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Abstract

Disorders of the ejaculatory threshold, such as lifelong premature ejaculation, are fairly common in humans and can have a great

impact on the quality of life.

Research in humans and rats have indicated that increased serotonin levels in the central nervous system elevate the ejaculatory

threshold, probably via 5-HT1B and 5-HT2C receptors, whereas depletion of serotonin decreases the ejaculatory threshold. 5-HT1A

receptor activation strongly lowers the ejaculatory threshold, probably mediated by both the reduction of serotonin levels via presynaptic

5-HT1A receptors and yet unknown effects of postsynaptic 5-HT1A receptors.

The present review attempts to integrate psychopharmacological data on serotonergic control over ejaculation with the knowledge of

the neuroanatomical substrate of ejaculation, indicating the importance of the lumbosacral spinal cord, the nucleus paragigantocellu-

laris, the lateral hypothalamic area and several other supraspinal areas. In addition, the gaps in our understanding of the role of

serotonin in the ejaculatory threshold are discussed. Filling in those gaps might help to design specific drugs that alter the ejaculatory

threshold, thereby alleviating ejaculatory disorders.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Male sexual behaviour differs widely between mamma-
lian species, but it has two common factors: the stimulation
of the genitals by insertion of the penis into the vagina
(intromission) and the expulsion of semen in the female
genital tract (ejaculation) (Meisel and Sachs, 1994). The
ejaculatory threshold, which can be defined as the number
of intromissions preceding ejaculation (intromission fre-
quency) and/or the latency time from the start of
copulation to ejaculation (ejaculation latency), can there-
fore be determined for all male mammals including rats
and humans (Bitran and Hull, 1987; Waldinger, 2003).

Investigating the ejaculatory threshold is of great im-
portance, since disorders of this threshold, such as lifelong
premature and retarded ejaculation, are fairly common in
human males and can have a great impact on the quality of
life (Hartmann and Waldinger, 2005; Waldinger, 2005;
Waldinger and Schweitzer, 2005; Waldinger et al., 2005b).
Premature ejaculation is now often successfully treated with
antidepressant drugs that alter serotonergic neurotransmis-
sion (Waldinger, 2005), but drugs designed specifically to
treat ejaculatory disorders are called for. In order to find
such drugs, the neural substrate of the ejaculatory threshold
needs to be determined, including all neuroanatomical,
physiological and pharmacological aspects.

Although some research on ejaculation has been
performed in men (Waldinger et al., 1998b, 2001), the
practical and ethical limitations to conduct neuroanatomi-
cal and psychopharmacological experiments in humans
require the use of animal models. The vast majority of
sexual behaviour research has been performed in rats.
Therefore, all experiments discussed in this review were
conducted in rats unless stated otherwise. The reasons to
use rats in sexual behaviour research are various (Pfaus,
Fig. 1. The temporal pattern of male rat sexual behav
1996), and include the fact that their intromissions and
ejaculations are clearly discernable (Bitran and Hull, 1987).
In addition, both rats and humans have an average
ejaculation latency of about five minutes, although large
individual differences exist within both human and rat
populations (Olivier et al., 2005; Pattij et al., 2005;
Waldinger et al., 2005a). Other aspects of sexual behaviour
obviously differ between rat and human males. Rats are
much more influenced by olfactory cues than humans, the
male rat has little physical contact with the female in the
seconds between each mount and intromission, and male
rats have multiple ejaculations during copulation. A
schematic overview of male rat sexual behaviour is given
in Fig. 1, which is an adaptation of the figure in the review
of Larsson and Ahlenius (Larsson and Ahlenius, 1999).
The neurotransmitter serotonin (5-HT) has been im-

plicated in the central regulation of blood pressure, body
fluid homeostasis, locomotion, food intake, nociception,
cognition, arousal, stress responses, mood and many other
autonomic and behavioural functions. The ubiquitous
presence of 5-HT fibres throughout the central nervous
system (Steinbusch, 1981), the many different 5-HT
receptor subtypes (Barnes and Sharp, 1999), the variety
of signal transduction mechanisms activated by each 5-HT
receptor subtype (Raymond et al., 2001) and the diversity
in autoregulatory mechanisms in the 5-HT system (Pineyro
and Blier, 1999) make it highly complicated to unravel the
precise role of serotonin in behaviour. The specific role of
5-HT in the ejaculatory threshold has been investigated
since the early 1970s, and it was soon established that 5-
HT, in contrast to dopamine, inhibits ejaculation. Since
then, increasingly sophisticated neuroanatomical and
psychopharmacological tools have revealed more specific
roles of 5-HT and its receptor subtypes in the ejaculatory
threshold.
ior. Adapted from Larsson and Ahlenius (1999).
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Fig. 2. Schematic representation of coronal spinal cord sections at the

lumbar 1, 4 and 6 levels. Numbers represent the laminae; DH: dorsal horn;

VH: ventral horn; DCG: dorsal commissural grey; IML: intermediate

lateral cell column; SPN: sacral parasympathetic nucleus. Adapted from

Paxinos and Watson (2005).
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2. Neuroanatomical substrate

The autonomic and somatic motor neurons that execute
the different phases of ejaculation are located in the
thoracolumbar and lumbosacral spinal cord. These motor
neurons are activated in a coordinated manner when
sufficient sensory input to reach the ejaculatory threshold
has entered the central nervous system. Interneurons in the
lumbar spinal cord as well as neurons originating from
various supraspinal areas are thought to modulate the
ejaculatory threshold, possibly using serotonin as neuro-
transmitter.

