incipits, which already give music
scholars valuable pointers to interesting facts. One of the interesting applications
is the identification of anonymous pieces. Schlichte writes that among the 14,000
anonymous works in his data collection, 292, i. e. about 2 %, can be automatically
associated with a composer by looking for identical incipits. This comparison is
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based on the Plaine & Easie encoding [27] in which all RISM A/Il incipits are
stored.

We compared approximately 80,000 incipits by unidentified composers in the
RISM A/Il collection to all other incipits; the result can be seen at http://
give-lab.cs.uu.nl/MIR/anon/idx.html. About 13 % of these incipits lie within
a distance of less than 1 (PTD; weights: duration only; base-40 pitches; time coor-
dinates multiplied with 3) from other incipits. This includes trivial cases where the
incipits are identical, but also more interesting cases like the one shown in Figure 3.5,
where added notes, augmentation, transposition, and differences in rhyhtm, contour
and the sequence of intervals make it more difficult to recognize the similarity.

Alexandre Stiévenart: Variations

Figure 3.5: These two versions of the “Ah! vous dirai-je Maman” theme are recognized
as similar (with PTD, weights: duration only). Note the extra notes in the
second to last measure of Stiévenart and the first measure of Anonymus, which
lead to differences both in the sequence of intervals and the contours, and the
fact that the Stiévenart version is an augmented and transposed version.

In order to see how many of these matches are actually useful and would not
have been found by just looking for identical pieces, we manually checked 100
randomly chosen search results with distances below one. 55 % of these works
only match with other anonymous works. For 19 %, a composer could be found
because the compared incipits are identical. This is similar to Schlichte’s result —
19 % of 13 % are 2.47 %, while Schlichte's figure is 2.08 %. We expect a slightly
higher percentage because we do not compare the Plaine & Easie encodings, but
our database contents as described in Section 3.1.1, which means that we view
more melodies as identical than Schlichte did. For example, we ignore beaming.
For another 11 %, we could determine the composer although the incipits are not
identical. Therefore, our method leads to the identification of about 3.9 % of all
anonymous pieces instead of Schlichte's 2.08 %.

3.3.2 Comparison with Howard’s “Harvard Experience”

Howard [28] describes a later attempt of grouping together similar incipits from the
RISM A/II collection. This work was based on a subset of our collection with at
most half as many! incipits. The U. S. RISM officials did not, like their Frankfurt
colleagues, compare Plaine & Easie encodings, but converted the incipits into the
DARMS [27] encoding language. They compared sorting results of five encoding
types:

1. the complete encoding with all parameters,
2. the complete encoding transposed to a common pitch register,

3. the encoding stripped of such features as beaming, bar lines, and fermatas,

'Howard does not clearly say how many, but from the introduction to his paper it can be
inferred that the number was probably below 230,000.
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Figure 3.6: Query results for “Roslin Castle” among 476,000 melodies. The top 17
matches of an EMD-based query contain 12 occurrences of “Roslin Castle”.
For a discussion of the differences between EMD (this figure) and PTD (Figure
3.7), see Section 3.3.2.
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other query results.
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4. the encoding stripped of the items given in (3) plus grace notes,

5. the encoding stripped of the items given in (3) and (4) plus rhythmic values,
rests, and ties, with the transposition to a common register (2) but with
preservation of repeated notes.

None of the five encoding types lead to more than 6 out of 13 known occurrences of
a song called “Roslin Castle” being sorted together among not more than 230,000
incipits.

Figures 3.6 and 3.7 show the results of some queries for the same song with the
EMD (3.6) and PTD (3.7). The EMD query groups together 11 out of 16 known
occurrences among 476,000 incipits, i. e. a larger percentage among more than twice
as many potential false positives in comparison with the “Harvard experience”. If
one does not count the 16th occurrence, shown at the bottom right, because it is
not encoded correctly, our method compares even more favourably (73 % versus 46
%). The PTD result shown in Figure 3.7 does not group together more occurrences,
but at least the false positives are musically very similar.

Figures 3.6 and 3.7 also illustrate the different properties of the EMD and PTD:

e The EMD groups more occurrences together in just one query result. Among
the 16 known occurrences of “Roslin Castle”, there are 3 groups with similar
numbers of notes. The fact that the EMD allows partial matching, while the
PTD matches all notes, leads to a clear distinction of these groups by the
PTD, but not the EMD.

e Because of the weight normalization, the PTD recognizes augmented or di-
minished versions of the same melody as similar. In the second group of
melodies in Figure 3.7, melody number 4 is recognized as similar to the other
melodies in the group, while the use of the EMD leads to a rather large dis-
tance. With the EMD, the different durations mean that aligning the time
coordinates (as described on page 29) would be necessary for recognizing
the similarity here. However, unfortunately, these two incipits do not cover
corresponding portions of the melodies, so this adjustment fails to make the
similarity recognizable. In later sections, we show how problems like this can
be overcome by segmenting.

e The false positives in Figure 3.7 (numbers 6 and 8 in the first group) are
more similar to the musical material in the rest of the query result than the
false positives in Figure 3.6 (numbers 12 to 16). The reason is that the EMD
allows an unmatched weight surplus to be spread over the whole melody. In
other words, this distance measure does not distinguish between a few extra
or missing blocks of notes on the one side and differences between many
individual notes or rests on the other side. When the PTD is used, blocks
of extra or missing notes lead to the wrong notes being compared to one
another, which usually dramatically increases the distance. Any differences
between individual notes are also penalized.

3.4 Matching query segments against whole incipits

The melody comparison algorithm as it is described in the previous sections relies on
the compared incipits having roughly the same length. Only then does the alignment
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to a fixed length make musical sense. In order to overcome this restriction, we
modified the algorithm such that the query is segmented, and the incipits in the
collection are searched for occurrences of translated and scaled versions of the
query segments. The resulting algorithm was submitted for the Symbolic Melodic
Similarity task at MIREX 2005; see Section 5.3.1 for a discussion of its performance.

3.4.1 Segmenting the query

Segmenting queries can lead to an improvement of partial matching in the time
dimension and an increase of robustness against pitch and/or tempo fluctuations,
even if the segments do not make musical sense. If queries are entered by humans,
the pitch and/or tempo frequently fluctuate. While such fluctuations can greatly
distort a query, they either do not have a large impact on short segments, or only
on a few of them. The partial matching in the time dimension is improved if the
smaller point set is translated and scaled such that the transportation distance to
the larger point set is minimized.

For our experiments, we worked with segment lengths in the range from 6 to 9
consecutive notes. Segments of this length are usually distinctive enough so that we
did not get too many matches from pieces that are not really similar, but still short
enough for getting the desired robustness against tempo and pitch fluctuations.

Our segmenting algorithm must fulfill certain conditions for our method to work
properly. We would like to be able to process manually recorded MIDI queries with
free, possibly fluctuating tempo and unknown measure structure. Also, we want the
segmenting results to be largely independent of how many voices are present at the
same time. Therefore, we cannot just take a certain number of notes and declare
them a segment, and we also cannot rely on the measure structure. Instead, we
look at a certain number of consecutive notes.

Figure 3.8: A polyphonic query for Bach’s Brandenburg concerto No. 5 (violin part plus
the left hand of the cembalo). This query was played by hand on a MIDI
keyboard, which lead to slightly inexact rhythm.

We count consecutive notes in monophonic or polyphonic music as follows:

1. First, we set a pointer to the onset time of the first note that is to become
part of the next segment. This is the beginning time of a new segment.

2. Then, we move the pointer to the next end of any note whose onset time lies
within the current new segment, then to the next beginning of a note. We do
this until we have the desired number of consecutive notes in the segment.

3. We include all notes with an onset time within the closed interval from the
beginning of the segment to the current pointer position in the next segment.

For example, segment number 1 in Figure 3.9 is found like this: First, we move a
pointer to the onset time of note number 1, the first note we want to include in the
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Figure 3.9: The first three segments of the polyphonic query shown in Figure 3.8.

segment. Then, we move the pointer to the end of the longest note in the beginning
chord (the lowest note), because that is the next ending of any note whose onset
time lies in the current segment. Now we move the pointer to the beginning of note
2 since this is the next onset time after the pointer. This way, we have included the
whole chord at the beginning in the new segment, but count it as only one out of
six steps. The next five steps work the same way (go to the next end of any note
after the pointer, then to the next onset time). As a result, we identify the first
segment as shown in Figure 3.9 with its 9 notes as a segment with 6 consecutive
notes.

In order to correctly recognize consecutive legato notes in MIDI queries as con-
secutive (for getting a legato effect, the player releases piano keys only after the
following note has started), it was sufficient to treat all notes as if they were only
80% of their length for the purpose of segmenting.

By segmenting queries, we increase the number of comparisons of point sets that
are necessary for answering a query. On the other hand, the individual comparisons
become simpler since smaller point sets need to be compared, and the size of point
sets is bounded. The number of comparisons grows linearly with the query length.

3.4.2 Search algorithm

The segmented search for incipits works as follows:
1. Represent melodies as weighted point sets as described in Section 3.1.1.

2. Segment the query into possibly overlapping segments with a given number
of consecutive notes. The length of these segments is largely independent on
the number of voices since we do not count all notes in the segment, but
the number of notes that follow one another. For details on this segmenting
method, see Section 3.4.1.

3. Find a good alignment of the two point sets to be compared. Scaling in
the time dimension and translation of a point set in both time and pitch
dimensions are allowed since neither tempo changes nor transposition or the
position of a melody within a piece fundamentally change the character of a
melody. For aligning two point sets such that the EMD is minimized, we use
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the evolutionary optimization function evofunc [45] of the library “Reusable
Evolutionary Algorithms in Shape Matching” (REALISM), part of the Shape
Matching Environment (SHAME). To find a good alignment of two point
sets A and B, Evofunc creates a population of individuals; each individual is a
transformation of point set A, characterized by three parameters that specify a
combination of translation in the time and pitch dimension and scaling in the
time dimension. The fitness of each individual is calculated by determining
the distance between the corresponding point set (a stretched and translated
version of A) and B. New individuals are created from the old ones in a fashion
similar to simulated annealing, and this process of assessing individuals and
creating new ones is repeated until a certain threshold of quality or quality
improvement is reached. See Figures 3.10 and 3.11 for an illustration of the
alignment problem.

4. Use the EMD between the optimally aligned point sets as distance measure.

5. Now we have one result list of matching documents and their distances for
every query segment. Combine them as follows:

e Calculate normalized distances as follows: Let e be the EMD distance
between a query segment and a document. Let ¢ be a large cutoff
distance that is larger than a distance observed when there is some
meaningful melodic similarity. Pick € with 0 < ¢ < 1. The normalized
distance is 1 for EMD distances > ¢, and it is € + @ otherwise. This
ensures that the normalized distance is in the interval [e, 1].

e For every document that occurs in any list of matches for a query seg-
ment, construct a list that contains: query segment number, normalized
distance to the document, and the onset times of the first and last query
note within the matched document. This list might contain the same
query segment number multiple times (if it matches at more than one
place within the document), and it might contain different query seg-
ment numbers (if more than one query segment matches the document).

e For every document, calculate an overall distance score by finding the
minimum product of normalized distances for a legal combination of
segments that match with this document. By “legal combination”, we
mean that:

— No segment number occurs twice

— Segments with a higher number are matched at a later position
within the document

— For segments with consecutive numbers: the overlap of the matched
areas corresponds to the overlap of the segments within the query
(if there is any), and the matched areas are not too far apart (within
plus or minus 10 % of the values one would expect from the query).

The performance of this algorithm was compared to other state-of-the-art melody
search algorithms at MIREX 2005. Our algorithm ended up in the middle of the
field, but was the highest-ranking algorithm that would also support polyphony and
distorted queries. However, the runtime was rather high: it took 51240 seconds to
search 581 incipits for 11 queries on a Dual AMD Opteron 64 1.6GHz machine. See
Section 5.3.1 for details of the MIREX 2005 results.
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Top: Query. Only the shaded segment is converted into a
weighted point set (black).
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Bottom: A different piece to which the query is compared.

Figure 3.10: Problem: Before calculating the EMD, we need to somehow find out that
the black point set should be moved to the beginning of the grey one for
minimizing the EMD.
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Figure 3.11: The optimum alignment of the two point sets from Figure 3.10 so that the
EMD is minimized. The black points without arrows hide grey points.

3.5 Segmenting both the query and database doc-
uments

Much of the runtime our algorithm needed at MIREX 2005 was spent on finding
the optimum alignment of query segments and incipits such that the EMD was
minimized. The fact that this is an NP-complete problem makes this tolerable
only as long as the size of the compared point sets is bounded by a low constant,
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as is the case with musical incipits. However, the simple fact that finding a good
alignment takes some effort is not the only problem in this context: another problem
is that allowing combinations of translation in the pitch and time dimensions and
of scaling in the time dimension also makes it impossible to rely on the vantage
indexing method (see Chapter 4).

Both problems can be avoided, and the method can be made suitable for search-
ing complete pieces of music instead of just incipits, by not only segmenting queries,
but also the pieces to be searched. While this approach increases the number of
items to be compared, it avoids the need for expensive alignments. If the segments
are created in the same way, the corresponding point sets can just be scaled so
that they cover the same amount of time and translated (now only in the pitch
dimension) such that the EMD is minimized. Therefore, one does not need to find
an optimum combination of translation and scaling anymore. The increase in the
number of items to be compared can be addressed with indexing techniques such
as vantage indexing.

In the next sections, we will study several different variants of the algorithm that
use different combinations of segment sizes. The next section covers the case of one
fixed segment size for both query and database items (using the segmenting algo-
rithm described in Section 3.4.1), and Section 3.5.2 deals with the case of multiple
segment sizes for database items. For the latter variant, we first split polyphonic
pieces into monophonic voices and then cut the voices into monophonic segments
such that the Proportional Transportation Distance can be used in combination
with vantage indexing, which guarantees that the indexing does not cause false
negatives. If one works with sufficiently many different segment sizes for database
items, one also has the option of not segmenting the query at all. We will also
report experimental results with this variant.

3.56.1 A single segment size for database items and query

By segmenting not only the query, but also the database items using the segmenting
algorithm described in Section 3.4.1, we avoid the need for finding an optimum
combination of translation and scaling that would align a query with a matching
piece such that the distance is minimized. Translation is still supported since every
query segment is compared to segments from any position within the database
items, and scaling (varying tempo) is supported because every query segment and
every segment in the database are scaled to a fixed duration before being compared.

Algorithm description

The algorithm involves the following steps:

e Segment all items in the database using the segmenting algorithm from Sec-
tion 3.4.1.

e When a query needs to be answered:

— Segment the query in the same way.

— For each query segment, retrieve the most similar segments from the
database.

— Combine the results of the segment searches into one overall score.
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Each segment search yields a list of pieces that contain at least one matching
segment. The overall result should be a list of pieces with many closely matching
segments. For this, we need to compute a distance for each piece that occurs in
at least one segment search result. To do this, we first determine the maximum
distance M that occurs in any segment search result. For each segment search result
in which a piece P occurs, we add the distance of the highest ranked segment of
P to the overall score for P. For each segment search result in which P does not
occur, we do not know the distance of the corresponding segments because it was
high enough for the segment of P to not occur in this result list. Therefore, it is
at least the maximum distance in this result list, but probably clearly higher. We
get good results if we add twice M to the overall score for P in such cases. For
each segment search result without a segment from P that is both preceded and
followed by segment search results with segments from P, we add 4 times M to the
overall score for P. If the query is really a subset of the database document P, there
should not be a section within P that does not match, therefore there should be a
higher penalty for missing segments within the query than for missing segments at
the beginning or end of a query.

The resulting overall score is a distance measure. It is zero if for every segment
of the query a matching segment with distance zero was found in the same database
document P. The distance measure grows with the individual distances of segments
and with the number of segments for which no matches were found. Although
the transportation distances are symmetric, the combined distance measure is not.
Also, the triangle inequality does not hold, and it is not always positive for unequal
pieces of music. Therefore, it is not a metric.

Adjusting the search radius for different segments For each segment, we
perform an n nearest-neighbours search up to a given maximum search radius m.

When using the vantage indexing method (see Chapter 4), we cannot directly
search for n nearest neighbours, but need to work with a search radius. This radius
has to be different for different segments if we want to retrieve similar numbers
of neighbours. For typical musical patterns, like many repeated notes within one
segment, there tend to be many more neighbours within a small radius around the
segment than for very distinctive patterns of notes.

To select an appropriate search radius for each segment, we proceed as follows:
The search starts with a given low initial value which is unlikely to be too large for
any segment. If during the search we find more than n neighbours with distance
zero, the segment is not distinctive enough to be considered at all, and this segment
search can be stopped immediately. There are segments that do not contain enough
characteristic musical material for being helpful. If at the end of the search, not
enough matches (less than the n nearest neighbours we are looking for) were found
within the search radius, we increase the radius and search again. In this case, it
is sufficient to search the area outside the original search radius, but within the
new, enlarged one. We do this only while the search radius is less than the given
maximum search radius m.

Comparison with PROMS and C-BRAHMS

Lemstrom et al. [41], [42], [85] propose a number of algorithms for searching no-
tated music. Their search engine prototype, which uses these algorithms, is called
“C-Brahms”. We compare our search results to those produced by three of their
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algorithms that support polyphonic queries. The other C-BRAHMS algorithms men-
tioned in Section 2.2.2 were excluded from this comparison because they cannot be
used for matching polyphonic data with other polyphonic data. These C-BRAHMS
algorithms were included in our comparison:

e P1: Find translations of the query pattern such that all onset times and
pitches of notes in the query match with some onset times and pitches of
notes in the database documents. Time complexity: O(mn) (where m is the
number of notes in the query and n the number of notes in the database
document).

e P2: Find translations of the query pattern such that some onset times and
pitches of the query match with some onset times and pitches of database
documents. Time complexity: O(mnlogm).

e P3: Find translations of the query pattern that give longest common shared
time (i. e., maximize the times at which query notes sound at the same
time and with the same pitch as notes from the database documents). This
algorithm does not take into consideration whether onset times match. Time
complexity: O(mnlog(mn)) or, for a constant, finite number of possible pitch
levels: O(mnlogm).

