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Introduction

These notes are about the theory of hypergeometric functions in several variables.
The functions in question generalize the Gauß hypergeometric function and are
obtained as integrals of a multivalued differential of the form

ηz := (z0 − ζ)−µ0 · · · (zn − ζ)−µndζ,

where z0, . . . , zn are pairwise distinct complex numbers (and are allowed to vary)
and the exponents µk are taken in the open unit interval (0, 1) (and are always kept
fixed). If γ is a path connecting some zk with some zl whose relative interior avoids
the zk’s and if a determination of the differential along that path is chosen, then
ηz can be integrated along γ (the integral will indeed converge). That integral will
depend holomorphically on z = (z0, . . . , zn), for if we vary z a little, then we can
let γ and the determination of ηz follow this variation in a continuous manner. The
(multivalued) function of z thus obtained is the type of hypergeometric function
that takes the stage here. We now briefly explain which are the aspects of particular
interest that will make an appearance in this piece.

One readily finds that it is better not to focus on one such integral, but to
consider all of them simultaneously, or rather, to consider for every z as above
(and fixed exponents), the space Lz of power series expansions in n + 1 com-
plex variables at z that are linear combinations of such integrals. It turns out
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that this vector space Lz has dimension n and that the ‘tautological’ map-germ
(Cn+1, z) → L∗

z sends z to an element 6= 0 and has the following regularity prop-
erty: if M0,n+2 stands for the configuration space of (n + 1)-tuples in C modulo
affine-linear equivalence (which is also the configuration space of (n + 2)-tuples
on the Riemann sphere modulo projective-linear equivalence), then this map-germ
drops to a local isomorphism (M0,n+2, [z]) → P(L∗

z). By analytic continuation we
have an identification of Lz with Lz′ for nearby z′ and the multivalued nature of
the hypergeometric functions is reflected by the fact that if we let z traverse a
loop in the space of pairwise distinct (n + 1)-tuples and if let the elements of Lz

follow that loop by analytic continuation, then there results a linear (monodromy)
transformation of Lz which need not be the identity. The transformations of L∗

z

thus obtained form a subgroup Γ of GL(L∗
z), called the monodromy group of the

system. The main questions addressed here are:
1. When does Γ leave invariant a Hermitian form which is a positive definite,

semidefinite or of hyperbolic signature?
2. In the situation of Question 1, when is Γ discrete as a subgroup of GL(L∗

z)?
(This is essentially equivalent to: when acts Γ properly on D?) And when is Γ
arithmetic (in a naturally defined Q-algebraic group that contains Γ)?

The answer to the first question is short enough to give here: when µ0 +
· · · + µn is < 1, = 1 or in the interval (1, 2) respectively (we are not claiming
the converse). In that case M0,n+2 acquires a metric of constant holomorphic
curvature as follows. First, we observe that P(L∗

z) contains a complex symmetric
manifold of constant holomorphic curvature D as an open subset on which Γ acts by
isometries: we get respectively all of P(L∗

z) with its Fubini-Study metric, an affine
space in P(L∗

z) with a translation invariant metric or an open ball with its complex
hyperbolic metric. But we also find that the local isomorphism (M0,n+2, [z]) →
P(L∗

z) lands in D, so that M0,n+2 inherits a metric from D.
Question 2 is harder. If Γ is discrete as well, then the exponents µk must

be rational numbers. One of the main results states that M0,n+2 has then finite
invariant volume and that its natural metric completion is an algebraic variety
(we get a projective space in the elliptic and parabolic cases and in the hyperbolic
case it is obtained by adding the stable orbits in a setting of geometric invariant
theory). Deligne and Mostow gave sufficient conditions for discreteness, which were
later weakened by Mostow and Sauter to make them sufficient as well.

If the µk’s are rational, then there is the connection with the theory of period
maps (regardless whether Γ is discrete): if m is their smallest common denominator
and if we write µk = dk/m, then the hypergeometric functions become periods of
the cyclic cover of C defined by wm = (z0 − ζ)d0 · · · (zn − ζ)dn . For ηz then lifts
to a regular univalued differential on this affine curve (regular resp. with simple
poles at infinity when

∑
k µk is greater than resp. equal to 1) and γ is covered by a

cycle such that the hypergeometric integral is the period of the lift over this cycle.
As the reader will have gathered, this is mostly an account of work of Mostow

(and his student Sauter) and of Deligne-Mostow. It is self-contained in that the
sense that we have included proofs (except for a technical lemma needed for an
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arithmeticity criterion). Occasionally our treatment somewhat differs from theirs.
For instance, our discussion of invariant Hermitian forms does not use the approach
in [5] inspired by Hodge theory, but rather follows the more pedestrian path in [3].
We also found it natural to use the language of orbifolds throughout. For some
of the history of the material expounded here, we refer to the first and the last
section of [5] as well to the review [2]. In Section 5 we—very sketchily—mention
some recent developments.

This paper is based on a series of talks I gave at the CIMPA summer school
(2005) in Istanbul. I thank my hosts, in particular Professor Uludag, for their hos-
pitality and for making this summer school such a pleasant and fruitful experience.
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1. The Lauricella differential

1.1. Definition and first properties

Assume given real numbers µ0, . . . , µn in the interval (0, 1), where n > 0. We shall
refer to the (n + 1)-tuple µ = (µ0, . . . , µn) as a weight system and we call its sum
|µ| :=

∑n
i=0 µi the total weight of µ. The Lauricella differential of weight µ is

ηz := (z0 − ζ)−µ0 · · · (zn − ζ)−µndζ, with z = (z0, . . . , zn) ∈ (Cn+1)◦.

(Here (Cn+1)◦ stands for the set of (z0, . . . , zn) ∈ Cn+1 whose components are
pairwise distinct.) Athough this differential is multivalued, it has a natural de-
termination on a left half space by taking there the value of the integrand whose
argument is < π/|µ| in absolute value. We further note that ηz is locally integrable
as a multivalued function: near zk, ηz is of the form (ζ−zk)−µk exp(holom)dζ; this
is the differential of a function of the form const+(ζ−zk)1−µk exp(holom) and since
1−µk > 0, that function takes a well-defined value in zk. This implies that ηz can
be integrated along every relative arc of (C, {z0, . . . , zn}); by the latter we mean
an oriented piecewise differentiable arc in C whose end points lie in {z0, . . . , zn},
but which does not meet this set elsewhere.

The behavior of the differential at infinity is studied by means of the substi-
tution ζ = ω−1; this gives

ηz = −(ωz0 − 1)−µ0 · · · (ωzn − 1)−µnω|µ|−2dω,

which suggests to put zn+1 := ∞ and µn+1 := 2 − |µ|. In case µn+1 < 1 (equiva-
lently, |µ| > 1), ηz is also (multivalued) integrable at zn+1.

Remark 1.1. Following Thurston [14], we may think of ηz as a way of putting a
flat Euclidean structure on P1 with singularities at z0, . . . , zn+1: a local integral
of ηz defines a metric chart with values in C, but now regarded as the Euclidean
plane (so the associated metric is simply |ηz |2). At zk, k ≤ n, the metric space
is isometric to a Euclidean cone with total angle 2π(1 − µk); this is also true for
k = n + 1 in case µn+1 < 1, or equivalently, |µ| > 1; if |µ| = 1 resp. |µ| < 1, then a
punctured neighborhood of ∞ is isometric to a flat cylinder resp. the complement
of a compact subset of a Euclidean cone with total angle 1 − |µ|.

Let be given relative arc γz of (C, {z0, . . . , zn}) and let also be given a deter-
mination of ηz on γz so that

∫
γz

η is defined. Choose an open disks Dk about zk

in C such that the D0, . . . , Dn are pairwise disjoint. Then we can find for every
z′ ∈ D0×· · ·×Dn, a relative arc γz′ of (C, {z′

0, . . . , z
′
n}) and a determination of ηz′

on supp(γz′) such that both depend continuously on z′ and yield the prescribed
value for z = z′. Any primitive of η near (z, zk) with respect to its second variable
is (as a function of (z′, ζ)) of the form g(z′) + (ζ − z′

k)1−µkh(ζ, z′), with g and h
holomorphic and so the function

z′ ∈ D0 × · · · × Dn 7→
∫

γ
z′

ηz′ ∈ C
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is holomorphic. We call such a function (or some analytic extension of it) a Lau-
ricella function. The Lauricella functions (with given weight system µ) span a
complex vector space. We denote the space of germs of holomorphic functions at
z ∈ (Cn+1)◦ that are germs of Lauricella functions by Lz. It is clear that for
z′ ∈ D0 × · · · × Dn, we can naturally identify Lz′ with Lz. Here are some ele-
mentary properties of Lauricella functions (the proofs are left to the reader, who
should be duely careful with exchanging differention and integration in the proof
of (c) ).

Proposition 1.2. Any f ∈ Lz

(a) is translation invariant: f(z0 +a, . . . , zn +a) = f(z0, . . . , zn) for small a ∈ C,
(b) is homogeneous of degree 1−|µ|: f(etz0, . . . , e

tzn) = e(1−|µ|)tf(z0, . . . , zn) for
small t ∈ C and

(c) obeys the system of differential equations

∂2f

∂zk∂zl
=

1

zk − zl

(
µl

∂

∂zk
− µk

∂f

∂zl

)
, 0 ≤ k < l ≤ n.

The translation invariance of the Lauricella functions suggests to introduce

Vn := Cn+1/main diagonal and V ◦
n := (Cn+1)◦/main diagonal,

as they are in fact defined on V ◦
n . The homogeneity implies that when |µ| = 1,

these functions are also constant on the C×-orbits and hence factor through P(V ◦
n );

for reasons which will become clear later, we call this the parabolic case.

An important consequence of part (c) of the preceding proposition is

Corollary 1.3. The map which assigns to f ∈ Lz its 1-jet at z is injective.

Proof. If f ∈ Lz, then its partial derivatives fk := ∂f
∂zk

satisfy the system of

ordinary differential equations

∂fk

∂zl
=

1

zk − zl
(µlfk − µkfl) , k 6= l.

We can complete this system as to get also such equations for ∂fk

∂zk

by using the

fact
∑

k fk = 0 (which follows from the translation invariance). The elementary
theory of such systems says that there is precisely one solution for it, once the
initial conditions fk(z) are prescribed. To such a solution corresponds at most one
element of Lz up to a constant. �

1.2. Lauricella arc systems

Definition 1.4. Given (z0, . . . , zn) ∈ Cn+1, we define an L-arc system as to be an
oriented arc in the Riemann sphere P1 = C ∪ {∞} from z0 to zn+1 = ∞ which
passes successively through z1, . . . zn and follows near ∞ the real axis in the positive
direction. If δ is such an L-arc system, then we denote the piece connecting zk−1

with zk by δk and we often let δ also stand for the system of arcs (δ1, . . . , δn+1).
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The complement of the support of δ is simply connected and so we have a
well-defined determination of ηz on this complement which extends the one we
already have on a left half space. We also extend ηz to the support of δ itself by
insisting that ηz be continuous ‘from the left’ (which makes the determination of
ηz discontinuous along δ). With these conventions,

∫
δk

ηz has for k = 1, . . . , n a

well defined meaning (and also makes sense for k = n + 1 in case µn+1 < 1). If we
let z vary in a small neighborhood, we get an element of Lz that we simply denote
by
∫

δk

η. We denote by δ−k the arc connecting zk−1 with zk that is ‘infinitesimally’

to the right of δk. By this we really mean that ηz is given on δ−k the determination

it gets as a limit from the right. Notice that ηz |δ−k = exp(−2π
√
−1(µ0 + · · · +

µk−1))ηz |δk.

Theorem 1.5. The functions
∫

δ1
η, . . . ,

∫
δn

η define a basis for Lz. Moreover, Lz

contains the constant functions if and only if we are in the parabolic case: |µ| = 1.

Proof. Any relative arc of (C, {z0, . . . , zn}) is homotopic to a composite of the arcs
δk, and their inverses (we want the homotopy be such that the determination of η
varies continuously). Since any two determinations of η differ by a constant factor,
this implies that the functions

∫
δ1

η, . . . ,
∫

δn

η generate Lz.