2.1. Spinal cord

Ejaculation occurs in two stages, referred to as emission
and expulsion (ejection), which are executed via noradre-
nergic sympathetic, cholinergic parasympathetic and cho-
linergic somatic motor neurons originating in the spinal
cord. Emission of spermatozoa from the testes and seminal
fluids from the seminal vesicles and prostate is induced by
sympathetic motor neurons in the thoracolumbar inter-
mediolateral cell column (IML) and parasympathetic
motor neurons in the sacral parasympathetic nucleus
(SPN). Somatic motor neurons in the dorsolateral and
dorsomedial ventral horn of the lumbosacral spinal cord
cause rhythmic contractions of the striated ischiocaverno-
sus and bulbospongiosus muscles in the pelvic floor that
lead to the forceful expulsion of semen from the urethra
(Coolen et al., 2004b; Marson and McKenna, 1996;
McKenna, 2000; Steers, 2000; Waldinger et al., 1998a). A
schematic overview of the relevant spinal cord areas is
given in Fig. 2, which is an adaptation from the figures in
Paxinos and Watson (Paxinos and Watson, 1998).

The motor neurons involved in ejaculation are triggered,
amongst others, by sensory input from the genitals. This
genitosensory input is predominantly generated by intro-
missions and reaches the dorsal horns and dorsal grey
commissure of the lumbosacral spinal cord via the dorsal
penile nerve, a branch of the pudendal nerve (McKenna
and Nadelhaft, 1986; Ueyama et al., 1987). Urethral
distension, which stimulates the dorsal penile nerve, elicits
an ‘urethrogenital reflex’ in anesthetized rats with a
transection of the spinal cord at the T6 level. This reflex
includes rhythmic contractions of the striated muscles and
expulsion of the urethral contents, and is therefore used as
a model for ejaculation (Carro-Juarez and Rodriguez-
Manzo, 2000; Chung et al., 1988; Duran et al., 1997;
McKenna et al., 1991).

Apparently, the relay of genitosensory input to ejacula-
tory motor output takes place at the level of the spinal cord
in the form of a reflex arc. A group of galaninergic
interneurons in the border area of laminae 7 and 10 at the
lumbar 3 and 4 levels of the spinal cord, called the lumbar
spinothalamic cells (LSt cells), is the most likely candidate
for such a relay centre (Truitt and Coolen, 2002).
Galaninergic fibres originating from the LSt cells project
to all areas in the spinal cord containing motor neurons
involved in ejaculation, and selective lesion of the LSt cells
eliminates ejaculation without affecting other parameters
of sexual behaviour (Truitt and Coolen, 2002; Xu et al.,
2005). The activation of LSt cells probably plays an
important role in the ejaculatory threshold.
Serotonergic fibres have been found in all the areas of the

spinal cord containing sensory fibres and motor neurons
involved in ejaculation, in particular the lumbosacral
dorsal and ventral horns, dorsal commissural grey and
IML and SPN (Maxwell et al., 1996; Ranson et al., 2003;
Tang et al., 1998). Serotonergic fibres were found in close
association with cell bodies in the IML showing Fos-
expression in response to the urethrogenital reflex (Marson
and Gravitt, 2004), and they make synaptic contact with
SPN neurons labelled by retrograde tracers injected in the
pelvic nerve as well as lumbosacral somatic motor neurons
labelled by retrograde tracers injected in the striated pelvic
floor muscles (Tang et al., 1998). In addition, serotonergic
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fibres have been found in close apposition to the LSt cells
(Coolen et al., 2004a). Serotonin might affect ejaculation
via any of these possible connections.

2.2. Supraspinal areas

A modulating role for supraspinal areas in the ejacula-
tory threshold was indicated by the finding that the
urethrogenital reflex cannot be elicited in intact rats, but
usually requires either thoracic spinal transection or lesion
of the nucleus paragigantocellularis (nPGi), an area in the
ventrolateral medulla in the brainstem (Marson and
McKenna, 1990). Lesioning of the nPGi also facilitates
ejaculation in copulating rats (Yells et al., 1992). Since
neurons in the nPGi are consistently labelled when
retrograde transneuronal tracers are injected into the penis,
bulbospongiosus muscle, epididymis or prostate (Gerendai
et al., 2001; Marson et al., 1993; Orr and Marson, 1998;
Tang et al., 1999), the nPGi is thought to exert a tonic
inhibition over ejaculation via relays in the spinal cord.
Serotonin probably mediates this inhibition, since a large
portion of neurons in the nPGi that project to the motor
neurons innervating the bulbospongiosus muscle contain
serotonin (Marson and McKenna, 1992). The medial
preoptic area (MPOA), a hypothalamic brain area that
integrates the sensory information induced by female
pheromones and genital stimulation (Bressler and Baum,
1996; Coolen et al., 1998, 2003b) and is a crucial structure
for the performance of sexual behaviour (Hansen et al.,
1982; Liu et al., 1997b; Meisel and Sachs, 1994; Paredes et
al., 1993), projects heavily to the nPGi via relays in the
periaqueductal grey and might lower the ejaculatory
threshold by removing the tonic serotonergic inhibition
exerted by the nPGi (Marson, 2004; Marson and McKen-
na, 1994b; Murphy and Hoffman, 2001; Murphy et al.,
1999). Stimulation of the MPOA can elicit the urethro-
genital reflex, even without spinal transection or lesion of
the nPGi (Marson and McKenna, 1994b).

