
Verifying Norm Compliancy of Protocols?

Huib Aldewereld, Javier Vázquez-Salceda, Frank Dignum, and John-Jules Ch. Meyer

Institute of Information and Computing Sciences
Utrecht University

{huib, javier, dignum, jj}@cs.uu.nl

Abstract. There is a wide agreement on the use of norms in order to specify
the expected behaviour of agents in open MAS. However, in highly regulated
domains, where norms dictate what can and cannot be done, it can be hard to
determine whether a desired goal can actually be achieved without violating the
norms. To help the agents in this process, agents can make use of predefined
(knowledge-based) protocols, which are designed to help reach a goal without
violating any of the norms. But how can we guarantee that these protocols are
actually norm-compliant? Can these protocols really realise results without vio-
lating the norms? In this paper we introduce a formal method, based on program
verification, for checking the norm compliance of (knowledge-based) protocols.

1 Introduction

Agents in open multiagent systems are sometimes as diverse as humans, as heteroge-
neous agents may behave in different ways in trying to complete their specified tasks.
As some of this behaviour might not be desired, one needs mechanisms to constrain
the behaviour of the agents joining the system by defining what is right and wrong. By
doing so one can guarantee a safe and regulated environment for the agents to work in.

An Electronic Institution (eInstitution) is such an environment, where the expected
behaviour of the agents joining the institution is described by means of an explicit
specification of norms [8] [20]. As in human institutions, norms in eInstitutions are
stated in such a form that allows them to regulate a wide range of situations over time
without the need for modification. To achieve this stability, the formulation of norms
abstracts from a variety of concrete aspects [9] [20]; i.e., norms are expressed in terms
of concepts that are kept vague and ambiguous on purpose [11].

Because of their abstract nature, norms tend to be hard to understand and, as in real
life, adhering to the norms that regulate the institution of which you are a part can be, at
the least, a bit challenging. It is not unlikely that in highly regulated systems agents (and
humans alike) might become overly cautious, trying not to violate any of the norms and
thereby seriously reducing their efficiency and even influence the outcome and success
of their goals, i.e., desired results, that are possible to achieve, might not be achieved
anymore because the agent believes that performing the actions leading to the desired
result could be violating the norms. In order to help agents act in such an environment
and increase their efficiency as well as their chance of success one can specify norm-
compliant protocols for the tasks that are to be accomplished in the institution.

? This paper is part of research done for the NWO/ToKeN project AA.

A norm-compliant protocol is a guideline that makes sure that, when followed, one
does not violate any of the norms, and as such it provides a quick and efficient manner
to do the tasks one is assigned, since one does not need to review the norms and check
norm compliance whenever one is planning to perform an action. In order to guarantee
this the protocol should be checked for norm compliance, which means that one should
check that no norms are violated by the protocol during its execution in all situations,
i.e. the norm compliance of the protocol should not depend on the state of the world.
Therefore, the protocol should provide a violation-free path to achieve the agent’s goals.
As long as the protocol is followed to the letter the agent should stay out of harm’s way.

In this paper we present a formal method for checking the norm compliance of
protocols based on temporal logic, using an approach used in concurrent programming
[12]. We have chosen this approach over traditional techniques for verifying (sequen-
tial) programs, because verification methods for concurrent programs and temporal log-
ics allow us to see whether norms are violated in intermediate steps as well, where
traditional techniques are only for checking the input and output of a program. The for-
malism of [12] is, however, limited to checking properties and assertions for concurrent
programs, not for checking norm compliance. Therefore we enhanced the formalism
with the means to express norms and violations and prove the non-violating of these
norms by the protocol. Some of the additions to the formalism from [12] are mentioned
in the following sections.

The outline of this paper is as follows. We start by a discussion of the work done
in field norms and agents. Then, in §3, we present the formal framework and explain
some of the difficulties one will encounter when formalising protocols and norms. In
§4 we show how the formalism works on an example protocol taken from the medical
domain. We end this paper with some conclusions and propose some future work.