PROMS [11] is an efficient system for finding supersets of queries, where queries are
sets of notes described by onset time and pitch. Therefore, it essentially performs
algorithm P1 in an efficient way, so we do not need a separate comparison with
the results that PROMS would deliver for the same queries and database. In 2006,
Clifford et al. [13] proposed a randomized maximum subset matching algorithm
with complexity O(nlogn) that solves a task similar to P3. It works, like PROMS,
on quantized score encodings and is faster than the minimum effort of O(n?) for
an exact solution thanks to the randomization and because it only looks for an
approximation.

Lemstrom et al. do not propose any indexing method for their algorithms, so for
any search, the query has to be compared with each database document. PROMS
uses an inverted file index that requires a quantization of note onset times and
the knowledge of the measure structure of queries and database documents. Our
method can be used with the vantage indexing method described in Chapter 4,
without requiring the measure structure to be known or the onset times to be
quantized beyond what is needed for representing real numbers using a computer's
finite memory.

Experiment We randomly selected 44 incipits from our database of about 476,000
incipits and used them as queries. We cut off every result list at position 25 and,
if the 26th document was ranked the same as the 25th, removed all documents
of that rank (otherwise we would have made a very arbitrary selection of matches
since there were cases with hundreds of documents with the same rank as the 25th).
This gave us a total of 3563 matches (4 methods, 44 queries, and up to 25 matches
each), for each of which we decided whether it was melodically similar and therefore
relevant.

Using van Zwol's testbed [88], we decided about the relevance in a way that
minimized the influence of any bias towards one method. For each query, we created
one combined result list containing all documents that were returned by any search
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method. Those that were returned by more than one method were listed only once.
These lists were not sorted by method or by the ranks of documents, but by the
library holding the source manuscripts. Therefore, for every relevance decision it
was very hard to tell which method had retrieved the document in question. We
had four people make the relevance decisions, two of whom had not worked on our
project before. Each person covered half of the 44 queries, and every match was
judged by two people.

Generally, P1, P2, and P3 do not properly match patterns if for some notes, the
pitch is slightly distorted, and they also do not work if the tempo is not constant.
Since for our comparison, we searched the RISM A/Il collection for pieces similar to
queries taken from the same collection, there were no pitch or rhythm distortions.
But even if we do not take this advantage of using transportation distances into
account, our method still compares favourably with P1, P2 and P3 (and therefore
also PROMS).

See Figure 3.12 for a recall-precision graph and numbers of retrieved relevant
documents. For the purpose of this graph, we assumed that all relevant documents
were retrieved by some method. We do not have a ground truth for our 44 queries.
There are probably some relevant documents that were not retrieved by any method.
Therefore, the actual precision is probably lower for all methods, but a comparison
is still possible. Out of all 275 relevant documents found by all methods combined,
our method retrieved 179, P1 only 76, and P2, the second-best method, 166. Thus,
our method found 8 % more relevant documents than P2 and 136 % more than
P1. For every method, we looked at queries where it performed badly, and describe
the individual weaknesses in the following subsections.
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Figure 3.12: P1 is not included in the graph because it does not rank matches. Among
all documents that any method retrieved, 275 were judged to be relevant.
Out of these, P1 found 76, P2 found 166, P3 found 125, and PTD found
179.
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P1 (all onset times match) Algorithm P1 finds only supersets of the query. For
most queries, only database documents containing exactly the same notes as the
query turned out to be supersets. Whenever this was not the case, the retrieved
document tended to be a false positive like the example shown in Figure 3.13. For
this query, P1 only found two occurrences of the piece containing the query and
two occurrences of the same false positive. The problem here is that P1 completely
ignores any non-matched notes which occur between the query notes.

Figure 3.13: Top: Joseph Eybler: “Dies sanctificatus” (Query). Bottom: False positive,
Pietro Guglielmi: “Domine ad adjuvandum”. Arrows connect the notes that
P1 matched with one another.

P2 (some onset times match) We ranked the P2 matches by the number of
matching onset times. The highest-ranked matches are always identical to the P1
matches. Therefore, the problem illustrated with Figure 3.13 also applies to P2.
For this query, Joseph Eybler's Gradual “Dies sanctificatus”, P2 returns more than
500 matches, but fails to find two occurrences of Gregor Rosler’s sacred song “Dies
sanctificatus”, which is melodically similar and has the same title and therefore
should be ranked highly (see Figure 3.16). The Rdsler incipits were missed by P2
because they are diminished, one note is a third higher, and there is a slight variation
in rhythm. This is a good example for alterations that do not change the character
of a melody very much, but greatly decrease the number of matching onset times.

For an example of a match that was found by P2, but missed by P1, see Figure
3.14.
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Figure 3.14: The top three matches for a Kyrie by Jan Vitdsek, as returned by P2. The
query is shown at the top, and the number of matched onset times is written
in parentheses. There are many more matches with 7 matching onsets. The
partial match shown here (a song titled “En jungfru stalter haver lag”) is
clearly not the same piece, but it is similar enough to be relevant.

P3 (maximize shared common time) Like P1 and P2, P3 finds all matches
that are a superset of the query. False positives are caused by a problem somwhat
similar to P1l's: P3 does not take additional onsets into account which greatly
change the perception of a melody, but not necessarily the overlap. An illustration
of this problem can be found in Figure 3.15, which shows a query for which P3 finds
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113 quite different matches, all with the same maximum shared common time. In
the bottom incipit (Palestrina), the extra notes between matching notes make the
melody sound quite different from that of the top incipit (Haydn).
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Figure 3.15: Top: Joseph Haydn: Symphony in E flat, Hob. 1.91, first movement (query).
Bottom: G. P. da Palestrina: Offertorium “Confitebuntur caeli”. This is one
of the 113 matches where the common shared time is maximal (equal to the
total time of the query). Most of the other 112 matches have just as little
in common with the query.

PTD (transportation distance) We used the PTD for comparing our segmented
search method since for the almost exclusively monophonic RISM A/II collection,
the EMD's partial matching capability is not needed.

Like P1, P2, and P3, the segmented PTD searches always resulted in top ranks
for the exact matches. An example of a true positive found by PTD, but missed by
P1, P2, and P3 is shown in Figure 3.16.
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Figure 3.16: The first four matches for Joseph Eybler's “Dies sanctificatus”, returned by
a segmented PTD search. The distance is O for the top two matches, which
are both occurrences of the Eybler piece, and 1.333 for the next two, which
are both occurrences of Gregor Rosler's sacred song “Dies sanctificatus”.

Although the PTD performs better than the other methods, P2 found some
relevant documents that the PTD missed. Usually, the reason was the same as for
the example shown in Figure 3.14. Here, our segmenting method does not extract
corresponding groups of notes from the query and the database document. This can
be addressed by creating multiple segments with different numbers of consecutive
notes, all starting at the same note, instead of only one segment with 6 consecutive
notes. This technique is described in more detail in Section 3.5.2.

Conclusions The comparison of our method with PROMS and C-Brahms indi-
cates that our method delivers better results, is faster than C-Brahms for realistically
large numbers of documents (hundreds of thousands or more), and puts fewer con-
straints on data and queries.

e Better results: For the RISM A/Il collection, our method finds more relevant
documents than any of the three polyphonic C-Brahms algorithms P1, P2 and
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P3. Our method finds more than twice as many relevant documents as P1,
of which PROMS is essentially an efficient implementation. However, we did
not evaluate the possibility of fuzzy queries that PROMS /notify offers. Those
are equivalent to sets of non-fuzzy queries.

e More efficient algorithm: If we use the vantage indexing method described
in Chapter 4, our algorithm needs O(klogn) Lo, norm calculations plus k
transportation distance calculations (for point sets representing music seg-
ments whose duration is bounded by a constant), where k is the number of
reported point sets and n the number of music segments in the database. This
is better than the complexity of the best C-Brahms algorithm in our compar-
ison, P2. Because of the lack of a suitable indexing structure, P2 needs O(d)
comparisons, each of them with a complexity of O(ijlogi), where d is the
number of documents, i the query length, and j the length of the compared
document. Even if there was a suitable indexing structure which would reduce
the number of comparisons, P2 would still need more time for longer docu-
ments, while for our method, only the sum of all document sizes matters, not
the sizes of individual documents. In practice, with half a million of database
documents on a 1-GHz machine with 1 GB of memory, answering queries
with the C-Brahms algorithms takes hours instead of seconds or minutes with
transportation distances.

e Fewer constraints on data: Unlike PROMS /notify or C-Brahms, our method
is continuous, and it supports both tempo and pitch fluctuations. The “notify”
system supports tempo fluctuations, but no pitch fluctuations, and C-Brahms
works only if neither tempo nor pitch fluctuate. Our database only contains
pieces without tempo or pitch fluctuations, but when used with the EMD,
our method can correctly match the distorted query shown in Figure 3.8 with
Bach’s Brandenburg concerto No. 5.

With our method, the query does not have to be a subset of database docu-
ments like for PROMS /notify.

3.56.2 Multiple segment sizes

Cutting both the query and the database items into segments of one fixed size
and then only matching those segments eliminates a useful degree of freedom that
was still present in the variant where only the query is segmented (Section 3.4):
the possibility of matching different numbers of notes against one another. Often,
variations of the same melody contain different numbers of notes, for example in
the case shown in Figure 3.17.

This problem can be addressed by segmenting the database documents into seg-
ments of multiple sizes and then matching each query segment against all segments
(with multiple sizes) at once. Figure 3.18 shows an example of how a hummed query
can be cut into overlapping segments which are then matched against segments like
those shown in Figure 3.19.

The MIDI file which was converted into the sheet music shown in Figure 3.19
does not contain the upbeat that the query contains (the very first note). The first
six note segment from the query therefore has no counterpart with corresponding
six notes in the MIDI file. However, because on each note, segments of length 5,
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Figure 3.17: An example for the usefulness of segmenting both the query and the database
items and using multiple segment sizes for the latter. Neither the whole
incipits nor n-grams with a fixed n contain corresponding melodic material,
but the whole incipits are still melodically similar. (Top: John Dowland,
“If fluds of tears could clense my follies past”’. Bottom: a violin duet by
Josephus Fodor.)
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Figure 3.18: A hummed query. The monophonic query is cut into overlapping segments
of length 6. The wavy line in the background shows the volume over time,
while the horizontal bars represent the recognized notes.

6, and 7 start, there is still a rather similar segment — the segment with 5 notes
starting on the very left of Figure 3.19 (marked with a little arrow).
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Figure 3.19: Each voice is made monophonic and then cut into segments of lengths 5, 6,
and 7. On every note, three segments start. The number of segments is still
in O(N) (N=number of notes in the piece). This figure shows just a few
of the many segments that are created from these notes (an excerpt from
Wagner's “Ride of the Valkyries").

Different combinations of segment sizes for queries and database items are suit-
able for different circumstances. If one has enough space for letting the segments
get as long as the longest expected query, one can even consider not segmenting
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the query at all, but instead cutting the database items into segments with lengths
that cover the entire supported range for query lengths.

Generally, when deciding on how exactly to segment queries and database items,
one needs to take the following effects into consideration (here we assume that the
pieces in the database are always segmented):

Para- Choice Advantages Disadvantages
meter
Seg- Yes Increases  the  robustness Increases  compu-
men- against major distortions of tational complexity
ting the query in a few places, such  (multiple  searches
the as the insertion of random for queries, consoli-
query notes with random pitches dation of results)
(this can happen if a Query-
by-Humming system’s note
recognition fails) or user input
errors such as unintended
modulations
No Increases  the robustness Increases space
against  minor  distortions complexity since
of many query notes (this the database items
can happen if the user of a need to be split into
Query-by-Humming system segments of many
has poor intonation or rhythm  different lengths to
and gets almost every query support the wide
note wrong; he might still be range of possible
able to produce a query whose query lengths.
overall shape is approximately
correct).
Query long Longer segments are more dis- Longer segments
seg- tinctive and lead to fewer reduce the robust-
ment matches from the database. ness against few
length This reduces the effort for con-  major distortions
solidating multiple results for since larger portions
query segments into one over- of the query are
all result. affected.
short A shorter query segment length ~ Segments are less
implies a shorter minimum distinctive (the
query length. extreme case of
query length 1, for
example, would

mean that anything
matches perfectly).

Continued on next page
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Para- Choice Advantages Disadvantages
meter
Query one fixed A fixed query segment length If the query length
seg- length means that consolidating re- is not a multiple of
ment sults is slightly simpler since ev-  the segment length
lengths ery query segment can be con- minus the segment
sidered equally important. overlap, one needs
to either ignore
some notes at the
end of the query or
over-represent some
notes.
multiple With multiple query segment More query seg-
lengths lengths, one can try to com- ments lead to
bine the robustness advantages higher computa-
of long and short query seg- tional  complexity,
ments. and more query
segment lengths
imply a higher space
complexity for the
database since the
database items will
also need to be
cut into segments
with more different
lengths.
Data- one fixed To cover the possibility of or- Higher computa-
base length namentations, one could also tional complexity
seg- use a single size for all database (quite a few seg-
ment documents but multiple, over- ment searches since
lengths lapping query segment sizes. multiple segments
Advantage: lower space com- need to start at
plexity. every query note).
multiple The case of ornamentations is Higher space com-
lengths covered without the need to plexity.

split the query in many over-
lapping segments of different
lengths. This means a lower
computational complexity.

For the Symbolic Melodic Similarity and Query by Singing/Humming tasks at
MIREX 2006, we tried several combinations of these choices for different situations.
For a description of the different subtasks and how the various algorithms performed,
see Section 5.3.2. The following subsections describe how the different subtasks
were addressed with different combinations of segmenting queries and database
Items.
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Multiple segment sizes for both query and data (MIREX 2006, RISM col-
lection)

For the RISM collection of musical incipits, the task was to find incipits that are
similar to a given incipit. The incipits differ in length, and it is quite possible that
the query is longer than some desired matches. Therefore, both the query and the
database items need to be segmented. If only the database items, but not the query
would be segmented, matches that are shorter than the query would be hard to find.

The incipits were split into segments of 5 to 16 consecutive notes, while the
query was split into segments of varying sizes from 5 consecutive notes up to either
16 or the length of the query, whatever is lower. That way, shorter incipits can be
matched to parts of the query, but the whole query can still be matched to longer
incipits in one comparison.

The algorithm from Section 3.5.1 needs to be adjusted so that it takes different
segment lengths into consideration, which has an impact especially on how partial
search results are combined. The following algorithm was used for the MIREX
submission:

e Segment all items in the database using the segmenting algorithm from Sec-
tion 3.4.1. At every note that has at least x — 1 subsequent notes, create a
segment of length x, where x ranges from 5 to 16.

e When a query needs to be answered:

— Segment the query: create segments that start with the first note of
the query and are 5 to N notes long, where N=16 or the query length,
whichever is lower. If the query is longer than 16 notes, also create
segments of length 6 and an overlap of 3 that cover the whole query.

— For each unique query segment, retrieve candidates for the most similar

segments from the database by using a vantage index (see Chapter 4).
This results in a list of segments that probably have a low EMD distance,
along with an estimate for that distance. However, the actual distances
are not calculated. The estimate is based on how similar the distances
to the set of vantage objects are.
Since we know that the collection contains only musical incipits, not
whole pieces, we only consider matches where the first query segment
matches near the beginning. A threshold of 3.5 seconds in the MIDI
rendition (about four quarter notes) for the offset of the matching region
worked well.

— Combine the results of the segment searches into one overall score. For
every combination of matching segments from the same piece whose
relative positions in the piece match those in the query, calculate the
score as follows:

x Determine the expected number of notes that should be covered by
matching segments. This is either the query length or the length of
the matching piece, whichever is lower.

x Count the actual number of notes that are covered by at least one
matching query segment.

x Add the vantage index-based estimate for the EMD distance of every
matching segment to the overall score.
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x Add a penalty p to the score for every note that should be covered
but is not. For MIREX 2006 and the RISM collection, p was 1. lts
value determines whether the coverage or the distances of individual
segments have a higher impact on the overall distance scores.

x So far, the dissimilarity scores were just estimates based on the van-
tage index, which are easy and fast to calculate, but may underes-
timate the actual EMD distances (see Chapter 4 for an explanation
of how vantage indexing can lead to false positives). To eliminate
such false positives, re-calculate the overall scores based on actual
EMD distances for the top 50 results.

— At this stage of the search, the result is already quite reasonable. To

further improve precision and recall near the top of the result list, it
is, however, useful to slightly lower the scores for items that contain
especially many notes which exactly match their counterparts in the
highest-ranked match. For the 50 items with the lowest scores, this is
done by multiplying the score with a factor f which is calculated as
follows: f = 1/3 + w where m is the number of notes that
exactly match their counterparts in the query, and c is the total number
of notes considered (that is, the minimum of query length and the length
of the matching incipit).
Whether this last step is useful or not depends on whether the searched
collection is quantized or not. Only if it is quantized, the concept of
an exactly matching note is helpful. For counting matching notes, the
incipits were compared to the highest-ranking incipit instead of to the
query because the query was not always quantized, while the highest-
ranking incipit was both quantized and very similar to the query.

This method gave good results at MIREX 2006. No competing algorithm gave
better results, and only one algorithm needed a few seconds less for answering
queries. For a detailed comparison of the results, see Section 5.3.2.

The possibility of matching a long query to a shorter incipit introduces another
problem: The scoring system described above does not distinguish between perfect
matches of a whole incipit that is shorter than the query (distance: zero) and perfect
matches of the whole query with parts of a longer incipit (here the distance is also
zero). Assigning different distances (a lower distance to the latter case, where more
notes match), would be an improvement, but one would need to investigate how
large such a difference should be in order to agree with human ideas of similarity.