Besides the MPOA-PAG-nPGi-spinal cord pathway,
there is at least one other serotonergic pathway that
influences sexual behaviour. Serotonin release in the
anterior lateral hypothalamic area, most likely from axons
originating from the dorsal and median raphe nuclei and
travelling through the medial forebrain bundle (van de Kar
and Lorens, 1979), increases sharply in response to an
ejaculation (Lorrain et al., 1997). This is thought to induce
the suppression of copulation during the post-ejaculatory
interval, and could be partly mediated by an inhibition of
dopaminergic neurotransmission in the nucleus accumbens
(Lorrain et al., 1999). Indeed, electrolytic lesions of the
median raphe nucleus and, less consistently, the dorsal
raphe nucleus lowered the ejaculatory threshold by
reducing intromission frequency and ejaculation latency
(Albinsson et al., 1996; McIntosh and Barfield, 1984).
Selective degeneration of serotonergic fibres in the medial
forebrain bundle by local injection of the serotonergic
toxin 5,7-dihydroxytryptamine (5,7-DHT) led to an in-
creased percentage of rats ejaculating and a decreased
intromission frequency compared to sham-lesioned rats
(Rodriguez et al., 1984).
In these two pathways, the link between serotonergic

neurotransmission and ejaculation is evident. In many
other brain areas that are known to influence ejaculation, a
mediating role of serotonin is possible but not yet
demonstrated. Experiments using lesions (Kondo and
Yamanouchi, 1995; Liu et al., 1997b) or the staining of
Fos (Baum and Everitt, 1992; Coolen et al., 1997a, 1996;
Greco et al., 1996) in rats, gerbils and hamsters have
implicated the medial amygdala, the posterior medial bed
nucleus of the stria terminalis and the medial parvocellular
subparafascicular thalamic nucleus in ejaculation and the
post-ejaculatory interval, possibly via their reciprocal
connections with the MPOA (Coolen et al., 1998, 2003a;
Heeb and Yahr, 2001; Parfitt and Newman, 1998). These
areas contain some serotonergic fibres (Steinbusch, 1981)
that might play a role in the effects on ejaculation.
Furthermore, the nucleus accumbens, paraventricular

hypothalamic nucleus and arcuate hypothalamic nucleus
all receive serotonergic input (Casu et al., 2004; Larsen
et al., 1996; Steinbusch, 1981; Steinbusch and Nieuwen-
huys, 1981). The nucleus accumbens is thought to play a
role in sexual motivation and reward (Balfour et al., 2004),
and lesion of this nucleus disrupts ejaculation (Kippin
et al., 2004). The paraventricular hypothalamic nucleus
contains oxytocin that lowers the ejaculatory threshold
(Stoneham et al., 1985), and lesion of this nucleus increases
the ejaculatory threshold (Liu et al., 1997a). The arcuate
hypothalamic nucleus is connected with the MPOA, the
medial amygdala, the bed nucleus of the stria terminalis
and the paraventricular nucleus, and is thought to integrate
information about metabolism with reproductive activity
(Gottsch et al., 2004; Magoul et al., 1994). In conclusion,
the current understanding of the neuroanatomical associa-
tion between serotonin and the ejaculatory threshold is far
from complete and needs to be further investigated.

3. Serotonin levels

In the last four decades, many researchers have
demonstrated that pharmacological manipulations of
serotonergic neurotransmission markedly changed para-
meters of sexual behaviour, in particular the intromission
frequency and ejaculation latency.

3.1. Increased 5-HT levels

Since 5-HT does not cross the blood brain barrier, the
net effects of serotonin on the ejaculatory threshold have
been investigated using systemic injection of the 5-HT
precursor 5-hydroxytryptophan (5-HTP), which does cross
the blood brain barrier. 5-HTP has been found to increase
5-HT release from serotonergic neurons in the lateral
hypothalamic area and the lumbar spinal cord for as long
as three hours (Gartside et al., 1992; Kimura et al., 1983;
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Samathanam et al., 1989; Shimizu et al., 1992). Systemic
injection of 5-HTP increased the intromission frequency
and ejaculation latency in rats (Ahlenius and Larsson,
1984, 1985, 1991, 1998; Ahlenius et al., 1980; Fernandez-
Guasti and Rodriguez-Manzo, 1992), and mongrel dogs
treated with 5-HTP failed to ejaculate upon genital
stimulation (Kimura et al., 1977). Serotonin levels can
also be elevated throughout the central nervous system by
acute systemic administration of the 5-HT releasers para-
chloroamphetamine (p-CA) or fenfluramine (Gardier et al.,
1994; Schwartz et al., 1989; Series et al., 1994). This leads
to an increased ejaculation latency as well (Foreman et al.,
1992).

To avoid the blood brain barrier, 5-HT can be injected
directly into the brain or the cerebrospinal fluid. Local
injection of 5-HT into the nucleus accumbens, MPOA and
amygdala, as well as intracerebroventricular or intrathecal
injections, increased the intromission frequency and
ejaculation latency (Drago et al., 1999; Fernandez-Guasti
et al., 1992b; Hillegaart et al., 1991) or decreased the
percentage of rats that reached an ejaculation (Svensson
and Hansen, 1984; Verma et al., 1989). Thus, the elevation
of serotonin levels in many brain areas and the spinal cord
increases the ejaculatory threshold.

Conversely, local injection of 5-HT in low doses into the
dorsal or median raphe nuclei lowered the ejaculatory
threshold (Hillegaart et al., 1989), interpreted by assuming
that feedback systems, which inhibit cell firing and decrease
5-HT levels in projection areas, were activated (Pineyro
and Blier, 1999). However, injection of higher doses of
5-HT into the dorsal and median raphe nuclei had no effect
on ejaculation (Fernandez-Guasti et al., 1992a; Hillegaart
et al., 1989).