The example problem that we are going to use throughout this paper is a real-life
protocol that describes which steps should be taken by a doctor to determine whether
he can extract the organs of a donor or not (for the use of transplantation). A simplified
version of this protocol is included in figure 1. We are using this real-life protocol
because of the complexity of the norms applicable to the domain. We feel that if the
formalism is able to express and handle such norms, it can be applied to all sorts of
normative domains. Also, although it is not feasible to have agents performing the tasks
mentioned in this example protocol, protocols that are designed for use by agents are of
similar structure and complexity. And even though this protocol is knowledge-based1,
the method we present in this paper can be applied to other sorts of protocols as well.

2 Related Work

In those situations where agents might deviate from expected behaviour to fulfil their
own goals, a multi-agent system needs mechanisms to defend and recommend right
and wrong behaviour, along with safe environments to support those mechanisms. As
we mentioned in §1, in eInstitutions expected behaviour is defined by means of norms.

1 Knowledge-based protocols depend on the knowledge of the agent to decide which action is
to be performed next, which results in a change of knowledge. The goal of such protocols is to
determine whether something is known by the agent at the end of the protocol’s execution.

Check criteria and
contra-indications

Deceased

Potential donor?

Consult donor register

Registered?

Permission?

Other
statement of intent?

Inform relatives

Non-natural death?

Ask relatives

Permission?

No donation Report donor at
transplant coordinator

through
Eurotransplant,

Report to
local

coroner

Permission of
district attorney?

No donation

Donation

Fill in donor form

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes
Yes

Fig. 1. Protocol for organ donation.

But providing agents with a set of norms is not enough; an eInstitution should also
ensure norm compliance.

In literature, there are two approaches for norm compliance from the individual
agent perspective:

– agents that always obey norms [3] [17]
– agents that autonomously decide to obey norms [2] [4] [6] [13] [20].

The former ensures norm compliance by default and it is used in those domains where
total control of the agent behaviour is needed, but issues on the conflict between the
agent goals and the norms should be solved. The latter allows the design of dynamic
systems where agents are able to join a society while satisfying their own goals. The
conflict between the agents’ goals and the norms controlling its behaviour is handled
explicitly in the reasoning process of the agent. In [13], autonomous norm compliance
is divided in two separate processes: a) a process to deliberate about whether to comply
with a norm (the norm deliberation process), and b) a process to update the goals and
intentions of agents accordingly (the norm compliance process).

In those systems where autonomous norm compliance is allowed from the agent
perspective, there is a need to enforce to some extent the compliance of norms from the
social perspective. In [13] there is no direct enforcement on norm compliance, but influ-
enced norm compliance, where behaviour of other agents against the non-compliance

of a norm influences the decision of each agent. In [19] a more direct approach is taken:
the agent platform hosting the eInstitution provides time-efficient services to help a spe-
cial type of agents (the Police Agents) to enforce proper behaviour. As Police Agents
cannot see or control the internal mental states and the reasoning process of the other
agents, norm enforcement is based on the detection of violation situations in terms of
(public) messages and (visible) actions.

The use of protocols to ease agent interaction (as discussed in §1) adds an extra level
between the norms and the agent behaviour.In this case norm compliance is divided into
two different levels:

– norm compliance of the protocol: to ensure that a given protocol adheres to the
norms defined in a context. If the protocol is norm-compliant, following the proto-
col ensures that the agent(s) will not violate the norms.

– protocol compliance by the agent: to check that the behaviour of an agent complies
with the expected behaviour defined by the protocol [21].

The former is the focus of this paper (see §3.3 and §4), as it is usually overlooked
in other works. The latter (protocol compliance) has been studied both in theoretical
and practical approaches. In [21] a formal framework for commitment protocols is pre-
sented. Verification in this case is an external process and therefore it cannot use the
internal knowledge of the agents, only the (observable) behaviour. In [7] protocol com-
pliance is handled by means of interaction scripts that are explicitly accepted by the
agents through interaction contracts. Each contract includes the interacting agents, the
roles they are playing, the contract clauses and the protocol. Verification of protocol
compliance is an optional clause in the contract that, if included, specifies who and how
will verify the interaction and the actions to take if the protocol is not followed. In [8]
interaction protocols are structured in a performative structure. Although agents can
decide not to follow the protocol (there is no direct control of the agent platform over
the agents’ beliefs and desires), there is an intermediate actor, the governor, that filters
any non-allowed message that the agent tries to send to the eInstitution and is not al-
lowed. Therefore protocol compliance is ensured by filtering those messages that, for a
given state of the interaction, are not included in the protocol as possible messages to be
uttered. However, in none of these works there is a method to ensure that the protocols
are norm-compliant.