If |µ| = 1, then ηz is near ∞ equal to −ζ−1dζ. So then for a loop γ which
encircles z0, . . . , zn in the clockwise direction, we have

∫

γ

ηz =

∫

γ

−ζ−1dζ = 2π
√
−1,

which proves that Lz contains the constant 2π
√
−1.

It remains to show that if a1, . . . , ak, c ∈ C are such that
∑n

k=1 ak

∫
δk

η = c,

then c 6= 0 implies |µ| = 1 and c = 0 implies that all ai vanish as well. We
prove this with induction on n. To this end, we consider a curve z(s) in (Cn+1)◦

of the form (z0, . . . , zn−2, 0, s), with s > 0 and an L-arc system δ(s) for z(s)
with δ1, . . . , δn−1 fixed and δn = [0, s]. By analytic continuation we may assume

that
∑n−1

k=1 ak

∫
δk

ηz(s) + an

∫ s

0
ηz(s) = c. We multiply this identity with sµn and

investigate what happens for s → ∞. For k < n,

sµn

∫

δk

ηz(s) =

∫

δk

(z0 − ζ)−µ0 · · · (zn−2 − ζ)−µn−2(−ζ)−µn−1(1 − s−1ζ)−µndζ,

which for s → ∞ tends to
∫

δk

ηz′ , where z′ = (z0, . . . , zn−1). On the other hand,

∫ s

0

(z0 − ζ)−µ0 · · · (−ζ)−µn−1(s − ζ)−µndζ

= s(−s)−|µ|
∫ 1

0

(−s−1z0 + ζ)−µ0 · · · (ζ)−µn−1(−1 + ζ)−µndζ

= s(−s)−|µ| + o(|s|1−|µ|), s → ∞.
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So we find that

sµn

(
c + an

(
(−s)1−|µ| + o(|s|1−|µ|

))
=

n−1∑

k=1

ak

∫

δk

ηz′ , s → ∞.

This shows that c 6= 0 implies |µ| = 1 (and an = (−1)−|µ|). Suppose now c = 0. If
µn < |µ|−1, then the left hand side tends to zero as s → ∞ and so the right hand
side must be zero. Our induction hypothesis then implies that a1 = · · · = an−1 = 0
and from this we see that an = 0, too. If µn > |µ| − 1, then we clearly must have
an = 0 and the induction hypothesis implies that a1 = · · · = an−1 = 0, also. �

Remark 1.6. So the space of solutions of the system of differential equations in
Proposition 1.2-c is in the nonparabolic case equal to Lz ⊕ C, and contains Lz as
a hyperplane in the parabolic case.

1.3. The rank of the Schwarz map

We find it convenient to modify our basis of Lauricella functions by a scalar factor
by putting

Fk(z, δ) :=

∫

δk

(ζ − z0)
−µ0 · · · (ζ − zk−1)

−µk−1(zk − ζ)−µk · · · (zn − ζ)−µndζ

=w̄k

∫

δk

ηz, where wk := e
√
−1π(µ0+···+µk−1).

The notation now also displays the fact the value of the integral depends on the
whole L-arc system (which was needed to make ηz univalued) and not just on
δk. Notice that if z = x is real and x0 < x1 < · · · < xn and δ consists of real
intervals, then the integrand is real valued and positive and hence so is Fk . Let us
also observe that ∫

δk

ηz = wkFk(z, δ) and

∫

δ−

k

ηz = w̄kFk(z, δ),

where the second identity follows from the fact that ηz |δ−k = w̄2
kηz |δk. So if we are

in the parabolic case, then the integral of ηz along a clockwise loop which encloses
{z0, . . . , zn} yields the identity

∑n
k=1(wk − w̄k)Fk(z, δ) = 2π

√
−1, or equivalently,

n∑

k=1

Im(wk)Fk(z, δ) = π. (1.1)

In other words, F = (F1, . . . , Fn) then maps to the affine hyperplane An−1 in Cn

defined by this equation.

Corollary 1.7. If we are not in the parabolic case, then F = (F1, . . . , Fn), viewed
as a multivalued map from V ◦

n to Cn, is a local isomorphism and never takes the
origin of Cn as value. In the parabolic case, F = (F1, . . . , Fn) factors through a
local (multivalued) isomorphism from P(V ◦

n ) to the affine hyperplane An−1 in Cn

defined by
∑n

k=1 Im(wk)Fk = π.
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Proof. Given (z, δ), consider the n covectors dF1(z, δ), . . . , dFn(z, δ) in the cotan-
gent space of z. According to corollary 1.3, a linear relation among them must
arise from a linear relation among the function germs F1, . . . , Fn ∈ Lz and the
constant function 1. According to Theorem 1.5, such a relation exists if and only
if |µ| = 1. The corollary easily follows, except perhaps the claim that F is nowhere
zero. But if Fk(z, δ) = 0 for all k, then we must have |µ| 6= 1; since F will be
constant zero on the C×-orbit through z this contradicts the fact that F is a local
isomorphism. �

Definition 1.8. We call the multivalued map F from V ◦
n to Cn the Lauricella map

and its projectivization PF from P(V ◦
n ) to Pn−1 the Schwarz map for the weight

system µ.

The above corollary tells us that the Schwarz map always is a local isomor-
phism (which in the parabolic case takes values in the affine open An−1 ⊂ Pn−1).

1.4. When points coalesce

We investigate the limiting behavior of F when some of the zk’s come together. To
be specific, fix 0 < r < n and let for 0 < ε < 1, zε = (εz0, . . . εzr, zr+1, . . . zn) and
see what happens when ε → 0. We assume here that z1, . . . , zr lie inside the unit
disk, whereas the others are outside that disk and choose δ accordingly: δ1, . . . , δr

resp. δr+2, . . . , δn+1 lie inside resp. outside the unit disk.
Put µ′ := (µ0, . . . , µr), z′ = (z0, . . . , zr). Then

Fk(zε, δ) = w̄k

∫

δk

(εz0 − ζ)−µ0 · · · (εzr − ζ)−µr (zr+1 − ζ)−µr+1 · · · (zn − ζ)−µndζ

= ε1−|µ′|w̄k

∫

δk

(z0 − ζ)−µ0 · · · (zr − ζ)−µr (zr+1 − εζ)−µr+1 · · · (zn − εζ)−µndζ,

where in the last line (involving the passage to εζ as the new integration varable)
δk must be suitably re-interpreted. So for k ≤ r,

ε|µ
′|−1Fk(zε, δ) = (1 + O(ε))z

−µr+1

r+1 · · · z−µn

n F ′
k(z′, δ′), (1.2)

where F ′
k is a component of the Lauricella map with weight system µ′:

F ′
k(z′, δ′) = w̄k

∫

δk

(z0 − ζ)−µ0 · · · (zk − ζ)−µkdζ.

If k > r and in case k = r + 1, |µ′| < 1, we find

Fk(zε, δ) = (1 + O(ε))w̄k

∫

δk

(−ζ)−|µ′|(zr+1 − ζ)−µr+1 · · · (zn − ζ)−µndζ. (1.3)

Assume now |µ′| < 1. Then these estimates suggest to replace in F = (F1, . . . , Fn),

for k ≤ r , Fk by ε|µ
′|−1Fk(z, δ). In geometric terms, this amounts to enlarging the

domain and range of F : now view it as a multivalued map defined an open subset
of the blowup Bl(z0,...,zr) Vn of the diagonal defined z0 = · · · = zr and as mapping
to the blowup Bl(F1,...,Fr) Cn of the subspace of Cn defined by F1 = · · · = Fr = 0.
It maps the exceptional divisor (defined by ε = 0) to the exceptional divisor
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Pr−1×Cn−r ⊂ Bl(F1,...,Fr) Cn. If we identify the exceptional divisor in the domain
with P(Vr) × V1+n−r (the second component begins with the common value of
z0, . . . , zr), then we see that the first component of this restriction is the Schwarz
map PF ′ for the weight system µ′ and the second component is w̄r times the
Lauricella map for the weight system (µ′, µr+1, . . . , µn).

If several such clusters are forming, then we have essentially a product situ-
ation.

We shall also need to understand what happens when |µ′| = 1. Then taking
the limit for ε → 0 presents a problem for Fr+1 only (the other components have
well-defined limits). This is related to the fact that ηz is univalued on the unit
circle S1; by the theory of residues we then have

∫

S1

ηz =

∫

S1

(z0 − ζ)−µ0 · · · (zn − ζ)−µndζ = 2π
√
−1z

−µr+1

r+1 · · · z−µn

n .

We therefore replace ηz by η̂z := z
µr+1

r+1 · · · zµn

n ηz and F by F̂ := z
µr+1

r+1 · · · zµn

n F .
This does not change the Schwarz map, of course. Notice however, that now∫

S1 η̂z = 2π
√
−1.

Lemma 1.9. Assume that µ′ is of parabolic type: |µ′| = 1. Define Lauricella data
µ′′ := (µr+1, . . . , µn+1), z′′ := (z−1

r+1, . . . , z
−1
n , 0) and let δ′′ = (δ′′1 , . . . , δ′′n−r) be the

image of (δr+2, . . . , δn+1) under the map z 7→ z−1. Then we have

F̂k(zε, δ) =

{
(1 + O(ε))F ′

k(z′, δ′) when 1 ≤ k ≤ r,

(1 + O(ε))F ′′
k−r−1(z

′′, δ′′) when r + 2 ≤ k ≤ n,

whereas limε→0 Re F̂r+1(zε, δ) = +∞. Moreover,
∑r

k=1 Im(wk)F̂k(z, δ) = π.

Proof. The assertion for k ≤ r is immediate from our previous calculation. For
1 ≤ i ≤ n − r − 1 we find

F̂r+1+i(zε, δ) =

= wr+1+i

∫

δr+1+i

(εz0 − ζ)−µ0 · · · (εzr − ζ)−µr (1 − ζ

zr+1
)−µr+1 · · · (1 − ζ

zn
)−µndζ

= −w′′
i

∫

δ′′

i

(εz0−ζ−1)−µ0 · · · (εzr−ζ−1)−µr (1− 1

ζzr+1
)−µr+1 · · · (1− 1

ζzn
)−µn

dζ

−ζ2

= w′′
i

∫

δ′′

i

(1−εz0ζ)−µ0 · · · (1−εzrζ)−µr (
1

zr+1
−ζ)−µr+1 · · · ( 1

zn
−ζ)−µn(−ζ)−µn+1dζ

= (1 + O(ε))F ′′
i (z′′, δ′′).
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As to the limiting behavior of F̂r+1, observe that

F̂r+1(zε, δ) =

= −
∫

δr+1

(εz0 − ζ)−µ0 · · · (εzr − ζ)−µr (1 − ζ

zr+1
)−µr+1 · · · (1 − ζ

zn
)−µndζ

=

∫

δr+1

(ζ − εz0)
−µ0 · · · (ζ − εzr)

−µr (1 − ζ

zr+1
)−µr+1 · · · (1 − ζ

zn
)−µndζ.

For ε → 0, the integrand tends to ζ−1(1 − ζ/zr+1)
−µr+1 · · · (1 − ζ/zn)−µn , from

which the asserted limiting behaviour easily follows. The last assertion follows from
the fact that

∫
S1 η̂z = 2π

√
−1 (see the derivation of Equation (1.1)). �

So if we regard the Schwarz map as defined on an open subset of the blowup
Bl(z0,...,zk) P(Vn), then its composite with the projection of Pn → Pn−1 obtained by
omitting Fr is on the exceptional divisor given by [F ′

1 : · · · : F ′
r : F ′′

1 : · · · : F ′′
n−1−r].