3.2. SSRIs

The selective serotonin reuptake inhibitors (SSRIs)
fluoxetine, paroxetine, fluvoxamine, citalopram and sertra-
line are widely used and effective antidepressants. They all
act similarly by blocking 5-HT transporters, thereby
preventing the reuptake of 5-HT from the synaptic cleft
into the presynaptic serotonergic neuron. This leads to
elevated extracellular 5-HT levels, as shown by micro-
dialysis studies following acute systemic administration of
fluoxetine (Bymaster et al., 2002; Felton et al., 2003;
Hervas and Artigas, 1998; Malagie et al., 1995), paroxetine
(Hajos-Korcsok et al., 2000; Malagie et al., 2000;
Nakayama, 2002), fluvoxamine (Ago et al., 2005; Bosker
et al., 1995; Denys et al., 2004), citalopram (Invernizzi
et al., 1995; Moret and Briley, 1996; Wegener et al., 2003;
Yoshitake et al., 2003) and sertraline (Sprouse et al., 1996;
Zhang et al., 2000).

Besides an increased activation of postsynaptic 5-HT
receptors, elevated 5-HT levels also turn on negative
feedback systems via serotonin autoreceptors, leading to
a reduced release of serotonin from nerve terminals. This
probably attenuates acute effects of SSRI treatment on
mood disorders. During chronic SSRI-treatment (3–4
weeks) 5-HT autoreceptors, especially 5-HT1A receptors,
become desensitized, and this has been proposed as one
means to enable the antidepressant effects to occur (Blier
et al., 1998; Elena Castro et al., 2003; Hensler, 2003;
Invernizzi et al., 1996; Le Poul et al., 2000; Newman et al.,
2004; Pineyro and Blier, 1999).
Treatment with SSRIs often causes sexual problems, of

which delayed ejaculation and the inability to ejaculate are
the most commonly reported (Gregorian et al., 2002;
Montgomery et al., 2002; Rosen et al., 1999). These side
effects are generally perceived as negative, but SSRI-
induced delayed ejaculation has turned out to be very
useful in the treatment of lifelong premature ejaculation
(Chia, 2002; Kara et al., 1996; Kim and Seo, 1998;
McMahon et al., 2004; Moreland and Makela, 2005;
Waldinger et al., 2004).
The use of the so-called intravaginal ejaculation latency

time (IELT), as measured with a stopwatch (Waldinger,
2003), has greatly increased the amount of objective data
on the effects of SSRIs on the ejaculatory threshold.
Interestingly, this method revealed marked differences
between SSRIs in their ability to delay ejaculation in
patients suffering from premature ejaculation: paroxetine
delayed ejaculation more strongly than the other SSRIs,
whereas citalopram and fluvoxamine affected ejaculation
much less (Waldinger et al., 1998b, 2001, 2004). In
addition, the effects of paroxetine and fluoxetine became
clinically relevant only after a few weeks of chronic
treatment and increased over time (Waldinger et al.,
1998b, 2001).
There have been some studies dealing with the effects of

SSRIs on sexual behaviour in rats. These studies often
failed to find a significant effect of acute systemic injection
of several SSRIs on the ejaculatory threshold (Ahlenius
et al., 1979; Ahlenius and Larsson, 1999; Cantor et al.,
1999; de Jong et al., 2005a, b; Mos et al., 1999), although
acutely administered fluoxetine or paroxetine sometimes
delayed ejaculation (Waldinger et al., 2002; Yells et al.,
1994), and acute local injection of the SSRI alaproclate
into the lateral hypothalamic area increased both local
serotonin levels and ejaculation latency (Lorrain et al.,
1997). Apparently, the ejaculatory threshold is somewhat
less sensitive to acute systemic injection of an SSRI
compared to acute systemic injection of 5-HTP, despite
their shared ability to elevate serotonin levels. This might
be explained by the difference in pharmacology between
the two drugs: 5-HTP increases 5-HT release, whereas
SSRIs prevent 5-HT reuptake. However, a direct compar-
ison between the two compounds on 5-HT levels in brain
areas relevant for ejaculation has not yet been performed.
Delayed ejaculation reliably occurs in rats in response to

chronic treatment with paroxetine or fluoxetine (de Jong
et al., 2005b; Vega et al., 1998; Waldinger et al., 2002), but
less so or not at all in response to citalopram or
fluvoxamine (de Jong et al., 2005a, b; Waldinger et al.,
2002), which resembles the situation in humans (Waldinger
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et al., 1998b, 2001). The difference between acute and
chronic treatment suggests that desensitization mechanisms
may play a role in the effects of paroxetine and fluoxetine
on ejaculation. In addition, the lack of effects of
fluvoxamine and citalopram indicate that these desensitiza-
tion mechanisms vary from one SSRI to another. More
evidence in that direction is discussed in the paragraph
about 5-HT1A receptors.