3 Our Approach

In this section we will set out the steps of the verification process necessary for checking
the norm compliance of protocols. While discussing these steps we will also focus on
some interesting aspects and problems that one can encounter.

3.1 Formalising the Protocol

First, we start with formalising the protocol that we want to check. Since protocols are
very similar to programs we have based our protocol checking formalism on the for-
mal verification methods designed for parallel programs taken from [12]. This program

verification method uses first-order linear-time temporal logic (LTL) to express how
programs change the world over time, and uses this logic to prove that certain specified
properties of a program hold (e.g., deadlock freedom, mutual exclusion, termination,
etc.). In this paper we will not go into an elaborate syntactical and semantical definition
of the language used and will only give the informal interpretations of the operators.
The proper definitions of the operators can be found in [1].

The protocol we want to verify is translated into a program using a syntax con-
taining among others variable assignments, if − then − else − fi and while − do − od
statements, with the conditions of these statements being formulas of a classical first-
order predicate logic LP. For ease of reference all statements are labelled, with the
labels being unique throughout a program, i.e., no two labels occurring in a program
are equal. Using this we can formalise the example-protocol from figure 1 as follows
(because of space limitations we only include the part of the protocol necessary for the
proof we provide in §4, the complete version can be found in [1]):

Π= Initial R;

π0: 〈check criteria & contra-indications〉;
π1: if know criteria(d,y)∧know no contra-indication(d,y)

then π2 : know potential donor(d,y):=TRUE
else π3: know not potential donor(d,y):=TRUE
fi;

π4: if know potential donor(d,y)
then π5 : 〈consult donor register〉
fi;
...

π33: 〈fill donor form〉;
πe : stop

The logic used for verifying protocols consists of a classical first-order predicate
logic LP which is extended with # (next-state), � (always) and atnext (first time) oper-
ators to obtain a first-order linear-time temporal predicate logic LT P. Using these oper-
ators we can also derive the ♦ (sometime) and until operators. To reason about events in
the past, LT P is extended with past-time operators, which are discussed in the next sec-
tion (for formal semantics of LT P see [12] and [1]). The logic LT P is then expanded to
LT PΠ by adding the set of propositional variables at λ (which means that action labelled
λ is next to be executed), to link the protocol state to a state in the temporal model of
the logic. Therefore, although the protocol has actions, the logic, instead, only uses the
labels of the actions.

In order to prove that a protocol is norm-compliant in all situations that might
arise we need to check the protocol in various different models and see whether the
norm compliance holds. For instance, a protocol for obtaining donor organs needs to be
checked in models where the donor is male and in models where the donor is female to
determine that the protocol does not violate a norm about not discrimination between
donors based on sex, race, etc. Only if the protocol generates the desired and expected
result in both situations, we can say that the protocol does not violate that norm.

Since time is defined as semi-finite (it starts at the start of the protocol), protocols
cannot use information about previous runs and next runs (unless explicitly modelled).
If protocols Π1 and Π2 are run one after another (i.e., Π1;Π2), Π1 cannot use infor-
mation from or about Π2 and Π2 cannot use information from or about Π1; they are

considered as separate runs. This means that the value of program variables, truth val-
ues of predicates and states and information gathered is restricted to the runtime of the
protocol. Propositions and predicates can change their truth values during a protocol
run, however, but only because of actions taken in the protocol.