No query segmenting, but multiple segment sizes for the data (MIREX 2006,
Karaoke collection)

Not segmenting the query but instead using more different segment lengths for the
data to be searched lowers the response time for queries. Only one segment search
is necessary for answering a query, and there is no need to combine search results
for different query segments. The main drawback is that more segment sizes for the
pieces in the database mean that the index gets larger. Another small drawback is
that queries cannot be matched to pieces that are shorter than the query.

For the MIREX 2006 Karaoke collection, which contains 1,000 complete pieces,
the advantages seemed to outweigh the disadvantages.

This is the — somewhat simpler — algorithm when the query is not segmented:
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e Cut the polyphonic pieces in the database into voices. It is assumed that every
voice is stored in either its own track or channel. In a second step, a skyline
algorithm is applied to make each of these extracted voices monophonic. By
“skyline algorithm”, we mean that whenever multiple notes sound at the same
time, all but the highest note are deleted. This way, only the “skyline”, the
sequence of highest notes, remains.

e Segment all voices in the database using the segmenting algorithm from Sec-
tion 3.4.1. At every note that has at least x — 1 subsequent notes, create a
segment of length =, where x ranges from 5 to 16. Since pop music tends to
be repetitive, only the first 80 notes in each voice are indexed.

e When a query needs to be answered:

— If the query contains more than 16 notes: remove notes at the end such
that the query is 16 notes long. Otherwise, do not change the query.

— Retrieve candidates for the most similar segments from the database by

using a vantage index (see Chapter 4). This results in a list of segments
that probably have a low EMD distance, along with an estimate for that
distance.
The matching segments can come from different voices and from any-
where in the piece. Therefore, the algorithm supports cases where a
melody wanders across voices, and it can find occurrences of a melody
anywhere in a piece.

— To eliminate false positives stemming from the vantage indexing (see
Chapter 4), re-calculate the overall scores based on actual EMD dis-
tances for the top 50 results.

— At this stage of the search, the result is already quite reasonable. To
further improve precision and recall near the top of the result list, it
is, however, useful to add a cost to noticeable tempo differences. Even
though melodies generally do not change their character if the tempo
is varied, if we completely ignore tempo, we will sometimes match fast
accompanying figures to slower melodic lines. We divide the duration of
the matching area in the piece by the duration of the query; if this quo-
tient is less than 1, it is inverted so that the resulting tempo difference
factor is greater than or equal to 1. If the tempo is really noticeably dif-
ferent (by a factor of more than 1.2), the calculated distance is multiplied
with the tempo difference factor. Otherwise, it is left unchanged.

This method gave very good results at MIREX 2006, clearly better than all
competing algorithms. Only one algorithm needed a few seconds less for answering
queries. For a detailed comparison of the results, see Section 5.3.2.

Single segment size for the query, multiple segment sizes for the data
(MIREX 2006, mixed polyphonic collection)

The mixed polyphonic collection at MIREX 2006 was too large for indexing it in
the same way as the Karaoke collection and still keep the entire index in memory.
The machines had just 2 GB of main memory, which we already filled with just
three segments starting at every note. So, in order to not let the response times for
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queries get too long, the collection was cut into segments of 5, 6, and 7 consecutive
notes only. This meant that queries had to be segmented using only a fixed segment
size of 6 consecutive notes in order to support note insertions and deletions.

The algorithm is a combination of the two previous ones — polyphonic pieces
are cut into voices like for the Karaoke collection, and results for different query
segments are combined like for the RISM collection:

e Cut the polyphonic pieces in the database into voices. It is assumed that every
voice is stored in either its own track or channel. In a second step, a skyline
algorithm is applied to make each of these extracted voices monophonic.

e Segment all voices in the database using the segmenting algorithm from Sec-
tion 3.4.1. At every note that has at least © — 1 subsequent notes, create a
segment of length z, where x ranges from 5 to 7. Since pop music tends to
be repetitive, only the first 80 notes in each voice are indexed.

e When a query needs to be answered:

— Cut the query into segments containing 6 consecutive notes. Two con-
secutive query segments have an overlap of 3 notes, with the possible
exception of the last query segment, which is placed such that it covers
the last 6 notes of the query, even if this means that its overlap with
the second to last segment is not 3. Every note in the query is part of
at least one query segment.

— For each unique query segment, retrieve candidates for the most similar

segments from the database by using a vantage index (see Chapter 4).
This results in a list of segments that probably have a low EMD distance,
along with an estimate for that distance. However, the actual distances
are not calculated. The estimate is based on how similar the distances
to the set of vantage objects are.
Like in the variant described in the previous section, the matching seg-
ments can come from different voices and from anywhere in the piece.
Therefore, the algorithm supports cases where a melody wanders across
voices, and it can find occurrences of a melody anywhere in a piece.

— Combine the results of the segment searches into one overall score. For
every combination of matching segments from the same piece whose
relative positions in the piece match those in the query, calculate the
score as follows:

x Determine the expected number of notes that should be covered by
matching segments. This is either the query length or the length of
the matching piece, whichever is lower.

x Count the actual number of notes that are covered by at least one
matching query segment.

x Add the vantage index-based estimate for the EMD distance of every
matching segment to the overall score.

*x Add a penalty p to the score for every note that should be covered
but is not. Like for the RISM collection, a value of 1 for p works
well.



Rainer Typke: Music Retrieval based on Melodic Similarity
3.5 Segmenting both the query and database documents 55

x So far, the dissimilarity scores were just estimates based on the van-
tage index, which are easy and fast to calculate, but may underes-
timate the actual EMD distances (see Chapter 4 for an explanation
of how vantage indexing can lead to false positives). To eliminate
such false positives, re-calculate the overall scores based on actual
EMD distances for the top 50 results.

— Like for the Karaoke collection, precision and recall near the top of the
result list are improved by multiplying the overall distance score with the
tempo change factor if that factor is greater than 1.2.

Like for the Karaoke collection, this method gave very good results at MIREX
2006, clearly better than all competing algorithms. Only one algorithm needed a
few seconds less for answering queries. For a detailed comparison of the results, see
Section 5.3.2.

A comparison of the runtimes for the 1000-item Karaoke collection and the
10,000-item mixed polyphonic collection shows that our algorithm scales well. Al-
though the variant without query segmenting is computationally less expensive (no
partial results need to be combined, and there is only one segment search), searching
10,000 polyphonic MIDI files with query segmenting took only 2.8 times as much
time as searching 1000 without query segmenting. The fastest competing algorithm
needed 8.5 times longer for 10,000 items.

3.5.3 Time and space complexity

If one is only interested in a given number of items from the database that are
most similar to the query, our method can give an answer in O(ilogn + k) time
using O(n) storage space, where n is the total number of notes in all items to
be searched, i is the input size (query length), and k is the number of returned
items. In practice, i and k will be bounded, so the time complexity for searching is
essentially just logarithmic.

We will show this in detail for the most complex variants of our algorithm, the
versions for MIREX 2006 (see Section 3.5.2).

Effort for indexing

The indexing method with vantage objects is described in Chapter 4. It involves
computing the transportation distance between every item in the database and a
fixed, small number of vantage objects. In our case, the items in the database are
point sets representing segments of pieces from the database. The number of these
segments lies in O(n) for every variant of the algorithm since the segment length,
the number of different segment lengths, and the number of segments beginning on
any note are all bounded for all algorithm variants (we used, for example, lengths
of 5 to 16 notes for the “Karaoke” task at MIREX 2006, and therefore 12 segments
began at every note).

Since the number of vantage objects is a constant and the number of segments
lies in O(n), the size of the index table containing the distance to each vantage
object for every item in the database lies in O(n). To make searching this ta-
ble efficient, we create a B-tree index for it, whose size is also O(n), and whose
construction can be done in O(n?logn) [16].



Rainer Typke: Music Retrieval based on Melodic Similarity
56 3. Using transportation distances for melodic similarity

Although the algorithm for computing the EMD (we use the Simplex algorithm)
sometimes can perform an exponential number of steps, this does not matter for us
since we only run it on segments with constant sizes (for example, between 5 and
16 consecutive notes), so calculating the EMD (or PTD) between two segments
always lies in O(1).

Overall, for building an index, the space complexity lies in O(n), and the time
complexity is dominated by the effort of building a B-tree for the table containing the
distances to vantage objects, O(n?logn). Building that table involves a constant
number of EMD calculations that each take constant time for each segment; the
number of segments in O(n).

Effort for searching

For all variants from Section 3.5.2 (the MIREX 2006 variants), we need to consider
the following steps:

e Segmenting the query: O(i) (¢ is the query length).

e Calculating the distances to each vantage object for every query segment:
O(%) (since the number of query segments lies in O(¢) and their lengths and
the number of vantage objects are bounded, and the vantage objects have
constant sizes).

e For all query segments, finding candidates for matches using the vantage
index: O(ilogn) for a i range queries on the vantage table with length n
using a B-tree.

e The length of the desired result list is k, therefore the number of matches
to consider for each query segment lies in O(k/i). Thus, identifying false
positives from the vantage index and calculating overall scores for the bounded
number of candidates lies in O(k) (segment sizes are still bounded).

Overall, the effort for searching is O(i +ilogn + k), where n is the total number of
notes in the database, 7 is the query length, and k is the desired number of returned
items. In practice, ¢ and k will always be small. If the number of items to search is
increased, the search time only grows logarithmically.

3.5.4 Conclusions

We have shown that our method for measuring melodic similarity performs well
in terms of result quality as well as time and space complexity. At MIREX 2006,
no algorithm got better results for monophonic music, and all other algorithms
performed worse for polyphonic music. Space complexity lies in O(n) and queries
can be answered with an effort of O(i+ilogn+k) (n is the number of notes in the
database, i is the query length, and k is the desired number of returned items), so
the response time for searching only grows logarithmically if more items are added
to the database.

The fact that our distance measure is continuous and does not need quantized
data or a known measure structure contributed to the good result quality even for
distorted (hummed) queries and non-quantized data at MIREX 2006.



Chapter 4

Indexing music with vantage
objects

The RISM A/Il collection [1] contains about half a million musical incipits. For
the simplest variant of our algorithm, without any segmenting, we therefore need
to perform about half a million EMD calculations for one search. As we have
mentioned in Section 3.1.2, the Simplex algorithm is a good choice for calculating
the EMD. The Simplex algorithm has exponential time complexity in the worst case
[33]; polynomial algorithms exist, but for typical problem sizes when comparing
segments of music, they are unlikely to outperform the Simplex algorithm. Half a
million of EMD calculations take many hours on a normal PC with a 1 GHz CPU
and 1 GB of main memory. Therefore, for this algorithm to be useful in practice, the
search needs to be sped up with a suitable indexing technique. This need becomes
even greater for variants of the algorithm that involve segmenting of the query or the
database items because this greatly increases the number of required comparisons of
point sets; for example for MIREX 2006, the algorithm variant that works with three
different segment lengths needed over 12 million segments to represent the first 80
notes of each voice from 10,000 polyphonic MIDI files. This chapter describes how
one can search millions of segments within seconds while still using an expensive
EMD-based distance measure.

4.1 Vantage indexing

Vleugels and Veltkamp [90] first suggested vantage indexing for image retrieval. The
basic idea is that if the triangle inequality holds for a distance measure, one can
save a lot of effort by pre-calculating the distances between a small set of vantage
objects and each item in the database; whenever items need to be retrieved that are
close to a given query item, one can then limit the database search to those items
whose distances to the vantage objects are similar to those of the query item.
Figure 4.1 illustrates a simple case with just one vantage object. Before any
query takes place, for every database item P;, we calculate the distance to the
vantage object V and store these distances along with the objects P; in the database.
To find the items that are closer to a query Q than some search radius r, it is now
no longer necessary to calculate the distances between Q and all objects P;; instead
it is sufficient to calculate the distance between Q and V (let us call this distance
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>

Figure 4.1: Wanted: all objects P within the dark grey circle around Q with radius r. For
all objects P; in the database, the distance to V has already been calculated.
For answering the query Q, we need to calculate Q's distance to the vantage
object V. Now we can quickly exclude all objects outside the light grey ring
around V.

q) and then restrict the search to those items in the database whose distance to V
lies between ¢ — r and ¢ + r. In Figure 4.1, we can exclude all points that do not
lie within the light grey ring around V, such as for example P;. Only for the points
within the light grey ring, we still need to calculate the actual distance to determine
whether these points lie within the dark grey area of interest.

Figure 4.2: By using multiple vantage objects, one can exclude all objects outside the
intersection of rings around the vantage objects.

As Figure 4.1 shows, the vantage index cannot reliably exclude all items outside
the search radius from the search. There can be false positives such as P; and Pj
which lie inside the light grey ring, but not inside the dark area we are interested in.
To reduce the number of false positives, we can work with multiple vantage objects.
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Figure 4.2 shows how the situation changes if we add another vantage object. Now
we need to pre-calculate and store two distances for every item in the database, but
in return for this increased effort, we can exclude even more items from the search:
only items that lie in the intersection of the two light grey rings around V; and V,
are now candidates for matches. For example, this excludes Py from the set of false
positives; now the only false positive is P5. See Section 4.4 for experimental results
about the effect of the number of vantage objects on search performance.

4.2 The EMD and the triangle inequality

The Earth Mover's Distance obeys the triangle inequality only if the total weight
sums are the same in the two point sets. Otherwise, not even a weak triangle
inequality such as EMD(A,B) < k (EMD(A,C) + EMD(C,B)) holds (with k& > 0).
Counterexamples exist where EMD(A,B)>0, EMD(A,C)=0, and EMD(B,C)=0; see
Figure 4.3.

EMD(A,C) = EMD(B,C) = 0
EMD(A.B) > 0

Figure 4.3: For the EMD, not even the weak triangle inequality holds. In this example,
EMD(A,B) > k (EMD(A,C) + EMD(C,B)) for all & > 0.

However, the experiments described in Section 3.3.2 indicated that with the
RISM A/Il collection, when using the vantage indexing method with the EMD,
probably most matches within a third of the search radius are retrieved. Hence if
the search radius is increased accordingly, the vantage indexing method can still
be used for polyphonic searches with the EMD, albeit without a guarantee for the
completeness of the matches. It is hard to quantify the necessary increase of the
search radius or the probability of still retrieving all matches since this depends on
the data collection. It is possible to construct a data collection where the radius
needs to be much larger than three times that for the PTD, which does satisfy the
triangle inequality.

4.3 Search radius versus nearest neighbour search

Vantage indexing can be used to support either nearest-neighbour searches' or
searches within a given search radius. The introduction of vantage indexing in
Section 4.1 illustrates the latter, but the principle of exploiting the triangle inequality
can also be used in conjunction with kd-trees.> For an exact nearest-neighbour

1In a nearest-neighbour search, an item, a search space, a distance measure, and a number n
is given. The desired result are the n items that are closest to the given item in the search space
according to the distance measure.

2A kd-tree is an index structure that accelerates searches in a k-dimensional space. The space
is partitioned by a hierarchy of splitting planes, each of which is associated with a node in a
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search, querying a v-dimensional kd-tree would involve O(nlf% + k) Lo norm
calculations, where k is the number of reported points (each representing a set of
notes). Arya et al. [2] describe an approximate nearest-neighbour search which
would need O(klogn) Lo norm calculations [2]. Their method uses a balanced
box decomposition tree which recursively subdivides space into cells; each leaf cell
is associated with one point. First they find the cell that contains the query point
(with a simple descent through the tree); then they identify the closest cells and
calculate the distances of the contained points from the query point. Once a point
is found that is closer to the query point than the distance of any other cell times
(1 + €), this point can be reported as an approximate nearest neighbour, and the
search can be terminated.

By using the vantage indexing method in combination with B-trees?, it is easy
to retrieve all segments that lie within a given search radius around a query segment
with an effort of O(logn), with n the number of segments to search.

For music information retrieval, a search radius and a nearest neighbour search
both have advantages and disadvantages.

If one works with a constant search radius for every segment (or incipit), one
can end up with very many matches for segments that contain common musical
material (for example, repeated notes or repetitions of triads) and, for a different
query segment and the same search radius, with very few matches. Too many
matches for a query segment slow down the search process, and too few matches
may lead to false negatives.

On the other hand, if one considers the same number of nearest neighbours
for every segment, this can also lead to very unequal treatment of the query seg-
ments. For segments that contain common musical material, one would only con-
sider matches that are extremely similar, while for unusual segments, one would risk
considering very different matches that are so far away from the query segment that
a human would not see any melodic similarity.

Since both a constant search radius and a constant number of nearest neigh-
bours are inappropriate in their pure forms, we use a combined approach. First
we count how many segments lie within a certain initial search radius 7 (this can
be done efficiently with a B-tree). We pick this search radius so that it reflects a
distance within which a human can recognize melodic similarities. For determining
a good initial radius, it is useful to have a human-generated ground truth and also
the results of the ground distance measure for some segments. If the number of
matches within this radius is higher than ¢, the maximum number of segments we
are willing to consider, we lower the search radius in several steps until either the
number of matches drops below ¢ or we reach a minimum search radius ro that
reflects a minimum variation we want to permit in our search. If even this minimum

binary tree. For retrieving items from the search space that are close to a given position in the
search space, one traverses the kd-tree by deciding at each node which side of the splitting plane
to search (because the given position is on that side of the splitting plane) and therefore which
subtree to traverse. A kd-tree supports nearest-neighbour searches because by traversing the tree,
one finds points that are close to the given position. Depending on how many nearest neighbours
are desired, one still has to do more than just traversing the tree from its root to a leaf in order
to find them all. For more information about kd-trees, see, for example, [16].

3A B-tree is an access structure for sorted data. It uses a tree of logarithmic height for
supporting range queries or queries for an item with a given key. Each internal node can have
multiple pointers to child nodes with certain ranges of the key value. Thus, accessing the leaf
node that contains the item or range of items of interest takes logn steps (with n the number of
items). Nested B-trees can be used for searching data based on multiple different key values such
as distances to multiple vantage objects. For more information about B-trees, see [16].
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search radius gives us too many matches, the segment contains very uncharacter-
istic musical material and is ignored. The number ¢ of segments we are willing to
consider depends on the number of segments in the query (if there are very few, we
can spend more effort on every segment), on the speed of our computer and on the
maximum response time we are willing to tolerate.