1.5. Monodromy group and monodromy cover

We begin with making a few remarks about the fundamental group of (Cn+1)◦.
We take [n] = (0, 1, 2, . . . , n) as a base point for (Cn+1)◦ and use the same symbol
for its image in V ◦

n . The projection (Cn+1)◦ → V ◦
n induces an isomorphism on

fundamental groups: π1((Cn+1)◦, [n]) ∼= π1(V
◦

n , [n]). This group is known as the
pure (also called colored) braid group with n + 1 strands ; we denote it by PBrn+1.
Another characterization of PBrn+1 is that as the group of connected components
of the group of diffeomorphisms C → C that are the identity outside a compact
subset of C and fix each zk.

If α is a path in (Cn+1)◦ from z to z′, and if we are given an L-arc system δ
for z, then we can carry that system continuously along when we traverse α; we
end up with an L-arc system δ′ for z′ and this L-arc system will be unique up to
isotopy. In this way PBrn+1 acts on the set of isotopy classes of L-arc systems. It
is not hard to see that this action is principal: for every ordered pair of isotopy
classes of L-arc systems, there is a unique element of PBrn+1 which carries the
first one onto the second one.

The group PBrn+1 has a set of distinguished elements, called Dehn twists,
defined as follows. The basic Dehn twist is a diffeomorphism of the annulus D1,2 ⊂
C : 1 ≤ |z| ≤ 2; it is defined by re

√
−1θ 7→ re

√
−1(θ+φ(r)), where φ is a differentiable

function which is zero resp. 2π on a neighborhood of 1 resp. 2 (all such diffeomor-
phisms of D1,2 are isotopic relative to the boundary ∂D1,2). If S is an oriented
surface, and we are given an orientation preserving diffeomorphism h : D1,2 → S,
then the Dehn twist on the the image and the identity map on its complement
define a diffeomorphism of S, which is also called a Dehn twist. Its isotopy class
only depends on the isotopy class of the image of the counter clockwise oriented
unit circle (as an oriented submanifold of S). These embedded circles occur here
as the isotopy classes of embedded circles in C − {z1, . . . , zn}. A particular case
of interest is such a circle encloses precisely two points of {z1, . . . , zn}, say zk and
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zl. The isotopy class of such a circle defines and is defined by the isotopy class of
an unoriented path in C − {z1, . . . , zn} that connects zk and zl (the boundary of
a regular neighborhood of such a path gives an embedded circle). The element of
the pure braid group associated to this is called simple; if we choose for every pair
0 ≤ k < l ≤ n a simple element, then the resulting collection of simple elements is
known to generate PBrn+1.

There is a standard way to obtain a covering of V ◦
n on which F is defined as

a univalued map. Let us recall this in the present case. First notice that if α is
a path in (Cn+1)◦ from z to z′, then analytic continuation along this path gives
rise to an isomorphism of vector spaces ρµ(α) : Lz → Lz′ . This is compatible with
composition: if β is a path in (Cn+1)◦ from z′ to z′′, then ρµ(β)ρµ(α) = ρµ(βα) (we
use the functorial convention for composition of paths: βα means α followed by β).
A loop in (Cn+1)◦ based at [n] defines an element ρµ(α) ∈ GL(L[n]) and we thus get
a representation ρµ of PBrn+1 in L[n]. The image of this monodromy representation
is called the the monodromy group (of the Lauricella system with weight system µ);
we shall denote that group by Γµ, or simply by Γ. The monodromy representation

defines a Γ-covering Ṽ ◦
n of V ◦

n on which the Fk ’s are univalued. A point of Ṽ ◦
n can

be represented as a pair (z, α), where α is a path in Cn+1 from [n] to z, with the
understanding that (z′, α′) represents the same point if and only if z − z′ lies on

the main diagonal (so that Lz′ = Lz) and ρµ(α) = ρµ(α′). The action of Γ on Ṽ ◦
n

is then given as follows: if g ∈ Γ is represented by the loop αg in Cn+1 from [n],
then g.[(z, α)] = [(z, αα−1

g )]. But it is often more useful to represent a point of

Ṽ ◦
n as a pair (z, δ), where δ is an L-arc system for z, with the understanding that

(z′, δ′) represents the same point if and only if z − z′ lies on the main diagonal
and Fk(z, δ) = Fk(z′, δ′) for all k = 1, . . . , n. For this description we see right away
that the basic Lauricella functions define a univalued holomorphic map

F = (F1, . . . Fn) : Ṽ ◦
n → Cn.

Since [(z, δ)] only depends on the isotopy class of δ, the action of Γ is also easily
explicated in terms of the last description. The germ of F at the base point defines
an isomorphism L∗

[n]
∼= Cn: c = (c1, . . . , cn) ∈ Cn defines the linear form on Lz

which sends Fk to ck. If we let Γ act on Cn accordingly (i.e., as the dual of L[n]),
then F becomes Γ-equivariant.

The C×-action on V ◦
n given by scalar multiplication will lift not necessarily

to a C×-action on Ṽ ◦
n , but to one of a (possibly) infinite covering C̃×. For this

action, F is homogeneous of degree 1 − |µ|. Let us denote by P(Ṽ ◦
n ) the C̃×-orbit

space of Ṽ ◦
n .

1.6. Invariant Hermitian forms

Our goal is to prove the following theorem.

Theorem 1.10. If |µ| < 1, then the monodromy group Γ leaves invariant a positive
definite Hermitian form H on Cn.
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If |µ| = 1 (the parabolic case), then Γ leaves invariant a positive definite
Hermitian form H on the (linear) translation hyperplane of the affine hyperplane
An−1 in Cn, defined by

∑n
k=1 Im(wk)Fk = 0.

If 1 < |µ| < 2, then the monodromy group Γ leaves invariant a hyper-
bolic Hermitian form H on Cn (so of signature (n − 1, 1)) with the property that

H(F (z̃, z̃)) < 0 for all z̃ ∈ Ṽ ◦
n .

Before we begin the proof, let us make the following observation. If W is a
finite dimensional complex vector space, then by definition a point u of P(W ) is
given by a one-dimensional subspace Lp ⊂ W . An exercise shows that the complex
tangent space TpP(W ) of P(W ) at p is naturally isomorphic to Hom(Lp, W/Lp).
If we are also given a Hermitian form H on W which is nonzero on Lp, then
it determines a Hermitian form Hp on TpP(W ) ∼= Hom(Lp, W/Lp) as follows:
since H is nonzero on Lp, the H-orthogonal complement L⊥

p maps isomorphically
W/Lp; if we choose a generator u ∈ Lp and think of a tangent vector as a linear
map φ : Lp → L⊥

p , then we put Hp(φ, φ′) := |H(u, u)|−1H(φ(u), φ′(u)). This is
clearly independent of the generator u. It is also clear that Hp only depends on
the conformal equivalence class of H : it does not change if we multiply H by a
positive scalar.

If H is positive definite, then so is Hp for every p ∈ P(W ). In this way P(W )
acquires a Hermitian metric, known as the Fubini-Study metric. It is in fact a
Kähler manifold on which the unitary group of (W, H) acts transitively.

There is another case of interest, namely when H has hyperbolic signature:
if we restrict ourselves to the set B(W ) of p ∈ P(W ) for which H is negative
on Lp, then Hp is positive definite as well. This defines a metric on B(W ) which
is invariant under the unitary group of (W, H). If we choose a basis of linear
forms u0, . . . , um on W such that H takes the standard form H(u, u) = −|u0|2 +
|u1|2 + · · · + |um|2, then we see that B(W ) is defined in P(W ) by the inequality
|u1/u0|2 + · · · + |um/u0|2 < 1, which is simply the open unit ball in complex m-
space. We call B(W ) a complex-hyperbolic space and the metric defined above, the
complex-hyperbolic metric. As in the Fubini-Study case, this metric makes B(W ) a
Kähler manifold on which the unitary group of (W, H) acts transitively. For m = 1
we recover the complex unit disk with its Poincaré metric.

Returning to the situation of Theorem 1.10, we see that in all three cases
PF is a local isomorphism mapping to a homogeneous Kähler manifold: when
|µ| < 1, the range is a Fubini-Study space Pn−1 (this notatation is a private one:
the subscript is supposed to distinguish it from the metricless projective space
Pn−1), for |µ| = 1 we get a complex affine space with a translation invariant
metric (indeed, denoted here by An−1) and when |µ| > 1 we get a complex ball
Bn−1 with its complex-hyperbolic metric. Since these structures are Γ-invariant, we
can state this more poignantly: the weight system µ endows P(V ◦

n ) with a natural
Kähler metric locally isometric with a Fubini-Study metric, a flat metric or a
complex-hyperbolic metric. We will therefore use the corresponding terminology
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for the cases |µ| < 1 and 1 < |µ| < 2 and call them the elliptic and hyperbolic case,
respectively.

Theorem 1.10 follows from more specific result that takes a bit of preparation
to formulate. We shall associate to the weight system µ a Hermitian form H on Cn

or on the hyperplane in Cn defined by
∑n

k=1 Im(wk)Fk = 0 in Cn, depending on

whether |µ| is integral. We do this somewhat indirectly. Let H̃ be the Hermitian
form on Cn+1 defined by

H̃(F, G) =
∑

1≤j<k≤n+1

Im(wjw̄k)FkḠj .

The H̃-orthogonal complement in Cn+1 of the last basis vector en+1 is the hy-

perplane Ã defined by
∑n+1

k=1 Im(wk)Fk = 0. When |µ| 6∈ Z, the projection Ã ⊂
Cn+1 → Cn (which forgets the last coordinate) is an isomorphism (since wn+1 =

eπ
√
−1|µ|, Im(wn+1) 6= 0 in that case) and thus identifies Cn with this Ã; we let H

then be the restriction of H̃ to Cn. If |µ| ∈ Z, then Im(wn+1) = 0 and hence the

projection Ã ⊂ Cn+1 → Cn has kernel Cen+1 and image the hyperplane A in Cn

defined by
∑n

k=1 Im(wk)Fk = 0. So then H̃ induces a Hermitian form on A. The
following proposition implies Theorem 1.10.

Proposition 1.11. The form H is Γ-invariant for all weight systems µ. For 0 <
|µ| ≤ 1, the form H is positive definite. For 1 < |µ| < 2, H is of hyperbolic
signature and we have H(F (z, δ), F (z, δ)) = N(z), where

N(z) = −
√
−1

2

∫

C

η ∧ η̄ = −
∫

C

|z0 − ζ|−2µ0 · · · |zn − ζ|−2µn |d(area).

Proof. The assertions about the signature of H involve a linear algebra calculation
that we leave to the reader (who may consult [4]). We do the hyperbolic case first,
so assume 1 < |µ| < 2. First notice that the integral defining N(z) converges (here
we use that |µ| > 1) and takes on a value which is real and negative. We claim
that

N(z) =
∑

1≤j<k≤n+1

wjw̄kF̄j(z, δ)Fk(z, δ). (1.4)

To see this, let us integrate η = ηz, using the determination defined by δ: Φ(ζ) :=∫ ζ

z0
η, where the path of integration is not allowed to cross supp(δ). We have dΦ = η

outside supp(δ) and by Stokes theorem

N(z) = −
√
−1

2

∫

C

η ∧ η̄ =

√
−1

2

∫

C

d(Φ̄η) =

√
−1

2

n+1∑

k=1

(∫

δk

Φ̄η −
∫

δ−

k

Φ̄η

)
.

As to the last terms, we observe that on δk we have Φ(ζ) =
∑

j<k wjFj +
∫ ζ

zk−1
η

(we abbreviate Fj(z, δ) by Fj), where the last integral is taken over a subarc of
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δk. Likewise, on δ−k : (Φ|δ−k )(ζ) =
∑

j<k w̄jFj +
∫ ζ

zk−1
w̄2

kη. Hence on δk we have

Φ̄η − (Φ̄η|δ−k ) =
∑

j<k

(
w̄j F̄j +

∫ ζ

zk−1

η̄

)
η −

∑

j<k

(
wj F̄j +

∫ ζ

zk−1

w2
kη̄

)
w̄2

kη =

=
∑

j<k

(
w̄j − wjw̄

2
k

)
F̄jη =

∑

j<k

(w̄jwk − wjw̄k) F̄jw̄kη,

which after integration over δk yields

∫

δk

Φ̄η −
∫

δ−

k

Φ̄η =
∑

j<k

(w̄jwk − wj w̄k) F̄jFk =
2√
−1

∑

j<k

Im(wj w̄k)F̄jFk.