3.2 Formalising the Norms

The norms that apply to the domain in which we are checking the protocol are then
translated into a high-level formal language, which should provide enough room for the
formal representation of the norms to keep their abstract nature. We have used a formal-
ism similar to the one used in [19]. In order to be able to use these high-level formalised
norms in the checking of the protocols we needed to extend the first-order language
specified above with deontic concepts, Ox, Px, Fx, to express x being obliged, permitted
or prohibited some action, respectively. To give meaning to these deontic operators we
introduced special predicates to denote when violations occur. To handle the temporal
aspects of norms, such as deadlines, we used ideas from [5] and [7] and adapted these
to be used with the first-order temporal logic as specified above. Furthermore we have
extended our language with DOx λ (x is going to do λ next) to reason about actions and
�ϕ (past operator) and �ϕ (previous-state operator) to reason about the events that
have happened (such as actions that have been done: DONEx α ≡ �DOx α).

The deontic operators discussed above are introduced as abbreviations of complex
temporal formulas. Definition 1 shows the temporal translations of obligations in our
formalism (based on [7]).

Definition 1 (Obligations).

Ox(DOx α < δ) ≡ ♦δ∧
[

(¬δ∧¬viol(x,DOx α,δ)∧¬DONEx α) until

((DOx α ∧#(�¬viol(x,DOx α,δ)))∨

(¬DOx α∧#(δ∧ viol(x,DOx α,δ))))
]

Similar temporal translations are made for permissions and prohibitions (not included
here due to space constrains, see [1] for these definitions).

Norms applicable to the example mentioned in §1 are, for instance, obliging doc-
tors to talk to relatives for obtaining permission before extracting organs from a donor,
prohibiting the extraction of organs without the approval of the district attorney in case
of suspicion of a non-natural death , etc2. In §4 we prove that the protocol abides to the
norm that doctors are obliged to pronounce dead of a patient before removing an organ.

Permissions and Non-Permissions In theoretical deontic studies, such as [14], permis-
sions are normally modelled as Px(DOx α) ≡ DOx α→ ¬viol(x, α), which says that be-
ing permitted to do αmeans that doing α leads to non-violation. Moreover, permissions
are, in classic deontic studies, normally defined as being equivalent to ¬Fx(DOx α) and
¬Ox(¬DOx α). The problem with this definition, which is also discussed in deontic
studies (cf. [15]), is that it makes the existence of permissive norms nonessential when

2 A full set of norms is available in [1].

trying to determine whether violations occur. From observations of the legal domain,
and as already proposed in [15], it follows, however, that permissions can be considered
as exceptions to a general prohibition. The fact that an article in a law provides a certain
set of people in a certain situation with the permission to do α means that in other situ-
ations these people, or other people at all times, are prohibited to do α. Some lawbooks
even express this explicitly by means of an article that something is forbidden unless
stated otherwise within that lawbook. We model this relation between permissions by a
technique similar to negation as failure, as used in logic programming [18]; the inability
to derive that you are permitted to do α means that you are forbidden to do α:

∼ Px(DOx α)→ Fx(DOx α)

Of course, we could have opted for a relation in the other direction, i.e., ∼F x(DOx α)→
Px(DOx α) which means that if something is not explicitly forbidden it is permitted.
The choice between whether to use the first or the second relation entirely depends on
the nature of the norms one is trying to formalise, i.e., the choice is dependent on the
character of the legal system, thus whether it is permissive in nature or restrictive (see
[16] for a discussion on the character of legal systems).

Now, since we add the ∼ Px(DOx α) → Fx(DOx α) rule to our system to model
that permissions are exceptions to general prohibitions (where this general prohibition
might only follow from the characteristic nature of the law), we get into trouble if we
don’t assume that permissions follow from obligations (i.e., Ox(DOx α)→ Px(DOx α)).
This assumption is an axiom in most deontic systems, but we are reluctant to insert it
because we feel that in the real world this might not necessarily hold. It is, however, true
that a normative system is supposed to uphold this principle, i.e., normative systems
should be designed such that obligations to do α can actually be fulfilled, but this is
actually the ideal situation. When designing a normative system (thus, when laws are
postulated) it should be taken into account that obligations can be fulfilled. However, it
is not necessarily the case that this condition is always met in normative systems (due to
mistakes in designing the system). In the case presented in §4, however, we can safely
assume that this assumption has not been violated by the law-maker.