4.4 The number of vantage objects

Increasing the number of vantage objects influences the search performance in var-
ious ways:

e The number of false positives is lowered (see Figures 4.1 and 4.2). This makes
the next step, sifting through the candidates for matches, less computationally
expensive.

e Searching the vantage index becomes computationally more expensive since
the range query affects more columns of the index table.

e Indexing becomes computationally more expensive; for each item that is added
to the index, more distances to a vantage object need to be calculated. How-
ever, this does not affect the asymptotic time complexity.

e The space complexity is accordingly increased; for each item in the index
table, more distances need to be stored, and the index for the index table (for
example, a B-tree of B-trees) also grows accordingly.

With the number of false positives, the number of vantage objects also influences
the search radius that can be searched if the effort spent on identifying false positives
is to remain constant, which is needed to keep the overall complexity of the search
algorithm within O(log(n)). Therefore, the optimum number of vantage objects
depends not only on the collection and the choice of particular vantage objects, but
also on the maximum effort that may be devoted to identifying false positives. In
this section, we present some experimental results about what happens if the effort
spent on identifying false positives is kept constant, but the number of vantage
objects is varied. The next section will mention some results on how one can
choose good vantage objects.

For our experiments, we used the UK subset of the RISM collection, which was
also used for MIREX 2006, and for which a ground truth was determined as part of
MIREX 2006 (see Section 5.3.2).

The left part of Figure 4.4 shows the result quality if the number of vantage
objects is varied from 1 to 8. The maximum number of considered segments was
kept constant at 20,000. That is, for every segment search, the search radius was
automatically chosen such that the vantage index search lead to at most 20,000
candidates for matching segments. This explains why the result quality varies:
with only one vantage object, there were so many false positives that very few, if
any, truly similar segments happened to be among the 20,000 retrieved candidates
for segment searches, and as a consequence, not a single relevant document was
retrieved for the six queries from MIREX 2006. However, with two vantage objects,
this already improved considerably, and the vantage index reached its optimum
performance in the range from 5 to 8 vantage objects (the threshold of 20,000 was
chosen with 8 vantage objects in mind). One should not take the small changes in
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Figure 4.4: The influence of the number of vantage objects on Average Dynamic Recall
(ADR; see Section 5.2) and response time if the effort for identifying false
positives is kept constant. ADR and runtime were averaged over the 6 queries
for the RISM UK collection from MIREX 2006. The ground truth from MIREX
2006 was used for calculating ADR.

result quality in that range too seriously, especially not the decrease for 8 vantage
objects instead of 7. This effect can be caused by the fact that the variations of the
search radius are done with discrete steps to keep the number of range queries low.
In other words, the algorithm does not always retrieve exactly 20,000 candidates,
and if one is unlucky with one particular query, the actual radius can be lower with
8 vantage objects than with 7, leading to some more false negatives with more
vantage objects.

The number of 20,000 was chosen by first experimenting with a larger threshold
for 8 vantage objects, establishing the best ADR the algorithm can reach with a
large threshold for a few sample queries, and then lowering the threshold until the
effect of lowering the threshold becomes visible in the ADR score. If one would start
out with fewer vantage objects, one would have to work with a higher threshold for
the number of considered candidates to get a similarly good result quality. Since
the threshold was chosen such that its existence did not degrade the result quality
for 8 vantage objects, one should expect that increasing the number of vantage
objects would not improve the ADR scores. However, it would make it possible to
lower the threshold.

As one might expect, the total response time increases with the number of
vantage objects since the index table is searched with range queries that affect more
columns. For searching the index table, the relational database system (MySQL)
uses a nested B-tree whose nesting depth equals the number of vantage objects.
Traversing a larger tree takes more time. Also, calculating the overall scores for
database items becomes computationally more expensive if more matching segments
from the same item are found, which is more likely if the number of false positives
is decreased. However, the runtime information needs to be taken with a grain of
salt since cache effects can have influenced it.

4.5 Choosing good vantage objects

In this section, we will present results about selecting good vantage objects based
on two criteria, spacing and correlation. This work was coauthored by Reinier van
Leuken and Remco C. Veltkamp [87]. We experimented with real-world polyphonic
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Figure 4.5: Distance distributions for vantage objects with a high and low variance of
spacing.

MIDI data from the same collection that was also used for MIREX 2006. Whenever
we mention “database items” in this section, we mean monophonic segments of
length 5 from this collection.

4.5.1 The spacing criterion

Not all vantage objects are created equal when it comes to the number of false
positives they produce. False positives occur whenever two objects happen to have
similar distances to a vantage object although they are rather different. As is
illustrated in Figure 4.2, an easy way of eliminating false positives is to use multiple
vantage objects. However, this solution comes at a cost — it costs space to store
more distances to vantage objects, and it costs time to compute those distances.
Therefore, it can be useful to carefully choose vantage objects so that one does not
have to deal with too many false positives to begin with and therefore can do with
fewer vantage objects for reaching a reasonable number of false positives.

One can formalize the discriminative power of a vantage object by using the
variance of spacing. If, for one given vantage object, one marks its distances to all
items in the database on a vantage axis, one can measure its discriminative power
by measuring how evenly spaced the marks on the axis are. The more clusters occur,
and the denser those clusters are, the more false positives one has to expect to be
caused by this vantage object. This can be measured with the variance of spacing.
Figure 4.5 illustrates how the variance of spacing and the distance distributions
for vantage objects are connected. The distribution of distances of all database
objects to two vantage objects is visualized in histograms. One can observe that
the database objects have a wider variety of distances to the vantage object with a
low variance of spacing than to the vantage object with a high variance of spacing.
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Figure 4.6: A scatterplot matrix for 5 randomly selected vantage objects. There are 25
scatterplots for each combination of two vantage objects. For every combi-
nation of two vantage objects, the scatterplot shows database items as dots
at coordinates that correspond with the distances to the two vantage objects.
The diagonal of the scatterplot matrix shows combinations of vantage objects
with themselves, therefore we only see diagonal lines in those scatterplots.
The larger the area that is covered by dots in a scatterplot, the better it is to
combine the two vantage objects.

4.5.2 The correlation criterion

Even very well chosen vantage objects still can produce false positives. Therefore,
one still needs the principle of eliminating them with multiple vantage objects, as
is illustrated in Figure 4.2. However, when adding vantage objects, it is not only
important that they are good in the sense of producing a low variance in spacing,
but also that they do not produce the same false positives as the set of vantage
objects to which they are added. The more closely the distances to all database
items are correlated for two vantage objects, the less useful it is to use the second
vantage object in addition to the first one; if it has similar distances to the database
items, it is likely to produce just the same false positives which it is supposed to
eliminate.

To measure the usefulness of adding a given new vantage object to a given set
of vantage objects, one can compute the Pearsons Correlation coeffcient. Figures
4.6 and 4.7 illustrate the benefits of picking vantage objects with low correlation.
These scatter plots indicate how the distances of all items in the database to two
vantage objects are correlated. Maximum correlation results in a simple diagonal
line, which one can see on the diagonal of the matrices, where each vantage object
is compared to itself. For Figure 4.6, five vantage objects were randomly chosen,
while the five vantage objects for Figure 4.7 were selected such that the correlation
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Figure 4.7: Scatterplot matrix for 5 vantage objects with low correlation
coefficient between every possible pair is low.

4.5.3 Some speculation about what makes a vantage object
good

The experiments with selecting good vantage objects — good in the sense that spac-
ing variance and inter-vantage object correlation are low — produced some concrete
examples of bad and good vantage objects, which inspire the following hypotheses
about good vantage objects for weighted point sets and transportation distances:

e If a lot of weight is concentrated in a small percentage of the area covered
by a weighted point set, this makes the point set a bad vantage object since
it makes it likely that many different point sets will have similar distances to
this vantage object. See Figure 4.8 for an example. Let us assume for Figure
4.8 that the two points with weight 50 in the left light point set are each a
distance of d away from the point with weight 100. On the right side, the
middle point with weight 34 is also d away from the point with weight 100,
while the two points with weight 33 are equally far away from the middle point
with weight 34. In such a case, the overall distance to the bad vantage object
is exactly the same for two considerably different point sets. More points in
the vantage object, and more evenly distributed weights, would make such
cases much less likely.

e However, a certain healthy dose of asymmetry is needed in a vantage object
to make it sufficiently different from other vantage objects. Otherwise, the
correlation between vantage objects is too high.
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Figure 4.8: An example for how uneven weight distribution in the vantage object can lead
to flow components that span a large ground distance. These dominate the
transportation distance for point sets A and B, which makes the distance to
the vantage object about the same for A and B and thus masks the noticeable
differences between these two point sets.

For constructing good sets of vantage objects, it therefore seems promising to
aim at well-balanced objects that still have large distances between them. If one
views vantage objects as music, this could translate into a number of successive
chords of about evenly weighted notes (for creating an even weight distribution),
but some of the vantage objects should have narrow chords and others wider chords
(for causing large distances between the vantage objects).

4.6 Splitting the segment table

Indexing segments by using vantage objects involves a large segment table which,
for each segment, contains the distances to the vantage objects as well as the
information to which document a segment belongs and at what position within the
document it occurs. For finding segments that are similar to a given segment from a
query, we first calculate the distances between the query segment and each vantage
object. Then we retrieve all segments with similar distances to the vantage objects
from the segment table, which can be done efficiently with a range query that is
supported by a B-tree. While the B-tree nicely avoids the need to look at every
single record in this table, it does not prevent the table from growing linearly with
the number of indexed documents. By splitting this table, we can benefit from
the less than linear growth of the part of the table that contains the distances to
vantage objects. The distances to vantage objects take up most of the space in
each record.

Real-world music databases contain many segments that are almost identical,
even if they belong to different pieces. Our algorithm works much faster and uses less
space if we store every unique set of distances to vantage objects only once. That
is, we split the segment table into one table that contains unique sets of distances to
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Figure 4.9: The number of characteristic segments (fat dotted line) versus the total num-
ber of segments (thin solid line) for the Musipedia collection (top) and a
collection of about 50,000 MIDI files collected from the Web (bottom).

vantage objects (which we call “characteristic segments”), and another one that,
for every segment, contains the information in which document it occurs and at
what position, as well as a reference to its set of distances to vantage objects.

Figure 4.9 shows the number of characteristic segments in comparison to the
total number of segments for two different collections. The Musipedia collection
(from the collaborative directory of melodies http://www.musipedia.org) is a mostly
monophonic collection of about 30,000 musical themes which are rhythmically quan-
tized, while the Web MIDI collection contains about 50,000 mostly polyphonic and
not rhythmically quantized pieces. The rhythmic quantization makes it more likely
to encounter the same segment in different pieces, which explains why the number
of characteristic segments is so much lower for the Musipedia collection even though
this collection contains much more varied musical material.

How exactly the number of characteristic segments grows depends on the col-
lection of music scores. For quantized collections such as Musipedia, there are only
finitely many possibilities for segments, so the curve will eventually approach a limit.
The number of possibilities for segments is limited because there are finitely many
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pitches and note durations, and the segment length is constant. For example, for
120 possible pitches, 20 different note durations, and a segment length of 5, one
cannot get more than about (120-20)° ~ 8-10'C different segments. In practice, the
number of different segments is lower because most of them are musical nonsense
and therefore do not occur in real life. Even for the Web collection, the number
of characteristic segments grows more slowly than linear (for example, 1 million
segments can be described with 0.54 million characteristic segments, while for 3
million segments, the number of characteristic segments is less than half, namely
1.41 million, and for 12.2 million, it is closer to a third: 4.3 million).

One can control the growth of the number of characteristic segments by relaxing
the uniqueness criterion and treating segments whose distances to the vantage
objects do not differ by more than a threshold € as the same. In order to not create
false negatives as a result, one would then need to increase the search radius by ¢,
and one would have to take into consideration that the reported distance can be
distorted by the fact that in each distance to a vantage object, there can be an error
up to €. In other words, one can trade a loss of accuracy (of a known magnitude)
for additional saved space and the introduction of a limit to the number of segments
that are treated as different. These space savings would be in addition to those
shown in Figure 4.9 — those characteristic segments are actually unique (e is zero).

4.7 Conclusions

We have shown how vantage indexing, which was originally suggested for image
retrieval, can be adapted for Music Information Retrieval. For our approach of
searching for melody segments, it is suitable to neither do a pure nearest-neighbour
search nor search a fixed search radius, but combine elements of both. We have
shown that for music, splitting the vantage table into one table with the distances
to vantage objects for “characteristic segments” and another one with the rest of
the segment information can noticeably decrease the storage space requirements
because there are many very similar segments. This effect is still there, although
less pronounced, for non-quantized music. The asymptotic time complexity for
searching is not affected by the reduction of space for the index because the table
split makes a join operation necessary whose asymptotic time complexity is the same
as that needed for searching the table if it is not split. However, in practice, the
amount of data one can search in a few seconds is largely determined by the size
of main memory. So, if the table split cuts the amount of needed memory in half,
this does not make the search twice as fast, but it means that we can search twice
as much data in a reasonable amount of time.



Chapter 5

Evaluating MIR systems by
using a ground truth
generated by humans

For evaluating the performance of a music retrieval system, one needs a ground
truth for its data collection and some given queries. In other words, for the given
queries, it should be known what the ideal search result is. The music retrieval
systems we have in mind serve the information need for music that is melodically
similar to a given query.

In this chapter, we will describe how we created a ground truth for the RISM
A/Il collection of about half a million musical incipits. This involved a filtering
step for finding as many good candidates for matches as possible for a selected set
of queries, the collection of expert opinions about which candidates are similar to
the queries (and what the right ranking would be), and the consolidation of many
expert opinions into one ground truth.

Since our ground truth contains a reliable ordering of groups of items, not nec-
essarily individual items, we introduce the new measure “Average Dynamic Recall”
(ADR) that can handle such a ground truth. Both our ground truth and the mea-
sure were used for the MIREX 2005 competition of melodic similarity algorithms.
ADR was also used for SHREC 2006 .

At the end of this chapter, we report the MIREX 2005 and 2006 results for
“symbolic melodic similarity” .

5.1 A ground truth for the RISM A/Il collection

The RISM A/II collection [1] contains 476,600 incipits (in the 2002 edition), short
excerpts of notated music from the beginnings of manuscripts in libraries, archives,
cloisters, schools, and private collections worldwide. This collection is useful for
content-based music retrieval because of its size and the fact that it contains real
music written by human composers. A music retrieval system that does not work

ISHREC stands for “3D Shape Retrieval Contest”; see http://www.aimatshape.net/event/
SHREC.
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well with this collection probably also does not perform well for real-world applica-
tions in general. Our ground truth can serve as a benchmark for deciding how well
a music retrieval system works with the RISM A/Il collection.

In TREC [91], relevance assessments are mostly binary ( “relevant” or “not rel-
evant”). Only in more recent TREC web tracks such as at TREC-9 [23], this was
extended to ternary ( “irrelevant” / “relevant” / “highly relevant” ).

Because of the continuity of melodic similarity (see Section 1.4), there are no
sensible criteria for assigning one out of a few distinct degrees of relevance to a
melody, so any relevance assessment with a given scale length seems inappropriate.
Instead, we asked human experts to rank all incipits where they saw any similarity
to the query. Our ground truth therefore does not consist of sets of highly relevant,
relevant and irrelevant documents, but of ranking lists of documents.

A valid way of establishing such a ground truth would be to ask a number of
human experts to look at all possible matches for a given query (carefully making
sure that they stay concentrated long enough) and order them by similarity. Since
we cannot expect our human experts to sift through half a million melodies, we
needed to filter out incipits of which we can be reasonably sure that they do not
resemble the query.

5.1.1 Filtering Melodies

To be able to exclude incipits that are very different from our selected queries, we
calculated some features for every incipit in the database. Filtering could then easily
be done by issuing SQL statements with selections based on those features.

e Pitch range: the interval between the highest and lowest note in the incipit.

e Duration ratio: the duration of the shortest note (not rest), divided by the
duration of the longest note (not rest). The result is a number in the interval
(0,1], where 1 means that all notes have the same duration, while a very small
number means a very high contrast in durations.

e Maximum interval: the largest interval between subsequent notes. Rests
are ignored.

e Editing distance between gross contours: the editing distance between two
character strings is the sum of the costs of the cheapest possible combination
of character insertion, deletion, and replacement operations that transform
one string into the other. We determined the gross contour as a string of
characters from the alphabet U (“up”), D (“down”), and R("repeat”) and
calculated the distance to every query for each incipit in the database, using
the editing distance described by Prechelt and Typke in [58]. They had op-
timized the costs for the insertion, deletion, and replacement operations for
gross contour strings such that the resulting similarity measure corresponds
well with human perception.

e Editing distance between rhythm strings: we also represented the incipits
as rhythm strings with one character from a three-character alphabet for each
pair of subsequent notes: longer, shorter, and same duration.

e Interval histogram: the number of occurrences for each interval between
subsequent notes, normalized with the total number of intervals. With this
feature, we can base selections on things like “incipits with many thirds”.
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e Interval strings: one string of diatonic intervals and one string of chromatic
intervals for every incipit. This makes it possible to select incipits that contain
a certain sequence of intervals.

e Motive repetitions: in order to be able to select things like “all incipits with
at least three repeated notes in two different places”, we collected sequences
of intervals that were repeated at least once, along with their number of
occurrences, for every incipit. The repetition detection algorithm maximizes
the motive length, even if this means fewer repetitions.

We used different filtering steps and features for every query since every query
has its own characteristic features. Every filtering step had the aim of reducing
the number of candidates for matches for a given query by excluding incipits with
features that make them very different from the query. As long as this holds for
every filtering step, different people should arrive at similar candidate lists even
if they apply different filtering steps. However, they need to have similar notions
of melodic dissimilarity (also similar to those of the human experts whose input
determines the actual ground truth).