Our claim follows if we substitute this identity in the formula for N above.

We continue the proof. The claim implies that H(F (z, δ), F (z, δ)) = N(z).
The function N is obviously Γ-invariant (it does not involve δ). Since N determines
H , so is H . So this settles the hyperbolic case.

For the elliptic and parabolic cases we may verify by hand that it is invariant
under a generating set of monodromy transformations, but a computation free
argument, based analytic continuation as in [4], is perhaps more satisfying. It
runs as follows: if we choose a finite set of generators α1, . . . , αN of PBrn+1, then
for every weight system µ we have a projective linear transformation Pρµ(αi) of
Pn−1 that depends in a real-analytic manner on µ. We will see that the Hermitian
forms hµ defined on an open subset of the tangent bundle of Pn−1 also depend
real-analytically on µ; so if hµ is preserved by the Pρµ(αi)’s for a nonempty open
subset of µ’s, then it is preserved for all weight systems for which this makes sense.
Hence Pρµ(αi) multiplies H by a scalar. For 1 < |µ| < 2 this scalar is constant 1.
Another analytic continuation argument implies that it is 1 for all µ. �

1.7. Cohomological interpretation via local systems of rank one

We sketch a setting in terms of which the Hermitian form H is best understood. It
will not play a role in what follows (hence may be skipped), although it will reap-
pear in a more conventional context (and formally independent of this discussion)
in Section 4. The reader should consult §2 of [5] for a more thorough treatment.

Fix complex numbers α0, . . . , αn in C×. Let L be a local system of rank one
on U := C − {z0, . . . , zn} = P1 − {z0, . . . , zn+1} such that the (counterclockwise)
monodromy around zk is multiplication by αk. It is unique up to isomorphism.
We fix a nonzero multivalued section e of L by choosing a nonzero section of L
on some left half plane and then extend that section to the universal cover of
U (defined by that left half plane). Denote by L := OU ⊗C L the underlying
holomorphic line bundle. So if µk ∈ C is such that exp(2πµk

√
−1) = αk, then

s(ζ) :=
∏n

k=1(zk − ζ)−µk ⊗ e can be understood as a generating section of L.
Likewise, sdζ is a generating of Ω(L) = ΩU ⊗C L. Notice that L comes with a
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connection ∇ : L → Ω(L) characterized by

∇(s) =

(
n∑

k=0

µk

zk − ζ

)
sdζ

and that L is recovered from the pair (L,∇) as the kernel of ∇.

The topological Euler characteristic of a rank one local system on a space
homotopy equivalent to a finite cell complex is independent of that local system and
hence equal to the topological Euler characteristic of that space. So the topological
Euler characteristic of L is −n. Now assume that αk 6= 1 for all k. This ensures
that L has no nonzero section. As there is no cohomology in degrees 6= 0, 1, this
implies that dim H1(L) = n. Moreover, if j : U ⊂ P1 is the inclusion, then the
stalk of j∗L in zk is represented by the sections of L on a punctured neighborhood
of zk, hence is zero unless k = n + 1 and α0 · · ·αn = 1: then it is nonzero. So the
map of complexes j!L → j∗L has cokernel a one-dimensional skyscraper sheaf at ∞
or is an isomorphism. This implies that for the natural map i : H1

c (L) → H1(L),
dim Ker(i) = dim Coker(i) is 1 or 0, depending on whether or not α0 · · ·αn = 1.
We denote the image of i by IH1(L).

A relative arc α plus a section of L∨ over its relative interior defines a relative
cycle of (P1, {z0, . . . , zn+1}) with values in L∨ and hence an element [α] of the
relative homology space H1(P1, {z0, . . . , zn+1}; L∨). Alexander duality identifies
the latter cohomology space with the dual of H1(L). To make the connection with
the preceding, let us identify η with sdζ (we need not assume here that µk ∈ (0, 1)),
so that we have a De Rham class [η] ∈ H1(L). If we are given an L-arc system
δ and choose the determination of e on δk prescribed by the arc system, then
{w̄k[δk]}n

k=1 is a basis of H1(P1, {z0, . . . , zn+1}; L∨) and the value of [η] on w̄k[δk]
is just Fk(z, δ).

We have a perfect (Poincaré) duality H1
c (L) × H1(L∨) → C, which, if coho-

mology is represented by means of forms, is given by integration over U of the cup
product. Suppose now in addition that |αk| = 1 for all k. This implies that L carries
a flat metric; we choose this metric to be the one for which e has unit length. The
metric may be viewed as a C-linear isomorphism of sheaves L → L∨ (here L stands
for the local system L with its complex conjugate complex structure) so that our

perfect duality becomes a bilinear map H1
c (L) × H1(L) → C. We multiply that

map by 1
2

√
−1 and denote the resulting sesquilinear map h : H1

c (L)×H1(L) → C.

Then h is Hermitian in the sense that if α, β ∈ H1
c (L), then h(α, i∗β) = h(β, i∗α),

in particular, it induces a nondegenerate Hermitian form on IH1(L). This is just
minus the form we defined in Subsection 1.6. If we take µk ∈ (0, 1) for k = 0, . . . , n
and assume 1 < |µ| < 2 (so that µn+1 ∈ (0, 1) also and i is an isomorphism), then
h([η], [η]) equals 1

2

√
−1
∫

C
η∧η̄ indeed and hence equals −N(z) = −H(F (z), F (z)).
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2. Orbifolds and discrete monodromy groups

2.1. Monodromy defined by a simple Dehn twist

Let be given a relative arc γ0 in (C, {z0, . . . , zn}) which connects zk with zl, k 6= l.
This defines a Dehn twist D(γ0) and hence an element T of PBrn+1. We determine
the action of T on Cn. For this we need to make ηz univalued. Suppose we are
given a straight piece of arc γ1 that begins in zl, but is otherwise disjoint from γ0

so that a neighborhood of supp(γ0) minus supp(γ0γ1) is simply connected. Then
choose a determination for ηz on this simply connected open subset and let ηz|γ0

be the limit from the left. Let γ resp. γ ′ be an arc which ends in zk resp. zl, but
otherwise avoids {z0, . . . , zn} ∪ supp(γ0γ1) (we also assume that γ ′ stays on the
right of γ1γ0). Then from a picture one sees that

∫

T (γ)

ηz =

∫

γ

ηz + (1 − w2
l )

∫

γ0

ηz ,

∫

T (γ)

ηz =

∫

γ

ηz + (−w2
l + w2

kw2
l )

∫

γ0

ηz,

∫

T (γ0)

ηz = w2
kw2

l

∫

γ0

ηz.

Remembering that w2
kw2

l = e2π
√
−1(µk+µl), one easily deduces from these formulae:

Corollary 2.1. If µk +µl 6= 1, then T acts in Cn semisimply as a complex reflection
over an angle 2π(µk+µl). If µk+µl = 1, then T acts in Cn as a nontrivial unipotent
transformation. In particular, T acts with finite order if and only if µk + µl is a
rational number 6= 1.

By a complex reflection we mean here a semisimple transformation which
fixes a hyperplane pointwise. In the elliptic and hyperbolic cases, T will be an
orthogonal reflection with respect the Hermitian form H ; in the parabolic case, it
will be restrict to An−1 as an orthogonal affine reflection.

2.2. Extension of the evaluation map

The Γ-covering Ṽ ◦
n → V ◦

n can sometimes be extended as a ramified Γ-covering
over a bigger open subset V f

n ⊃ V ◦
n of Vn (the superscript f stands for f inite

ramification; we may write V
f(µ)
n instead of V f

n if such precision is warranted).

This means that we find a normal analytic variety Ṽ f
n which contains Ṽ ◦

n as an
open-dense subset and to which the Γ-action extends such that the Γ-orbit space
can be identified with V f

n . This involves a standard tool in analytic geometry that
presumably goes back to Riemann and now falls under the heading of normal-
ization. It goes like this. If v ∈ Vn has a connected neighborhood Uv in V ◦

n such

that one (hence every) connected component of its preimage in Ṽ ◦
n is finite over

Uv ∩ V ◦
n , then the Γ-covering over Uv ∩ V ◦

n extends to a ramified Γ-covering over
Uv. The property imposed on Uv is equivalent to having finite monodromy over
Uv ∩ V ◦

n . The extension is unique and so if V f
n denotes the set of v ∈ Vn with this
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property, then a ramified Γ-covering Ṽ f
n → V f

n exists as asserted. The natural-

ity of the construction also ensures that the C̃×-action on Ṽ ◦
n (which covers the

C×-action on V ◦
n ) extends to Ṽ f

n .
The space Vn receives a natural stratification from the stratification of Cn+1

by its diagonals and since the topology of V f
n along strata does not change, V f

n

is an open union of strata. The codimension one strata are of the form Dk,l,
0 ≤ k < l ≤ n, parameterizing the z for which zk = zl, but no other equality
among its components holds.

Lemma 2.2. The stratum Dk,l lies in V f
n if and only if µk +µl is a rational number

6= 1. The Schwarz map extends across the preimage of P(Dk,l)) holomorphically
if and only if µk + µl < 1 and it does so as a local isomorphism if and only if
1−µk −µl is the reciprocal of a positive integer. If |µ| 6= 1, then the corresponding
assertions also hold for the Lauricella map.

Proof. In order that Dk,l ⊂ V f
n , it is necessary and sufficient that we have fi-

nite monodromy along a simple loop around Dk,l. This monodromy is the image
of a Dehn twist along a circle separating zk and zl from the other elements of
{z0, . . . , zn}. So the first assertion follows from Corollary 2.1.

If γ0 connects zk with zl within the circle specified above, then
∫

γ0
ηz =

(zk − zl)
1−µk−µl exp(holom). This is essentially a consequence of the identity

∫ ε

0

t−µk(t − ε)−µldt = ε1−µk−µl

∫ 1

0

t−µk (t − 1)−µldt.

Suppose now that µk + µl ∈ Q − {1} and write 1 − µk − µl = p/q with p, q
relatively prime integers with q > 0. So the order of the monodromy is q and
over the preimage of a point of Dk,l, we have a coordinate z̃k,l with the property
that zk − zl pulls back to z̃q

k,l. Hence
∫

γ0
ηz pulls back to z̃p

k,l. In order that the

Schwarz map extends over the preimage of Dk,l holomorhically (resp. as a local
isomorphism), a necessary condition is that the Lauricella function

∫
γ0

ηz (which

after all may be taken as part of a basis of Lauricella functions) is holomorphic
(resp. has a nonzero derivative everywhere). This means that p > 0 (resp. p = 1).
It is not hard to verify that this is also sufficient. �

2.3. The elliptic and parabolic cases

Here the main result is:

Theorem 2.3 (Elliptic case). Suppose that |µ| < 1 and that for all 0 ≤ k < l ≤ n,
1−µk−µl is the reciprocal of an integer. Then Γ is a finite complex reflection group

in GL(n, C) (so that in particular V f
n = Vn) and F : Ṽn → Cn is a Γ-equivariant

isomorphism which drops to an isomorphism Vn → Γ\Cn.

So P(Vn) acquires in these cases the structure of an orbifold modeled on
Fubini-Study space. At the same time we prove a proposition that will be also
useful later. Observe that stratum of Vn is given by a partition of {0, . . . , n}: for
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z in this stratum we have zk = zl if and only if k and l belong to the same
part. Let us say that this stratum is stable relative to µ if its associated partition
has the property that every part has µ-weight < 1. We denote by V st

n ⊂ Vn (or

V
st(µ)
n ⊂ Vn) the union of stable strata.

Proposition 2.4. Suppose that whenever 0 ≤ k < l ≤ n are such that µk + µl < 1,

then 1 − µk − µl is the reciprocal of an integer. Then V st
n ⊂ V f

n , Ṽ st
n is a complex

manifold. The Lauricella map extends holomorphically over this manifold and has
the same regularity properties as the map it extends: it is a local isomorphism when
we are not in the parabolic case, whereas in the parabolic case, the Schwarz map
defines a local isomorphism to An−1.