3.3. 5-HT depletion

Multiple systemic injections of para-chlorophenylalanine
(p-CPA), which strongly depletes 5-HT in the central
nervous system (Kimura et al., 1977; Qureshi et al., 1989),
decreased the ejaculation latency (Ahlenius et al., 1971;
Dahlof and Larsson, 1979; Gessa and Tagliamonte, 1974;
Qureshi et al., 1989; Salis and Dewsbury, 1971; Yama-
nouchi and Kakeyama, 1992) and intromission frequency
(Fernandez-Guasti and Escalante, 1991) and increased the
ejaculation frequency (Tsutsui et al., 1994; Yamanouchi
and Kakeyama, 1992). Intracerebroventricular injection of
5,7-DHT, which decreased serotonin levels in the hypotha-
lamus, brainstem and spinal cord, enabled the urethrogen-
ital reflex to occur upon urethral distension in intact rats. A
similar result was found when 5,7-DHT was injected
intrathecally, which decreased serotonin levels only in the
spinal cord (Marson and McKenna, 1994a). Taken
together, a decrease in serotonin levels in the spinal cord
and supraspinal areas lowers the ejaculatory threshold.

3.4. Serotonin receptors

The abundant evidence that serotonin is involved in the
mechanisms mediating the ejaculatory threshold encour-
aged researchers to determine which serotonin receptors
contribute to this process. The increasing availability of
selective serotonin receptor agonists and antagonists
greatly advanced the knowledge about the roles of specific
receptor subtypes. So far, 5-HT1A, 5-HT1B and 5-HT2C

receptors are the only serotonin receptor subtypes that
have been shown to affect the ejaculatory threshold. All
three receptor subtypes are located in the thoracolumbar
IML, the lumbar dorsal commissural grey and laminae 7
and 10, the lumbosacral dorsal and ventral horns and the
SPN (Bancila et al., 1999; Fonseca et al., 2001; Thor et al.,
1993), indicating that serotonin may modulate the ejacu-
latory threshold directly via these receptors in the spinal
cord. In addition, the presence of these 5-HT receptor
subtypes in supraspinal areas involved in ejaculation may
play a role as well.

3.5. 5-HT1A receptors

5-HT1A receptors are positioned presynaptically on the
soma and dendrites of serotonergic neurons as well as
postsynaptically on neurons containing a wide variety of
neurotransmitters (Barnes and Sharp, 1999). Activation of
somatodendritic 5-HT1A autoreceptors leads to a potent
inhibition of the firing frequency of serotonergic neurons
(Hajos et al., 1999), constituting a negative feedback
system through inhibition of 5-HT release in projection
areas (Hjorth and Sharp, 1991; Pineyro and Blier, 1999).
Activation of postsynaptic 5-HT1A heteroreceptors can
lead to a wide variety of actions, depending on the
electrophysiological properties, projection areas and neu-
rotransmitters used by the postsynaptic neuron.
The staining of 5-HT1A receptor proteins or mRNA has

shown that these receptors are located in the raphe nuclei
(Kia et al., 1996; Li et al., 1997a; Pompeiano et al., 1992;
Wright et al., 1995) and the nucleus paragigantocellularis
(Helke et al., 1997; Kia et al., 1996; Pompeiano et al.,
1992), where they probably act as autoreceptors on
serotonergic neurons. Postsynaptic 5-HT1A receptors are
distributed throughout the brain, including nuclei impli-
cated in ejaculation such as the MPOA (Aznar et al., 2003;
Pompeiano et al., 1992), lateral hypothalamic area (Collin
et al., 2002; Kia et al., 1996; Li et al., 1997a), medial
amygdala (Aznar et al., 2003; Li et al., 1997a; Pompeiano
et al., 1992), bed nucleus of the stria terminalis (Kia et al.,
1996; Pompeiano et al., 1992), nucleus accumbens (Aznar
et al., 2003; Wright et al., 1995), paraventricular hypotha-
lamic nucleus (Collin et al., 2002; Li et al., 1997a; Zhang et
al., 2004) and arcuate hypothalamic nucleus (Aznar et al.,
2003; Collin et al., 2002).
Selective activation of 5-HT1A receptors has a remark-

ably strong effect on the ejaculatory threshold. The first
report that systemic administration of the 5-HT1A receptor
agonist 8-OH-DPAT reduced the intromission frequency
and ejaculation latency was published in 1981 (Ahlenius
et al., 1981), and this finding has been reproduced many
times (Ahlenius and Larsson, 1984; Coolen et al., 1997b;
Fernandez-Guasti and Rodriguez-Manzo, 1997; Mendel-
son and Gorzalka, 1986; Morali and Larsson, 1984;
Rehman et al., 1999; Schnur et al., 1989; Sura et al.,
2001). Although 8-OH-DPAT has considerable affinity for
the 5-HT7 receptor (Bard et al., 1993; Neumaier et al.,
2001), the findings that systemic injection of other 5-HT1A

receptor agonists had similar effects on ejaculation
(Ahlenius and Larsson, 1991; Andersson and Larsson,
1994; Haensel and Slob, 1997; Mathes et al., 1990) and that
these effects could be reversed completely by systemic
injection of selective 5-HT1A receptor antagonists (Ahle-
nius and Larsson, 1998; Hillegaart and Ahlenius, 1998)
indicate that 5-HT1A receptor activation is responsible for
the lowering of the ejaculatory threshold.
The somewhat puzzling opposite effects of 5-HT itself,

which is the natural ligand of 5-HT1A receptors, versus
5-HT1A receptor agonists on the ejaculatory threshold
might be explained by their activation of somatodendritic
5-HT1A autoreceptors, which causes a reduction of 5-HT
levels in projection areas and thus mimics the effects of
serotonin depletion (Hjorth and Sharp, 1991; Hughes et al.,
2005; Invernizzi et al., 1995, 1996). Indeed, micro-injection
of 8-OH-DPAT into the median raphe nucleus reduced the
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ejaculation latency and intromission frequency (Hillegaart
et al., 1991), although a similar injection into the dorsal
raphe nucleus failed to affect sexual behaviour (Fernandez-
Guasti et al., 1992b; Hillegaart et al., 1991).