For example, we used the following filtering steps for the "White Cockade”
incipit whose ground truth is shown in Table 5.3:

e Exclude incipits whose pitch range is less than an octave or greater than a
minor tenth. This excluded 78 % of the incipits in the database.

e Exclude incipits whose maximum interval between subsequent notes is less
than a minor sixth or greater than a diminished seventh.? This excluded 79
% of the remaining incipits.

e Exclude incipits with a duration ratio greater than 0.51, i. e. incipits where all
notes have quite similar durations. This excluded a further 4 % of incipits.

e Exclude incipits that do not contain at least one of the two interval sequences
“fifth up, third down, unison, sixth up” or “third up, unison, unison, sixth
up”.® This left us with 88 incipits.

Because of the dangers of filtering too strictly and thereby accidentally excluding
incipits that are similar to the query, we stopped the filtering process once the
number of remaining incipits had fallen below 300. To arrive at the desired number
of about 50 candidates,* we manually excluded those remaining incipits that we
perceived as most different from the query.

As an additional measure to limit the error introduced by accidentally filtering
out similar incipits, we used our prototype of a search engine based on transportation
distances (see Chapter 3; we used the algorithm without segmenting) as well as two
algorithms from [41] for finding incipits that are similar to the query. The latter two
algorithms, called P2 and P3 by their authors (for an explanation of P2 and P3,

2A “minor sixth” is the smaller of two musical intervals that span six diatonic scale degrees. It
is an interval of 8 semitones. A “diminished seventh” is an interval of 9 semitones.

3A fifth is an interval of 7 semitones. This means that the frequency ratio of the two involved
notes is rather simple, namely 2/3, which is perceived as very consonant. “Unison” means an
interval of size zero, and a third and sixth span three or six diatonic scale degrees, respectively.

“Depending on the incipit, we usually viewed a number of 50 candidates as desirable since
this number allows us to include some not very similar items while still being manageable for the
human experts.
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Figure 5.1: The user interface for the experiment. MIDI files are provided for listening to
incipits. In the bottom half of the screen, the subjects can change the order
of the candidate incipits, while the query always remains visible at the top.

see Section 3.5.1), find incipits containing transpositions of the query where many
onset time/pitch combinations match, and incipits containing transpositions of the
query with maximum common duration with matching pitch. From these search
results, we included candidates that we considered similar although they had been
filtered out. Also, we used the metadata in the RISM A/II collection. For example,
for "Roslin Castle” (see Table 5.1), we made sure that every incipit whose title
contains the word “Roslin” was included. With these methods, we found between
0 and about 8 additional candidates for each query, with an average of about
4. In a comparison of algorithms based on the ground truth, one needs to avoid
favouring the algorithms that were used for finding additional candidates against
other algorithms. If other search algorithms find more sensible matches for a query
that were incorrectly excluded in the filtering steps, they need to be included in the
ground truth, ideally by rebuilding the ground truth with a panel of human experts
that is shown the more complete list of candidates for matches.

Once we had filtered out the vast majority of incipits that are not similar to
the query, we also removed incipits that were either identical to other incipits or to
parts of other incipits. Including identical incipits multiple times in the candidate
list would have amounted to asking our experts the same question multiple times,
and we wanted to put their time to a more productive use. As a result, only 6
versions of “Roslin Castle” occur in our ground truth in Table 5.1 although we list
16 known occurrences of this melody in our Section 3.3, for which we used the same
2002 version of the RISM database.

5.1.2 Experiment Design
Notated music, MIDI files

Our goal was to establish a ground truth for the incipits that are contained in the
RISM A/Il collection. These incipits can be exported from the database in the
“Plaine & Easie” format [27] and then rendered in common music notation. In
order to prevent differences in the rendition of the notated music from having an
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Figure 5.2: The experience of our experts (instrument playing or studying music), in years.
The box extends from the first to the third quartile. The whiskers mark the
bottom and top 10 percent. Every data point is shown as a little dot. The
median is marked with a fat dot, the mean is shown as a vertical line. The
dashed horizontal line around the mean marks one standard deviation below
and above the mean.

impact on the ground truth, we used the software that is included with the RISM
A/Il database [1] for rendering the music notation bitmaps and took screen shots of
the results. Only in cases where the RISM software fails to show the whole incipit
because it is too long for fitting on the screen, we rendered the notated music
ourselves by converting the Plaine & Easie data into the Lilypond [51] format. In
addition to the notated music, we also provided MIDI files generated from the Plaine
& Easie data as an illustration of the incipits.

The metadata from the RISM A/Il collection (composer, work title, title of the
movement, instrumentation etc.) was not shown to the human experts. They only
saw the notated music of the incipits and could listen to a MIDI rendition, as can
be seen in Figure 5.1.

Experts

Miillensiefen et al. point out [46] that music experts tend to have stable similarity
judgements, in other words, do not change their mind on what is melodically similar
when asked to perform the same judgements a few weeks apart. Subjects with stable
similarity judgements, in turn, seem to have the same notion of melodic similarity
(however, there also were some music experts with unstable notions of melodic
similarity). In order to establish a meaningful ground truth, we therefore tried
to recruit music experts as our experimental subjects. We asked people who either
have completed a degree in a music-related field such as musicology or performance,
who were still studying music theory, or who attended the International Conference
on Music Information Retrieval Graduate School in Barcelona 2004 to participate
in our experiment. For organizational and budgetary reasons, we did not test the
stability of their notions of melodic similarity. Instead, we try to ignore outliers with
statistical methods as described below.

All of our experts play at least one instrument or sing, most play several instru-
ments. See Figure 5.2 for a box-and-whisker plot showing their musical experience
in years.

Instructions, tasks

We asked the subjects to rank all candidates that resemble the query by their
melodic similarity to the query. Candidates that seemed completely different from
the query could be left unranked. The ranking was to be done by reordering the
given candidates such that the candidate most similar to the query was at the top,
followed by less and less similar candidates, and finally a number of candidates
without any assigned ranks that did not resemble the query at all. By asking people
to reorder a list instead of picking a rank from a scale, we avoided suggesting how
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long the ranked list should be, and we also made it easy for the experts to judge
whether they ranked all candidates correctly by looking at a local ordering only. It
was sufficient to ensure that for each pair of consecutive candidates in the ranked
part of their reordered list, the incipit that was ranked higher was more similar to
the query than the other incipit of the pair.

We asked the experts to regard transpositions of a melody as identical, as well
as melodies that are notated slightly differently, but in a way that does not affect
the way they sound. For example, melodies that are notated with different clefs,
but are otherwise the same, should not be viewed as different. In cases where two
incipits were taken from similar pieces, but covered different amounts of musical
material, we asked the subjects to only consider the common parts of the two incipits
for the comparison. Since the conversion of RISM incipits to MIDI removed some
information, we told the experts that the definitive source for similarity judgements
is the notated music, and that the MIDI files only serve as an illustration.

We asked every subject for about 2 hours of his time and presented up to 11
queries. We asked the experts to work carefully, even if that meant that they could
not finish all 11 queries within two hours. After collecting 30 expert opinions for a
query, we stopped showing it to other experts. For the next expert, we picked 11
queries from the set of queries for which we still had fewer than 30 expert opinions.
Overall, 37 experts worked on these 11 queries. For MIREX 2005, another 11 queries
were selected and presented to another 30 experts. The ground truth for the first
11 queries was used as training data, and the other 11 queries as test data for the
2005 “Symbolic Melodic Similarity” task.

Threats to the validity of results

e Filtering errors. It is possible that we filtered out some incipits although they
are similar to the query. Our ground truth, therefore, could be incomplete.
However, this does not threaten the validity of the ranking of those candidates
that we did include.

e Sequence effects. The initial order of candidates as well as the order in
which queries are presented to the experts could have an impact on the re-
sults. Experts could be tempted to leave the order similar to the initial order,
and they get more tired and at the same time more skilled at using our in-
terface over the course of the experiment. We addressed these problems by
randomizing the order of queries for every participant, and we also put the
candidates in a new random order whenever a new query appeared on the
screen.

e Carelessness of experts. For some queries, such as the “White Cockade”
shown in Table 5.3, we included the query itself among the candidates. Careful
experts should put it at the very top of the ranked list. Not everybody did,
but enough of the experts were careful. This query was recognized as most
similar to itself with high statistical significance: the Wilcoxon rank sum test,
which we used as described in Section 5.1.3, shows that for every candidate
that was not identical to the query, the probability of the null hypothesis is
< 0.0001123.

e User interface limitations. Most of the time, we presented more candidates
than what would fit onto one screen. Creating a good ranked list demanded
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some discipline and patience from the experts, who first had to move all
similar items close to the top of the list and then compare them with one
another to create the final ranking.

5.1.3 Results
Evaluation methodology

For every query, the subjects were asked to choose and rank as many of the can-
didates for matches as they thought had some similarity to the query. Those can-
didates without any similarity could be left unranked. This gives us a list of ranks
for every candidate. These lists tend to be longer for the candidates that are more
similar to the query.

To obtain a ground truth, we ordered the candidates by their median rank and
then by their mean rank. In addition, for every ranked candidate, we applied the
Wilcoxon rank sum test to the ranked candidate and every incipit that was ranked
higher. The Wilcoxon rank sum test, given two samples, determines the probability
of the null hypothesis (p-value), that is, the hypothesis that the median values are
the same for the whole two populations from which the samples were taken (here,
the population would be the group of all Western music experts). We used it to find
out how likely it is that the differences in ranking observed by us are only caused
by our choice of 37 people out of the whole population of music experts. A low
p-value resulting from the Wilcoxon test means that the difference in medians is
probably not a coincidence. A large p-value does not necessarily mean that the
medians are the same, but just that we do not have compelling evidence for them
being different.

The resulting ground truth tables

We visualize the ranks assigned to each candidate with a box-and-whisker plot. The
box extends from the first to the third quartile. The whiskers mark the bottom and
top 10 percent. Every data point is shown as a little dot. The median is marked
with a fat dot, the mean is shown as a vertical line. The dashed horizontal line
around the mean marks one standard deviation below and above the mean. The
numbers on the scales reflect ranks.

Below every box-and-whisker plot except for the first one, we visualize the
Wilcoxon rank sum test results with a horizontal bar that is composed of one square
for every incipit which is ranked higher than the current one. Each of these squares
has a dark upper area and a lower area with a lighter colour. The size of the dark
upper area reflects the p-value.

For incipits where every square in the Wilcoxon visualization is almost entirely
light-coloured, we can be reasonably sure that all preceding incipits should indeed
be ranked higher. Wherever this is the case, we draw a horizontal line immediately
above the incipit. For Table 5.1, we set the threshold for the maximum probability
for the null hypothesis at 0.25. In other words, we draw a horizontal line above every
incipit where the p-value is less than 0.25 for every single incipit that appears higher
in the list. Most actual probabilities are much lower than that, as the visualization
of the Wilcoxon tests in Table 5.1 shows.

For “Roslin Castle” (Table 5.1), we find five clearly distinguishable groups that
way. The incipit with median rank 1 is generally considered the most similar incipit
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to the query. For the incipit with median rank 2, the Wilcoxon test shows that
the probability for the null hypothesis is p=0.00006722. Therefore, we consider
the difference in median values statistically significant and separate the second
incipit from the first with a horizontal line. For the incipit with median rank 3,
the difference in medians is statistically significant for the comparison with the
first incipit (p=0.0002765), but not for the comparison with the second incipit
(p=0.6363). This is reflected in the Wilcoxon visualization bar, which consists of
one almost entirely light-coloured square on the left for the comparison of the third
incipit with the first one, and one mostly dark square on the right for the comparison
of the third incipit with the second one. Since there is no statistically significant
difference between the second and third incipit, we group them together and do not
separate them with a horizontal line. The third group consists of the incipit with
median rank 4. The highest of its three p-values resulting from the Wilcoxon tests
for its three predecessors is 0.07633. The fourth group again consists of one single
incipit, while for all other incipits, there are no statistically significant differences in
median ranks. Either we did not have enough subjects who ranked these incipits,
or people simply do not consider the dissimilarities between the remaining incipits
and the query significantly different.

The tables shown in this book are not complete. We cut them off a bit after
the last detected border between clearly distinguishable groups because the ranking
becomes less reliable and therefore less interesting towards the bottom of the tables.
The complete data are available online at http://rainer.typke.org/mirex05.
0.html.

Table 5.1: Ground truth for “Roslin Castle”. Table contents: median rank,
incipit with title and RISM A/Il signature, box-and-whisker plot
showing the ranks assigned by our subjects, and a bar composed
of squares visualizing the Wilcoxon rank sum test results for
every preceding incipit. For details see Section 5.1.3.
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5.1.4 Musical properties of the identified groups

In Table 5.1 (“Roslin Castle"), the candidate with the highest rank looks as if it
would begin with the query and therefore should, according to our instructions, be
regarded as identical to the query since only the common part should be considered.
If one looks more closely, however, one notices that the key signatures are different.
The resulting differences in two notes, however, are not big enough for our experts
to consider it very different from the query. The incipits with median ranks 2 and
3 constitute the second group. Both begin differently from the query - the incipit
with median rank 2 has slight differences in rhythm at the beginning and two grace
notes added in the second measure, while the incipit with median rank 3 has its
second measure transposed by an octave. Otherwise their beginnings are the same
as the query. Our experts agree that these incipits are both less similar than the
incipit with median rank 1, but they disagree on whether the transposition of a
measure by an octave or the modified rhythm and added grace notes should be
seen as a greater dissimilarity. Because of this, these two incipits are combined into
one group. The experts agree that the incipit with median rank 4 is significantly
different from those preceding it. This is justified by a minor difference in rhythm
in measure 1 and a major difference in measure two — the first note is just a grace
note, so there is no group of four descending eighth notes in that measure as in all
preceding incipits. The incipit with median rank 5 is again significantly different.
The rhythm is changed in several ways, leading to a very noticeable difference in
measure 3. The third note in this measure corresponds to the first note in measure
2 of all preceding incipits. Because here this note is not at the beginning of the
measure, it is much less emphasized, which changes the character of the melody.
The last statistically significant border between groups is that between the incipits
with median ranks 5 and 6.5. The latter is the first incipit of a different piece, and
it also has a different time signature, so we would expect a border between groups
here. Another border could be expected between the second and third incipit with
median rank 9.5 because the interval sequence at the beginning changes noticeably
here. However, at this point in the ranked list, we do not have enough votes per
incipit for finding a statistically significant difference.

Table 5.2 shows that the top three candidates for J. A. Hasse's “Artemisia”
are very similar. The incipit with median rank 1 is identical to the query, that
with median rank 2 is written with a different clef, but otherwise identical to the
query, and the incipit with median rank 3 is identical to the first half of the query.
Although they were instructed to disregard such differences, our experts still agreed
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that simply notating the query differently changes it less than omitting the second
half, leading to statistically significant differences in the rankings. The incipit with
median rank 5 is a somewhat similar melody by the same composer, but from
a different work (“Tito Vespasiano™). It is similar to the query because it also
begins with a motive built from notes from a triad (the tonic) and with a dotted
rhythm, followed by a variation of the same motive that is based on another triad,
the dominant. However, the rhythm is inverted in “Tito Vespasiano”. All other
candidates are ranked lower, but without further statistically significant differences
in rank. The next candidates also begin with a triad that is split up in a similar way,
sometimes also with a dotted rhythm, but not followed by a similar motive based
on the dominant.

Table 5.2: Ground truth for an Aria by Johann Adolf Hasse as query. For
details see Section 5.1.4.

Query: J. A. Hasse: Artemisia, Aria no. 16, An-
dantino/Allegretto, RISM A/Il signature: 270.000.749
Median Candidate Incipit,
Rank Composer, Title, RISM A/Il signature,
Ranks,
Wilcoxon Test Results (p-values: dark upper area)
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The ground truth for “The White Cockade” by J. F. Latour (Table 5.3) shows
that our experts correctly recognized that the incipit that is most similar to the
query is the query itself. The incipit with median rank 2 has some minor differences
in rhythm, some added grace notes, and two different eighth notes instead of one
quarter note in the last measure. Surprisingly enough, the incipit with median rank
3, about which we could say pretty much the same as about that with median
rank 2, is ranked lower, and this difference is statistically significant. The remain-
ing incipits of “The White Cockade” or a German version of the same song, “Der
verurteilte Hochlandsmann”, are all ranked lower, but without statistically signifi-
cant differences in their median ranks. In that group, there is one incipit from a
different piece (Anonymus: “Cotillons”) that is melodically very similar. There is
again a noticeable border between the incipit with median rank 7 and that with
median rank 10. The latter is a sonata by Friedrich Il, where only the first five
notes are similar.
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Table 5.3: Ground truth for “The White Cockade” by J. F. Latour as query.

Only one out of the top nine pieces, “Cotillons”, is not the same
piece as the query. As one should expect, the Wilcoxon rank sum
test results warrant a separator between the first nine incipits
and the tenth, which is from a different piece and at the same
time clearly different from the preceding incipits. For details see
Section 5.1.4.

FF F ¥ F

Query: J. F. Latour: The White Cockade, RISM A/Il signa-
ture: 000.111.706
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Wilcoxon Test Results (p-values: dark upper area)
1
0
i = s T
2
Anﬁ;White cockade. 000.113.506
0 5
J. F. Latour: The White C. 000.116.073
0 5 10
4

Continued on next page



Rainer Typke: Music Retrieval based on Melodic Similarity
5.2 A measure for comparing search results 83

— continued from previous page
Median Candidate Incipit,
Rank Composer, Title, RISM A/Il signature,
Ranks,
Wilcoxon Test Results (p-values: dark upper area)

5
J. F. Latour: The White C. 000.113.932
0 5 10

—m

6 =
Anonymus: Cotillons. 190.018.612
S T

6

6

7 %'#.‘.‘irrrr.‘.‘irrrrir(riiijjiii
Anon.: White Cockade. 000.132.448
d‘IIIE‘J"Ill‘ﬂ‘ll‘i5‘ll‘2‘oll"2‘5“"3‘0‘“‘3‘5‘““‘10

—

5.2 A measure for comparing search results: Aver-
age Dynamic Recall

Our ground truth that is described in Section 5.1 was used at the “1st Annual
Music Information Retrieval Evaluation eXchange” (MIREX) 2005 for comparing
various methods for measuring melodic similarity for notated music. In order to
compare different algorithms, a measure was necessary that compares every algo-
rithm’s performance with the ground truth. The measure that was used for ranking
the algorithms is described in this section.