Linking Levels A problem that arises because of the high-level of abstraction for the
formalisation of norms is the mapping between the concepts in the norms and the ac-
tions specified by the protocols. In order for the norms to range over a wide variety of
situations, and in order to function for a long duration without the need of modifica-
tion, norms tend to abstract from a variety of concrete aspects, such as time, role, etc.
Therefore, in order to check whether certain concrete actions and situations contained
in the protocol violate a norm we need to map these concrete actions and situations to
the abstract actions and situations described by the norms. The mappings that we can
provide are generally considered to be one-way mappings, that is, a concrete action a
in a protocol can be considered to be an instance of an abstract action α mentioned
in the norms, but since there are many more actions conceivable that can be consid-
ered instances of α, we cannot say that a and α are equivalent; we can only say that
a is an instance of α, or that doing a counts as doing α (DOx a { DOx α). Although
this mapping problem seems to follow from our high-level formal language, it is also

present when using formalisms with a lower abstraction level (although implicit). The
explicit mapping that we need to make between the protocols and norms now is in such
a case taken care of when formalising the norms (by means of choosing the appropriate
concrete concepts in the formalisation of the norms). In this paper we use a simplified
version of the counts as as defined in [10].

3.3 Verifying Protocols

The next step of the process is the actual verification of the protocol. The formalism that
we have chosen allows us to specify properties that are verified by means of automated
reasoning. This means that we check the protocol in all sorts of different situations (that
apply to the protocol and norms) in order to check whether all situations guarantee the
norm compliance that we require.

In order to check the protocol on norm compliance we specify a safety property that
has to be derivable from the protocol. This safety property is an invariant, a formula that
should hold during the entire execution of the protocol. We define the safety property
for checking protocols as follows:

Definition 2 (Safety Property of Protocols).

startΠ ∧ �Norms → �¬violation

Where startΠ ≡ at α0 (the protocol is at its start label), Norms being the conjunction of
all applicable norms, and violation ≡

∨

x,α,δ viol(x, α, δ) (violation is the disjunction of
all viol-formulas that occur in Norms). This safety property of protocols is defined as
the global invariance of ¬violation for the protocol Π under the condition that Norms
always holds, i.e., if �Norms holds upon the start of running Π , then ¬violation will
hold in all states of the run.

To prove that a protocol satisfies this property we introduce the following rule:

Theorem 1 (Invariance Rule). The following rule is valid:

startΠ ∧ �Norms → ¬violation
¬violation invof M̄Π

startΠ ∧ �Norms → �¬violation

Where C invof α ≡ atα ∧ C → #C (C is an invariant of α) and C invof M ≡

C invof α1 ∧ . . . ∧ C invof αm (C is an invariant of every α ∈ M), and M̄Π is the
set of all labels in the program except for the label of stop, the end-statement. A proof
of this theorem can be found in [12]. This rule is also very close to the intuition one
might have about protocols being norm-compliant, namely if there are no steps in the
protocol that violate any norm, the protocol will not violate any of the norms as a whole
(if no violation existed when the protocol started running).

Of course, this is not the only property that a protocol needs to satisfy. Because law
is generally applicable to a single context, one who is not participating in the activities
of that context is not regulated by these laws; the laws mean nothing to someone not

trying to do anything regulated by that particular set of laws. For instance, traffic laws
have no influence on those who do not participate in traffic situations; if someone sits at
home all times, these laws will never be violated. The problem is that laws regulating a
specific domain assume that you are trying to do something or otherwise participate in
that domain, and only regulates these actions and participations.