We shall need:

Lemma 2.5. Let f : X → Y be a local diffeomorphism from a manifold to a con-
nected Riemannian manifold. Assume that X is complete for the induced metric.
Then f is a covering map.

Proof. We use the theorem of Hopf-Rinow which says that completeness is equiv-
alent to the property that every geodesic extends indefinitely as a geodesic. Let
y ∈ Y . Choose ε > 0 such that the ε-ball B(y, ε) is the diffeomorphic image of
the ε-ball in TyY under the exponential map. It is enough to show that every
x ∈ f−1B(y, ε) has a neighborhood which is mapped by f diffeomorphically onto
B(y, ε). Since X is complete, there is a (geodesic) lift of the geodesic in B(y, ε)
from f(x) to y which begins in x. Then the end point x0 of that lift lies in f−1y.
Then B(x0ε) contains x and maps diffeomorphically onto B(y, ε). �

We now begin the proofs of Theorem 2.3 and Proposition 2.4. Let us write
Ak for the assertion of Theorem 2.3 for k + 1 points and Bk for the assertion of
Proposition 2.3 for elliptic strata of codimension ≤ k. Let us observe that B1 holds:
an elliptic stratum of codimension one is a stratum of the form Dk,l satisfying the
hypotheses of Lemma 2.2. We now continue with induction following the scheme
below.

Proof that Ak implies Bk. Consider a stratum of codimension k. Let us first as-
sume that it is irreducible in the sense that it is given by a single part. With-
out loss of generality we may then assume that it is the open-dense in the locus
z0 = · · · = zk. This is the situation we studied in Subsection 1.4 (mainly for this
reason, as we can now confess). We found that F extends to as a multivalued
map defined on an open subset of the blowup Bl(z0,...,zk) Vn going to the blowup
Bl(F1,...,Fk) Cn. On the the exceptional divisor, F is the product of the Schwarz map
for µ′ = (µ0, . . . , µk) and the Lauricella map for (|µ′|, µk+1, . . . , µn). Our hypothe-
sis Ak then implies that the projectivized monodromy near a point of the stratum
is finite. Equation (1.2) shows that in the transversal direction (the ε coordinate)

the multivaluedness is like that of (ε)1−|µ′|. Since µi +µj ∈ Q for all 0 ≤ i < j ≤ k
and the sum of these numbers is 1

2k(k + 1)|µ′|, it follows that |µ′| ∈ Q. So we
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have also finite order monodromy along the exceptional divisor. This implies that
we have finite local monodromy at a point of the stratum: the stratum is elliptic.
We proved in fact slightly more, namely that this local monodromy group is the
one associated to the Lauricella system of type µ′. So we may then invoke Ak to

conclude that Ṽ st
n is in fact smooth over this stratum.

In the general case, with a stratum corresponding to several clusters forming,
we have topologically a product situation: the local monodromy group near a point
of that stratum decomposes as a product with each factor corresponding to a
cluster being formed. It is clear that if each cluster is of elliptic type, then so is

the stratum. Its preimage in Ṽ st
n will be smooth.

The asserted regularity properties of this extension of the Lauricalla map hold
on codimension strata by Lemma 2.2. But then they hold everywhere, because
the locus where a homolomorphic map between complex manifolds of the same
dimension fails to be a local isomorphism is of codimension ≤ 1. �

Proof that Bn−1 implies An. Since Bn−1 holds, it follows that V f
n contains Vn −

{0}. Thus PF : P(Ṽn) → Pn−1 is defined. The latter is a Γ-equivariant local

isomorphism with Γ acting on P(Ṽn) with compact fundamental domain (for its
orbit space is the compact P(Vn)) and on the range as a group of isometries.

This implies that P(Ṽn) is complete. According to Lemma 2.5, PF is then an

isomorphism. Hence F : Ṽn−{0} → Cn − {0} is a covering projection. Since the
domain of the latter is connected and the range is simply connected, this map is an

isomorphism. In particular, P(Ṽn) is compact, so that the covering P(Ṽn) → P(Vn)
is finite. This means that the projectivization of Γ is finite. On the other hand, the
C×-action on Vn − {0} needs a finite cover (of degree equal to the denominator

of 1 − |µ|) to lift to Ṽn−{0}. This implies that Γ is finite, so that V f
n = Vn. It is

now clear that F : Ṽn → Cn is an isomorphism. It is Γ-equivariant and drops to
an isomorphism Vn → Γ\Cn of affine varieties. �

In the parabolic case P(Vn) acquires the structure of an orbifold modeled on
flat space:

Corollary 2.6 (Parabolic case). Suppose that |µ| = 1 and that for all 0 ≤ k < l ≤ n,
1−µk−µl is the reciprocal of an integer. Then Γ acts as a complex Bieberbach group

in An−1, V f
n = Vn − {0} and PF : P(Ṽn) → An−1 is a Γ-equivariant isomorphism

which drops to an isomorphism P(Vn) → Γ\An−1.

Proof. It follows from Proposition 2.4 that V f
n contains Vn − {0} so that PF :

P(Ṽn) → An−1 is defined. The latter is a Γ-equivariant local isomorphism with Γ

acting on the P(Ṽn) with compact fundamental domain and on the range as a group

of isometries. Hence P(Ṽn) is complete. It the follows from Lemma 2.5 that PF is
a Γ-equivariant isomorphism. It also follows that Γ acts on An−1 discretely with
compact fundamental domain. This group is generated by complex reflections, in
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particular it is a complex Bieberbach group. Clearly, PF induces an isomorphism
P(Vn) ∼= Γ\An−1. �

We have also partial converses of Theorem 2.3 and Corollary 2.6. They will
be consequences of

Lemma 2.7. The Lauricella map extends holomorphically over any stable stratum
contained in V f

n .

Proof. Let S ⊂ {0, . . . , n} define an stable stratum DS (i.e., S has at least two
members and

∑
k∈S µk < 1) and assume that DS ⊂ V f

n . If 0 ≤ k < l ≤ n
is contained in S, then µk + µl ≤ |µ| < 1 and so the associated monodromy
transformation T is according to Corollary 2.1 a reflection over an angle 2π(µk +
µl). Since DS ⊂ V f

n , we must have µk + µl ∈ Q. Lemma 2.2 tells us that F
then extends holomorphically over the preimage of Dk,l. The usual codimension
argument implies that this is then also so over the preimage of DS . �

Proposition 2.8. If |µ| < 1 and Γ is finite, then the Lauricella map drops to a finite
map Vn → Γ\Cn.

If |µ| = 1, n > 1 and Γ acts on the complex Euclidean space An−1 as a
complex Bieberbach group, then V f

n = Vn and the Schwarz map drops to a finite
map P(Vn) → Γ\An−1.

Proof. In the elliptic case, it follows from Lemma 2.7 that the map F drops to
a map Vn → Γ\Cn which exists in the complex-analytic category. The map in
question is homogeneous (relative to the natural C×-actions) and the preimage
of 0 is 0. Hence it must be a finite morphism. In the parabolic case, the lemma
implies that the Schwarz map determines a map P(Vn) → Γ\An−1 which lives
in the complex-analytic category. This map will be finite, because its fibers are
discrete and its domain is compact. �

3. The hyperbolic case

Throughout this section we always suppose that 1 ≤ |µ| < 2.

3.1. A projective set-up

An important difference with the elliptic and the parabolic cases is that zn+1 = ∞
is now of the same nature as the finite singular points, since we have µn+1 =
1−|µ| ∈ (0, 1). This tells us that we should treat all the points z0, . . . , zn+1 on the
same footing. In more precise terms, instead of taking zn+1 = ∞ and study the
transformation behavior of the Lauricella integrals under the affine group C× n C
of C, we should let z0, . . . , zn+1 be distinct, but otherwise arbitrary points of P1

and let the group PGL(2, C) take role of the affine group. This means in practice
that we will sometimes allow some finite zk to coalesce with zn+1 (that is, to fly
off to infinity). For this we proceed as follows. Let Z0, . . . , Zn+1 be nonzero linear



Uniformization by Lauricella functions 21

forms on C2 defining distinct points z0, . . . , zn+1 of P1. Consider the multivalued
2-form on C2 defined by

Z0(ζ)−µ0 · · ·Zn+1(ζ)−µn+1dζ0 ∧ dζ1.

Let us see how this transforms under the group GL(2, C). The subgroup SL(2, C)
leaves dζ0∧dζ1 invariant, and so it simply transforms under SL(2, C) via the latter’s
diagonal action on the (C2)n+2 (the space that contains Z = (Z0, . . . , Zn+1)). The
subgroup of scalars, C× ⊂ GL(2, C) leaves the 2-form invariant. So the form has
a pole of order one at the projective line P1 at infinity. We denote the residue of
that form on P1 by ηZ . It is now clear, that a Lauricella function

∫
γ

ηZ will be

GL(2, C)-invariant. Since the 2-form (and hence ηZ) is homogeneous of degree −µk

in Zk, it follows that the quotient of two Lauricella functions will only depend on
the GL(2, C)-orbit of (z0, . . . , zn+1).

Let Q◦
µ denote the SL(2, C)-orbit space of the subset of (P1)n+2 parameteriz-

ing distinct (n+2)-tuples in P1. This is in a natural way a smooth algebraic variety
which can be identified with P(V ◦

n ) (every orbit is represented by an (n + 2)-tuple

of which the last point is ∞). So we have a Γ-covering Q̃◦
µ → Q◦

µ and a local

isomorphism PF : Q̃◦
µ → Bn−1. Thus far our treatment of zn+1 as one of the other

zi’s has not accomplished anything, but it will matter when we seek to extend it
as a ramified covering.

We say that z = (z0, . . . , zn+1) ∈ (P1)n+2 is µ-stable resp. µ-semistable if

the R-divisor Div(z) :=
∑n+1

k=0 µk(zk) has no point of weight ≥ 1 resp. > 1. Let
us denote the corresponding (Zariski open) subsets of (P1)n+2 by U st

µ resp. U sst
µ .

Notice that when z is µ-stable, the support of
∑n+1

k=0 µk(zk) has at least three
points. This implies that the SL(2, C)-orbit space (denoted Qst

µ ) of U st
µ is in a

natural manner a nonsingular algebraic variety: given a µ-stable point z, we can
always pick three pairwise distinct components for use as an affine coordinate for
P1. By means of this coordinate we get a nonempty Zariski-open subset in (P1)n−1

which maps bijectively to an open subset of Qst
µ . These bijections define an atlas

for the claimed structure. In the semistable case, we can choose a coordinate for
P1 such that ∞ has weight 1.

Geometric Invariant Theory tells us that in case the µk’s are all rational, one
can compactify Qst

µ to a projective variety by adding just finitely many points:
one point for each orbit containing a point whose associated divisor is (0) + (∞)
or equivalently, for each splitting of {0, . . . , n + 1} into two subsets, each of which
of total µ-weight 1. (So if no such splitting exists, then Qst

µ is already projective

variety.) Let us denote that projective compactification by Qsst
µ . This is in fact a

quotient of a U sst
µ with the property that each fiber is the closure of a SL(2, C)-

orbit and contains a unique closed SL(2, C)-orbit (in the strictly stable case the
latter is represented by a z whose divisor is (0) + (∞)).

Theorem 3.1. Assume that for every pair 0 ≤ k < l ≤ n + 1 for which µk +
µl < 1, 1 − µk − µl is the reciprocal of an integer. Then the monodromy covering
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Q̃◦
µ → Q◦

µ extends to a ramified covering Q̃st
µ → Qst

µ and F extends to a Γ-

equivariant isomorphism Q̃st
µ → Bn−1. Moreover Γ acts in Bm discretely and with

finite covolume; this action is with compact fundamental domain if and only no
subsequence of µ has weight 1.

Remarks 3.2. Our hypotheses imply that the µk’s are all rational so that the GIT
compactification Qsst

µ makes sense. The compactication of Γ\Bn−1 that results by

Γ\Bn−1
∼= Qst

µ ⊂ Qsst
µ coincides with the Baily-Borel compactification of Γ\Bn−1.