Our ground truth does not give one single correct order of matches for every
query. One reason is that limited numbers of experts do not allow statistically
significant differences in ranks for every single item. Also, for some alternative ways
of altering a melody, human experts simply do not agree on which one changes
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the melody more, so even increasing the number of experts might not always avoid
situations where the ground truth contains only groups of matches whose correct
order is reliably known, while the correct order of matches within the groups is not
known.

Kekalainen and Jarvelin suggested graded relevance assessment measures based
on cumulated gain [32], [30], which are related to traditional measures such as
expected search length [15], average search length [43], and normalized recall [65],
[68].

We propose a measure (called “average dynamic recall”) that measures, at any
point in the result list, the recall among the documents that the user should have
seen so far. Unlike Kekldinen's and Jarvelin's measures [30], this measure only
requires a partially ordered result list as ground truth, but no similarity scores, and
it works without a binary relevance scale.

5.2.1 Some existing measures

For situations where for a given query, there are just two kinds of items, relevant
and irrelevant, a whole range of measures for search results has been proposed.

e Two of the most important measures are precision and recall. Precision is
the percentage of relevant items among a certain number of retrieved items,
while recall is the percentage of relevant items that have been retrieved. For
example, if 15 relevant items exist, and the top ten retrieved items include 8
relevant items, the precision is 0.8 (8 out of 10 considered items are relevant),
while the recall is 0.5333 (8 out of 15 relevant items have been retrieved).

e Average Precision: At every relevant document in the result list, the preci-
sion is measured. The average precision is the mean of the precisions at the
positions of relevant documents in the result list.

Kekaldinen and Jarvelin's cumulated gain measures [30] can be used if graded
relevance assessments are available. The measures estimate the cumulative rele-
vance gain the user receives by examining the retrieval result up to a given rank.
The authors present three measures: the first one simply adds the relevance scores
up to the given rank. The second measure does the same, but it also applies a
discount factor which depends on the position in the result list. This is meant to
take into account the fact that relevant items are more useful if they are close to the
beginning of the result list. The third measure computes the relative-to-the-ideal
performance.

5.2.2 Motivation for introducing a new measure

Because of the restrictions of binary scales, and also because the ground truth we
used is not based on a finite relevance scale and does not contain relevance scores
for the documents, we are proposing a new measure for our comparison. We try to
meet the following criteria:

1. To make comparisons easy, the measure should deliver one number, for ex-
ample in the range from 0 to 1, where 0 denotes a completely useless result
and 1 a result that completely agrees with the ground truth.
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2. In the ground truth, we know only the correct order of groups of matches,
not necessarily of every single match. The measure should be able to use
the existing information without requiring the ground truth to be completely
ordered.

3. There are no relevance scores known for the documents in the ground truth,
which only consists of a partially ordered list. The measure should therefore
not depend on relevance scores.

4. The measure should not have any parameters one could use to dramatically
alter the results (such as a freely chosen discount function for the purpose of
rewarding returning highly relevant matches early, arbitrarily chosen thresh-
olds, and the like).

5. The measure should reward putting matches in the right order, as far as
that order is known. Therefore, differences in the order within groups should
not influence the result, but differences in the order across group boundaries
should.

6. In a similar fashion, violations of the correct order should be punished if they
happen across group boundaries.

7. False positives in the result should lead to a lower measure, even if the order
of the true positives is correct.

8. Both true and false positives that occur close to the beginning of the result
list should have a higher influence on the measure than those occurring closer
to the end of the list.

9. Since the group sizes do not mean much (they are influenced, for example,
by the threshold for statistical significance that was chosen when the groups
were established [74]), they should not have a high influence on the measure.

5.2.3 Definition

Our measure is the average recall over the first n documents, where n is the number
of items in the ground truth, and the recall is calculated over a dynamic set of
relevant documents. Because of this, we call it “average dynamic recall” (ADR).
At the beginning of the result list, only the most similar document is counted as
relevant (or all documents of which it is not known that they are less similar than
the most similar one). The set of relevant documents grows with the position in
the result list. Since there are groups of documents in the ground truth where no
differences in relevance are known, the dynamic set of relevant documents does
not always grow just by one single new relevant document. Rather, at each group
boundary it grows by all elements of the next group, and it does not grow between
group boundaries. However, at each position in the result list, we still divide the
number of found relevant items at that position by the position number, not by the
number of all items that would count as relevant.
More formally, consider a result list

(R1,Ra,...)
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and a ground truth of g groups of items

((G1,G5, ..., G ), (G, GR), e, (GY LGS, )

mi

(with m; denoting the number of members of group i) where we know that rank:(G;) <
rank(GY) if and only if i < k, but we do not know whether mnk(Gé) < rank(G},)

for any i (unless j = p)°. We propose to calculate the result quality as follows. Let
n = Y_7_, m; be the number of matches in the ground truth and ¢ the number of the

group that contains the ith item in the ground truth (35_, m, > iAY_} m, < 4).
Then we can define r;, the recall after the item R;, as:
 #H{Ru|lw<inTjk:j<cAR, =G}

; .

T

The result quality ¢ is then defined as:

1

As an example, consider ((1,2),(3,4,5)) as ground truth and the result list
(2,3,1,5,7,8,9,4). That is, while we do not know whether item 1 or item 2 should
be at the top of the list, we know that both should be ranked higher than any of
the items 3, 4, and 5. In this case, the result quality q is calculated as follows:

Pos. encountered relevant #found  recall
1 2 1,2 1 1
2 2,3 1,2 1 0.5
3 2,31 1,2,3,4,5 3 1
4 2,3,1,5 1,2,3,4,5 4 1
5 2,3,1,57 1,23, 4,5 4 0.8

1

The overall result quality here is (14-0.5+1+140.8)/5 = 0.86.

If there would be an additional false positive at position 2, say, (2, 10, 3, 1,
5,7, 8,9, 4), the result quality would be lower: 0.7433. False positives lower the
result quality in two ways: by shifting subsequent true positives to lower ranks and
possibly by shifting true positives out of the scope altogether. Both true and false
positives have higher impacts if they occur closer to the beginning of the result list
since they influence all subsequent recall values. This illustrates how the criteria
number 7 and 8 are met. Criterion 1 is obviously met, and so are criteria 2, 3,
and 4. Criteria 5 and 6 are met because of the way r; is defined: at every group
boundary, the set of items that count as relevant is extended by all elements in the
next group. Therefore, it does not matter in which order group members are found,
as long as they are found before the group boundary.

A more complex example can be found in Table 5.4, which shows the ADR for
a sample result of our EMD-based algorithm.

5.2.4 Comparison with normalized discounted cumulative gain

The average dynamic recall (ADR) shares many advantages with the cumulative
gain measures introduced by Jarvelin and Kekaldinen [30], who state that their

5The rank function determines the position of an item within the result list. It is 1 for the first
element, 2 for the second one and so forth.
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Query: Anonymus: Ros

h .

I—ani

lin Castle, RISM A/Il signature: 800.000.193

Distance  Found Incipit, Found  Recall ADR
Composer, Title, RISM A/Il signa-
ture

0.0010 i ‘ 1 1 1
Anonymus: Roslin  Castle.
000.109.446
Ddg . Tt

0.0012 == = 2 1 1
Anonymus: Roslin  Castle.
000.112.692

0.0016 % 3 1 1
Anonymus: Roslin  Castle.
000.111.779

L e 4 1 1
Anonymus: Roslin  Castle.
000.132.330

0.0102 FEEEEEESSE 4 08 096
Anonymous: Quemadmodum
desiderat cervus. 702.004.201
e f/\f e

0.0107 B B = 4 0.6667 0.9111

Sarti, Giuseppe: Gli amanti conso-
lati 240.003.908-1.36.1

Table 5.4: A sample search result with the ADR calculation. In the“found” column, we
list the number of relevant documents found so far. Note that although the
second and third match are listed in the inverse order when compared to Table
5.1, they are still both counted as relevant since they belong to the same group.

measures are, among other things, obvious to interpret, are based on recall bases
instead of only on retrieved lists, systematically combine document rank and degree
of relevance, and, in their normalized forms, support the analysis of performance

differences.

e ADR is obvious to interpret: at any number of retrieved items, it gives the
average recall among the documents that the user should have seen so far.
It can be calculated not only for the first n documents, if n is the number of
items in the ground truth, but also for other numbers of documents.

e ADR is based on an absolute ground truth, not on retrieved lists alone, and
therefore does not vary uncontrollably if the considered retrieved lists change.

e ADR systematically combines actual document rank and desired document

rank.

e ADR supports the analysis of performance differences of different IR methods
since it is normalized.
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An important difference between ADR and cumulated gain-based measures is
that ADR does not rely on relevance scores and therefore does not take them into
consideration. This avoids the problem of correctly choosing a discount function for
a discounted cumulative gain measure. By choosing the discount function for the
normalized discounted cumulative gain (nDCG) [30] accordingly, one can sometimes
invert the result of performance analyses. Different discount functions put, for
instance, different emphasis on the beginnings of result lists. Because of this, it is
possible to construct pairs of result lists that differ at the beginning in a way such
that with, for example, logs as discount function, the first list gets a better nDCG
score than the second one. With logs as the discount function and the same pair
of lists, the nDCG score of the second list can be better than that of the first list.

Besides the discount function, the relative differences between relevance scores
also have a high impact on nDCG results. Changing the relevance scores can also
lead to opposite comparison results. So, to make nDCG results meaningful, one has
to know exactly how the value of a relevant item decreases with a growing position
in the result list — this determines the discount function —, and also exactly how
relevant every document is in relation to the other documents. The ADR, on the
other hand, only requires a partially ordered list as a ground truth for delivering
meaningful results.

A weakness of the ADR is that situations can arise where different documents
are both counted as relevant or both as irrelevant, with no distinction between them,
although it is known which one of the two should be ranked higher.

As an illustration of this problem, consider a ground truth of {((1),(2),(3),(4))
and the result lists (4,3,5,6) and (3,4,5,6). It would be nice if the second result
list would get a better score because it is known that item 3 should be ranked
higher than item 4. But the ADR does not distinguish between them since at the
second position, both item 3 and item 4 are not yet in the dynamic set of relevant
documents, and at the third position, it is too late to treat them differently because
both item 3 and item 4 are already in the set of encountered documents. In a similar
way, one can construct examples where pairs of relevant items from different groups
in the ground truth are encountered so late in a result list that both are counted as
relevant, no matter in which order they appear, although it is known which one of
the two should be ranked higher.

Problems like this can be caused in two ways during the calculation of the ADR:
by items which are first counted as irrelevant and later as relevant (like item 3 in the
example above), or by items which are encountered at a higher position than the
end of the group to which they belong in the ground truth. Therefore, one could
break ties like this by calculating an ADR score based on a list containing those
problematic items and an inverted ground truth. In this constructed list, all other
items are replaced with one item from the most highly ranked group.

In the example above, items 3 and 4 fulfill the condition for inclusion in the con-
structed list, while items 5 and 6 do not, so we would construct the lists (4, 3,1, 1)
and (3,4,1,1). If we now calculate the ADR on these constructed lists using the in-
verted ground truth (here: {(4), (3), (2), (1))), the problem with items being treated
the same although it is known that they should be ranked differently cannot occur
anymore (because of the way the list was constructed). The ADR calculated from
these constructed lists and the inverted ground truth could be used to break ties.
However, to have a measure that is obvious to interpret, we simply used the ADR
as described in Section 5.2.3 for our comparison of melodic similarity algorithms.
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Table 5.5: Result quality for all MIREX symbolic melodic similarity submissions.
ADR=Average Dynamic Recall, NRGB=normalized recall at group boundaries,
AP=non-interpolated average precision, and PN= precision at N documents
(N is the number of relevant documents).

Rank / Participant ADR NRGB AP PN

1 Grachten, Arcos & Man- 65.98% 55.24% 51.72%  44.33%
taras

2 Orio 64.96% 53.35% 42.96%  39.86%

3 Suyoto & Uitdenbogerd 64.18% 51.79%  40.42% 41.72%
4 Typke, Wiering & 57.09% 48.17% 35.64% 33.46%
Veltkamp

5 Lemstrom, Mikkila, 55.82% 46.56% 41.40% 39.18%
Mékinen & Ukkonen (P3)

6  Lemstrom, Mikkila, 54.27% 47.26% 39.91% 36.20%
Mékinen & Ukkonen (DP)

7 Frieler & Miillensiefen 51.81% 45.10% 33.93% 33.71%

5.3 MIREX, Symbolic Melodic Similarity

5.3.1 MIREX 2005: queries with exact rhythm and pitches,
RISM incipits

The Symbolic Melodic Similarity task at MIREX 2005 was to retrieve the most
similar incipits from a subset of the RISM A/Il collection, given one of the incipits as
a query. For each algorithm, the result lists for 11 queries were compared to a ground
truth that was established as described in Section 5.1. The results were evaluated
with four measures: Average dynamic recall (see Section 5.2.3), normalized recall
at group boundaries, average precision, and precision at N documents (where N is
the number of relevant documents).

We submitted the algorithm that is described in Section 3.4. It compares
melodies by transforming notes into a two-dimensional weighted point set. For
each note, the coordinates are the onset time and pitch values, and the weight is
the duration. The weighted point sets are then compared with the Earth Mover's
Distance (EMD). The EMD is continuous and provides partial matching. By chang-
ing the weighting scheme and ground distance, one can tune it for different pur-
poses. lts continuity makes it suitable for matching queries that are generated by
humans (sung or played on a MIDI piano) with entries of a database of symbolic
music,without the need for quantizing, time warping, or any other form of tempo or
pitch tracking. This strength does not matter in the MIREX 2005 task of matching
notated music against other notated music. However, our method still ranks in the
middle of the other methods, which are not designed to work with distorted queries.
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Result quality measures

Table 5.5 shows various measures of result quality for all algorithms that were sub-
mitted for the symbolic melodic similarity task at MIREX 2005.° The measures can
be split into two groups: those that work with a dynamic set of relevant documents
and those that work with one fixed set of relevant documents. The former measures
view some documents as relevant only from a certain position on. For example, a
document that is somewhat similar to the query, but clearly less similar than two
other documents, would be viewed as relevant only beginning with position 3 in the
result list. The following measures work with a dynamic set of relevant documents:

e Average Dynamic Recall: This measure is described in Section 5.2.3. At any
number of retrieved items, it gives the average recall among the documents
that the user should have seen so far. For this comparison, it was measured
at position N (where N is the number of relevant documents).

e Normalized Recall at Group Boundaries: The ground truth from [74]
(described in Section 5.1) does not give one ideal ordering of results, but
rather an ordering of groups where the ideal order within groups is not known.
This measure is based on the recall at the boundaries of those groups.

Average precision and precision at N documents view all relevant documents as
equally relevant, even if they belong to different groups according to the ground
truth constructed as described in Section 5.1. See Section 5.2.1 for a definition of
average precision and precision.

Result quality of our algorithm

Table 5.5 shows that our algorithm is ranked at the median position of all partici-
pants at MIREX 2005 for the measures which distinguish between different degrees
of relevance. It would rank lower if the two measures which view all relevant items
as equally relevant would be used.

Even though our algorithm did not get top results at MIREX 2005, it is still
interesting for certain applications because it has some desirable properties that
most of the other algorithms lack:

e Our algorithm can handle cases where the query is distorted by tempo vari-
ations or pitch variations. This could make it suitable for query-by-humming
applications without the need for an extra algorithm for pitch quantisation or
tempo tracking.

e Our distance measure is continuous.

5.3.2 MIREX 2006: distorted queries, RISM incipits, and com-
plete polyphonic pieces

Tasks and participants

In 2006, the “Symbolic Melodic Similarity” task was to retrieve MIDI files that
contain material which is melodically similar to a given MIDI query. Unlike 2005,

6The complete results can be found here: http://www.music-ir.org/evaluation/
mirex-results/sym-melody/index.html; the ground truth that was used for training and for
evaluation is published at http://rainer.typke.org/mirex05.0.html.


http://www.music-ir.org/evaluation/mirex-results/sym-melody/index.html
http://www.music-ir.org/evaluation/mirex-results/sym-melody/index.html
http://rainer.typke.org/mirex05.0.html
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only half the queries were quantized in rhythm and pitch, while the other half was
only quantized in pitch but not in rhythm. The latter half was created by singing
melodies.

There were three subtasks that differ mainly in the collection of data to be
searched:

e Approximately 16,000 incipits from the UK subset of the RISM collection,
almost exclusively monophonic. Six queries (three of them quantized).

e 1000 polyphonic Karaoke files. Five queries (two of them quantized; the three
sung queries include two versions of the same melody).

e 10,000 randomly chosen MIDI files that were harvested from the Web, most
of them polyphonic. Six queries (three of them quantized).

The participating methods are:

e RT - the method described in Section 3.5.2, however, with equal weights for
all notes (that is, the duration was ignored);

e FH — an editing distance for quotiented trees by Pascal Ferraro and Pierre
Hanna [19];

e KF — a hybrid distance measure by Klaus Frieler and Daniel Miillensiefen [20];
e AU - Alexandra Uitdenbogerd’s Start-Match Alignment technique [84], and

e NM — the geometric “P3" algorithm by Kjell Lemstrom, Niko Mikkila, Veli
Makinen and Esko Ukkonen.

For a more detailed description of these methods, see the MIREX abstracts, available
fromhttp://www.music-ir.org/mirex2006/index.php/Symbolic Melodic_Similarity_
Results.