While all protocols that satisfy the aforementioned safety property are compliant to
the norms, we would actually like to be able to say a bit more about the protocols we
are trying to verify. Since protocols that do satisfy the safety protocol, and thereby the
norm compliance, that merely consist of actions that are not regulated by the applicable
norms, are not that interesting to the agents interacting in the eInstitutions (e.g., al-
though skip∗ does satisfy almost all violation invariances, it is not very interesting from
an interaction or institution’s point of view). Therefore, we need to define another prop-
erty that allows us to determine whether a protocol is, next to being norm-compliant,
also trying to achieve something interesting. Norm-compliant protocols that are actu-
ally relevant to the domain not only satisfy the violation invariance property, but also a
liveness property. This sort of properties specify that a protocol/program will, at some-
time, reach a certain (interesting) state. We can use this to check whether the protocol
achieves a specified goal at the end of its run:

Definition 3 (Liveness Property of Protocols).

startΠ ∧ �Norms→ ♦(at αe ∧ goal)

Where at αe is the stop-statement of Π and goal is the goal that the protocol should
reach. In our example this is a complex declarative statement specifying that when the
conditions hold (i.e., the donation should ideally take place), the agent/doctor running
the protocol will know that the donation can take place, and when one of the conditions
for the donation fails, the agent/doctor knows that the donation cannot take place.

4 Practice

Now that we have seen a description of the approach we are using to verify the norm
compliance, we show in this section how this approach is to be used. We show this by
using the example protocol mentioned above in figure 1. To ensure the norm compliance
of this protocol we need to check whether the safety and liveness properties, as specified
before, are satisfied. Although it is possible to give a fully formal proof we will only
show the first steps due to space limitations. In this proof we assume that y denotes
the patient with respect to whom the protocol is run, d denotes the doctor running the
protocol and d′ is a doctor-variable (denoting a unspecified doctor).

For the invariance proof, i.e. proving that ¬violation is an invariant of the proto-
col, we make use of the invariance rule as mentioned in theorem 1. We assume that
startΠ ∧ �Norms → ¬violation holds (1) and will try to prove that ¬violation is an
invariance of every following step of the protocol, thereby deriving that ¬violation is
an invariant of the protocol. We can make this assumption because we are not interested
in the situations where this assumption does not hold, such as the situation in which the
protocol is started when a violation has already occurred, since starting the protocol in

such a situation would say nothing about the norm compliance of the protocol, only that
it cannot “repair” the situation it started in.

Note that we only need to check the actions taken by the protocol, since the “control
points” used in the protocol (i.e. protocol labels referring to conditions of if-clauses)
are trivially norm-compliant since they do not change the value of any viol-predicate
(actually, the action that is thereafter chosen shows whether the decision made at the
control point was correct). This is expressed in step (3).

(1) startΠ∧�Norms→¬violation assumption
(2) startΠ→(at π0∧intented(organ removal)) definition of startΠ
(3) ¬violation invof M̄Π \{π0,π5,π7,π9,π14,π16,π21,π23,π24,π26,π33} Trivial

Next we prove that step π0 of the protocol (checking whether the patient satisfies
the criteria and none of the contra-indications for being a donor) is norm-compliant.
The only norm in the law concerning this actions is the fact that doctors are supposed
to check whether a patient is brain death before removing any organs, of which the
translation is seen in step (5). In order to use this deontic expression for determining
whether violations occur, we need to “expand” the norm in (5) to its temporal coun-
terpart by using the definition 1 seen earlier, as seen in (6). Now, since we can derive
from the structure of the protocol that DOd′ remove organ(d′, y) has not yet occurred,
or is occurring now (7), we can derive that the value of V1 will not be changed by
DOd certi f y dead(d, y), shown in (8) and (10). Finally, after connecting the abstract
norm level to the protocol level using (4) to derive (11), remembering the fact that obli-
gations imply permissions (12) (and therefore do not lead to violations by acting upon
the obligation)3, and adding the fact that no other norms were applicable and thereby
cannot be violated (13), we can conclude that ¬violation is an invariant of π0, see (15).