The cohomology and intersection homology of the variety Qsst
µ has been in-

vestigated by Kirwan-Lee-Weintraub [8].

Before we begin the proof of Theorem 3.1 we need to know a little bit about
the behavior of the complex hyperbolic metric on a complex ball near a cusp. Let
W be a finite dimensional complex vector space equipped with a nondegenerate
Hermitian form H of hyperbolic signature so that H(w, w) > 0 defines a complex
ball B(W ) ⊂ P(W ). Let e ∈ W be a nonzero isotropic vector. Since its orthogonal
complement is negative semidefinite, every positive definite line will meet the affine
hyperplane in W defined by H(w, e) = −1. In this way we find an open subset Ωe

in this hyperplane which maps isomorphically onto B(W ). This is what is called a
realization of B(W ) as a Siegel domain of the second kind.

Lemma 3.3. The subset Ω of the affine space H(w, e) = −1 defined by H(w, w) < 0
is invariant under translation by R≥0e. If K ⊂ Ω is compact and measurable, then

K +
√
−1R≥0e is as asubset of Ω complete and of finite volume.

Proof. This is well-known, but we outline the proof anyway. Write e0 for e and let
e1 ∈ W be another isotropic vector such that H(e0, e1) = 1 and denote by W ′ the
orthogonal complement of the span of e0, e1. So if we write w = w0e0 + w1e1 + w′

with w′ ∈ W ′, then Ω is defined by w1 = −1 and Re(w0) > 1
2H(w′, w′). This

shows in particular that Ω is invariant under translation by τe, when Re(τ) ≥ 0.
Let Ko ⊂ Ω be compact ball and suppose that w ∈ Ko 7→ H(w, e1) is constant. If
R > 0, then the map (w, y, x) ∈ Ko × [−R, R] × R≥0 → (w + (x +

√
−1y)e0 ∈ Ω,

is an embedding. It is straightforward to verify that the pull-back of the metric
of Ω ∼= B(W ) is comparible to the ‘warped metric’ x−1(gΩ|Ko

) + x−2(dx2 + dy2).
From this it easily follows that Ko×[−R, R]×R≥0 is complete and of finite volume.
Since any compact measurable K ⊂ Ω is covered by the image of finitely many
maps Ko × [−R, R] × R≥0 → Ω as above, the lemma follows. �

It follows from Proposition 2.4 that Qst
µ ⊂ Qf

µ and that the Schwarz map

PF : Q̃st
µ → Bn−1 is a local isomorphism. So Qst

µ inherits a metric from Bn−1. We

need to show that Qst
µ is complete and has finite volume. The crucial step toward

this is:

Lemma 3.4. Let 0 < r < n be such that µ0 + · · · + µr = 1. Denote by D the set of
(z0, . . . , zn) ∈ Cn+1 satisfying |z0| < · · · < |zr| < 1 < 2 < |zr+1| < · · · < |zn| and
z0 + · · ·+ zr = 0. Then D embeds in Q◦

µ and its closure in Qst
µ is complete and of

bounded volume.
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Proof. That D embeds in Q◦
µ is clear. Let D′ ⊂ D be the open-dense subset of

z ∈ D for which | arg(zk)| < π for all k. There is a natural isotopy class of L-arc
systems δ for every z ∈ D′ characterized by the property that δk never crosses the

negative real axis and |δk| is monotonous. This defines a lift D̃′ of D′ to Q̃st
µ so

that is defined F : D̃ → Cn. For t > 0, denote by D′(t) the set of z ∈ D for which
|z0 · · · zr|/|zr+1 · · · zn| ≥ t. It is easy to see that D′(t) has compact closure in Qst

µ

and so the closure of its preimage D̃′(t) in Q̃st
µ is compact as well.

Since µ0 + · · ·+µr = 1, Lemma 1.9 will apply here. As in that lemma, we put

F̂ := z
−µr+1

r+1 · · · z−µn

n F . According to that lemma we have
∑r

k=1 Im(wk)F̂k(z) = 0.

This amounts to saying that H(F̂ , er+1) = −π, where er+1 denotes the (r +
1)th basis vector of Cn. (For H(F, G) =

∑
1≤j<k≤n+1 Im(wjw̄k)ḠjFk and so

H(er+1, G) =
∑

1≤j≤r Im(wj)Ḡj .) We also notice that H(er+1, er+1) = 0. So F̂

maps to the Siegel domain Ω defined in Lemma 3.4 if we take e := π−1er+1. Hence

the lemma will follow if we show that the image of D̃ in Ω is contained in a subset
of the form K + R>0er+1. Now notice that for 0 < ε < 1, z 7→ zε maps D(t) onto

D′(tεn+1). From Lemma 1.9 we see that the coordinates F̂k stay bounded on D̃′

for all k 6= r + 1, whereas Re F̂r+1|D′(t) → ∞ as t → 0. This means that D̃′ in Ω
is contained in a subset of the form K + R>0er+1. �

Proof of Theorem 3.1. The GIT compactification Qsst
µ of Qst

µ adds a point for every
permutation σ of {0, . . . , n} for which µσ(0) + · · · + µσ(r) = 1 for some 0 < r < n.
If σ is such a permutation, then we have define an open subset Dσ ⊂ Q◦

µ as in

Lemma 3.4 and according to that Lemma, the closure of Dσ in Qst
µ is complete and

of finite volume. The complement in Qst
µ of the union of these closures is easily

seen to be compact. Hence Qst
µ is complete and of finite volume. The theorem

now follows from Lemma 2.5 (bearing in mind that Qsst
µ = Qst

µ if and only if no
subsequence of µ has weight 1). �

3.2. Extending the range of applicability

We begin with stating a partial converse to Theorem 3.1, the hyperbolic counter-
part of Proposition 2.8:

Proposition 3.5. Suppose that 1 < |µ| < 2, n > 1 and Γ acts on Bn−1 as a discrete
group. Then Γ has finite covolume and the Schwarz map drops to a finite morphism
Qst

µ → Γ\Bn−1.

Proof. It follows from Lemma 2.7 that the Schwarz map is defined over Qst
µ and

hence drops to a map Qst
µ → Γ\Bn−1. It follows from Lemma 3.4 (by argueing as

in the proof of Theorem 3.1) that Qst
µ is complete as a metric orbifold and of finite

volume. This implies that Qst
µ → Γ\Bn−1 is a finite morphism. �

This immediately raises the question which weight systems µ satisfy the hy-
potheses of Proposition 3.5. The first step toward the answer was taken by Mostow
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himself [9], who observed that if some of the weights µk coincide, then the con-
ditions of (2.3), (2.6) and (3.1) may be relaxed, while still ensuring that Γ is
a discrete subgroup of the relevant Lie group. The idea is this: if Sµ denotes the
group of permutations of {0, . . . , n+1} which preserve the weights, then we should
regard the Lauricella map F as being multivalued on Sµ\V ◦

n , rather than on V ◦
n .

This can make a difference, for the monodromy cover of Sµ\V ◦
n need not factor

through V ◦
n . We get the following variant of Lemma 2.2

Lemma 3.6. Suppose that in Lemma 2.2 we have µk = µl ∈ Q − { 1
2}. Then the

Lauricella map (the Schwarz map if |µ| = 1) extends over the image in Dk,l in
Sµ\V ◦

n as a local isomorphism if and only if 1
2 − µk is the reciprocal of a positive

integer.

Definition 3.7. We say that µ satisfies the half integrality conditions if whenever
for 0 ≤ k < l ≤ n + 1 we have µk + µl < 1, then (1 − µk − µl)

−1 is an integer or
in case µk = µl, just half an integer.

This notion is a priori weaker than Mostow’s ΣINT condition, but in the end
it apparently leads to the same set of weight systems. Now Proposition 2.4 takes
the following form.

Proposition 3.8. If µ satisfies the half integrality conditions, then V st
n ⊂ V f

n ,

S̃µ\V st
n is nonsingular, and the Lauricella map extends holomorphically to S̃µ\V st

n .
This extension has the same regularity properties as the map it extends: it is a local
isomorphism when we are not in the parabolic case, whereas in the parabolic case,
the Schwarz map defines a local isomorphism to An−1.

This leads to (see [9] and for the present version, [4]):

Theorem 3.9. Suppose that µ satisfies the half integrality conditions.

ell: If |µ| < 1, then Γ is a finite complex reflection group in GL(n, C) and F :

S̃µ\V n → Cn is a Γ-equivariant isomorphism which drops to an isomorphism
Sµ\Vn → Γ\Cn.

par: If |µ| = 1, then Γ acts as a complex Bieberbach group in An−1, V f
n = Vn−{0}

and PF : P(S̃µ\V n) → An−1 is a Γ-equivariant isomorphism which drops to
an isomorphism P(Sµ\Vn) → Γ\An−1.

hyp: If 1 < |µ| < 2, then the monodromy covering S̃µ\Q◦
µ → Sµ\Q◦

µ extends

to a ramified covering S̃µ\Qst
µ → Sµ\Qst

µ and F extends to a Γ-equivariant

isomorphism S̃µ\Qst
µ → Bn−1. Moreover Γ acts discretely in Bm and with

finite covolume.

Example. Let us take n ≤ 10 and µk = 1
6 for k = 0, . . . , n. So we have µn+1 = 11−n

6 .
The half integrality conditions are fulfilled for all n ≤ 10 with 1 ≤ n ≤ 4, n = 5,
6 ≤ n ≤ 11 yielding an elliptic, parabolic and hyperbolic case, respectively and
Sµ is the permutation group of {0, . . . , n} for n ≤ 9 and the one of {0, . . . , 11} for
n = 10.
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Mostow subsequently showed that in the hyperbolic range with n ≥ 3 we
thus find all but ten of the discrete monodromy groups of finite covolume: one
is missed for n = 4 (namely ( 1

12 , 3
12 , 5

12 , 5
12 , 5

12 , 5
12 )) and nine for n = 3 (see [10],

(5.1)). He conjectured that in these nine cases Γ is always commensurable with
a group obtained from Theorem 3.9. This was proved by his student Sauter [11].
It is perhaps no surprise that things are a bit different when n = 2 (so that we
are dealing with discrete groups of automorphism of the unit disk): indeed, the
exceptions then make up a number of infinite series ([10], Theorem 3.8). It turns
out that for n > 10 the monodromy group is never discrete and that for n = 10 this
happens only when µk = 1

6 for k = 0, . . . , 10. (It is not known whether there exist
discrete automorphism groups of finite covolume of a complex ball of dimension
≥ 10.)

4. Modular interpretation

We assume here that we are in the Q-hyperbolic case: µk ∈ (0, 1) and rational for

k = 0, . . . , n + 1 (with
∑n+1

k=0 µk = 2 as always).

4.1. Cyclic covers of P1

We will show that the Schwarz map can be interpreted as a ‘fractional period’
map. This comes about by passing to a cyclic cover of P1 on which the Lauricella
integrand becomes a regular differential. Concretely, write µk = dk/m with dk, m
positive integers such that the dk’s have no common divisor, and write mk for the
denominator of µk. Consider the cyclic cover C → P1 of order m which has rami-
fication over zk of order mk. In affine coordinates, C is given as the normalization
of the curve defined by

wm =

n∏

k=0

(zk − ζ)dk .

This is a cyclic covering which has the group Gm of mth roots of unity as its Galois
group: g∗(w, z) = (χ(g)w, z), where χ : Gm ⊂ C× stands for the tautological
character. The Lauricella integrand pulls back to a univalued differential η̃ on C,
represented by w−1dζ so that g∗(η̃) = χ̄(g)η̃. Hence, if we let Gm act on forms in
the usual manner (g ∈ Gm acts as (g−1)∗), then η̃ is an eigenvector with character
χ. It is easily checked that η̃ is regular everywhere.