Ground Truth

Due to the size of the collections, no ground truth was known in advance. From
every participating algorithm, the top ten matches were put into a pool, and human
graders judged the relevance.

The raw ground truth data consisted of a rough and a fine relevance score for
every item that was returned by an algorithm. For the rough score, a scale of “very
similar”, “somewhat similar”, and “not similar” was used, while the fine score was
a number between 0 (not similar) and 10 (very similar). For the polyphonic tasks,
algorithms reported where in a MIDI file a match was found, and the graders heard
only those excerpts of MIDI files instead of the whole MIDI files. Even if multiple
algorithms created excerpts from the same MIDI file, separate relevance scores were
collected for each excerpt.

For some measures, an ordered list of relevant items is necessary. These ordered
lists were created as follows from the collected relevance scores:

o Calculate average scores for every MIDI file; the rough scores were counted
as follows: 0 for “not similar’, 1 for “somewhat similar’, and 2 for ‘“very
similar”.


http://www.music-ir.org/mirex2006/index.php/Symbolic_Melodic_Similarity_Results
http://www.music-ir.org/mirex2006/index.php/Symbolic_Melodic_Similarity_Results
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For each query, order the matches first by the rough and, in case of ties, by
the fine score.

Group together matches with the same average rough score. For example, all
items that were rated “very similar” by all graders were put in the top group,
followed by another group of items where at least one grader had selected
“somewhat similar”, and so forth.

Only include items with average rough scores of better than “somewhat simi-
lar". There were very many “somewhat similar” items in the database, there-
fore an algorithm should not be rewarded too much for putting one of them
into one of the top ten positions.

If the resulting list is longer than 10, remove whole groups at the end until at
most 10 items remain; there was one exception where the top group had 11
“very similar” items. This step is aimed at reducing the influence of arbitrary
classifications on the overall result. Since we know very little about the correct
order within one group, we should not include part of some group and exclude
another part of the group. Doing so would reward algorithms that are lucky
enough to have returned items that happened to be accidentally included in
the ground truth and punish other algorithms that found items which were
about as relevant, but got accidentally excluded.

Result quality measures

In addition to the measures used in 2005 (ADR = average dynamic recall, NRGB =
normalized recall at group boundaries, AP = average precision and PND = precision
at N documents), the following measures were also calculated. These measures do
not rely on an ordered list, but just on the rough and fine scores:

Fine = Sum of fine-grained human similarity decisions (0-10).

PSum = Sum of human rough similarity decisions: not similar = 0, somewhat
similar = 1, very similar = 2.

WCsum = 'World Cup’ scoring: not similar = 0, somewhat similar = 1, very
similar = 3 (rewards “very similar").

SDsum = 'Stephen Downie’ scoring: not similar = 0, somewhat similar = 1,
very similar = 4 (strongly rewards “very similar”).

Greater0 = not similar = 0, somewhat similar = 1, very similar = 1 (binary
relevance judgement).

Greaterl = not similar = 0, somewhat similar = 0, very similar = 1 (binary
relevance judgement using only “very similar”).

All measures were normalized so that they lie in the range from 0 to 1.

Result quality of the submitted algorithms

For the monophonic task, there were no significant performance differences be-
tween our method and the editing distance for quotiented trees by Pascal Ferraro
and Pierre Hanna [19], while all other methods performed worse, no matter which
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RISM - Monophonic Melodic Similarity
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Figure 5.3: Task I: RISM Overall Summary. See Section 5.3.2 for an explanation of the
measures and a list of participants.
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Figure 5.4: Task lla: Karaoke Overall Summary

measure is used. When looking at the actual result lists — they are available at
http://rainer.typke.org/mirex06.0.html, and two examples are shown in Figures 5.6
and 5.7 — the main difference between the results of these two methods seems to be
that the latter is more likely to retrieve rather short matches (compare, for example,
our result in Figure 5.6 with Ferraro/Hanna's result for the same query, shown in
Figure 5.7). In some cases, this might have lead to a lower average precision or
average dynamic recall, like for example in the case of http://rainer.typke.org/qr6-
fh.0.html, where short matches pushed nice longer ones down to lower ranks.

For both polyphonic tasks, our method clearly outperforms the other methods.

Besides the obvious difference in the number of notes that can sound at the same
time, the polyphonic collections also differ in other ways from the monophonic RISM
collection:
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Figure 5.5: Task llb: Mixed Polyphonic Overall Summary
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Figure 5.6: A sample result list for the monophonic RISM task, created by our own algo-

rithm. The query is identical to the top-ranked incipit.

Both polyphonic collections were random sets of files that were harvested from
the Web. Because of this, the encoding quality was not as homogeneous as
for the RISM collection. Some files in the polyphonic collection were not even
syntactically correct MIDI files.

While the RISM collection was created from plaine&easie code and therefore
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Figure 5.7: Ferraro’'s and Hanna's result for the same query as in Figure 5.6.

rhythmically quantized, the polyphonic collections contained both quantized
music and renditions of performances, where neither onset times nor note
durations were exactly what a written score would suggest, and the tempo
was not necessarily always stable.

When looking at Figures 5.4 and 5.5, it is quite noticeable that the six rightmost
measures, which were not based on the ranked lists described in Section 5.3.2,
indicate a much worse performance for the Karaoke task for all algorithms. The
reason is that the Karaoke collection was much smaller (1000 items instead of the
10,000 items in the mixed collection) and therefore contained fewer good matches
to begin with. Even an ideal algorithm can therefore not reach a score of 1 for
measures such as “Fine” for the Karaoke collection. The four measures on the left
side, on the other hand, compare the algorithms' outputs with the ground truth
lists.

Query response times

Thanks to the vantage index (see Chapter 4), the EMD-based method has short
response times — only one method, Alexandra Uitdenbogerd'’s, needs a few seconds
less for answering a query — and it scales well. For all other algorithms, the response
time grows by a larger factor when comparing the polyphonic “Karaoke” task with
its collection size of 1000 and the polyphonic “Mix" task with a collection of 10,000
Items.
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Query Response Times, Monophonic Task
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Figure 5.8: Query response times for the monophonic task
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Figure 5.9: Query response times for the polyphonic tasks. The NM method is not
shown for the polyphonic mix because the runtimes for indexing and answering
queries were not separately available.

5.3.3 Conclusions

Our own comparisons with other algorithms for symbolic melodic similarity — the
comparison with Schlichte’s and Howard’s incipit comparisons in Section 3.3 and
the comparison with PROMS/C-Brahms in Section 3.5.1 — have shown that using
transportation distances for measuring melodic similarity is a promising approach.
The results from MIREX 2005 and 2006 are probably more meaningful than our own
comparisons since they involve many more competing algorithms, the procedure for
comparing them and measuring the results was discussed and agreed on by all
participants, and the actual comparison was done by a neutral third party (Stephen
Downie's IMIRSEL team at the university of lllinois at Urbana-Champaign). All
of this leaves less room for any bias towards one method. The main reasons for
our algorithm getting much better results at MIREX 2006 in comparison to 2005
include:

e The “Symbolic Melodic Similarity” task in 2006 was harder and took advan-
tage of strengths of transportation distances. Half the queries were rhythmi-
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cally distorted in 2006, while all queries were exact transcriptions of the nota-
tion in 2005. In 2006, the polyphonic data consisted largely of non-quantized
music, while in 2005, all data to be searched was quantized notated music.

e In 2005, we relied on a genetic algorithm for finding an optimum alignment
of query segments with matching incipits. This algorithm was not guaranteed
to find the optimum, and it was rather slow. In 2006, we segmented both the
query and the database documents, and we used multiple segment lengths
for the database. This allowed us to not only align the query segments more
efficiently with the matching documents from the database, but also to better
control the allowed scaling and translations, and the algorithm was guaranteed
to find the optimum within the given constraints.



Chapter 6

A network flow distance for
chords

Although, as we have seen in Chapters 3 and 5, the Earth Mover’s Distance (EMD)
and the Proportional Transportation Distance (PTD) have quite nice properties,
they are not perfect. One particularly noticeable problem with the EMD is the fact
that with everything else being equal, if one increases the weight of one point in
the lighter point set by a large enough amount, one can reach a point where more
points from the other point set must be matched to it. There can be similar effects
when one uses the PTD: if one increases the weight proportion that is associated
with one point by a large enough amount, more points from the other point set are
matched to it. This does not directly correspond to music perception — there is no
reason why a more important note should be matched with more notes than a less
important note. What is really intended — and also achieved — by attaching more
weight to certain notes is to increase their influence on the overall distance. See
Figure 6.1 for an example of a flow where some weight flows between two points
that are musically unrelated.

It would be nice to have a distance measure that preserves as much of the
desirable qualities of transportation distances as possible — in particular, continuity
and the triangle inequality at least for some cases —, but avoids the effect of matching
an important note with unrelated notes.

Another desirable feature would be to normalize weights as it is done for the Pro-
portional Transportation Distance, but still have the possibility of partial matching
in the pitch dimension.

This chapter describes a measure that comes closer to these two goals than
either the Earth Mover's Distance or the Proportional Transportation Distance.

6.1 Describing transportation distances with max-
imum flow/minimum cost network flow prob-
lems

The Earth Mover's Distance and Proportional Transportation Distance can both
be described as special cases of a network flow distance [59], where a certain total
amount of weight has to be moved across a network such that the flow is maximized
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Figure 6.1: An example for unwanted flows with the EMD. Both the dark and the light
point set represent two successive chords. To make the flow better visible,
the point sets have been pulled apart horizontally; the onset times of the
first chords are actually identical. Since the total weight in the two chords
differs between the point sets, some of the weight is carried from one chord
to the other, which does not make much musical sense. With a local weight
normalization, this can be avoided (see Figure 6.5).

and the costs are minimized. The network contains one source node and one sink
node. There is a connection from the source node to each node representing a point
in the first point set A; these connections each have a capacity that corresponds to
the target point’s weight, and the cost for using those connections is zero. Each
point in point set A is connected to each point in point set B with a connection whose
capacity corresponds to the minimum of the two points’ weights. Every connection
between the point sets A and B has a cost that depends on the ground distance
between the two connected points. The points in point set B are each connected
to the sink node with connections whose capacities correspond to the weight of the
point set in B, and whose costs are zero. The problem of finding a maximum flow at
minimum cost through such a network is equivalent to calculating a transportation
distance between the two point sets. See Figure 6.2 for an illustration. We simplify
the network suggested by Ramon and Bruynooghe [59] by omitting the two extra
nodes for carrying surplus weight because this is not needed if we want to normalize
both weight sums and enforce that all weight is transported between nodes that
represent notes.

It is useful to enforce that all weight flows through the network. If one allows
some weight to remain unmatched without a penalty, it is very hard to construct
a measure for which the triangle inequality holds. The network flow distance by
Ramon et al. [59] obeys the triangle inequality without enforcing all weight to be
matched, but it heavily penalizes any unmatched weight by forcing it to flow via
an expensive detour in the network. So even without enforcing all weight to be
matched, they still force all of it to flow through the network. For the purposes of
measuring melodic similarity, penalizing unmatched weight is generally not a good
idea, especially for polyphonic music, because the presence or absence of additional
voices does not have a very large influence on the identity of a melody. We want
to neither allow weight to remain unmatched without penalty (because that would
completely break the triangle inequality), nor do we want to penalize unmatched
weight like Ramon et al., because that would be inadequate for our application to
music.
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Figure 6.2: Formulation of a transportation distance as a network flow. The black circle
at the top is the source, the white one at the bottom is the sink. Source
and sink are both connected to each point in one of the two point sets with
connections whose capacities correspond to the connected points’ weights,
and which involve costs of zero. The connections between the two point sets,
on the other hand, carry costs that correspond to the ground distance between
the connected points.

Enforcing all weight to be matched is also an elegant way of avoiding discontinu-
ities. If, under certain circumstances, we allow some weight to remain unmatched,
we would have to take special precautions to ensure that at the point where a point
set changes from a situation where all weight is matched to a situation where some
weight remains unmatched, the matched amount does not change in a discrete step.
It could change in a discrete step, for example, if we would remove a connection
with a non-zero capacity from the network. If discontinuities exist, one can always
construct point sets that are rather similar but have quite different distances to
the same vantage object. Therefore, even if the triangle inequality holds, vantage
indexing can become much less useful if there are large discontinuities.
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6.2 A network flow distance with normalized weights
for chords

6.2.1 First aim: realistic matches for notes

We would like to create a transportation distance that does not have the problem
described in the introduction to this chapter, that is, increasing the weight of one
particular point should not necessarily lead to it being matched to more points in the
other point set, in particular not to points that represent notes with very different
onset times.

An obvious idea might be to remove connections according to some rule that
specifies under what circumstances notes may be matched with one another. This
way, one might, for example, want to modify the network shown in Figure 6.2
such that it is turned into the network shown in Figure 6.3 before calculating the
maximum flow with minimum cost.

Figure 6.3: A naive approach to enforcing rules about acceptable matches of notes is to
just remove unwanted connections. For example, doing this to the network
shown in Figure 6.2 could result in a network like this one. If one would also
remove the dashed arrow (because the rightmost long note in the top point
set really should not be matched with the last three notes in the bottom point
set), solving the flow problem becomes infeasible.

However, there are two problems with this naive approach of removing unwanted
connections: if it is possible to avoid bad matches, the algorithm for finding the
maximum flow at minimum cost will always do so anyways (because “bad” con-
nections will always be associated with large ground distances and therefore high
costs), and therefore by removing these connections, one does not gain anything.
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Secondly, even worse, if the removal of some connections has any effect, it will be
the effect that solving the network flow problem is no longer feasible. This would,
for example, happen if the algorithm for removing connections would decide that
the dashed arrow in Figure 6.3 should be removed. We would still want to move
the entire weight of 7 from the source to the sink over the network, but this would
not be possible, and therefore there would be no minimum cost, and the distance
between the two point sets would be undefined.

Instead of somwhat arbitrarily removing connections, one can also approach
the aim of reducing unrealistic flows by ensuring a certain balance in the weight
distribution before calculating the optimum flow. The following constraint can do
this:

e The proportion of the total weight present between the onset and the offset
of any note (or chord) should equal the proportion of the time covered by this
note (or chord).

Note that this constraint implies that for monophonic music, the weight simply
encodes the duration of a note. For polyphonic music, even with this constraint,
one can still use the weight for encoding different degrees of importance for different
notes, independent of the note duration.

If this constraint is in place, a single note can still be matched with multiple
other notes, but only as long as the durations and the onset times of the involved
notes make this plausible.

6.2.2 Second aim: polyphony, fuzzy queries

By adding arcs between nodes that represent the same point set, we can build
some more desirable properties into the network flow distance measure. In order to
support polyphonic matching of sequences of chords or fuzzy monophonic queries
that contain several possibilities for some notes, one can connect all notes that
belong to the same chord with arcs of cost zero and a capacity that allows the
complete weight of the lighter of the two points to flow to the other point. Notes
can be defined to belong to the same chord if their overlap in time exceeds a certain
threshold such as 75 % of the duration of the shorter note. Figure 6.4 shows an
example.
Overall, we construct networks like this:

1. Represent the two segments of music that are to be compared as weighted
point sets, as described in Section 3.1.

2. ldentify chords in both point sets and connect any two notes that belong to
the same chord with an arc whose cost is zero and whose capacity equals the
weight of the lighter of the two points. Notes are said to belong to the same
chord if their overlap in time exceeds a certain percentage of the duration of
the shorter of the two notes.

3. For each chord, calculate onset and offset time (find the earliest onset time
of any note in the chord, and the latest offset time).

4. For each chord, set the total weight to the duration of the chord (the difference

of onset time and offset time), preserving the weight proportions within the
chord.



Rainer Typke: Music Retrieval based on Melodic Similarity
6.3 Properties 103

Source

Nodes

representing
{A‘ ° melody A
AR
A
o \\ Nodes
? »/0/ maoay B
@ Sink

Figure 6.4: An example for how chords can be modeled by adding arcs within point sets.
Point set A here contains two notes which overlap in time. In such cases, we
add a connection whose capacity allows the entire weight of the lighter of the
two points to flow to the other point, and whose cost is zero.

5. For each point set, set the total weight to 1, preserving the weight proportions
within the point set.

6. Add a special source node with weight 1 and connect it to every point in the
first point set. Each of these arcs has cost zero and a capacity that equals
the weight of the node representing a note.

7. Add a special sink node with weight 1 and connect it to every point in the
second point in a similar fashion.

8. Connect each point in the first point set with each point in the second point
set with a connection whose cost corresponds to the ground distance between
the two points and whose capacity equals the weight of the lighter of the two
connected points.

6.3 Properties

The new network flow distance with balanced weights and partial matching in the
pitch dimension (BWPP) is constructed in a way such that it has the following
properties:

1. The BWPP is continuous under weight modification, the addition or
removal of points, and changes in the pitch coordinate. Neither the
weight normalization nor the added arcs within point sets introduce discon-
tinuities if weights are modified or points are added or removed. If weights
are modified, this either is undone by the weight normalization, or it has an
impact on the overall distance that is proportional to the modification of the
weight. If points are added or removed, the change in the overall distance
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0.2 0.225

Figure 6.5: By normalizing the weights of chords, we can avoid unwanted flows like in
Figure 6.1 without giving up the principle that all weight should be matched.
Since flows within a chord do not incur costs, the proposed distance measure
would result in a distance of zero between these two pairs of chords, which
makes sense because they consist of identical notes.

can be zero, or it is proportional to the weight of the added or removed point.
If a point is moved up or down in pitch, this causes changes in the ground
distance that are proportional to the change in the coordinate.

2. The BWPP is not always continuous if the onset time of notes is
changed. If the time coordinate of a point is changed such that it starts or
stops being part of a chord, even a small change of the time coordinate can
cause a discontinuity because suddenly, all points that are part of the chord
in question have one additional possible connection to the other point set,
or lose one. However, this kind of discontinuity can only occur if there are
chords; as long as all point sets are monophonic, changes in the coordinates
of points do not cause discontinuities.