On the other hand, the reduction of intromission
frequency and ejaculation latency following depletion of
5-HT levels by systemic injection of p-CPA or intracer-
ebroventricular injection of 5,7 DHT was further decreased
by systemic administration of 8-OH-DPAT (Fernandez-
Guasti and Escalante, 1991), suggesting that both pre- and
postsynaptic 5-HT1A receptors are involved in the lowering
of the ejaculatory threshold. In addition, intrathecal
injection of 5-HT1A receptor agonists strongly reduced
the intromission frequency and ejaculation latency (Lee et
al., 1990; Mathes et al., 1990; Svensson and Hansen, 1984).
Since the spinal cord contains neither serotonergic cell
bodies nor 5-HT1A autoreceptors, spinal postsynaptic
5-HT1A receptors probably mediated these effects. More-
over, micro-injection of 5-HT1A receptor agonists in the
nucleus accumbens and MPOA lowered the ejaculatory
threshold as well (Fernandez-Guasti et al., 1992b; Hille-
gaart et al., 1991; Matuszewich et al., 1999), suggesting an
additional role for supraspinal 5-HT1A receptors. How-
ever, the ability of 8-OH-DPAT to increase dopamine
levels (Gobert et al., 1998) and bind to D2 receptors
(Rinken et al., 1999) might mediate some of the effects on
ejaculation in these areas. Indeed, local injection of 8-OH-
DPAT in the MPOA led to increased dopamine levels in
that area (Lorrain et al., 1998) and a lowering of the
ejaculatory threshold that could be reversed by a D2
receptor antagonist, but not a 5-HT1A receptor antagonist
(Matuszewich et al., 1999). It should be noted here that, in
contrast to systemic injection, local injection with 8-OH-
DPAT increased serotonin levels in the MPOA (Lorrain et
al., 1998). This finding indicates that elevated serotonin
levels in the MPOA do not always coincide with an
increased ejaculatory threshold. Possibly, the simulta-
neously elevated dopamine levels and increased D2
receptor activation acted as compensatory mechanisms in
this particular situation.

The effects of 5-HT1A receptor agonists on the ejaculatory
threshold are not universal. Systemic injection of 8-OH-
DPAT inhibits ejaculation in mice (Rodriguez-Manzo et al.,
2002), rabbits (Paredes et al., 2000), dogs (Yonezawa et al.,
2004) and ferrets (Paredes et al., 1994), and either lowers or
elevates the ejaculatory threshold in rhesus monkeys,
depending on dose (Pomerantz et al., 1993b). Since 5-HT1A

autoreceptors probably have the same location and function
in different mammalian species (Price et al., 1996), a
difference in distribution of postsynaptic 5-HT1A receptors
in brain and spinal cord areas might explain this 8-OH-
DPAT induced elevation of the ejaculatory threshold.

Interestingly, systemic injection of the selective 5-HT1A

receptor antagonist WAY-100635 does not increase the
ejaculatory threshold by itself, indicating that activation of
5-HT1A receptors is not necessary to reach ejaculation
during normal copulation (Ahlenius and Larsson, 1998; de
Jong et al., 2005a). However, WAY-100635 strongly
enhances the increased ejaculatory threshold induced by
5-HTP (Ahlenius and Larsson, 1998) or acute SSRI-
treatment (Ahlenius and Larsson, 1999; de Jong et al.,
2005a; Looney et al., 2005). This could be mediated by the
blockade of 5-HT1A autoreceptors that normally limit the
increase in 5-HT levels induced by 5-HTP or SSRIs, or
blockade of postsynaptic 5-HT1A receptors that lower the
ejaculatory threshold via the activation, disinhibition or
perhaps inhibition of neurons in brain and spinal cord
areas involved in ejaculation.
These findings imply that 5-HT1A receptor activation

becomes increasingly important to reach the ejaculatory
threshold when serotonin levels are elevated, and that a
combination of elevated serotonin levels and impaired
5-HT1A receptor functioning strongly inhibits ejaculation.
This might underlie SSRI-induced delayed ejaculation,
since chronic treatment with the SSRI paroxetine, which
delays ejaculation, reduced the facilitation of ejaculation
induced by 8-OH-DPAT in rats (de Jong et al., 2005b),
probably through 5-HT1A receptor desensitization (Le
Poul et al., 1995; Li et al., 1997b). Chronic treatment with
fluvoxamine, an SSRI that has no sexual side effects in
humans, failed to delay ejaculation and to reduce the
effects of 8-OH-DPAT on ejaculation in rats (de Jong
et al., 2005b). Further research might elucidate whether
desensitization of pre- or postsynaptic 5-HT1A receptors
plays a role in SSRI-induced delayed ejaculation.