(4) at π0{DOd certi f y dead(d,y)
(5) Od(DOd certi f y dead(d,y)<DOd′ remove organ(d′ ,y)) Art. 14
(6) ♦DOd′ remove organ(d′,y)∧

[

(¬DOd′ remove organ(d′ ,y)∧¬V1∧¬DONEd certi f y dead(d,y)) until
((DOd certi f y dead(d,y)∧#�¬V1) ∨
(¬DOd certi f y dead(d,y)∧#(DOd′ remove organ(d′ ,y)∧V1)))

]

V1=viol(d,DOd certi f y dead(d,y),DOd′ remove organ(d′ ,y)) (5)
(7) ¬�DOd′ remove organ(d′ ,y) (Π)
(8) DOd certi f y dead(d,y)∧¬violation→#�¬V1 (6),(7)
(9) #�ϕ→#ϕ (taut)
(10) DOd certi f y dead(d,y)∧¬violation→#¬V1 (8),(9)
(11) at π0∧¬violation→#¬V1 (4),(10)
(12) Pd(DOd certi f y dead(d,y)<DOd′ remove organ(d′ ,y)) (5)
(13) at π0∧¬violation→#¬viol(d,α,δ) (VC)

for all viol-predicates other thanV1

(14) at π0∧¬violation→#¬violation (11),(13)
(15) ¬violation invof π0 (14)

And so, after checking the norm compliance of π0 we continue with checking
whether the next actions (starting with π5 and so on, see the formalised protocol in
§3.1 and the full proof in [1]) do not violate the norms. After deriving that ¬violation is
an invariant of all the protocol steps we can derive, by theorem 1, that the protocol does
not violate any of the norms, see (111).

3 Remember that not being able to derive this permission would have meant that there existed a
prohibition on this action, see §3.2

...
(110) ¬violation invof π33

No norms concerning filling in donor form (VC)
(111) ¬violation invof M̄Π (1),(3),(15),...,(110)

In a similar fashion we can prove that a liveness property as specified in definition
3 holds for Π . Where

atαe ≡ at πe

goal ≡ criteria(y)∧¬contra-indication(y)∧ (statement permission(y)∨ other statement(z,y)∨ relative permission(y))∧

(¬non-natural dead(y)∨DA permission(p,remove organs))

→ know permission(d,remove organ(y))
∧

¬ (criteria(y)∧¬contra-indication(y)∧ (statement permission(y)∨ other statement(z,y)∨ relative permission(y))∧

(¬non-natural dead(y)∨DA permission(p,remove organs)))

→ know no permission(d,remove organ(y))

This goal represents that the protocol is supposed to make sure that the agent obtains
the knowledge whether it has the permission for the organ transplantation or not, after
ending the protocol run. By proving these safety and liveness properties we show that
Π is not only norm-compliant, but also that Π actually achieves the goal for which it
is designed (that is, to determine whether you are allowed to extract the patients organs
for transplantation).

5 Conclusions & Future Work

In this paper we discussed a formal approach on norm compliance of protocols based on
the verification of programs. We give a view of how these techniques can be used, after
some adaptation and extention, to verify that a (knowledge-based) protocol is norm-
compliant. We also show, as an example, how norm compliance of a knowledge-based
protocol (actually used in the medical domain) can be proven.

Please note that norm compliance of the protocols used by the agents is only a step
towards the implementation of norms in MAS. Protocols are guidelines and agents are,
therefore, not necessarily constrained to follow the protocol. A more direct enforcement
is needed instead. Norms can be enforced either by the use of violation detection and
sanctioning these violations [19], or by directly constraining the agents such that they
can only do actions that do not violate norms.

Currently our formal method is suited for verification of single sequential protocols.
We plan to extend our LT PΠ language to prove norm compliance of parallel protocols
(such as interaction protocols). We also plan to extend the LT P language with opera-
tors from epistemic logic in order to improve expressiveness of knowledge and beliefs
of agents following a protocol. Moreover, we are very interested in seeing how this
extended approach can, for instance, be used for the checking of security and authenti-
cation protocols.

The framework discussed in this paper uses a theorem proving method to verify the
norm compliance of protocols. This is known to be labour-intensive. We are currently
considering the use of model-checking, instead.

References

1. H. Aldewereld, J. Vázquez-Salceda, F. Dignum, and J.-J.Ch. Meyer. Proving norm compli-
ancy of protocols in electronic institutions. Technical Report UU-CS-2005-010, Institute of
Information and Computing Sciences, Utrecht University, 2005.