3. The BWPP obeys the triangle inequality if there are no chords. Since
we normalize the total weight for both point sets, the BWPP obeys the trian-
gle inequality for the same reasons the Proportional Transportation Distance
obeys the triangle inequality. However, as soon as we introduce arcs within
point sets, it becomes possible to construct point sets for which the BWPP
does not obey the triangle inequality anymore. Figure 6.6 shows an example
where this occurs.

4. The BWPP is suitable for fuzzy queries or for matching arbitrary com-
binations of polyphonic and monophonic music. Thanks to the added
arcs within chords, one can try several alternatives for one note in the query
at once. For example, if it is not known what the second note in a mono-
phonic query should be, but there are several possible candidates, one could
put all possible notes into a chord where the second note would be, and the
distance measure would find matches for all possibilities.

6.3.1 Experimental evaluation with MIREX 2006 data

We created a vantage index using the new distance measure for the “Karaoke”
collection of 1000 MIDI files from MIREX 2006 and calculated Average Dynamic
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Figure 6.6: An example for how the triangle inequality can be violated for point sets
representing polyphonic music.

Table 6.1: Result quality for the MIREX 2006 symbolic melodic similarity “Karaoke” task.
ADR at MIREX=Average Dynamic Recall for the measure we submitted to
MIREX 2006, ADR with new measure=the ADR score of the measure described
in this chapter.

Query number ADR at MIREX ADR with new measure
1 1 0.67

2 0.54 0

3 0.56 0

4 1 0.5

5 1 0

Average 0.82 0.23

Recall (ADR) at rank 10 for the same queries that were used at MIREX 2006. The
results can be seen in Table 6.1.

Since we only counted true positives that were ranked among the top ten items,
we did not count two matches for one query which the new measure found but our
MIREX 2006 distance measure did not. The new measure placed them between the
tenth and the twentieth position, so they were still ranked higher than 98 percent
of the 1000 pieces in the collection. However, this does not change the fact that
the new network flow distance performs much worse than the PTD.

An important difference between the new measure and the MIREX version is
that at MIREX, all points were created with equal weights, that is, all notes were
given exactly the same importance. For this experiment with the new distance
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measure, however, we gave the points weights that were proportional to the note
durations. Therefore, one cannot deduct from this table that the new network
distance always performs worse than the PTD. This result does indicate, however,
that it was probably a good decision to give all points equal weights at MIREX
2006.

There is still a large class of cases where even with intra-point set weight distri-
butions that are normalized according to the new measure, unwanted flows occur
that do not make much musical sense. The next section describes this problem and
how it can be solved.

6.4 Using inter-onset time instead of note durations
for distributing weights

Even if for every chord (or, for monophonic melodies, for every note), the weight is
proportional to the time that is covered by the chord (or note), situations can arise
where very unrealistic flows can occur. Figure 6.7 shows an example (two slightly
different renditions of a motive from Johannes Brahms, “Ein deutsches Requiem”,
first movement). The cause of the problem is that imbalances are not prevented
by this constraint if the inter-onset intervals of notes are noticeably larger than
their durations. With real-world data such as the MIREX Karaoke collection, this
happens quite frequently.

The top point set in Figure 6.7 has a much heavier first note than the bottom
point set, but all but the last notes have the same weights. Because of this, the
weight surplus is forced to flow all the way to the last note of the bottom point
set. If weight is forced to flow from the first to the last note like this, the resulting
distance depends on the difference in onset times of two largely unrelated notes,
which does not make much musical sense. The coordinates and weights for the top
point set are (in the format <onset time><pitch><weight>): 0 7.2 0.5/0.75 7.4
0.125/1 7.6 0.25/1.5 7.4 0.25/2 7.2 0.25/2.5 7.1 0.25/3 6.9 0.25/3.75 7.1 0.125.
The bottom point set is 0 7.2 0.375/0.8 7.4 0.125/1.25 7.6 0.25/1.75 7.4 0.25/2.25
7.20.25/2.57.10.25/36.90.25/3.57.1 0.25. As we can see, the inter-onset interval
is always larger than the note duration.

Weight imbalances can be prevented in a larger number of cases if we replace
the constraint from Section 6.2.1 with:

e The proportion of the total weight present between the onset and the offset
of any note (or chord) should equal the proportion of the time covered by its
inter-onset interval (or, for the last note or chord, its duration).

If we normalize weights for the two point sets from Figure 6.7 by applying this
constraint, we get the two new point sets 0 7.2 0.375/0.75 7.4 0.125/1 7.6 0.25/1.5
7.40.25/27.20.25/2.57.10.25/3 6.9 0.375/3.75 7.1 0.125 (top) and 0 7.2 0.4/0.8
7.4 0.225/1.257.6 0.25/1.75 7.4 0.25/2.25 7.2 0.125/2.5 7.1 0.25/3 6.9 0.25/3.5
7.1 0.25 (bottom). We leave everything else equal, but get the much more realistic
flow that is shown in Figure 6.8. This flow does not only look more realistic, but
it involves much lower costs: 0.167 instead of 0.33 (with the Euclidean distance as
ground distance), which is desired because the melodic similarity is very pronounced.
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Figure 6.7: Making the weight proportional to the time proportion that each note covers
does not always prevent the optimum flow from being unrealistic. The top
and bottom point sets are slightly different renditions of the same motive from
Brahms' “Ein deutsches Requiem”, first movement, and should therefore be
recognized as rather similar.

Figure 6.8: By using inter onset intervals instead of note durations for enforcing an even
distribution of weight, the problem shown in Figure 6.7 can be avoided.

6.5 Conclusions

By using the more general formulation of network flows, one can construct trans-
portation distances with certain desired properties. One can use weight normal-
izations, arc capacities and costs, and additional arcs to modify the properties of
the resulting dissimilarity measures. We have shown one possible measure that re-
duces unrealistic matching of notes and that supports fuzzy queries and polyphonic
matching. The introduction of chords within which free weight flows are possible,
however, means that the triangle inequality does no longer hold.

For making the violations of the triangle inequality less problematic for vantage
indexing, one might want to experiment with multiple small groups of vantage ob-
jects; for each group, one would search the intersection of rings around vantage
objects, as shown in Figure 4.2. This would limit the number of false positives,
which, as we have seen in Section 4.4, already drops significantly with small num-
bers of vantage objects. The false negatives that are introduced by the problem
illustrated in Figure 6.6 could then be counteracted by looking at the union of the
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candidate sets produced by different sets of vantage objects. If the vantage objects
in different groups are sufficiently different, the violations of the triangle inequality
for any item should differ for each set of vantage objects. A false negative would
then only occur if one is unlucky enough to encounter a severe enough violation of
the triangle inequality with every group of vantage objects.



Chapter 7

Conclusions and future work

For the last decade, the possibilities for Music Information Retrieval (MIR) research
have been much better than fourty years ago, when Kassler gave his talk [31]
about an assembler-like language called MIR. At Kassler's time, using computers
for processing audio signals was so time-consuming that he did not even mention
this possibility in his optimistic talk. The abundance of cheap storage space and
processing power is not just a gradual, but a qualitative change since it allows a
whole new range of problems to be addressed. This is probably an important reason
why the last ten years have seen so much more progress than the previous thirty.

Part of that progress was the development of new ways of measuring melodic
similarity. In the late nineties, most publications about query-by-humming systems
described string-based methods for comparing melodic contours by using editing
distances. While it is possible to efficiently find nearest neighbours when using such
distance measures, for example with vantage indexing, using such distance measures
for polyphonic music it is rather awkward, and these methods also do not naturally
support ornamentations very well where single notes need to be matched to multiple
notes.

Early geometric algorithms that are able to match arbitrary groups of notes, pos-
sibly polyphonic, to other groups of notes, suffered from a lack of suitable indexing
methods. Also, distance measures that rely on counting coinciding note onsets are
usually not continuous and work well only for quantized music.

This book shows that by using transportation distances, one can overcome many
of the limitations of both other geometric algorithms and of string-based methods.
Transportation distances can be designed such that they are continuous and sup-
port the triangle inequality. At MIREX 2006, it was shown that the result quality,
response times, and scalability of our method compare favourably with those for
string-based methods or other state-of-the-art geometric algorithms. However, es-
pecially for collections with a noticeable continuum of melodic similarity such as
the RISM UK collection of musical incipits, the overlap of relevant items found by
different algorithms was not very large, and therefore there is still quite some room
for improvement.

To make methods for measuring melodic similarity more useful, it would be de-
sirable to combine audio feature extraction methods with symbolic approaches like
the distance measures that are the topic of this book. One of the big open problems
of MIR, automatic polyphonic audio-to-MIDI transcription, is probably going to re-
main unsolved for quite a while. However, it is conceivable that with transportation
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distances, even imperfect transcription results could be made searchable in a useful
way thanks to the robustness against various types of errors one can achieve with
transportation distances.

Transportation distances could be further improved in various ways, for example:

e To take full advantage of variants of transportation distances that obey the
triangle inequality, but are only suitable for monophonic music, such as the
Proportional Transportation Distance, one should work on better voice split-
ting algorithms and on recognizing which voices are only accompaniment and
therefore not worth searching for melodies.

e To still be able to use vantage indexing for distance measures with desirable
properties for measuring melodic similarities, but with the disadvantage of not
guaranteeing that the triangle inequality always holds, it could be interesting
to experiment with combinations of multiple vantage indices (for lowering the
number of false negatives) and with vantage objects that are constructed with
the aim of either making violations of the triangle inequality less likely, or at
least very different from those encountered with other vantage objects.

If the recent trends in MIR research continue, we should have very nice retrieval
algorithms at our disposal fourty years from now. And maybe even the pesky old
Optical Music Recognition problem which Kassler thought would just require a
million dollars and negligible time will eventually be solved as well.
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Samenvatting

Voor het zoeken naar muziek op het Web, in een bibliotheek, of in een persoon-
lijke verzameling van muziek kan het nuttig zijn om een zoekmachine te hebben die
de muziek zelf doorzoekt en niet alleen meta-gegevens. De huidige zoekmachines
werken vooral op basis van titel en artiestnamen, en niet met melodieén of andere
muzikale inhoud. In dit proefschrift wordt op een fundamentele manier ingegaan op
de vraag hoe men kan uitrekenen hoe melodieén (of meer algemeen, verzamelingen
van muzieknoten) op elkaar lijken.

Een overzicht van systemen voor Music Retrieval

In hoofdstuk 2 (pagina 9) worden verschillende bestaande systemen en algoritmes
voor het zoeken naar muziek beschreven. Het bevat ook een overzicht van taken
en gebruikers voor MIR (Music Information Retrieval) systemen. Er blijkt een gat
te bestaan tussen systemen die op een heel algemeen niveau zoals genre werken en
systemen voor heel specifieke taken zoals identificatie van een werk of een opname.
Taken zoals intertekstualiteit of de identificatie van een artiest worden niet door
vele systemen ondersteund. Waarschijnlijk is het nodig om daarvoor muziek op een
hoger, meer abstract niveau dan noten te representeren.

Een afstandsmaat voor melodieén

Elke muzieknoot wordt omgezet in een twee-dimensionaal punt met een gewicht dat
de belangrijkheid van de noot aangeeft. Hoe belangrijker de noot in een melodie is,
hoe groter het gewicht. De dimensies zijn het tijdstip waarop een noot begint en
de toonhoogte. Zie figuur 3.1 op pagina 24.

Met de zogenaamde Earth Mover’s Distance wordt uitgerekend hoe goed twee
verzamelingen van dat soort punten op elkaar lijken. Dit gaat als volgt. De ene
verzameling wordt opgevat als een stel bergjes aarde, de andere als een stel gaten
in de grond. Vervolgens wordt uitgerekend op welke manier de gaten het efficiéntst
gevuld kunnen worden met de aarde. De (minimale) hoeveelheid moeite die het
vullen van de gaten kost, is een maat voor de gelijkenis van de twee puntenverza-
melingen: als er weinig verschil is, dan liggen de bergjes en gaten dicht bij elkaar,
en dan kost het weinig moeite om de gaten te vullen. Figuur 3.3 op pagina 31 geeft
een illustratie van het berekende transport van de bergjes (bovenste rij) naar de
gaten (onderste rij). De melodieén in dit voorbeeld lijken muzikaal sterk op elkaar,
en ook het berekende transport is klein.

Deze methode is uitgetest op een collectie van bijna 500.000 ‘incipits’, korte
muziekfragmenten die opgenomen zijn in een catalogus van muziekhandschriften
(RISM A/Il). Een aanzienlijk deel van de handschriften is anoniem overgeleverd.
Met deze methode zijn kandidaat-componisten opgespoord voor 18.000 anonieme
muziekstukken. Zie figuur 3.5 op pagina 33 voor een voorbeeld. Daarvoor was
het wel nodig om een index te bouwen over de collectie. Stel dat een enkele
vergelijking tussen twee puntenverzamelingen een milliseconde zou duren, dan had
het vergelijken van alle anonieme stukken meer dan een jaar geduurd. Met de
ontwikkelde indexeringsmethode was dat een kwestie van minuten.
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Indexeringsmethode: Vantage Objects

Vleugels en Veltkamp hebben vantage indexing ontwikkeld voor het zoeken in ob-
jectruimten waarin de driehoeksongelijkheid geldt. Als een afstandsmaat aan de
driehoeksongelijkheid voldoet, is het mogelijk om een zoekopdracht met behulp van
vantage objects te versnellen. Om naar een nieuw object te zoeken, worden de
afstanden naar de vantage objecten berekend, en met deze informatie kan op een
efficiénte manier een verzameling van objecten met ongeveer dezelfde afstanden
uit de database geselecteerd worden. Slechts deze objecten worden dan met de
zoekvraag vergeleken.

In dit proefschrift wordt beschreven hoe vantage indexing voor muziek kan wor-
den toegepast. Wij splitsen de muziek in segmenten en gebruiken vantage indexing
om segmenten te vinden die op een segment uit de zoekvraag lijken. Voor het
zoeken naar melodieén is het niet altijd goed om alleen naar “nearest neighbours”
te zoeken, maar ook het zoeken in een vaste zoekradius heeft nadelen. Wij werken
met een variabel zoekradius om de voordelen van een “nearest neighbour” search
en het zoeken binnen een bepaalde radius te combineren.

Omdat in verschillende muziekstukken vaak dezelfde segmenten voorkomen (ten-
minste als de segmenten kort genoeg zijn), is het mogelijk om veel geheugen te
besparen door de tabel met muzieksegmenten en afstanden naar vantage objects
te splitsen in een tabel met unieke segmenten en hun afstanden naar vantage ob-
jects en een tweede tabel met de informatie waar en in welken muziekstukken de
segmenten voorkomen.

Een belangrijke vraag is hoeveel vantage objects er voor een optimale zoeksnel-
heid nodig zijn. Een groter aantal vantage objects betekent minder false positives
en dus minder werk voor het uitrekenen van de werkelijke afstanden voor de nearest
neighbours, maar het betekent ook meer werk voor het indexeren van gegevens,
en de index neemt meer ruimte in beslag. We hebben voor een constante aantal
kandidaten experimenten met 1 tot 8 vantage objects gedaan.

Niet alleen het aantal, maar ook de kwaliteit van vantage objects heeft een grote
invioed op hoe goed het zoeken werkt. In een goede verzameling van vantage objects
zitten erg verschillende vantage objects; als twee vantage objects te sterk op elkaar
lijken, levert het tweede vantage object geen extra informatie op en kan worden
weggelaten. Voor ieder vantage object is ook belangrijk dat voor verschillende
muzieksegmenten de afstand naar het vantage object ook niet te gelijk is.

Evaluatie van zoekalgoritmes voor muziek

MIREX is een internationale muziekretrievalcompetitie. In 2005 werd voor MIREX
in de categorie vergelijking van genoteerde melodieén een “ground truth” gebruikt
die in dit onderzoek was vervaardigd. Voor enkele zoekvragen werden ongeveer 50
kandidaten uit de RISM A/II collectie geselecteerd. Menselijke experts bepaalden
dan een ideale volgorde van deze incipits. In de praktijk produceren verschillende
algoritmes verschillend geordende resultaten; met de nieuw ontwikkelde maat voor
de kwaliteit van zoekresultaten, “Average Dynamic Recall” (ADR), kunnen deze
worden vergeleken met de ideale volgorde. Met ADR is het mogelijk om “ground
truths” te gebruiken die slechts partieel geordend zijn. Als de ideale volgordes
van meerdere menselijke experts tot een algemene ideale volgorde verwerkt worden,
gebeurt het vaak dat de rangen van groepen van melodieén met een hoge statistische
significantie verschillen, maar niet de rangen van individuele melodieén. Met ADR
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kan de betrouwbare informatie over verschillen tussen groepen worden gebruikt
zonder dat de minder betrouwbare informatie over verschillen binnen deze groepen
invioed op de uitslag heeft.

Bij MIREX 2006 behaalde de in dit proefschrift beschrevene vergelijkingsme-
thode de eerste plaats voor genoteerde melodieén.

Een algemenere manier om transportafstanden te beschrijven:
Network Flows

In hoofdstuk 6 (pagina 98) wordt beschreven hoe transportafstanden zoals de “Earth
Mover's Distance” op een algemenere manier kunnen gemodelleerd worden. Met
“Network Flows" is het mogelijk om nieuwe afstandsmaten met bepaalden eigen-
schappen te ontwikkelen. Wij beschrijven als een voorbeeld een afstandsmaat voor
akkoorden dat het mogelijk maakt om iedere combinatie van monofone en polyfone
muziek te vergelijken. Met dit maat treedt ook een probleem niet op dat met de
Earth Mover's Distance wel kan optreden: voor sommige combinaties van noten
wordt met de Earth Mover's Distance gewicht van een noot naar een andere noot
getransporteerd die veel later of eerder voorkomt. Deze noten zijn dan niet goed
vergelijkbaar. Zie figuur 6.7 (pagina 107) voor een illustratie.
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