3.6. 5-HT1B receptors

5-HT1B receptors are located on pre- and postsynaptic
axon terminals, where they act as autoreceptors and inhibit
serotonin release (Barnes and Sharp, 1999; Raymond et al.,
2001; Sari, 2004) or as heteroreceptors by inhibiting the
release of various neurotransmitters (Clark and Neumaier,
2001; Sari, 2004). 5-HT1B receptors are found in the raphe
nuclei, lateral hypothalamic area, bed nucleus of the stria
terminalis, nucleus accumbens, paraventricular hypothala-
mic nucleus and arcuate hypothalamic area (Makarenko et
al., 2002; Neumaier et al., 1996).
Systemic injection of the selective 5-HT1B receptor

agonist anpirtoline elevated the ejaculatory threshold by
increasing the ejaculation latency and intromission fre-
quency, which could be reversed by several 5-HT1B

receptor antagonists (Hillegaart and Ahlenius, 1998). In
addition, systemic injection of the mixed 5-HT1B/2C
receptor agonist N-[3-(trifluoromethyl)phenyl] piperazine
(TFMPP) strongly reduced the percentage of rats ejaculat-
ing (Fernandez-Guasti et al., 1989), and local injection of
TFMPP in the nucleus accumbens or MPOA increased the
ejaculation latency (Fernandez-Guasti et al., 1992b).
However, since 5-HT1B receptors have not been found in
the MPOA, these effects might have been mediated partly
by 5-HT2C receptors.
The elevation of the ejaculatory threshold by systemic

injection of 5-HTP could be reversed by the 5-HT1B



ARTICLE IN PRESS
T.R. de Jong et al. / Neuroscience and Biobehavioral Reviews 30 (2006) 893–907900
receptor antagonist isamoltane (Ahlenius and Larsson,
1998), indicating that 5-HT1B receptors mediate the
inhibition of ejaculation induced by serotonin. However,
systemic injection of 5-HT1B receptor antagonists did not
affect or very weakly facilitated ejaculation (Ahlenius and
Larsson, 1998; Hillegaart and Ahlenius, 1998), indicating
that during normal copulation the ejaculatory threshold is
not maintained solely by 5-HT1B receptor activation. In
addition, the ejaculatory threshold is increased in 5-HT1B

knockout mice compared to wild type mice, indicating that
the absence of 5-HT1B receptors does not facilitate
ejaculation in mice.

Possible mechanisms by which 5-HT1B receptors inhibit
ejaculation have not yet been demonstrated. A role of
5-HT1B autoreceptors seems unlikely, since these receptors
cause a reduction of serotonin release that would be
expected to lower the ejaculatory threshold. 5-HT1B

heteroreceptor activation possibly inhibits the release of
neurotransmitters that facilitate ejaculation, such as
acetylcholine (Duran et al., 2000; Sarhan and Fillion,
1999), glutamate (Chambille and Rampin, 2002; Powell
et al., 2003; Sari, 2004) or perhaps galanin (Coolen et al.,
2004a), in brain and spinal cord areas involved in the
ejaculatory threshold.

3.7. 5-HT2C receptors

5-HT2C receptors are found on postsynaptic dendrites
where they generally cause cell excitation. They have not
been implicated in autoregulatory feedback mechanisms
(Barnes and Sharp, 1999). 5-HT2C receptors are widely
distributed in the central nervous system, including the
raphe nuclei, MPOA, medial amygdala, bed nucleus of the
stria terminalis, nucleus accumbens and arcuate hypotha-
lamic nucleus (Abramowski et al., 1995; Clemett et al.,
2000).

Systemic injection of the non-selective 5-HT2 receptor
agonist [+/�]-2,5-dimethoxy-4-iodoamphetamine (DOI)
strongly decreased the percentage of rats ejaculating and
increased the ejaculation latency, which could be reversed
by several 5-HT2 receptor antagonists (Foreman et al.,
1989; Klint et al., 1992; Klint and Larsson, 1995; Watson
and Gorzalka, 1991). Systemic administration of the
5-HT2C agonist m-CPP produced a dose-dependent decline
in the percent of rats and male rhesus monkeys achieving
ejaculation (Mendelson and Gorzalka, 1990; Pomerantz
et al., 1993a).

The elevation of the ejaculatory threshold induced by
systemic injection of the serotonin-releasers p-CA and
fenfluramine could be prevented by pre-treatment with the
5-HT2 receptor antagonist LY53857 (Foreman et al.,
1992), whereas the increased ejaculation latency induced
by 5-HTP could not be reversed by the 5-HT2 receptor
antagonist ritanserin (Ahlenius and Larsson, 1998). Sys-
temic injection of the 5-HT2 receptor antagonist LY53857
reduced the ejaculation latency (Foreman et al., 1989),
whereas ritanserin had no such effect (Watson and
Gorzalka, 1991). Possibly, yet unknown differences in the
neuropharmacological properties of these antagonists
could explain the differences in their effect on the
ejaculatory threshold.
So far, there are no reports on the possible mechanisms

by which 5-HT2C receptor activation elevates the ejacula-
tory threshold. The presence of 5-HT2C receptors in many
spinal and supraspinal areas involved in ejaculation
indicates numerous options that should be investigated
extensively.