2. G. Boella and L. Lesmo. Deliberative normative agents. In C. Dellarocas and R. Conte,
editors, Workshop on Norms and Institutions in Multi-Agent Systems, pages 15–25. ACM-
AAAI, ACM Press, 2000.

3. M. Boman. Norms in artificial decission making. Artificial Intelligence and Law, 7(1):17–35,
1999.

4. C. Castelfranchi, F. Dignum, C. Jonker, and J. Treur. Deliberative Normative Agents: Prin-
ciples and architecture. In Proc. of the 6th Int. Workshop on Agent Theories, Architectures,
and Languages (ATAL-99), 1999.

5. F. Dignum, J. Broersen, V. Dignum, and J.-J. Ch. Meyer. Meeting the Deadline: Why,
When and How. In 3rd Goddard Workshop on Formal Approaches to Agent-Based Systems
(FAABS), Maryland, April 2004.

6. F. Dignum, D. Morley, and E.A. Sonenberg. Towards socially sophisticated BDI agents. In
DEXA Workshop, pages 1134–1140, 2000.

7. V. Dignum. A Model for Organizational Interaction: based on Agents, founded in Logic.
SIKS Dissertation Series 2004-1. SIKS, 2004. PhD Thesis.

8. M. Estava. Electronic Institutions: from specification to development. PhD thesis, Universitat
Politèchnica de Catalunya, 2003.

9. D. Grossi and F. Dignum. From abstract to concrete norms in agent institutions. In M. G.
Hinchey, J. L. Rash, W. F. Truszkowski, and et al., editors, Formal Approaches to Agent-
Based Systems: Third International Workshop, FAABS 2004, Lecture Notes in Computer
Science, pages 12–29. Springer-Verlag, April 2004.

10. D. Grossi, F. Dignum, and J-J. Ch. Meyer. Contextual taxonomies. In J. Leite and P. Toroni,
editors, Proceedings of CLIMA V Workshop, Lisbon, September, pages 2–17, 2004.

11. H. L. A. Hart. The Concept of Law. Clarendon Press, Oxford, 1961.
12. Fred Kröger. Temporal Logic of Programs, volume 8 of EACTS monographs on theoretical

computer science. Springer-Verlag, 1987.
13. F. López y Lopez. Social Power and NormsL Impact on Agent Behaviour. PhD thesis,

Faculty of Engineering and Applied Science, Univ. of Southampton, 1997.
14. J.-J. Ch. Meyer and R.J. Wieringa. Deontic logic: A concise overview. In Deontic Logic in

Computer Science: Normative System Specification, pages 3–16. John Wiley & Sons Ltd.,
Chichester, UK, 1994.

15. L. Royakkers and F. Dignum. Giving permission implies giving choice. In E. Schweighofer,
editor, 8th International Conference and Workshop on Database and Expert Systems Appli-
cations. Toulouse, France, 1997.

16. M.J. Sergot, F. Sadri, R.A. Kowalski, and F. Kriwaczek. The british nationality act as a logic
program. Communications of the ACM, 29(5):370–386, May 1986.

17. Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: Off-line design.
Artificial Intelligence, 73(1-2):231–252, 1995.

18. M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a programming
language. Journal of the ACM (JACM), 23(4):733–742, October 1976.

19. J. Vázquez-Salceda, H. Aldewereld, and F. Dignum. Implementing norms in multiagent
systems. In G. Lindemann, J. Denzinger, I.J. Timm, and R. Unland, editors, Multiagent
System Technologies, LNAI 3187, pages 313–327. Springer-Verlag, 2004.

20. J. Vázquez-Salceda and F. Dignum. Modelling electronic organizations. In V. Marik,
J. Muller, and M. Pechoucek, editors, Multi-Agent Systems and Applications III, LNAI 2691,
pages 584–593. Springer-Verlag, 2003.

21. Mahadevan Venkatraman and Munindar P. Singh. Verifying compliance with commitment
protocols. Autonomous Agents and Multi-Agent Systems, 2(3):217–236, 1999.