In order to put this in a period setting, we recall some generalities concern-
ing the Hodge decomposition of C: its space of holomorphic differentials, Ω(C),
has dimension equal to the genus g of C and H1(C; C) is canonically represented
on the form level by the direct sum Ω(C) ⊕ Ω(C) (complex conjugation on forms
corresponds to complex conjugation in H1(C; C) with respect to H1(C; R)). The
intersection product on H1(C; Z) defined by (α, β) 7→ (α ∪ β)[C] (where the fun-
damental class [C] ∈ H2(C, Z) is specified by the complex orientation of C), is on
the form level given by

∫
C

α ∧ β. The associated Hermitian form on H1(C; C) de-

fined by h(α, β) :=
√
−1
2 (α∪ β̄)[C] =

√
−1
2

∫
C α∧β has signature (g, g). The Hodge
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decomposition H1(C; R) = Ω(C) ⊕ Ω(C) is h-orthogonal with the first summand
positive definite and the second negative definite. The Hodge decomposition, the
intersection product and (hence) the Hermitian form h are all left invariant by the
action of Gm.

Proposition 4.1. The eigenspace Ω(C)χ is of dimension one and spanned by η̃
and the eigenspace Ω(C)χ is of dimension n − 1. The eigenspace H1(C, C)χ has
signature (1, n − 1) and we have h(η̃, η̃) = −mN(F (z), F (z)).

Lemma 4.2. Let r ∈ {0, 1, . . . , m − 1}. Then the eigenspace Ω(C)χr

is spanned by
the forms w−rf(ζ)dζ where f runs over the polynomials of degree < −1+r

∑n
k=0 µk

that have in zk a zero of order ≥ [rµk], k = 0, . . . , n. In particular, if r is relatively

prime to m, then dim Ω(C)χr

= −1 +
∑n+1

k=0{rµk} (recall that {a} := a − [a]).

Proof. Any meromorphic differential on C which transforms according to the char-
acter χr, r = 0, 1, . . . , m−1, is of the form w−rf(ζ)dζ with f meromorphic. A local
computation shows that in order that such a differential be regular, it is necessary
and sufficient that f be a polynomial of degree < −1 + r

∑n
k=0 µk which has in

zk a zero of order > −1 + rµk , that is, of order ≥ [rµk ]. Hence dim Ω(C)χr

is the
largest integer smaller than

∑n
k=0{rµk}. Suppose now that r is relatively prime

to m. Then rµk /∈ Z for every k. Since
∑n+1

k=0 rµk = 2r it follows that the largest

integer smaller than
∑n

k=0{rµk} is −1 +
∑n+1

k=0{rµk}. �

Proof of Proposition 4.1. If we apply Lemma 4.2 to the case r = 1, then we find
that f must have degree < −1 +

∑n
k=0 µk = 1 − µn+1 and as µn+1 ∈ (0, 1), this

means that f is constant. So η̃ spans Ω(C)χ.

For r = m − 1, we find that dim Ω(C)χ̄ = −1 +
∑n+1

k=0{(m − 1)µk} = −1 +∑n+1
k=0(1− µk) = n + 1−

∑n+1
k=0 µk = n− 1. Since Ω(C)χ is the complex conjugate

of Ω(C)χ̄, it follows that this space has dimension n − 1 also. That H1(C, C)χ

has signature (1, n− 1) is now a consequence of its orthogonal decomposition into
Ω(C)χ and Ω(C)χ. Finally,

h(η̃, η̃) =

√
−1

2

∫

C

η̃ ∧ η̃ =
m
√
−1

2

∫

C

η ∧ η̄ = −mN(z, z)(> 0). �

So the Schwarz map PF : Q̃st
µ → Bn−1 can now be understood as attaching

to the curve C with its Gm-action the Hodge decomposition of H1(C; C)χ.

4.2. Arithmeticity

The above computation leads to an arithmeticity criterion for Γ:

Theorem 4.3. The monodromy group Γ is arithmetic if and only if for every r ∈
(Z/m)× − {±1} we have

∑n+1
k=0{rµk} ∈ {1, n + 1}.

We need the following density lemma.
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Lemma 4.4. The Zariski closure of Γ in GL(H1(C, C)χ ⊕ H1(C, C)χ̄) is defined
over R and the image of its group of real points in the general linear group of
H1(C, C)χ contains the special unitary group of H1(C, C)χ.

The proof amounts to exhibiting sufficiently many complex reflections in Γ.
It is somewhat technical and we therefore omit it.

Proof of Theorem 4.3. Let us abbreviate H1(C, C)χr

by Hr. The smallest subspace
of H1(C, C) which contains H1 and is defined over Q is the sum of the eigenspaces
H := ⊕r∈(Z/m)×Hr. We may identify H with the quotient of H1(C, C) by the span

of the images of the maps H1(Gk\C, C) → H1(C, C), where k runs over the divisors
6= 1 of m. In particular, H(Z) := H1(C, Z)∩H spans H . The monodromy group Γ
may be regarded as a subgroup of GL(HZ). On the other hand, Γ preserves each
summand Hr. So if we denote by G the Q-Zariski closure of Γ in GL(H), then Γ ⊂
G(Z) and G(C) decomposes as G(C) =

∏
r∈(Z/m)× Gr(C) with Gr(C) ⊂ GL(Hr).

To say that Γ is arithmetic is to say that Γ is of finite index in G(Z).
Since Hr⊕H−r is defined over R, so is Gr,−r := Gr×G−r. According to Lemma

4.4, the image of G1,−1(R) in Gr(C) contains the special unitary group of H1. The
summand Hr with its Hermitian form is for r ∈ (Z/m)× a Galois conjugate of
H1 and so it then follows that the image of Gr,−r(R) in Gr(C) contains the special
unitary group of Hr.

Suppose now that Γ is arithmetic. The projection G(R) → G1,−1(R) is in-
jective on Γ and so the kernel of this projection must be anisotropic: Gr,−r(R)
is compact for r 6= ±1. This means that the Hermitian form on Hr is definite

for r 6= ±1. Since Hr = Ω(C)χr ⊕ Ω(C)χ−r with the first summand positive and
the second summand negative, this means that for every r ∈ (Z/m)× − {±1}
(at least) one of the two summands must be trivial. Following Lemma 4.2 this

amounts to
∑n+1

k=0{rµk} = 1 or
∑n+1

k=0{−rµk} = 1. The last identity is equivalent

to
∑n+1

k=0{rµk} = n + 1.
Suppose conversely, that for all all r ∈ (Z/m)×−{±1} we have

∑n
k=0{rµk} <

1 or
∑n

k=0{−rµk} < 1. As we have just seen, this amounts to Gr,−r(R) being com-
pact for all r ∈ (Z/m)× −{±1}. In other words, the projection, G(R) → G1,−1(R)
has compact kernel. Since G(Z) is discrete in G(R), it follows that its image in
G1,−1(R) is discrete as well. In particular, Γ is discrete in GL(H1). Following Propo-
sition 3.5 this implies that Γ has finite covolume in G1,−1(R). Hence it has also in
finite covolume in G(R). This implies that Γ has finite index in G(Z). �

Example. The case for which n = 3, (µ0, µ1, µ2, µ3) = ( 3
12 , 3

12 , 3
12 , 7

12 ) (so that

µ4 = 8
12 ) satisfies the hypotheses of Theorem 3.1, hence yields a monodromy

group which operates on B2 discretely with compact fundamental domain. But

the group is not arithmetic since
∑4

k=0{5µk} = 2 /∈ {1, 4}.
4.3. Working over a ring of cyclotomic integers

If we are given an L-arc system δ, then C → P1 comes with a section (continuous
outside δ) in much the same way as we found a determination of ηz: for ζ in a
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left half plane,
∏n

k=0(zk − ζ)dk has argument < π/2 in absolute value and so has
there a natural mth root (with argument < π/2m in absolute value); the resulting
section we find there is then extended in the obvious way. We identify δk with its
image in C under the section and thus regard it as a chain on C. For k = 1, . . . , n,
we introduce a Z[ζm]-valued 1-chain on C:

εk := w̄k

∑

g∈Gm

χ(g)g∗δk.

Notice that the coefficient w̄k is an mth root of unity and so a unit of Z[ζm]. We
put it in, in order to maintain the connection with the Lauricella map. It will also
have the effect of keeping some of the formulae simple.

Lemma 4.5. The element εk is a 1-cycle on C with values in Z[ζm] and has the
property that g∗εk = χ̄(g)εk (and hence defines an element of H1(C, Z[ζm])χ̄).
We have

∫
εk

η̃ = mFk(z, δ). Moreover, H1(C, Z[ζm])χ̄ is as a Z[ζm]-module freely

generated by ε1, . . . , εn.

Proof. The identity involving integrals is verified by
∫

εk

η̃ = w̄k

∑

g∈Gm

χ(g)

∫

g∗δk

η̃ = w̄k

∑

g∈Gm

χ(g)

∫

δk

g∗η̃ =

= w̄k

∑

g∈Gm

χ(g)

∫

δk

χ̄(g)η = mw̄k

∫

δk

η = mFk(z, δ).

Give P1 the structure of a finite cell complex by taking the singletons {z0, . . . , zn}
as 0-cells, the intervals δ1, . . . , δn minus their end points as 1-cells and P1−∪n

i=kδk

as 2-cell. The connected components of the preimages of cells in C give the latter
the structure of a finite cell complex as well (over the 2-cell we have one point of
ramification, namely ∞, and so connected components of its preimage are indeed
2-cells). The resulting cellular chain complex of C,

0 → C2 → C1 → C0 → 0,

comes with a Gm-action. Notice that C1 is the free Z[Gm]-module generated by
δ1, . . . , δn. On the other hand, C0

∼= ⊕n
k=0Z[Gm/Gmk

] and C2
∼= Z[Gm/Gmn+1

],
so that (C0)

χ̄ = (C2)
χ̄ = 0. The remaining assertions of the lemma follows from

this. �

We describe the Hermitian form on the free Z[ζm]-module H1(C, Z[ζm])χ̄:

Proposition 4.6. The Hermitian form H = − 1
mh is on the basis (ε1, . . . , εn) given

as follows: for 1 ≤ l ≤ k ≤ n we have

H(εk, εl) =





0 if l < k − 1,

− 1
4 sin(π/m)−1 if l = k − 1,

1
4 (cot(π/mk−1) + cot(π/mk)) if l = k.
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It is perhaps noteworthy that this proposition shows that the matrix of H on
ε1, . . . , εn only involves the denominators of the weigths µ0, . . . , µn. The proof relies
on a local computation of intersection multiplicities with values in Z[ζm]. The basic
situation is the following. Consider the Gm-covering X over the complex unit disk
∆ defined by wm = zd, where d ∈ {1, . . . , m−1} and g ∈ Gm acts as g∗w = χ(g)w.

The normalization X̃ of X consists of e := gcd(d, m) copies ∆, {∆k}k∈Z/e, as

follows: if we write m = em̄ and d = ed̄ and tk is the coordinate of ∆k , then

∆k → X is given by z = tm̄k and w = ζk
mtd̄k, so that on ∆k, wm̄ = ζkm̄

m td̄m̄
k = ζk

e zd̄.
If g1 ∈ Gm is such that χ(g1) = ζm, then g∗1(tk+1) = tk k = 0, 1 . . . , e − 1 and

g∗1t0 = ζmte−1 (because w|∆k+1 = ζk+1
m td̄k+1 and (g∗1w)|∆k = ζmw|∆k = ζk+1

m td̄k).
Choose θ ∈ (0, 2π) and let δ resp. δ′ be the ray on ∆0 defined by t0 = r resp.

t0 = r exp(
√
−1θ/m̄) with 0 ≤ r < 1. We regard either as a chain with closed

support. Notice that z maps δ resp. δ′ onto [0, 1) resp. a ray 6= [0, 1). Consider the
Z[ζm]-valued chains with closed support

δ̃ :=
∑

g∈Gm

χ(g)g∗δ, δ̃′ :=
∑

g∈Gm

χ(g)g∗δ
′.

These are in fact 1-cycles with closed support which only meet in the preimage of
the origin (a finite set). So they have a well-defined intersection number.