4. Ex copula ejaculation

Some studies on the effect of 5-HT on the ejaculatory
threshold used the occurrence of spontaneous, ex copula
ejaculations as a model. These seminal emissions are not
dependent on genital stimulation and can be evoked by the
injection of the 5-HT releaser p-CA (Humphries et al.,
1981; Renyi, 1985; Yonezawa et al., 2000) or the non-
selective 5-HT receptor agonist Me-ODMT (Mas et al.,
1985), which respectively increase (Foreman et al., 1992) or
decrease (Ahlenius and Larsson, 1991; Fernandez-Guasti
et al., 1986) the ejaculatory threshold during copulation.
Serotonin depletion induced by p-CPA, which by itself did
not affect spontaneous ejaculation (Humphries et al.,
1981), prevented the ex copula ejaculations caused by
p-CA (Renyi, 1985; Yonezawa et al., 2000). The effects of
p-CA and 5-MeODMT on spontaneous ejaculation could
not be reversed by thoracic spinal transection (Mas et al.,
1985; Yonezawa et al., 2000). These results suggest that
activation of spinal serotonin receptors can directly
activate the motor neurons involved in seminal emission.
5-HT1A receptors seem likely candidates, but both systemic
and intrathecal injection of 8-OH-DPAT (Lee et al., 1990;
Rehman et al., 1999; Schnur et al., 1989) and buspirone
(Mathes et al., 1990; Rehman et al., 1999), which strongly
decrease the ejaculatory threshold in copula, inhibited
spontaneous ex copula ejaculations. Although intracereb-
roventricular injection of 8-OH-DPAT induced rythmic
contractions of the bulbospongiosus muscle, which is one
aspect of ejaculation, this effect was probably mediated by
D2 receptors (Clement et al., 2005). Taken together, these
data indicate that the occurrence of spontaneous ex copula
ejaculations is not representative of the situation during
copulation, and should be used with great care as a model
for the ejaculatory threshold.

5. Summary

Neuroanatomical studies have shown that there are at
least two serotonergic pathways involved in the ejaculatory
threshold. The tonic release of serotonin in the lumbosacral
spinal cord originating from neurons in the nPGi inhibits
ejaculation until sensory input overrules this tonic inhibi-
tion. Serotonin release in response to ejaculation in the
anterior lateral hypothalamic area, and perhaps the medial
amygdala and medial bed nucleus of the stria terminalis,
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mediates the inhibition of copulation during the post-
ejaculatory interval.

Psychopharmacological experiments revealed that injec-
tion of drugs that increase 5-HT levels in the central
nervous system, including the lumbosacral spinal cord,
lateral hypothalamic area, MPOA, amygdala and nucleus
accumbens, elevates the ejaculatory threshold. 5-HT1B and
5-HT2C receptors possibly mediate this, because activation
of these receptors inhibits ejaculation whereas their
blockade prevents the inhibition of ejaculation by elevated
serotonin levels.

Depletion of 5-HT in the central nervous system
decreases the ejaculatory threshold. This might occur
naturally during copulation, when pheromonal and genital
stimulation are thought to trigger the MPOA to inhibit the
serotonergic cell firing in the nPGi, which reduces
serotonin release in the lumbosacral spinal cord. Reduced
activation of inhibitory postsynaptic 5-HT1B and/or
5-HT2C receptors in the lumbosacral spinal cord might be
responsible for the facilitation of ejaculation following
5-HT depletion, although systemic injection of 5-HT1B or
5-HT2C receptor antagonists alone do not consistently
lower the ejaculatory threshold.

The role of 5-HT1A receptors in the ejaculatory threshold
is somewhat more complicated. Activation of 5-HT1A

receptors strongly lowers the ejaculatory threshold, and
this is thought to be mediated by both reduction of 5-HT
levels via 5-HT1A autoreceptors and yet unknown effects of
spinal or supraspinal postsynaptic 5-HT1A receptors.
Although 5-HT1A receptors are not necessary for ejacula-
tion during normal copulation, their activation becomes
crucial for ejaculation when serotonin levels are elevated.
Since serotonin levels can fluctuate under many circum-
stances, it is possible that this mechanism developed to
favour successful copulation when serotonin levels are
increased.

6. Further research

Although much information has been gathered by either
neuroanatomical studies or psychopharmacological experi-
ments, the constructive combination of both fields of
science is needed to improve the knowledge of the effects of
serotonin on the ejaculatory threshold.

For example, the neuropharmacology of serotonergic
neurons in the nPGi involved in the ejaculatory threshold is
barely known. It is unclear what triggers the firing of these
neurons and what their electrophysiological properties are,
and whether they contain 5-HT1A/1B autoreceptors on their
soma or axon terminals. Moreover, it is unknown whether
the serotonergic neurons in the nPGi make direct or
indirect functional contact with the LSt cells. Interestingly,
serotonergic neurons in the nPGi and serotonergic fibres in
the lumbosacral spinal cord co-express substance P
(Hokfelt et al., 2000; Maxwell et al., 1996), a neurotrans-
mitter that binds to neurokinin-1 receptors, which are
abundantly present on the LSt cells (Truitt and Coolen,
2002). Substance P has been found to lower the ejaculatory
threshold when micro-injected in the medial preoptic/
anterior hypothalamic area (Dornan and Malsbury, 1989).
Further research to investigate the functional consequences
of this co-expression is required.
It is not yet understood how serotonin influences the

ejaculatory threshold in supraspinal areas. Inhibition of
dopaminergic neurotransmission might play a role, since
dopamine release in the MPOA mediated by the medial
amygdala (Dominguez et al., 2001), and in the nucleus
accumbens mediated by the lateral hypothalamic area
(Lorrain et al., 1999), strongly facilitate ejaculation (Hull
et al., 2004). Experiments investigating how serotonin
decreases dopamine release in these areas are required.
There are surprisingly few data on the exact role of

5-HT1B and 5-HT2C receptors on the ejaculatory threshold.
The existence of more selective receptor agonists and
antagonists and the improved techniques to make local
injections enable innovative experiments on this subject. In
addition, the use of knockout mice or creation of knockout
rats that lack the 5-HT1A, 5-HT1B or 5-HT2C receptor
could further elucidate the role of serotonin on the
ejaculatory threshold.
Ultimately, new findings in all these directions might

help to design drugs that elevate the ejaculatory threshold
in men suffering from lifelong premature ejaculation, or
perhaps relieve other ejaculatory disorders.
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