Lemma 4.7. We have δ̃ · δ̃′ = mζm(ζm − 1)−1 = 1
2m(1 −

√
−1 cot(π/m̄)).

Proof. This intersection product gets a contribution from each connected com-
ponent ∆k. Because of the Gm-equivariance these contributions are the same
and so it is enough to show that the contribution coming from one of them is
(m/2e)(1+

√
−1 cot(π/2m̄)) = 1

2m̄(1+
√
−1 cot(π/2m̄)). This means that there is

no loss in generality in assuming that d and m are relative prime. Assuming that
this is the case, then we can compute the intersection product if we write δ̃ and δ̃′

as a sum of closed 1-cycles with coefficients in Z[ζm]. This is accomplished by

δ̃ =
∑

g∈Gm

χ(g)g∗δ =

=

m∑

k=1

(1 + ζm + · · · + ζk−1
m )(gk−1

1∗ δ − gk
1∗δ) =

m∑

k=1

1 − ζk
m

1 − ζm
(gk−1

1∗ δ − gk
1∗δ),

(notice that gk−1
1∗ δ− gk

1∗δ is closed, indeed) and likewise for δ̃′. We thus reduce our

task to computing the intersection numbers (gk−1
1∗ δ − gk

1∗δ) · (gl−1
1∗ δ′ − gl

1∗δ
′). This

is easy: we find that this equals 1 if l = k, −1 if l = k − 1 and 0 otherwise. Thus

δ̃·δ̃′ =

m∑

k=1

1 − ζk
m

1 − ζm
ζ̄k−1
m =

mζm

ζm − 1
=

mζ2m

ζ2m − ζ̄2m
= 1

2m(1−
√
−1 cot(π/m)). �

Proof of 4.6. We may of course assume that each zk is real: zk = xk ∈ R with
with x0 < x1 < · · · < xn and that δk = [xk−1, xk ]. Let us put δ̃k := wkεk =∑

g∈Gm
χ(g)g∗δk and compute δ̃k · δ̃l for 1 ≤ l ≤ k ≤ n. It is clear that this is zero
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in case l < k − 1. For l = k, we let δ′k go in a straight line from xk−1 to a point in
the upper half plane (with real part 1

2xk−1 + 1
2xk , say) and then straight to xk. We

have a naturally defined Z[ζm]-valued 1-chain δ̃′k on C homologous to δ̃k and with

support lying over δk. So δ̃k · δ̃k = δ̃k · δ̃′k. The latter is computed with the help of

Lemma 4.7: the contribution over xk−1 is 1
2m(1−

√
−1 cot(π/mk−1)) and over xk

it is − 1
2m(1−

√
−1 cot(π/mk)) and so εk ·εk = δ̃k · δ̃′k = − 1

2m
√
−1 cot(π/mk−1))+

1
2m

√
−1 cot(π/mk). We now do the case l = k−1. The 1-chains on C given by δk−1

and δk make an angle over xk−1 of πµk−1 = πdk−1/m. In terms of the local picture

of Lemma 4.7 this means that the pair (δk, δk−1) corresponds to (δ,−ζ̄
dk−1−1
2m δ′).

It follows that

δ̃k · δ̃k−1 = δ̃ · −ζ̄
dk−1−1
2m δ̃′ = −ζ

dk−1−1
2m δ̃ · δ̃′ =

= −ζ
dk−1−1
2m mζm(ζm − 1)−1 = −m(ζ2m − ζ̄2m)−1e

√
−1πµk−1 .

Hence εk · εk−1 = −m(ζ2m − ζ̄2m)−1 and so H(εk, εk−1) = − 1
2m

√
−1

εk · εk−1 =

(2
√
−1(ζ2m − ζ̄2m))−1 = − 1

4 (sin(π/m))−1 is as asserted. �

5. Generalizations and other view points

5.1. Higher dimensional integrals

This refers to the situation where P1 and the subset {z0, . . . , zn+1} are replaced
by a projective arrangement; such generalizations were considered by Deligne,
Varchenko [15] and others. To be specific, fix an integer N ≥ 1, a finite set K with
at least N + 2 elements and a weight function µ : k ∈ K 7→ µk ∈ (0, 1). Given
an injective map z : k ∈ K 7→ zk ∈ P̌N , choose for every k ∈ K a linear form
Zk : CN+1 → C whose zero set is the hyperplane Hzk

defined by zk and put

ηz = ResPN

(
∏

k∈K

Zk(ζ)−µk

)
dζ0 ∧ · · · ∧ dζN .

This is a multivalued holomorphic N -form on Uz := PN − ∪k∈KHzk
. If σ is a

sufficiently regular relative N -chain of the pair (PN , PN − Uz) and we are given
a determination of η over σ, then η is integrable over σ so that

∫
σ

η is defined.
Here it pays however to take the more cohomological approach that we briefly
described in Subsection 1.7. So we let Lz be the rank one local system on Uz

such that its monodromy around Hzk
is multiplication by exp(2πµk

√
−1) and

endow it with a flat Hermitian metric. Then after the choice of a multivalued
section of Lz of unit norm, ηz can be interpreted as a section of ΩN

Uz
⊗C Lz . It

thus determines an element [ηz] ∈ HN (Lz). Similarly, σ plus the determination
of ηz over σ defines an element [σ] ∈ HN (PN , PN − Uz; L∨

z ). The latter space is
dual to HN (Lz) by Alexander duality in such a manner that

∫
σ ηz is the value

of the Alexander pairing on ([ηz ], [σ]). In order that ηz is square integrable it is
necessary and s ufficient that for every nonempty intersection L of hyperplanes
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Hzk
we have

∑
{k |Hz

k
⊃L} µk < codim(L). Assume that this is the case. Then ηz

defines in fact a class in the intersection homology space IHm(PN , Lz). This space
comes a natural hermitian form h for which h(ηz , ηz) > 0. (It is clear that the line
spanned by ηz only depends z; Hodge theory tells us that the image of that line
is F NIHN (PN , L).) So in order that the situation is like the one we studied we
would want that the orthogonal complement of ηz in IHN (PN , Lz) to be negative.
Unfortunately this seems rarely to be the case when N > 1. When that is so, then
we might vary z over the connected constructible set S of injective maps K → P̌N

for which the the topological type of the arrangement it defines stays constant.
Then over S we have a local system HS whose stalk at z ∈ S is IHN (PN , Lz) and
the Schwarz map which assigns to z the line in Hz defined by ηz will take values
in a ball. The first order of business should be to determine the cases for which
the associated monodromy group is discrete.

5.2. Geometric structures on arrangement complements

In [4] Couwenberg, Heckman and I developed a generalization of the Deligne-
Mostow theory that starts with a slightly different point of view. The point of
departure is here a finite dimensional complex inner product space V , a finite
collection H of linear hyperplanes in V and a map κ which assigns to every H ∈ H
a positive real number κH . These data define a connection ∇κ on the tangent
bundle of the arrangement complement V ◦ := V −∪h∈HH as follows. For H ∈ H
denote by πH ∈ End(V ) the orthogonal projection with kernel H and by ωH the
logarithmic differential on V defined by φ−1

H dφH , where φH is a linear form on V
with kernel H . Form Ωκ :=

∑
H∈H κHπH ⊗ ωH and regard it as a differential on

V ◦ which takes values in the tangent bundle of V ◦, or rather, as a connection form
on this tangent bundle: a connection is defined by

∇κ := ∇0 − Ωκ,

where ∇0 stands for the usual affine connection on V restricted to V ◦. This con-
nection is easily verified to be torsion free. It is well-known that such a connection
defines an affine structure (that is, it defines an atlas of charts whose transition
maps are affine-linear) precisely whenthe connection is flat; the sheaf of affine-
linear functions are then the holomorphic functions whose differential is flat for
the connection (conversely, an affine structure is always given by a flat torsion free
connection on the tangent bundle). There is a simple criterion for the flatness of
∇κ in terms of linear algebra. Let L(H) denote the collection of subspaces of V
that are intersections of members of H and let for L ∈ L(H) HL be the set of
H ∈ H containing L. Then the following properties are equivalent:

(i) ∇ is flat,
(ii) Ω ∧ Ω = 0,
(iii) for every pair L, M ∈ L(H) with L ⊂ M , the endomorphisms

∑
H∈HL

κHπH

and
∑

H∈HM
κHπH commute,

(iv) for every L ∈ L(H) of codimension 2, the sum
∑

H∈HL
κHπH commutes with

each of its terms.
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If these mutually equivalent conditions are satisfied we call the triple (V,H, κ) a
Dunkl system.

Suppose that (V,H, κ) is such a system so that V ◦ comes with an affine
structure. If L ∈ L(H) is irreducible (in the sense that there is no nontrivial
decomposition of HL such that the corresponding intersections are perpendicular),
then the fact that

∑
H∈HL

κHπH commutes with each of its terms implies that this
sum must be proportional to the orthogonal projection with kernel L, πL. A trace
computation shows that the sclalar factor must be κL := codim(L)−1

∑
H∈HL

κH .
Let us now assume that the whole system is irreducible in the sense that the
intersection of all members of H is reduced to the origin and that this intersection
is irreducible. We then have defined κ0 = dim(V )−1

∑
H∈H κH . The connection is

invariant under scalar multiplication by et ∈ C× and one verifies that for t close
to 0, the corresponding affine-linear transformation is like scalar multiplication by
e(1−κ0)t if κ0 6= 1 and by a translation if κ0 = 1. This means that if κ0 6= 1, the
affine structure on V ◦ is in fact a linear structure and that this determines a (new)
projective structure on P(V ◦), whereas when κ0 = 1 (the parabolic case), P(V ◦)
inherits an affine structure which makes the projection V ◦ → P(V ◦) affine-linear.
Notice that if (V,H, tκ) will be a Dunkl system for every t > 0. The behavior of
that system (such as its monodromy) may change dramatically if we vary t.

Before we proceed, let us show how a weight system µ that gives rise to the
Lauricella differential also gives rise to such an irreducible Dunkl system: we take
V = Vn = Cn+1/main diagonal, H will be the collection of diagonal hyperplanes
Hk,l := (zk = zl), 0 ≤ k < l ≤ n, and κ(Hk,l) = µk + µl. The inner product on
Vn comes from the inner product on Cn+1 for which 〈ek, el〉 = µkδk,l and is the
one which makes the projection Cn+1 → Vn selfadjoint. It is an amusing exercise
to verify that the connection is flat indeed and that the space of affine-linear
functions at z ∈ V ◦

n is precisely the space of solutions of the system of differential
equations we encountered in part (c) of Proposition 1.2. So the Schwarz map is
now understood as a multivalued chart (in standard terminology, a developing
map) for the new projective structure on P(V ◦

n ). We also find that κ0 = |µ|; more
generally, an irreducible member L ∈ L(H) is given by a subset I ⊂ {0, . . . , n}
with at least two elements (so that L = L(I) is the locus where all zk, k ∈ I
coincide) and κL(I) =

∑
k∈I µk.

Another interesting class of examples is provided by the finite complex re-
flection groups: let G be a finite complex reflection group operating irreducibly
and unitarily in a complex inner product space V , H the collection of complex
hyperplanes of G and H ∈ H 7→ κH constant on the G-orbits. Then (V,H, κ) is a
Dunkl system.

It turns out that in many cases of interest (including the examples mentioned
above), one can show that there exists a ∇κ-flat Hermitian form h on V ◦ with the
following properties

ell: if 0 < κ0 < 1, then h is positive definite,
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par: if κ0 = 1, then h positive semidefinite with kernel the tangent spaces to
the C×-orbits,

hyp: if 1 < κ0 < mhyp for some mhyp > 1, then h is nondegenerate hyperbolic
and such that the tangent spaces to the C×-orbits are negative.

This implies that P(V ◦) acquires a geometric structure which is respectively mod-
eled on Fubini-Study space, flat complex Euclidean space and complex hyperbolic
space. A suitable combination of rationality and symmetry conditions (which gen-
eralizes the half integrality condition 3.7) yields a generalization of Theorem 3.9.
We thus obtain new examples of groups operating discretely and with finite covol-
ume on a complex ball.
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